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1. Introduction

Foreign exchange rate interdependence between the underlying fu-
tures contract is widely utilized to reduce currency risk (Chan, 2010;
Gagnon, Lypny, & McCurdy, 1998; Ku, Chen, & Chen, 2007; Lien &
Yang, 2006; Lien & Yang, 2010; Lioui & Poncet, 2002). For effective
risk hedging strategy with the futures, it is calculated the hedge ratio
that specifies the number of futures contracts required to reduce the
variance of portfolio returns. The method of ordinary last square (OLS)
regression is conventionally used to derive the optimal hedge ratio.
The main issue related to the method is the second moment of the
time series that is assumed to be constant over time. In the existing lit-
erature this assumption is commonly utilized to form static optimal
hedge ratios through the futures contracts to minimize variance of the
hedged portfolios (see e.g. Figlewski, 1985; Ederington, 1979;
Malliaris & Urrutia, 1991; Benet, 1992: Geppert, 1995). However, disad-
vantage of the method is that it does not take into account the time
varying characteristic of the spot and futures price changes.

Engle (2002) proposed the dynamic conditional correlation (DCC)
model that is generally used in dynamic hedging strategies. The advan-
tage of the model is its property to capture dynamics of the covariance
between variables (see e.g. Bauwens, Laurent, & Rombouts, 2006;
Christoffersen, Errunza, Jacobs, & Jin, 2014; Pelletier, 2006). Ku et al.
(2007) investigate properties of the DCC model on the optimal hedge
ratios of British and Japanese currencies in both futures markets. In
their research the error correction term is also incorporated to the
f Vaasa, P.O. Box 700, FI-65101
DCC model to capture the long-run stochastic trend that is commonly
referred to the spot and futures markets' cointegration. In terms of
hedging performance the empirical results show that the model per-
forms the best. Recently, the copula-based GARCH model has shown
its efficiency to capture time varying characteristic of the variables in in-
terest. The copulamethod appliedwith the GARCHmodels emerged in-
terest in several studies (Patton, 2006; Jondeau & Rockinger, 2006; Lee
& Long, 2009; Ning, 2010; Garcia & Tsafack, 2011). The theory of the
copula, first introduced by Sklar (1959), considers copula as a function
that links marginal distributions into a multivariate joint distribution
function to capture dependence structure between the variables.

In this study changes in spot and futures prices for the currencies of
the Australian dollar (AUD), Canadian dollar (CAD), British pound
(GBP), Euro (EUR) and Japanese yen (JPY) are used to analyze hedging
effectiveness of the estimated models. It extends the existing literature
by demonstrating applicability of the copula DCC-EGARCH model to
capture dynamics of the covariance between variables to form efficient
hedges in currency markets. The bivariate error correction model is ap-
plied with the specified DCC model augmented with the realized vari-
ance estimator in the variance equation of the model. The estimation
results show that the model is able to form consistent estimate of the
conditional covariance matrix and finally improve efficiency of the dy-
namic hedges. For comparison purposes, also the OLS, error correction
model (ECM) and constant conditional correlation (CCC) model are es-
timated. The method of hedging effectiveness (HE), proposed by
Ederington (1979), is calculated to verify adequacy of the appliedmeth-
od to the model characteristics of the time series and to compare effi-
ciency of the hedges.

This paper contributes to the previous literature related to portfolio
hedging strategies (e.g. Baillie & Myers, 1991; Lien, Tse, & Tsui, 2002;
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Park & Jei, 2010; Su &Wu, 2014) by demonstrating increased efficiency
of the hedges based on the strategy implemented by the copula DCC-
EGARCH model. The superiority of the efficiency is attributed to the in-
formation content of the realized volatility estimator that is included
into the variance equation of themodel. The results of the study suggest
that the realized volatility estimator adds information in explaining the
exchange rates return variance.

The research is implemented in two phases to test robustness of
hedging effectiveness of the models estimated. First, the currency spot
and futures returns of the euro (EUR), British pound (GBP) and
Japanese yen (JPY) are used. The estimation period covers the return se-
ries from 14 January 2000 to 27 December 2013. Also, for an artificial
data the bootstrap method for data simulation is utilized. It is applied
the method that Politis and Romano (1994) suggest for stationary and
weekly dependent data. The advantage of the method for simulated
returns generation is its property to preserve time series returns
cross-sectional dependences. In the data simulation procedure for
each of the currencies and futures of Euro, British Pound and Japanese
Yen, a one thousand artificial data is generated. All themodels are fitted
to the currency spot and futures simulated returns i.e. each of themodel
is one thousand times estimated. Finally, from the estimation results the
confidence levels of the performance measures is calculated.

Secondly, in this study to test robustness of the hedges based on the
models applied the return series that cover a longer time period is uti-
lized from 12 June 1987 to 27 December 2013. For the models estima-
tion the longer time period of the currency spot and futures returns of
the Australian dollar (AUD), Canadian dollar (CAD), British pound
(GBP) and Japanese yen (JPY) is used.

This study is related to the earlier studies presented by Hsu, Tseng,
andWang (2008); Lai and Sheu (2010) and Sheu and Lai (2014) on ex-
amination of the GARCH model ability to estimate risk risk-minimizing
hedge ratios. For the S&P 500 and FTSE 100 futures hedge, Hsu et al.
(2008) compared the performance of the estimated dynamic hedging
model between the other models. They show that the outperformance
of the optimal dynamic hedge is based on the efficiency of the improved
copula GARCH model. Lai and Sheu (2010) analyzed multivariate
GARCH models with encompassed realized variance estimates in fu-
tures hedging and effect of hedge horizon on hedge ratio. Similarly,
Sheu and Lai (2014) investigate the effect of information content of re-
alized variance range effect on futures hedging.

In previous research Conlon and Cotter (2012) consider themoving-
window OLS hedging and the distributional characteristics of the hedg-
ing portfolio returns. The optimal hedge ratio applied in futures hedging
shows that the hedge is inadequate to account for excess kurtosis of the
hedge portfolio returns distribution. In this current research the optimal
hedge ratio is applied in context of multivariate GARCH models. In the
currency portfolio hedging it is recognized generally known character
of the GARCHmodels' inability to capture all excess kurtosis in financial
returns. Bollerslev (1987) considers this issue by used t-distribution and
Nelson (1991) by a generalized error distribution. Recently Malmsten
and Teräsvirta (2010) show that excess kurtosis is not accounted by ap-
plied standard GARCHmodels. This character of the GARCHmodels ap-
plied is observable in particularly in high volatility periods. Hence, the
external realized variance estimators are included into the variance
equations of the model to improve the model ability to fit into the esti-
mated currency spot and futures returns in high volatility periods.

