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Abstract We estimated the dependence structure of US Treasury bonds through a pair copula
construction. As a result, we verified that the variability of the yields decreases with a longer
time of maturity of the bond. The yields presented strong dependence with past values, strongly
positive bivariate associations between the daily variations, and prevalence of the Student’s t
copula in the relationships between the bonds. Furthermore, in tail associations, we identified

relevant values in most of the relationships, which highlights the importance of risk manage-
ment in the context of bonds diversification.
© 2015 Production and hosting by Elsevier Ltd on behalf of Indian Institute of Management

Bangalore.

Introduction

Since the introduction of the mathematical theory of portfolio
selection and of the capital asset pricing model (CAPM), the issue
of dependence has always been of fundamental importance to
financial economics. In the context of international diversifi-
cation, there is a need to minimise the risk of specific assets
(such as stocks and Treasury bonds) through optimal allocation
of resources. Many studies have used a statistical model which
is able to measure the temporal dependence between stocks
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and Treasury bonds: Campbell and Ammer (1993) apply a vector
autoregressive (VAR) system in AMEX and NYSE stocks and US
Treasury bonds, but they do not analyse the effect of the vola-
tility of the relationship. Li (2002) and Kim, Moshirian, and Wu
(2006) estimate a bivariate generalised autoregressive condi-
tional heteroscedasticity (GARCH) model and bivariate expo-
nential GARCH with t-distribution and verify important
implications in stock-bonds correlation. However, Cappiello,
Engle, and Sheppard (2006), and Li and Zou (2008) expand the
asymmetric and multivariate approach with dynamic condi-
tional correlation (DCC) GARCH.

Traditionally, correlation is used to describe the depen-
dence between random variables, but recent studies, such
as that conducted by Embrechts, Lindskog, and McNeil (2003),
have ascertained the superiority of copulas to model depen-
dence. Copulas offer much more flexibility than the correlation
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approach because a copula function can deal with
non-linearity, asymmetry, serial dependence and also the
well-known heavy-tails of financial assets’ marginal and joint
probability distribution. In studies of Treasury bonds, Junker,
Szimayer, and Wagner (2006) apply the normal copula model
in US Treasury monthly bonds, confirming the importance of
this approach in considering tail dependence and symme-
try. Lee, Kim, and Kim (2011) apply Archimedean copulas in
interdependence of US, UK, and Japan interest rates, ac-
cording to different maturities of bonds. This paper verifies
that both negative and positive returns in the US and UK move
in a similar trend whereas in Japan interest rates follow a dif-
ferent trend. Diks et al. (2014) test the forecast accuracy of
copula families in 10-years maturity of G7 countries’ gov-
ernment bonds, where the Student’s t and Clayton mixture
copula outperforms the other copulas considered.

A copula is a function that links univariate marginals to
their multivariate distribution. Since it is always possible to
map any vector of random variables into a vector with uniform
margins, we are able to split the margins of that vector, which
is the copula. Although the literature on copulas is consis-
tent, the great part of the research is still limited to the bi-
variate case. Thus, constructing higher dimensional copulas
is the natural next step, but this is not an easy task. Apart
from the multivariate Gaussian and Student (see work in stock-
bonds structure dependence of Kang, 2007), the selection of
higher-dimensional parametric copulas is still rather limited
(Genest, Rémillard, & Beaudoin, 2009).

The developments in this area tend to hierarchical, copula-
based structures. It is possible that the most promising of these
is the pair copula construction (PCC). Originally proposed by
Joe (1996), it has been further discussed and explored in the
literature for questions of inference and simulation. The PCC
is based on a decomposition of a multivariate density into bi-
variate copula densities, of which some are dependency struc-
tures of unconditional bivariate distributions, and the rest are
dependency structures of conditional bivariate distribu-
tions. Applications to financial data have shown that these
vine-PCC models outperform other multivariate copula models
in predicting log-returns of equity portfolios. Min and Czado
(2010) present a PCC copula model in daily returns from
January 1, 1999 to July 8, 2003 of the Norwegian stock index,
the MSCI world stock index, the Norwegian bond index and
the SSBWG hedged bond index, and they verify a stronger de-
pendence between international bonds and stocks, interna-
tional and Norwegian stocks, and Norwegian stocks and bonds,
but they observe that the Norwegian bond index does not
depend on the MSCI world stock index if the Norwegian stock
index is given. In this context, this paper poses the ques-
tion: What would the dependence structure of Treasury bonds
be in relation to their maturity?