Fernandez (2008) shows that in terms of hedging effectiveness the
commodity portfolio hedge based on the method of the copula correla-
tion outperforms the multivariate GARCH model. In this paper the cop-
ula DCC-EGARCHmodel is utilized to model returns dependency. In the
model estimation the joint distribution of the Gaussian copula links the
marginal distributions of the spot and futures returns together, hence it
is assumed the method more effectively captures dynamics of the spot
and futures correlation. Particularly, similar to Fernandez (2008) the
outperformance of the DCC-EGARCH with the external realized volatil-
ity estimator included into the variance equation of the model is
possible partly to account for the outcome of the utilized copula based
method.

Several studies consider multivariate GARCHmodels to form the op-
timal hedge strategy. Chang, González-Serrano, and Jiménez-Martín
(2013) analyze hedge ratios and performance of near-month and
next-to-near-month futures contracts on spot exchange rates of Euro,
British pound and Japanese yen. The estimated conditional covariance
from the applied multivariate GARCHmodels showed their importance
in daily hedge for the currencies. Caporin, Jimenez-Martin, and
Gonzalez-Serrano (2014) in their study compare hedging performance
of severalmultivariateGARCHmodels, including strategies based on lin-
ear regression and variance smoothing. In their study, they focused on
the impact of currency hedge and improved risk-return trade-off within
the financial turmoil originated from the subprime and the Euro sover-
eign bonds. The results of their study suggest that for the applied dy-
namic covariance models the measures of hedging effectiveness and
Sharpe ratio show improved performance.

Kroner and Sultan (1993) demonstrate the performance differences
between strategies based on dynamic and static hedge in a framework
of bivariate GARCH and ordinary least square OLS regression, respec-
tively. Similar empirical studies of Chakraborty and Barkoulas (1999)
support the findings that the dynamic hedging strategy encompasses
the strategies based on the estimated static covariance. Lien et al.
(2002) examines differences of hedging performances between least
square OLS regression and constant correlation vector generalized
autoregressive conditional heteroscedasticity (VGARCH) model. Their
findings indicate that the OLS hedging encompasses the VGARCH
model in efficiency.

As proposed in earlier studies (see e.g. Engle, 1982; Engle & Granger,
1987), time varying variance-covariance structure of the data series is
not accounted for by the utilized OLS regression. Thus, to capture
heteroscedasticity of conditional variances and correlations of asset
returns Engle (2002) proposed the DCC model, which is also frequently
utilized in subsequent literature. Campbell, Serfaty-De Medeiros, and
Viceira (2010) analyzemean-variance of portfolios of several currencies
to manage risk of the international bond and equity investments. The
results of the study show hedging benefits for the portfolios of bond in-
vestments and benefits for equity are related to the correlation of specif-
ic pairs of currency and equity that states a long or short position
investments in the specified currency. The findings of their research in-
dicate that dynamic hedges outperform static hedge of portfolios con-
structed. With similar studies De Roon, Nijman, and Werker (2003)
conclude that dynamic hedges conditional on the interest rate spread
improve efficiency of the hedges.

The remaining sections of this study are organized as follows.
Section 2 introduces the data employed in this paper. Section 3 intro-
duces the employedmethodologies. Section 4 presents the empirical re-
sults and the final section concludes.

2. Data

In this study the Chicago Mercantile Exchange (CME) spot and fu-
tures contract settlement observations for the Australian dollar (AUD),
Canadian dollar (CAD), euro (EUR), British pound (BP), and Japanese
yen (JPY) in US dollars are used. The futures non-adjusted settlement
data observations are based on the spot-month continuous contract cal-
culations. All the observations are weekly closing prices collected from
the Datastream database. For the euro (EUR), Britain pound (GBP) and
Japanese yen (JPY) the data incorporates 730 observations from 7 Janu-
ary 2000 to 27 December 2013. To obtain log returns (see Fig. 1) the
time series observation i at time t and t−1 are calculated for the spot
(S) and futures (F) closing prices as si , t= log(Si , t/Si , t−1) and fi , t=
log(Fi ,t/Fi ,t−1), respectively.

Similarly, the Chicago Mercantile Exchange (CME) spot and futures
contract settlement observations for the Australian dollar (AUD), Cana-
dian dollar (CAD), British pound (BP), and Japanese yen (JPY) in US



Fig. 1.Weekly log return series of the spot currency rates over the period 14 January 2000 to 27 December 2013.
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dollars are collected. In this study the weekly closing prices of a longer
time period that incorporates 1387 observations is utilized from 5
June1987 to 27December 2013. For themodels estimation the currency
spot and futures returns of the Australian dollar (AUD), Canadian dollar
(CAD), British pound (GBP) and Japanese yen (JPY) is used. In Fig. 2 the
log returns of the spot returns are presented.

3. Methodology

Andersen andBollerslev (1998) introduced amethod to estimate ac-
tual daily volatility of foreign exchangemarket by summing squared in-
traday returns.1 In addition, Barndorff-Nielsen and Shephard (2002)
outlined the semi-martingale process to the methodology of actual
daily variability defined as a realized volatility. They show that discrete
daily sumof squared returns constitute and unbiased and consistent ap-
proximation of the actual volatility. In this study, returns series of the
currency spot prices are used to form the realized volatility as follows,

RVt ¼ ∑D
d s

2
d;t ð1Þ

where sum of squared daily returns sd ,t2 inweek t constitutes an approx-
imation of the realized volatility RVt for weekly returns (see e.g. French,
Schwert, & Stambaugh, 1987; Schwert, 1989). In purpose to utilize in-
formation content of the currency squared returns on volatility estima-
tion the series of realized variance is utilized in a structure of a variance
equation of the DCC-EGARCH model (see Eqs. (5) and (6)).

3.1. DCC GARCH model estimation

Engle (2002) proposed the time-varying dynamic conditional corre-
lation (DCC) model where correlations between assets are estimated in
two-step procedure.2 In the first-step, univariate GARCHmodels are es-
timated for each asset and in the second-step, standardized innovations
is used to produce estimates of the dynamic correlations. In this study
the univariate exponential GARCH (EGARCH) model, introduced by
Nelson (1991) is used in the model estimation.3

For the first step of the DCC model estimation the test results of the
cointegration (see Table 2) support inclusion of the error correction
term St−1−γFt−1 with the structure of the EGARCH(1,1) model as fol-
lows,

st ¼ cs þ θs St−1−γFt−1ð Þ þ ϵst ð2Þ
1 Andersen and Bollerslev (1998) intraday returns based on 5-min data observations.
2 For the models estimated in this study the R statistic package rmgarch (Ghalanos,

2014) is utilized.
3 The EGARCHmodel with different structures of lagged log variances and standardized

innovations is considered. For hedging performance the EGARCH(1,1) model showed su-
periority over any other structures of the model.
f t ¼ c f þ θ f St−1−γFt−1ð Þ þ ϵft ð3Þ

ϵst
ϵft

� �����Ψt−1 � N 0;Htð Þ ð4Þ

log σ2
st

� � ¼ ωs þ αs ϵt−1j j−E ϵt−1j jð Þ þ γsϵt−1 þ βs log σ2
t−1

� �
þ RVst−1 ð5Þ

log σ2
ft

� �
¼ ω f þ α f ϵt−1j j−E ϵt−1j jð Þ þ γ f ϵt−1 þ β f log σ2

t−1

� �
þ RVft−1 ð6Þ

whereΨt−1 is the information set an time t−1 andHt is the conditional
variance-covariance matrix estimated at time t.

In this paper it is followed the Engle and Granger (1987) two-step
procedure to capture spot and futures long-run relationship. Hence,
for the mean equation of the DCC model the term St−1−γFt−1 is esti-
mated in the cointegrating regression St=c+γFt+ϵt, where the resid-
uals of the regression represent an error correction term in the model.
Furthermore, in order to capture information content of weekly returns
on the estimated correlations it is included the lagged value of the real-
ized volatility RV(∙) estimator into the variance equation of the model.

In the model estimation procedure the time varying covariance is
obtained such that,

Ht ¼ DtRtDt ; ð7Þ

where Dt ¼ diagð ffiffiffiffiffiffiffiffi
h1;t

p
;⋯;

ffiffiffiffiffiffiffiffi
hN;t

p Þ is a diagonal matrix of time varying
variances hi , t from the first step univariate EGARCH process and Rt is
positive definite conditional correlation matrix of the standardized re-
siduals εt=Dt

−1ϵt~N(0,Rt). The conditional correlation matrix Rt is ob-
tained as follows,

Rt ¼ diag Qtð Þ−1=2Qtdiag Qtð Þ−1=2 ð8Þ

Qt ¼ 1−α−βð ÞQ̂ þ αεt−1ε
;
t−1 þ βQt−1; ð9Þ

where Q̂ is the N×Nmatrix constructed of unconditional covariance of
standardized residuals εt.4 For stationary andpositive definiteness of the
matrix Q̂ scalars parameters α and β are non-negative and satisfies con-
straint α+βb1.
4 Bollerslev (1990) introduced the constant conditional correlation (CCC)model, where
the correlation of thematrix Rt is constant unconditional correlation between the estimat-
ed variables.



Fig. 2.Weekly log return series of the spot currency rates over the period 12 June 1987 to 27 December 2013.
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3.2. Copula DCC GARCH

However, for the model estimation the assumption of linear depen-
dence and multivariate normality of distribution of standardized inno-
vations is not necessarily satisfied. It is possible that anticipated linear
dependence and empirical distribution differ from themultivariate nor-
mal function. In this study it is applied the copula EGARCH-DCC model
to obtain estimates of the bivariate dynamic correlations between the
returns of the spot and futures observations. In the model estimation
the joint distribution of the Gaussian copula links themarginal distribu-
tions of the spot and futures returns together to solve problems related
to multivariate normality and linear dependence.

Sklar (1959) introduced the theory that there exists a unique n-
dimensional copula as a function that links marginal distributions into
a multivariate joint distribution function. The definition of an n-
dimensional copula is a multivariate distribution function defined on
the unit cube [0,1]n, with uniformmargins. The theory shows that a vec-
tor of standardized residuals εt={ε1, t,ε2, t,… ,εk , t} of joint k-
dimensional distribution function H with margins F1 ,F2 ,… ,Fk are
need to be transformed to the uniform distribution (see Eqs. (2)–(6))
by the probability integral transformation method as follows,

ui;t ¼ F εi;t
� �

with ui;t � U 0;1½ �: ð10Þ

The joint distribution function of the standardized residuals can be
presented as,

H ε1;t ; ε2;t ;…; εk;t
� � ¼ C F1 ε1;t

� �
; F2 ε2;t
� �

;…; Fk εk;t
� �� �

; ð11Þ

where a k-variate copula C links marginal distributions into a joint dis-
tribution function. The copula C as follows,

u1;t ;u2;t ;…;uk;t
� � ¼ H F−1

1 ε1;t
� �

; F−1
2 ε2;t
� �

;…; F−1
k εk;t
� �� �

; ð12Þ

is determined for any absolutely continuous marginal distributions,
where the dependence relationship is completely determined by the
copula and shape by the marginal distributions.
The Gaussian copula is the copula adapted in the standard multivar-
iate normal distribution. In this study the Gaussian bivariate copula is
used to link the marginal distributions of the spot u1 and futures u2
returns into the joint distribution. The bivariate Gaussian copula is of
the following form,

C u1;t ;u2;t
� � ¼ ΦR Φ−1 ε1;t

� �
;Φ−1 ε2;t

� �� �
; ð13Þ

where a given correlation matrix R∈R2�2 is the joint cumulative dis-
tribution function of a multivariate standard normal distribution and
Φ−1 is inverse of the univariate cumulative distribution function of a
standard normal distribution. The Gaussian bivariate copula density
function can be stated as

C u1;u2ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
detR

p exp −
1
2

Φ−1 u1ð Þ
Φ−1 u2ð Þ

� �T

R−1−I
� � Φ−1 u1ð Þ

Φ−1 u2ð Þ

� � !
; ð14Þ

where Ι is the identity matrix.

3.3. Hedging

To reduce the risk exposure of foreign exchange cash position an op-
posite position on futures contracts is chosen such that the variance of
hedged position isminimized. For dynamic hedging purposes themeth-
od of maximum likelihood estimation is applied for the copula DCC-
EGARCH model to obtain estimates of conditional standard deviationsffiffiffiffiffiffiffi
hs;t

p
,
ffiffiffiffiffiffiffiffi
hf ;t

q
and correlationsρsf ,t. Then, the optimal hedge ratiobt ¼ hsf ;t

=hf ;t ¼ ρsf ;t

ffiffiffiffiffiffiffi
hs;t

p
=
ffiffiffiffiffiffiffiffi
hf ;t

q
captures time-varying correlations of the

hedges, conversely to the estimated constant correlation model where

the optimal hedge ratio bt ¼ hsf ;t=hf ;t ¼ ρ̂sf

ffiffiffiffiffiffiffi
hs;t

p
=
ffiffiffiffiffiffiffiffi
hf ;t

q
is presumed

not to outperform the hedge constituted by the dynamic correlation
model.