To answer this question, this paper aims to estimate the
dependence structure between Treasury bonds through a PCC.
To that effect, we collected daily data from Treasury bonds
of the US government for 1-, 2-, 3-, 5-, 7- and 10-years of ma-
turity, which were the most sought after by investors in order
to obtain truly risk free assets. The estimated structure allows
the calculation of the non-linear absolute and tail depen-
dences of each bivariate relationship between the bonds, iso-
lating the effect of the other. It is also possible to verify which
bond has more dependence with all the others, and to iden-
tify the “leading” Treasury bonds.

The paper is structured as follows: The second section
briefly presents the background of copulas and PCC; the third
section presents the material and methods of the study, de-
scribing the data and the procedures used to achieve the ob-
jective of the paper; the fourth section presents the results
obtained and the discussion; and the fifth section contains
the conclusions of the paper; the appendix introduces the
copula families utilised in this study.

Background

This section is subdivided into: i) Copula methods, which
briefly defines this class of functions and describes its prop-
erties; this sub section also contains a literature review;
ii) Pair copula construction, which succinctly describes the
concepts of this structure.

Copula methods

Dependence between random variables can be modelled by
copulas. A copula returns the joint probability of events as
a function of the marginal probabilities of each event. This
makes copulas attractive, as the univariate marginal behaviour
of random variables can be modelled separately from their
dependence (Kojadinovic & Yan, 2010).

The concept of copula was introduced by Sklar (1959).
However, it was only recently that its applications became
clear. A detailed treatment of copulas as well as of their re-
lationship to concepts of dependence is given by Joe (1997)
and Nelsen (2006). A review of the applications of copulas
to finance can be found in Embrechts et al. (2003) and in
Cherubini, Luciano, and Vecchiato (2004).

To facilitate our understanding of the concept we re-
strict our attention to the bivariate case. The extensions to
the n-dimensional case are straightforward. A function
C:[0,1F —»[0,1 is a copula if, for 0<x<1 and
X1 £ Xg, V1 S Vo, (X Vi), (X2, V2) €0, 1]2, it fulfills the follow-
ing properties:

C(x,h)=C(1,x)=x, C(x,0)=C(0,x)=0. (1)

C (X3 ¥2) = C(Xg Y1) — C(Xyy ¥2) + C (x4, y4) 2 0. (2)

Property (1) means uniformity of the margins,
while (2), the n-increasing property means that
P(x; <X <Xy, <Y <y,)20 for (X, Y) with distribution
function C.

In Sklar’s seminal paper (1959), it was demonstrated that
a copula is linked with a distribution function and its mar-
ginal distributions. This important theorem states:

(i) Let C be a copula and F; and F; univariate distribution func-
tions. Then (3) defines a distribution function F with
marginals F; and F;.

F(x,y)=C(R(x), F2(y)), (x, y) eR®. 3)

(ii) For a two-dimensional distribution function F with mar-
ginal F; and F, there is a copula C satisfying (3). This is
unique if F; and F; are continuous and then, for every
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(u,v)e[0,1]:
C(u,v)=F(F(u), i'(v)). (4)

In (4), F,"and F;" denote the generalised left continu-
ous inverses of F; and F,. Regarding the estimation, the domi-
nant methods are the traditional maximum likelihood (ML),
the pseudo-maximum likelihood (PML), proposed by Genest,
Ghoudi, and Rivest (1995), and the inversion of dependence
measures such as Spearman’s rho and Kendall’s tau. Chen and
Fan (2006b) developed an extension of the pseudo-maximum
likelihood of Markovian time series.