Following Ederington (1979) it is calculated the hedge with futures
st−btft and followingmeasure for variance decrease of hedged portfolio
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as a hedging effective index as follows,

HE ¼ σ2
unhedged−σ2

hedged

� �
=σ2

unhedged ð15Þ

where the index is ameasure of percentage change of unhedged portfo-
lio variance as a result of hedge with futures.

4. Estimation results

Panel A in Table 1 presents distributional properties of the spot and
futures data. It is notable that all the test statistics of spot and futures log
returns for skewness, kurtosis and Jarque-Bera values show high signif-
icance, indicating non-normality distribution of the series. For the data
series the augmented unit root test (ADF) of Dickey and Fuller (1979)
is used to test the series stationary, where the test statistics and proba-
bility values are based on the calculated MacKinnon's (1996) response
surface coefficients. Panel B in Table 1 presents the statistic values of
the ADF test which indicate rejection of the null hypothesis of existence
of a unit root for log differences of the spot and futures prices. However,
the null cannot be rejected for log levels of the data. Furthermore, the
Box-Ljung test for the standardized squared residuals show correlation
between the series of spot and futures returns. The test results suggest
time varying variance structure for the return series, hence supporting
applicability of a GARCH model for variance estimation.

According to the ADF test that indicates stationary of log difference
of the futures and spot prices a following cointegration test is used to
check possible long-term relationship of the log values of the spot and
futures prices.5 Engle and Granger (1987) introduced the concept of
cointegration and the two-step procedure for estimating long-run rela-
tionship between two integrated variables. In thefirst-step of the proce-
dure the proposed error correction term is simply estimated by the
ordinary least squared (OLS) regression, where the residuals of the re-
gression are the errors from the long-run equilibrium related to the
two integrated variables. Applying the proposed method in this study,
it is noticed that the ADF test statistics of the regressions (see Table 2)
indicate rejection of the null, hence confirming that the futures and
spot time series are cointegrated with the cointegrating parameters γ
close to or equal to unity. This implies applicability of the error correc-
tion term inclusion into the mean equations (see Eqs. (2) and (3)).

A common character of time series is the volatility clustering that re-
fers to tendency of large (small) changes in prices to be followed by
large (small) changes, of either sign. In this study, for the clustered na-
ture of the data the exponential GARCH model is utilized to fit the
model into the time series of the AUD, CAD, EUR, GBP and JPY currency
spot and futures markets returns. In addition to the hedging effective-
ness it is of interest to evaluate impact of the specification differences
of the model to fit to the data, hence the variance equation based on
the univariate EGARCH model with and without the external realized
variance estimators RVs and RVf is estimated.

In Table 3 (Panel A) are presented the estimation results of the
copula-EGARCH-DCC models. Considering the model fit to the data, it
can be seen that the Ljung-Box test statistic values (Table 3, Panel
B) of the squared standardized residuals of the EGARCHmodels estimat-
ed to the EUR and GBPmarket data do not show autocorrelation. As op-
posed to the EUR and GBP markets the high significant test statistic
values indicate that themodel estimated to the futures of the JPYmarket
cannot fit to the data. In addition, it is notable that for all the estimated
models the value of the realized variance parameter RVs and RVf is statis-
tically highly significant. Also, it follows that the parameter RVs has
stronger impact on the estimated volatility, as the realized volatility es-
timates are formed from the squared currency spot returns.

The EGARCH model is commonly utilized to account for the asym-
metric effect of residuals on the conditional variance estimates.
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5 The null for the test hypothesis is that relationship of the series is not cointegrated.



Table 2
Cointegration test.

Panel A: time period 01/07/2000–12/27/2013 Panel B: time period 06/05/1987–12/27/2013

EUR GBP JPY AUD CAD GBP JPY

c −0.047⁎ 0.522 −0.003⁎⁎⁎ 0.672⁎⁎⁎ 0.207⁎⁎⁎ 0.375 −0.364⁎⁎⁎

(0.021) (0.001) (0.000) (0.030) (0.018) (0.069) (0.016)
γ 1⁎⁎⁎ 1.003⁎⁎⁎ 1.013⁎⁎⁎ 1.008⁎⁎⁎ 1.004⁎⁎⁎ 1.007⁎⁎⁎ 1.003⁎⁎⁎

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ADF −11.71⁎⁎⁎ −12.154⁎⁎⁎ −10.416⁎⁎⁎ −15.182⁎⁎⁎ −12.469⁎⁎⁎ −14.036⁎⁎⁎ −13.197⁎⁎⁎

Notes: In Table, the long run relationships for the series are estimated by regression model St=c+γFt+ϵt , where St and Ft are the log values of the daily spot and futures prices, respec-
tively. An Augmented Dickey–Fuller unit root test is applied for the residuals, ϵt, assuming normal distributionwith zeromean of the residuals. The parameter estimates of the regressions
are presented and their standard errors inside the parenthesis. The t-test values are based on test statistic usingMacKinnon's (1996) response surface approach,where the signs ⁎⁎⁎, ⁎⁎ and
⁎ of the two-tailed t-test indicate statistical significance at 0.1%, 1% and 5%, respectively.
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However, noticing the two-sided nature of currency markets the asym-
metric effect is not the expectation. The advantage of the EGARCH
model utilized in this study is that the estimated parameters of the
Table 3
Estimated copula EGARCH-DCC models.