However, as Frees and Valdez (1998) note, it is not always
possible to identify the copula. According to Berrada, Dupuis,
Jacquier, Papageorgiou, and Rémillard (2006), for many fi-
nancial applications, the problem is not in using a given mul-
tivariate distribution but in finding a convenient distribution
to describe some stylised facts, for example the relation-
ships between different asset returns. Genest et al. (2009)
present an overview of the goodness of fit and selection issues
of copula families.

Since copulas are linked to the dependence structure, they
must be related to dependence measures. We present here
the calculation procedures, adapted from Cherubini, Gobbi,
Mulinacci, and Romagnoli (2012), of the most representa-
tive dependence measures for financial purposes. Given the
estimated bivariate copula C, the lower and upper tail de-
pendence are represented by formulations (5) and (6), re-
spectively. The absolute dependence calculated with Kendall’s
tau through the conversion of the bivariate copula is exposed
in formulation (7).

lL = lim M (5)
u—0* u

2y = lim =24+ Cuu) )
u->1" 1—u

T(X,y)= 4_[;_':C(u, v)dC(u,v)-1. 7)

Regarding the literature on copula methods, it is note-
worthy that there was a significant growth in the number of
applications of this technique in the last few years. With ref-
erence to time series, one of the most appealing approaches
is the time-varying copulas, which consist of the change of
the shape and parameters of the estimated copula families
along time. Some of the most structured proposals on the topic
are the works of Chen and Fan (2006a, 2006b) and Patton
(2006, 2011). As a financial application of dynamic copulas,
we can cite the work of Goorbergh, Genest, and Werker (2005)
in option pricing.

Further, the estimation of serial dependence with copulas
has emerged as an important approach to financial studies. This
approach was first proposed by Darsow, Nguyen, and Olsen (1992)
and extended in the recent works of Abegaz and Naik-Nimbalkar
(2008), Ibragimov (2009), Chen, Wu, and Yi (2009) and Beare
(2010). The extension of these researches with the inclusion of
cross-interdependence in Markovian time series is seen in the
work of Rémillard, Papageorgiou, and Soustra (2011). These
authors determined the dependence between the returns of the
Canadian/US exchange rate and oil prices. With Treasury bonds,

Junker et al. (2006) apply copula functions in the analysis of
cross-sectional nonlinear term structure dependence for US Trea-
sury monthly bonds covering the period October 1982 to De-
cember 2001. Kang (2007) presents a multidimensional approach
with a copula-GARCH model to measure the dependence struc-
ture of daily excess returns on two stock indices and two Trea-
sury bonds—S&P 500 index, NASDAQ index, 1-year Treasury bond
and 10-year Treasury bond, from October 11, 1984 to October
28, 2005. Garcia and Tsafack (2011) present the dependence
structure pairwise of weekly equity and 5-year bond returns of
markets in the United States, Canada, France, and Germany from
January 1, 1985 to December 21, 2004 with mixture copulas.

Pair copula construction

The PCC is a very flexible construction, which allows the free
specification of n(n — 1)/2 bivariate copulas. This construc-
tion was proposed in the seminal paper by Joe (1996), and
it has been discussed in detail, especially for applications in
simulation and inference (Bedford & Cooke, 2001, 2002;
Kurowicka & Cooke, 2006). The PCC is hierarchical by nature.
The modelling scheme is based on the decomposition of a mul-
tivariate density into n(n — 1)/2 bivariate copula densities,
of which the first n — 1 are dependency structures of uncon-
ditional bivariate distributions, and the rest are depen-
dency structures of conditional bivariate distributions (Aas
& Berg, 2011).

The PCC is usually represented in terms of density. The
two main types of PCC that have been proposed in the lit-
erature are the C (canonical)-vines and D-vines. In the present
paper we focus on the D-vine estimation, which according to
Aas, Czado, Frigessi, and Bakken (2009) has the density as in
formulation (8).

|X1+17 Ty Xi+j—1)’
fix ol .
Hk =t H H 1+1|X1+1)"':Xi+j—1)
(8)
In (8), x1,...,X, are variables; f is the density function;
c(,,-) is a bivariate copula density and the conditional dis-

tribution functions are computed, according to Joe (1996),
by formulation (9).