The copula-EGARCH_RV (DCC) model

EUR GBP

Panel A: parameter estimates
Conditional mean:

cs 0.078 0.058
(0.046) (0.040)

θs −0.402⁎⁎ −0.319⁎

(0.147) (0.132)
cf 0.083 0.056

(0.049) (0.040)
θf 0.246 0.273⁎

(0.151) (0.116)
Conditional variance:

ωs −0.045 −0.284⁎⁎⁎

(0.096) (0.081)
αs −0.018 −0.068

(0.046) (0.040)
βs −0.064 −0.033

(0.072) (0.067)
γs −0.069 0.066

(0.083) (0.074)
RVs 0.293⁎⁎⁎ 0.31⁎⁎⁎

(0.036) (0.037)
ωf −0.004 −0.241⁎⁎

(0.102) (0.079)
αf −0.02 −0.083⁎

(0.052) (0.041)
βf −0.024 −1.55e-05

(0.081) (0.066)
γf −0.049 0.14

(0.092) (0.079)
RVf 0.283⁎⁎⁎ 0.292⁎⁎⁎

(0.039) (0.037)
Conditional correlation:

αDCC 0.033 0.016⁎

(0.021) (0.007)
βDCC 0.964⁎⁎⁎ 0.979⁎⁎⁎

(0.034) (0.014)

Panel B: diagnostics
Standardized residuals:

JBs 2.216 2.873
JBf 13.28⁎⁎ 8.243⁎

Standardized squared residuals:
Qs
2(8) 8.2 5.2

Qs
2(16) 18.8 18.8

Qs
2(24) 33.1 31

Qf
2(8) 11.8 14

Qf
2(16) 23.2 30

Qf
2(24) 30.4 38.7

Notes: In the table, Panel A, the parameters of conditionalmean, variance and correlation are fro
In the Panel B are presented the Jarque Bera test statistics values JB(⋅) for the standardized residu
correlations) of autocorrelation for the standardized squared residuals. In the table the subscrip
significance at 0.1%, 1% and 5%, respectively.
model are unrestricted. As a result, according to the model unrestricted
specification, it is expected a better estimate of the conditional variance.
It is notable that the parameters of the EGARCHmodels estimated to the
The copula-EGARCH (DCC)

JPY EUR GBP JPY

−0.041 0.048 0.014⁎ 0.003
(0.046) (0.049) (0.006) (0.051)
0.01 −0.356⁎ −0.478⁎⁎⁎ −0.074
(0.111) (0.157) (0.051) (0.121)
−0.043 0.056 0.026 0.002
(0.051) (0.075) (0.043) (0.058)
0.44⁎⁎⁎ 0.23 0.144 0.303⁎⁎⁎

(0.117) (0.174) (0.138) (0.069)

0.028 0.013⁎⁎ 0.017 0.148⁎⁎

(0.112) (0.005) (0.014) (0.056)
0.004 −0.021 −0.026 0.095
(0.066) (0.018) (0.022) (0.049)
0.086 0.977⁎⁎⁎ 0.958⁎⁎⁎ 0.787⁎⁎⁎

(0.267) (0.001) (0.031) (0.075)
−0.315⁎⁎⁎ 0.131⁎⁎⁎ 0.214⁎⁎ 0.109
(0.089) (0.010) (0.079) (0.083)
0.222⁎⁎⁎

(0.045)
0.054 0.015 0.019 0.163⁎

(0.097) (0.023) (0.012) (0.066)
−4.92e-04 −0.028 −0.034 0.089
(0.062) (0.061) (0.026) (0.049)
0.13 0.975⁎⁎⁎ 0.949⁎⁎⁎ 0.774⁎⁎⁎

(0.197) (0.027) (0.029) (0.083)
−0.265⁎ 0.114 0.227⁎⁎ 0.142⁎

(0.105) (0.288) (0.086) (0.070)
0.212⁎⁎⁎

(0.038)

0.014⁎ 0.045 0.025⁎ 0.008
(0.006) (0.025) (0.011) (0.008)
0.978⁎⁎⁎ 0.891⁎⁎⁎ 0.963⁎⁎⁎ 0.976⁎⁎⁎

(0.010) (0.127) (0.023) (0.021)

2.829 21.154⁎⁎⁎ 43.767⁎⁎⁎ 141.875⁎⁎⁎

173.995⁎⁎⁎ 18.644⁎⁎⁎ 6.1⁎ 118.944⁎⁎⁎

6.5 6.9 3.7 11.9
15.3 18.6 17.4 15.1
23.1 30.4 22.6 24
4.4 3.7 9.5 3.6
54.5⁎⁎⁎ 10.4 14 51.1⁎⁎⁎

62⁎⁎⁎ 21 24.7 53.8⁎⁎⁎

mEqs. (2)–(6). The standard errors of the parameters are presented inside the parenthesis.
als and the Box-Ljung test statistic valuesQ2(i) (where i=8, 16, 24 indicate order of serial
t s= spot and f= futures. The signs ⁎⁎⁎, ⁎⁎ and ⁎ of the two-tailed t-test indicate statistical



Fig. 3. The Normal Probability Plots (QQ plot) of the standardized returns fitted to the spot market returns of the Euro (EUR), British Pound (GBP) and Japanese Yen (JPY). For the stan-
dardized returns the copula DCC-EGARCH_RV model is estimated over the period from 14 January 2000 to 27 December 2013.
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EUR and GBP market data with external estimators RVs and RVf do not
show asymmetric impact on the estimated conditional variance. The es-
timation results for thesemarkets indicate themodels' ability to capture
more efficiently dynamics of the variance.

In the second-step of the model estimation the standardized resid-
uals are used to procedure estimates of the dynamic correlations. The
theoretical assumption is that the standardized residuals are normally
distributed. As a result, for the external estimators (Table 3, Panel
B) the Jarque-Bera test statistics indicate normality of the distribution
of the standardized residuals of the estimated models fitted to the
spot market returns (see Fig. 3). In addition to capture dynamics of
the variance, for normality, it is assumed that the models are also
more efficient to capture dynamics of the conditional correlation.

According to the normality of the standardized returns fitted to the
spot market return of the Australian dollar (AUD) it is observable that
the estimated copula DCC-EGARCH model with included external real-
ized variance estimators RVs and RVf cannot completely capture the
market returns distributional characteristics (see Fig. 4). The normality
plot indicates that the model is not perfectly fitted to the data of the
Australian dollar (AUD), especially to very low values of the market
returns. However, for all the other market returns the normality plots
indicate themodels ability to fit into themarket data (see Figs. 3 and 4).

It is of interest to study the model's ability to explain volatility clus-
tering of the data and the estimated models hedging performance. A
preliminary assumption is that the conditional variance estimated out-
performs the estimated unconditional variance in hedging perfor-
mance. In Table 4 the measures of the hedging performance show that
the estimated unconditional OLS model's ability to reduce variance of
a portfolio is generally larger compared to the other models. The only
Fig. 4. The Normal Probability Plots (QQ plot) of the standardized returns fitted to the spot mar
the standardized returns the copula DCC-EGARCH_RV model is estimated over the period from
exceptions are the dynamic conditional correlation models estimated
with the external estimators RV(∙) for the EUR and GBP markets. For
these models the test statistics show that the squared standardized re-
siduals do not show autocorrelation, i.e. the volatility clustering is prop-
erly explained by the models. In addition to the conditional correlation
models, it is observable that the hedging performance of the constant
correlation models is weak, suggesting that the constant correlation is
inadequate as used to minimize variance of a portfolio.