X1; T

xv v {F( |V*j)’ F(levfj)}
F(x|v)=—4 9)
oF (vjlv_y)
In (9), C,.v_, is the dependency structure of the bivari-

ate conditional distribution of x and vjconditioned on v_j,
where the vector v_;is the vector v excluding the compo-
nent v;. In order to make it possible to use the D-vine con-
struction to represent a dependency structure through copulas,
we must assume that the univariate margins are uniform in
the interval [0, 1]. As an illustration, we present in formu-
lation (10) a four-dimensional case, and its graphical repre-
sentation in Fig. 1.

C(Un Uy, Us, U4) =C (Uu Uz) -Cy (U2y Us) -Gy (Us; U4)

Gy (F (us|tp), F (us]uy))

'C24\3(F(U2|U3)’ F(U4|U3))

- Ciaas(F (| Uy, U3), F (uy| Uy, us3)) (10)
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Figure 1 Four-dimensional pair copula construction.
Where

F (uyuy) = 9Cy; (uy, u,)/0Uy,
F (us|uy) = 0Co3(uy, Us)/OUy,
F (uy|us) = 9Cy3(uy, us)/0us,
F (ug|us) = 0Cs4(us, uy)/0us,
F (ui|uy, us) = 9Ci5 (F (wi]uy), F (us]uy))/0F (us|uy),

F (ug|uz, Us) = 0Cous(F (Us|us), F (uz|us))/OF (ua|us).

Thus, the conditional distributions involved at one level
of the construction are always computed as partial deriva-
tives of the bivariate copulas at the previous level (Aas & Berg,
2011). Since only bivariate copulas are involved, the partial
derivatives may be obtained relatively easily for most para-
metric copula families. It is noteworthy that the copulas in-
volved in (8) do not have to belong to the same family. Hence,
we should choose, for each pair of variables, the paramet-
ric copula that best fits the data.

With regard to the estimation of the PCC parameters, Aas
et al. (2009) propose a maximum likelihood estimation pro-
cedure which follows a stepwise approach. In the first step,
one computes ML estimates of the parameters of each pair-
copula family separately. The estimated parameters ob-
tained in this first step are known as sequential ML estimates.
In a second step, the full log-likelihood function is maximised
jointly using the sequential ML estimates as starting values,
resulting in the so-called joint ML estimates.

Regarding the literature of PCC in finance, Aas and Berg
(2011) compared the nested Archimedean construction (NAC)
and the PCC. They found that the NAC is much more restric-
tive than the PCC in two aspects. There are strong limita-
tions on the degree of dependence in each level of the NAC,
and all the bivariate copulas in this construction have to be
Archimedean. Further, they show that the PCC provides a better
fit than the NAC and that it is computationally more efficient.

Chollete, Heinen, and Valdesogo (2009) construct a multi-
variate regime-switching model of copulas for returns from
the G5 and Latin American regions. They document that models
with canonical vines generally dominate alternative depen-
dence structures; they also document the importance of the
models for risk management, since they modify the Value-
at-Risk (VaR) of international portfolios and produce a better
out-of-sample performance. Fischer, Kock, Schliter, and
Weigert (2009) empirically investigate whether PCC models
are really capable of outperforming the Student’s t copula.
In addition, the authors compare the fit of PCC models among
other copula estimators. Min and Czado (2010) develop a Markov
chain Monte Carlo (MCMC) algorithm which allows interval es-
timation by means of credible intervals for Kendall’s and tail
dependence coefficient of daily returns of Norwegian stock
index, MSCI world stock index, Norwegian bond index and
SSBWG hedged bond index from January 1, 1999 to July 8,
2003. This algorithm reveals unconditional as well as condi-
tional independence in the data which can simplify resulting
PCCs. Czado, Schepsmeier, and Min (2012) verify the fit of
multivariate dependence models, including PCC, in the re-
lationships of exchange rates. Their findings corroborate the
superiority of the PCC models for this purpose. Righi and Ceretta
(2012a) conducted VaR predictions of three sets of markets:
developed, emerging Latin, and emerging Asian-Pacific. With
the same data, Righi and Ceretta (2012b) evaluated the dif-
ferences on tail dependence between the market groups.

Methodological procedures

We collected daily yields for 1-, 2-, 3-, 5-, 7- and 10-years’
maturity Treasury bonds of the US government, from January
2, 1990 to April 12, 2012, totalling 5573 observations. These
bonds were chosen because the US money market is tradi-
tionally considered by investors as the best source of risk free
assets. The choice of this period was due to the combina-
tion of the availability of data in the website of the US De-
partment of Treasury and the need for collection of
information over a length of time in order to avoid band-
width biases. We excluded from the analysis those bonds that
did not have negotiations during the whole period. Also, there
is always a computational concern with the high-dimensionality
of data, obligating the research to choose parsimoniously
which variables to include in a model. Reinforcing the option
for these bonds, it is worth mentioning that they are, in
general, the most liquid.

Seeking to avoid issues relative to the non-stationary con-
dition, we calculated the logarithmic differences (log-
returns) of the collected daily yields. We modelled the
marginal of these log-returns through autoregressive moving
average (ARMA (m,n)) - generalised autoregressive condi-
tional heteroscedastic (GARCH (p,q)) models with student in-
novations, in order to consider the well-known conditional
heteroscedastic heavy-tailed behaviour of the financial assets
(Longin & Solnik, 2001). The estimated model is repre-
sented in formulations (11) to (13).

hie =M + Z Gimlie-m + z i n€it-n t+ Eit (11)

Eie =Nz,

Z, ~t, (12)
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bl =+ Y, el + Y, Bighe g (13)

where r;, is the log-return of asset i in period t; h% is the
conditional variance of asset i in period t; u;, ¢, 6;, @;, o; and
B are parameters; ¢;, is the innovation in the conditional mean
of asset i in period t; z;, represents the white noise of
t-student distribution. The models were validated through the
verification of serial correlation in the linear and squared stan-
dardised residuals through the Q statistic, represented for (14).

Q=n(n+2)3" P (14)
k=Tn—k

In (14), nis the size of sample; p? is the autocorrelation
of sample in lag k; h is the number of lags being tested. The
Q statistics, which test the null hypothesis of randomness of
data, follow a chi-squared (x?)distribution with h degrees
of freedom.

After modelling the marginal, we estimated the PCC com-
posed of the sector indexes. We standardised the residuals
of the GARCH approach into pseudo-observations
Uj =(Uy; ..., U;) through the ranks as U; = R;/(n+1). We
ordered the variables by decreasing order of the sum of the
non-linear dependence, measured through Kendall’s tau, with
the other variables. Subsequently, to choose the copula that
best fit each bivariate pair of variables we employed the AIC
criterion. A more detailed presentation of the copula fami-
lies present in this selection is given in the appendix. The es-
timation of the parameters followed the procedure presented
in the section on materials and methods. We converted the
estimated parameters in the association measures pre-
sented in the section on materials and methods.

To validate the choice of a D-vine PCC, we compared the
estimated model with the counterpart C-vine by the test pro-
posed by Clarke (2007). For this, let C; and C; be two com-
peting vine copulas in terms of their densities and with
estimated parameter sets 6and 6,. The null hypothesis of sta-
tistical indifference of the two models is:

H, IP(m,~ >0)=0.5, m =log{c1(u"|91)} V.=1..,n.
Gy (ui]6,)

Results and discussion

This section is divided, for best comprehension, into two parts:
i) marginal modelling, which exposes the descriptive char-
acteristics of the studied data, as well as the results of the
marginal models estimation; and ii) conditional depen-
dence modelling, which presents the results for the esti-
mated PCC, and also its implications for the Treasury bond
market.