To examine robustness of the results based on the efficiency mea-
sures presented, a one thousand artificial data series for each of the cur-
rencies and futures of Euro, British Pound and Japanese Yen is generated
(see Table 4). All the models are fitted to the currency spot and futures
simulated returns i.e. each of the model is one thousand times estimat-
ed. Finally, from the estimation results the confidence levels of the per-
formance measures is calculated. The confidence levels reinforce the
findings of this study. According to the simulated data and the confi-
dence levels produced it is possible to conclude that the external real-
ized variance estimators included into the models do have positive
effect on the currency portfolio hedging performance.

Also, for themodels hedging performance comparison it is utilized the
low, middle and high variance levels during the estimation period. This is
implemented by dividing the time period to low,middle and high volatil-
ity levels (see Table 5). The level of volatility is calculated from the real-
ized volatility measure of the currency returns. The first quartile (Q1) of
the realized variance series represents the low level, the second quartile
(Q2) the middle level and the third quartile (Q3) the high level of volatil-
ity. Finally, each of theweekly currency returns observation is categorized
based on the quartile of the realized volatility measure and the efficiency
measures are calculated. The results of models hedging performance
ket returns of the Australian dollar (AUD), Canadian dollar (CAD), British Pound (GBP). For
12 June 1987 to 27 December 2013.



Table 4
The hedging performance measures with 90% confidence intervals (CI) presented. The models are fitted to the currency spot and futures returns series over the period from 14 January
2000 to 27 December 2013.

EUR 90% CI GBP 90% CI JPY 90% CI

Portfolio variance
OLS 0.1742 (0.1768, 0.2530) 0.1267 (0.1437, 0.2215) 0.14 (0.1768, 0.2855)
ECM 0.1748 (0.1770, 0.2527) 0.1267 (0.1771, 0.2873) 0.141 (0.1434, 0.2228)
CCC-EGARCH 0.3039 (0.2915, 0.3871) 0.2628 (0.2355, 0.3437) 0.2797 (0.2840, 0.3889)
CCC-EGARCH_RV 0.3041 (0.2874, 0.3779) 0.2488 (0.2264, 0.3407) 0.2735 (0.2765, 0.4090)
DCC-EGARCH 0.1755 (0.1793, 0.2603) 0.1314 (0.1454, 0.2308) 0.1421 (0.1770, 0.2794)
DCC-EGARCH_RV 0.1724 (0.1773, 0.2584) 0.123 (0.1441, 0.2579) 0.1402 (0.1773, 0.3394)
Unhedged 2.0081 (1.7746, 2.3896) 1.8056 (1.4081, 2.1688) 2.0538 (1.7145, 2.2527)

Hedge effectiveness (HE)
OLS 0.9133 (0.8776, 0.9125) 0.9298 (0.8764, 0.9158) 0.9319 (0.8533, 0.9096)
ECM 0.913 (0.8777, 0.9124) 0.9298 (0.8525, 0.9095) 0.9313 (0.8764, 0.9155)
CCC-EGARCH 0.8487 (0.8213, 0.8492) 0.8545 (0.8210, 0.8523) 0.8638 (0.8068, 0.8475)
CCC-EGARCH_RV 0.8486 (0.8247, 0.8536) 0.8622 (0.8217, 0.8622) 0.8668 (0.7931, 0.8543)
DCC-EGARCH 0.9126 (0.8739, 0.9115) 0.9272 (0.8739, 0.9145) 0.9308 (0.8577, 0.9091)
DCC-EGARCH_RV 0.9142 (0.8755, 0.9133) 0.9319 (0.8509, 0.9172) 0.9317 (0.8241, 0.9075)

Hedge ratio (average)
OLS 0.9557 (0.8776, 0.9125) 0.9644 (0.8764, 0.9158) 0.9655 (0.8533, 0.9096)
ECM 0.9661 (0.8777, 0.9124) 0.9646 (0.8525, 0.9095) 0.9766 (0.8764, 0.9155)
CCC-EGARCH 0.6949 (0.8213, 0.8492) 0.7061 (0.8210, 0.8523) 0.696 (0.8068, 0.8475)
CCC-EGARCH_RV 0.6893 (0.8247, 0.8536) 0.6971 (0.8217, 0.8622) 0.6911 (0.7931, 0.8543)
DCC-EGARCH 0.9594 (0.8739, 0.9115) 0.975 (0.8739, 0.9145) 0.9609 (0.8577, 0.9091)
DCC-EGARCH_RV 0.9478 (0.8755, 0.9133) 0.957 (0.8509, 0.9172) 0.9484 (0.8241, 0.9075)

Notes: In Table, the OLS is a model estimated by regression St=c+γFt+ϵt , where St and Ft are the log values of the daily spot and futures prices, respectively and the error correction
model (ECM) introduced by Engle and Granger (1987) is applied in a regression st=c+θ(St−1−γFt−1)+ϵt. The constant correlation model (CCC) of Bollerslev (1990) is modeled to as-
sess properties of constant and dynamic correlation on hedging performance (see Eqs. (7)–(9)). The estimation result of the models DCC-EGARCH and DCC-EGARC_RV are presented in
Table 3.
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comparison show that the external realized variance estimator in the var-
iance equation of the model improves hedging efficiency of the model in
all levels of the exchange rates volatility.
Table 5
Effect of a level of currency spot returns variance on hedging performance. Themodels are fitted
December 2013.