Marginal modelling

Initially we collect data for the daily yield for the US Treasury
bonds with 1-, 2-, 3-, 5-, 7- and 10-years of maturity. A study
of the collected data for the daily yield for the US Treasury bonds
with 1-; 2-, 3-; 5-, 7- and 10-years of maturity (totalling 5573

observations) shows that the daily yields of all maturities pre-
sented a common evolution along the sample." This long term
equilibrium is expected, since the bonds are linked by a mutual
monetary policy which is managed through variables as the basic
interest rate and the inflation. It is valid to emphasise that the
expected yield rises with the maturity of its respective bond,
as reflected by the well-known yield curves.

Another fact that emerges is the fall in the yield rates
during periods of economic turbulence, as the 1993/1994 stag-
nation (observations 800-1200), the crisis in emerging markets
in the decade of the 90s (observations 1500-2300), the ter-
rorist attacks in 2001 (observations 3000-3500), the sub-
prime and Euro-zone crisis (observations 4500 to the present).
These falls in the yield are intrinsically linked with the attempt
of the US government to promote the economy through an
expansionist monetary policy with low interest rates, ac-
cording to Miao, Wu, and Su (2013). It follows that this situ-
ation is very strong and continual in financial crises volatility
and linked to the expectation of falling interest rates, where
investors would prefer Treasury bond rather than short-
term bond.

In order to avoid the non-stationary behaviour of the yield
curves in level,? we calculated their log-returns. The plots
with the time series of the log-returns of the analysed Trea-
sury bonds during the sample period are presented in Fig. 2.
The plots in Fig. 2 reveal, again, the presence of a similar
temporal evolution in the series. There were notorious vola-
tility clusters during the turbulent periods previously men-
tioned, which coincide with the falls in the yields. This result
corroborates the stylised fact of financial assets which attests
that there is more volatility in falls than in rises. Moreover,
the dispersion around the long term mean appears to be larger
for the bonds with more maturity time during the calm
periods, and for those with less maturity time during the
periods of strong economic turbulence.

Complementing this descriptive analysis, Table 1 pres-
ents some statistics for the daily log-returns of the U.S. Trea-
sury bond yields. The results contained in Table 1 firstly
indicate that the daily yields of the Treasury bonds had an
expected value very close to zero, as pointed out by the
central tendency measures. Moreover, the bonds presented
great range (maximum—minimum) and dispersion (standard
deviation) during the analysed period. This variability de-
creases with the time of maturity of the bond (same obser-
vations are made by Junker et al., 2006, when analysing 1-,
2-, 3-, 4- and 5-years of maturity from 1982 to 1991 and from
1992 to 2001 subsample periods), confirming the fact that the
bonds with less time of maturity were more sensitive to the
economic turbulences which occurred in the sample. Further,
all series are leptokurtic and negative asymmetric.?

These descriptive results confirm the well-known stylised
facts about financial assets, previously cited in this paper.
Thus, it is necessary to use flexible techniques in order to
model both the marginal and the joint evolution of this kind

' We performed cointegration tests which statistically confirmed the
long term equilibrium among all the analysed bonds.

2 We performed unit root tests in the series of the Treasury bond yields
which showed as non-stationary in the level but stationary in the loga-
rithmic difference.

3 We performed tests of normality which were rejected for all the
series of the log-returns of the Treasury bond yields.
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Figure 2 Daily log-returns of the yield of US Treasury bonds with 1-, 2-, 3-, 5-; 7- and 10-years of maturity from January 2, 1990 to

April 12, 2012, totalling 5573 observations.

Table 1 Descriptive statistics of daily log-returns of yield of U.S. Treasury bonds with 1-, 2-, 3-, 5-, 7- and 10- years of matu-
rity from January 2, 1990 to April 12, 2012, totalling 5573 observations.

Years to maturity One Two Three Five Seven Ten
Minimum —0.2877 —0.3514 —0.3102 -0.2614 —0.2241 —-0.1850
Maximum 0.2962 0.3185 0.2097 0.1323 0.1169 0.0892
Mean —0.0006 —0.0006 —0.0005 —0.0004 —0.0003 —0.0002
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
St. deviation 0.0299 0.0310 0.0277 0.0217 0.0180 0.0149
Skewness —-0.1854 —-0.1208 —-0.2611 -0.3307 -0.2120 —-0.2702
Kurtosis 18.1012 14.0731 12.6722 11.1843 9.8191 8.4624

of variable. Regarding the marginal, Table 2 presents the es-
timated parameters, as well as the diagnostics of the ARMA-
GARCH models utilised to model the studied log-returns.

The results contained in Table 2 clearly indicate that the
daily log-returns of the yields were very persistent during the
studied period, as one can perceive by the significance* of
the auto-regressive parameters. This influence of the lagged
variations in the yields can be explained by the fact that the
chosen period is very large and it contains some economic tur-
bulence, which leads to a rise in the dependence on past in-
formation. Further, some bonds, especially those with longer
time of maturity, presented a value for their unconditional
mean significantly different from zero.

4 The significance level of 5% was chosen.

Regarding the conditional variance, all the log-returns of
the US Treasury bond yields were significantly affected by the
squared deviations from their expected value, as well as by
the conditional variance from the last day of negotiation.
Moreover, the estimated ARMA-GARCH models were vali-
dated through the Q@ statistic. The null hypothesis of no de-
pendence on past information was not rejected for any of the
bonds, both for the linear standardised residuals as for their
quadratic form.

Complementing this, Fig. 3 exposes the daily conditional
volatilities of the log-returns of the US Treasury bond yields
in the sample period obtained through the ARMA-GARCH
models. The plots visually confirm the previous results that
infer a presence of volatility clusters in the cited turbulent
periods. Again, the peak of the dispersion occurred during the
sub-prime and Euro-zone crisis. Further, the level of the



Table 2 Estimated parameters* and diagnostics** of the linear and squared residuals of the estimated ARMA-GARCH models® for the daily log-returns of the yield of U.S. Trea-

sury bonds with 1-, 2-, 3-, 5-, 7- and 10-years of maturity from January 2, 1990 to April 12, 2012, totalling 5573 observations.

Years to maturity
parameters

One

Two

Three

Five

Seven

Ten

u
O
()
s
P4

B

Shape

Q(10) Linear
Q(15) Linear
Q(20) Linear
Q(10) Squared
Q(15) Squared
Q(20) Squared

0.0009 (0.9440)

—0.0482 (0.0000)

~0.0022 (0.0003)
0.0240 (0.0169)
~0.0070 (0.0033)
0.0267 (0.0132)
0.0245 (0.0113)
0.0000 (0.4902)
0.0615 (0.0000)
0.9375 (0.0000)
4.7517 (0.0000)
14.1011 (0.1685)
17.4345 (0.2870)
19.3343 (0.4989)
14.1213 (0.1656)
17.4109 (0.2950)
19.3122 (0.5018)

~0.0002 (0.1877)

—0.0412 (0.0012)
—0.0256 (0.0407)

0.0121 (0.0074)

0.0000 0.3902
0.0577 (0.0000)
0.9413 (0.0000)
5.6537 (0.0000)
2.9290 (0.9831)

12.4981 (0.6410)

19.5223 (0.4882)
8.1576 (0.6135)

11.6987 (0.7017)

16.5712 (0.6807)

~0.0003 (0.0071)
0.0384 (0.0040)
-0.0326 (0.0212)

0.0308 (0.0169)

0.0000 (0.3312)
0.0568 (0.0000)
0.9422 (0.0000)
6.3832 (0.0000)
5.1855 (0.9767)

12.9482 (0.6063)

17.4312 (0.6248)
8.7964 (0.5516)

12.0212 0.6775

15.4634 (0.7493)

~0.0003 (0.0727)
0.0382 (0.0084)
~0.0422 (0.0193)

0.0006 (0.0230)

0.0000 (0.2474)
0.0504 (0.0000)
0.9486 (0.0000)
6.5653 (0.0000)
2.6153 (0.9891)

15.9312 (0.3866)

20.8033 0.4088
8.3882 (0.5910)