Low level Middle le

EUR GBP JPY EUR

Portfolio variance
OLS 0.0820 0.0841 0.1052 0.1742
ECM 0.0828 0.0841 0.1057 0.1742
CCC-EGARCH 0.1539 0.1329 0.1874 0.2904
CCC-EGARCH_RV 0.1528 0.1330 0.1858 0.2967
DCC-EGARCH 0.0858 0.0861 0.1045 0.1746
DCC-EGARCH_RV 0.0800 0.0830 0.1056 0.1731
Unhedged 1.1770 1.2420 0.9041 1.7840

Hedge effectiv
OLS 0.9304 0.9070 0.9153 0.9024
ECM 0.9297 0.9070 0.9149 0.9023
CCC-EGARCH 0.8693 0.8530 0.8491 0.8372
CCC-EGARCH_RV 0.8702 0.8528 0.8504 0.8336
DCC-EGARCH 0.9272 0.9048 0.9159 0.9021
DCC-EGARCH_RV 0.9321 0.9082 0.9150 0.9030

Hedge ratio
OLS 0.9557 0.9644 0.9655 0.9557
ECM 0.9661 0.9646 0.9766 0.9661
CCC-EGARCH 0.6911 0.7086 0.6984 0.6970
CCC-EGARCH_RV 0.6904 0.6986 0.6910 0.6889
DCC-EGARCH 0.9538 0.9774 0.9641 0.9622
DCC-EGARCH_RV 0.9482 0.9589 0.9486 0.9471

Notes: In Table, the OLS is a model estimated by regression St=c+γFt+ϵt , where St and Ft ar
model (ECM) introduced by Engle and Granger (1987) is applied in a regression st=c+θ(St−1

sess properties of constant and dynamic correlation on hedging performance (see Eqs. (7)–(9)
Table 3.
The outperformance of the conditional hedge is in agreement with
previous studies such as Baillie and Myers (1991); Kroner and Sultan
(1993); Park and Switzer (1995); Choudhry (2004); Zanotti, Gabbi, and
to the currency spot and futures returns series over the period from 14 January 2000 to 27

vel High level

GBP JPY EUR GBP JPY

0.0977 0.1106 0.2676 0.2258 0.2343
0.0977 0.1116 0.2690 0.2257 0.2359
0.1888 0.2210 0.4817 0.5323 0.4920
0.1873 0.2160 0.4713 0.4780 0.4789
0.1040 0.1116 0.2684 0.2312 0.2415
0.0981 0.1079 0.2644 0.2107 0.2398
1.6750 1.3944 3.2920 3.6420 3.4639

eness (HE)
0.9299 0.9340 0.9187 0.9348 0.9357
0.9299 0.9333 0.9183 0.9348 0.9352
0.8646 0.8681 0.8537 0.8463 0.8649
0.8656 0.8710 0.8568 0.8620 0.8685
0.9254 0.9333 0.9185 0.9332 0.9337
0.9297 0.9356 0.9197 0.9392 0.9341

(average)
0.9644 0.9655 0.9557 0.9644 0.9655
0.9646 0.9766 0.9661 0.9646 0.9766
0.7060 0.6955 0.6945 0.7036 0.6946
0.6962 0.6906 0.6891 0.6974 0.6923
0.9748 0.9600 0.9594 0.9730 0.9598
0.9556 0.9473 0.9485 0.9579 0.9505

e the log values of the daily spot and futures prices, respectively and the error correction
−γFt−1)+ϵt. The constant correlation model (CCC) of Bollerslev (1990) is modeled to as-
). The estimation result of the models DCC-EGARCH and DCC-EGARC_RV are presented in



Table 7
Effect of a level of currency spot returns variance on hedging performance. The models are fitte
December 2013.

Low level Middle level

AUD CAD GBP JPY AUD C

Portfolio variance
OLS 0.1773 0.0421 0.0987 0.1293 0.1657 0
ECM 0.1794 0.0428 0.0986 0.1304 0.1667 0
CCC-EGARCH 0.2176 0.0504 0.1465 0.1868 0.2869 0
CCC-EGARCH_RV 0.2206 0.0511 0.1516 0.1918 0.2912 0
DCC-EGARCH 0.1745 0.0412 0.1002 0.1305 0.1710 0
DCC-EGARCH_RV 0.1755 0.0395 0.0967 0.1260 0.1684 0
Unhedged 1.0220 0.2880 0.8476 1.1740 1.8990 0

Hedge effectiv
OLS 0.8266 0.8538 0.8836 0.8899 0.9127 0
ECM 0.8245 0.8514 0.8836 0.8889 0.9122 0
CCC-EGARCH 0.7872 0.8249 0.8271 0.8409 0.8489 0
CCC-EGARCH_RV 0.7842 0.8225 0.8211 0.8366 0.8466 0
DCC-EGARCH 0.8293 0.8570 0.8818 0.8888 0.9099 0
DCC-EGARCH_RV 0.8284 0.8629 0.8860 0.8927 0.9113 0

Hedge ratio
OLS 0.9433 0.9474 0.9498 0.9583 0.9433 0
ECM 0.9589 0.9596 0.9486 0.9677 0.9589 0
CCC-EGARCH 0.6776 0.6760 0.6907 0.6962 0.6923 0
CCC-EGARCH_RV 0.6814 0.6730 0.6715 0.6800 0.6833 0
DCC-EGARCH 0.9183 0.9000 0.9429 0.9505 0.9409 0
DCC-EGARCH_RV 0.9096 0.8964 0.9130 0.9226 0.9156 0

Notes: In Table, the OLS is a model estimated by regression St=c+γFt+ϵt , where St and Ft ar
model (ECM) introduced by Engle and Granger (1987) is applied in a regression st=c+θ(St−1

sess properties of constant correlation on hedging performance (see Eqs. (7)–(8)). The dynam
efficiency of the dynamic conditional correlations (see Eqs. (7)–(9)).

Table 6
The hedging performancemeasures presented. The models are fitted to the currency spot
and futures returns series over the period from 12 June 1987 to 27 December 2013.

AUD CAD GBP JPY

Portfolio variance
OLS 0.3015 0.1122 0.1832 0.2012
ECM 0.3039 0.1126 0.1831 0.2025
CCC-EGARCH 0.4504 0.1743 0.3142 0.3594
CCC-EGARCH_RV 0.4526 0.1603 0.2849 0.3417
DCC-EGARCH 0.3080 0.1136 0.1936 0.2057
DCC-EGARCH_RV 0.2931 0.1305 0.1764 0.2610
Unhedged 2.7256 1.0934 1.8651 2.4497

Hedge effectiveness (HE)
OLS 0.8894 0.8974 0.9018 0.9179
ECM 0.8885 0.8970 0.9018 0.9173
CCC-EGARCH 0.8347 0.8406 0.8315 0.8533
CCC-EGARCH_RV 0.8339 0.8533 0.8473 0.8605
DCC-EGARCH 0.8870 0.8961 0.8962 0.9160
DCC-EGARCH_RV 0.8925 0.8806 0.9054 0.8934

Hedge ratio (average)
OLS 0.9433 0.9474 0.9498 0.9583
ECM 0.9589 0.9596 0.9486 0.9677
CCC-EGARCH 0.6897 0.6898 0.6872 0.6915
CCC-EGARCH_RV 0.6841 0.6860 0.6712 0.6829
DCC-EGARCH 0.9364 0.9266 0.9371 0.9463
DCC-EGARCH_RV 0.9152 0.9180 0.9106 0.9268

Notes: In Table, the OLS is amodel estimatedby regression St=c+γFt+ϵt , where St and Ft
are the log values of the daily spot and futures prices, respectively and the error correction
model (ECM) introduced by Engle and Granger (1987) is applied in a regression st=
c+θ(St−1−γFt−1)+ϵt. The constant correlation model (CCC) of Bollerslev (1990) is
modeled to assess properties of constant correlation on hedging performance (see
Eqs. (7)–(8)). The dynamic conditional correlation model (DCC) of Engle (2002) is esti-
mated to compare hedging efficiency of the dynamic conditional correlations (see
Eqs. (7)–(9)).
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Geranio (2010). Common for these studies is that the constant condition-
al correlation model outperforms the traditional OLS hedge strategy.
However, in this study the results show that the constant correlation
model has the lowest hedging performance compared to the others. It
can be seen that the advantage of the dynamic conditional correlation
model is that the model takes into account the time-varying correlation
between the spot and futures markets returns (see e.g. Ku et al., 2007;
Su &Wu, 2014).

In Table 6 the spot and futures prices for the currencies of the
Australian dollar (AUD), Canadian dollar (CAD), British pound (GBP),
Euro (EUR) and Japanese yen (JPY) are used to analyze hedging effec-
tiveness of the estimated models. The results of the hedging effective-
ness are similar compared to the spot and futures prices for the
currencies of the euro (EUR), Britain pound (GBP) and Japanese yen
(JPY) presented (see Table 4).

Also, for the spot and futures prices for the currencies presented in
Table 6 the hedging performance comparison it is utilized to the low,
middle and high variance levels during the estimation period (see
Table 7). It is observed that for the Australian dollar (AUD) the estimat-
ed copula DCC-EGARCH model underperforms in the portfolio hedging
performance compared to the data of the other currencies. This is possi-
ble to account for the characteristic of currency returns distribution that
exhibit high values of skewness and excess kurtosis (see Table 1). The
outcome is that the copula DCC-EGARCH model with included external
realized variance estimators RVs and RVf estimated cannot completely
capture high values of skewness and excess kurtosis of the market
data. For the other market returns the model is fitted into the market
data and the hedging performance measures show outperformance of
the model in variance reduction.

In this study it is observed that the conditional hedge is superior
compared to the traditional unconditional hedging strategy. However,
the outcome is a result from the estimated conditional correlation
models assumed that the model can appropriately explain volatility
d to the currency spot and futures returns series over the period from 12 June 1987 to 27

High Level

AD GBP JPY AUD CAD GBP JPY

.0421 0.0987 0.1293 0.6976 0.2471 0.3458 0.3444

.0802 0.1446 0.1660 0.7028 0.2475 0.3458 0.3470

.1281 0.2237 0.2948 1.0072 0.3908 0.6620 0.6624

.1243 0.2245 0.2893 1.0027 0.3421 0.5382 0.5968

.0807 0.1492 0.1688 0.7153 0.2523 0.3768 0.3547

.0776 0.1385 0.1626 0.6605 0.3276 0.3331 0.5895

.7701 1.4651 1.9350 5.9850 2.5400 3.6637 4.7570

eness (HE)
.8962 0.9012 0.9146 0.8834 0.9027 0.9056 0.9276
.8958 0.9013 0.9142 0.8826 0.9025 0.9056 0.9271
.8337 0.8473 0.8476 0.8317 0.8461 0.8193 0.8608
.8386 0.8468 0.8504 0.8325 0.8653 0.8531 0.8745
.8953 0.8981 0.9128 0.8805 0.9007 0.8971 0.9254
.8993 0.9055 0.9159 0.8896 0.8710 0.9091 0.8761

(average)
.9474 0.9498 0.9583 0.9433 0.9474 0.9498 0.9583
.9596 0.9486 0.9677 0.9589 0.9596 0.9486 0.9677
.6919 0.6891 0.6918 0.6966 0.6993 0.6799 0.6861
.6809 0.6702 0.6815 0.6885 0.7092 0.6729 0.6886
.9301 0.9400 0.9467 0.9455 0.9463 0.9252 0.9410
.9116 0.9094 0.9254 0.9198 0.9524 0.9106 0.9335

e the log values of the daily spot and futures prices, respectively and the error correction
−γFt−1)+ϵt. The constant correlation model (CCC) of Bollerslev (1990) is modeled to as-
ic conditional correlation model (DCC) of Engle (2002) is estimated to compare hedging
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clustering of the data. The estimated copula-EGARCH-DCCmodels with
the external realized variance estimators are able to explain clustering
of the data and show also superiority in portfolio variance reduction.
The result indicates importance of the realized volatility estimator in
explaining exchange rates returns variance.
5. Conclusions

This study shows effectiveness of the utilized copula-EGARCH-DCC
model to reduce variance of portfolios of foreign currencies of the
Australian dollar, Canadian dollar, euro, British pound and Japanese
yen. For the portfolio hedging purposes, it is recognized efficiency of
the estimated bivariate model to account for the evolution of the dy-
namic conditional correlation between the spot and futures markets.
However, themeasures of the hedging performance show that the esti-
mated unconditional OLS model's ability to reduce variance of a portfo-
lio is generally larger compared to the othermodels. The only exception
is the dynamic conditional correlationmodel estimated for the currency
markets, i.e. the copula-EGARCH-DCC model with the external realized
volatility estimators included into the variance equation of the model.
This can be seen as efficiency of the model to account for the clustered
nature of the data variance.

The in-sample hedging effectiveness in this study examined, sug-
gests that the conditional hedge outperforms the traditional uncondi-
tional hedging strategy. As the estimation results show, the
conditional correlation model with included external realized variance
estimators is superior in portfolio variance reduction. Also, the estima-
tion results of the longer time period in this research applied confirm
the findings. In effect, the external realized variance estimator included
into the variance equations of the model improves the model ability to
fit into the data of the currency market returns estimated. The outcome
of the superiority is a result from the information content of the realized
variance estimates that improves ability of the model to estimate the
conditional variance of the market data in low and high volatility pe-
riods. In addition, it is observed that the constant correlation models
hedging performance is weak, suggesting that the model is inadequate
as used to minimize variance of a portfolio.
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