12.3082 (0.6556)

15.5954 (0.7414)

~0.0003 (0.0162)

0.0435 (0.0004)
-0.0427 (0.0010)
~0.0359 (0.0059)

0.0249 (0.0114)

0.0000 (0.2155)
0.0499 (0.0000)
0.9491 (0.0000)
7.2488 (0.0000)
2.4923 (0.9510)

12.5431 (0.6375)

18.4712 (0.5564)
6.4393 (0.7771)
10.825 (0.7649)

15.3625 (0.7573)

~0.0003 (0.0012)

0.0417 (0.0003)
~0.0319 (0.0017)
~0.0318 (0.0028)
~0.0141 (0.0034)
-0.0176 (0.0057)
~0.0176 (0.0142)

0.0271 (0.0056)
~0.0091 (0.0139)

0.0000 (0.1529)
0.0484 (0.0000)
0.9505 (0.0000)
7.2429 (0.0000)
2.9776 (0.9820)

13.8184 (0.5394)

18.2255 (0.5726)
5.4891 (0.8562)

(11.543) (0.7095)

15.0922 (0.7711)

*Parameters are defined in (11) and (13). Shape is the number of degrees of freedom of the student’s t conditional distribution.

**Q(k) is the statistic for k lags; p-values are in parenthesis.

2We chose to limit the number of auto-regressive parameters to 10 for computational and parsimony issues. However, there was no need for more lagged parameters, as explicated by the

Q statistics.
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Figure 3 Estimated conditional volatility of the daily log-returns of yield of US Treasury bonds with 1-, 2-, 3-, 5-; 7- and 10-years
of maturity from January 2, 1990 to April 12, 2012, totalling 5573 observations.

variability of the bonds with less time of maturity was higher
than that of the bonds with more time of maturity.

Conditional dependence modelling

In this step we model the dependence structure of the Trea-
sury bonds isolating the effect of the marginal, which were
modelled through the ARMA-GARCH models. Initially, we
present in Fig. 4 the scatter plot of the residuals of the mar-
ginal models. The scatter plot of Fig. 4 indicates that all the
bivariate associations between the daily variations of the yields
are strongly positive (Junker et al., 2006 use normal copula
yields and confirm this same correlation). This characteris-
tic of dependence reflects, in certain degree, the long term
association of the yield curve of the bonds. Moreover, the plots
point out that there are associations in the extreme values
(tails) of the presented relationships. This behaviour is a
vestige of the need for joint distribution that considers this
probability in the tails.

Subsequently, we calculated the matrix of dependence for
the daily log-returns of Treasury bond yields, through the Ken-
dall’s tau measure, aiming to select their order in the esti-
mation of the PCC. The adopted criterion was the absolute
sum of the dependence between each index with all the
others. The results are presented in Table 3. The results in
Table 3 reinforce the presence of great dependence between
the Treasury bonds. With the exception of the pair 1 year/
10 years, all the relationships had magnitude of the non-linear

dependence over 0.5. The mean magnitude of the associa-
tions was 0.69, a very large value.

Regarding the order, the bond with most dependence
with the others was the 5-years, followed by 3-years, 7-years,
10-years, 2-years and 1-year of maturity. With this order
we estimate, through ML, a PCC for the log-returns of the
Treasury bond yields in the sample period. The results of
this estimation, as well as the dependence measures asso-
ciated with the parameters of the pair copulas, are presented
in Table 4.

The results in Table 4 initially indicate that there is an ab-
solute predominance of the Student’s t copula in the bivari-
ate relationships which compose the dependence structure
of the US government Treasury bonds. This result corrobo-
rates that of previous research, such as that performed by
Marshal and Zeevi (2002) and Diks et al. (2014), which have
shown that the fit of this copula family is generally superior
to that of other copulas for financial data. Based on the se-
lected families of the PCC estimation, it is noteworthy that
these copulas assign, in certain degree, more importance to
the tails of the joint probability distribution than the Gauss-
ian one. This suggests that there is more dependence among
the sectors in extreme events than in the normally ex-
pected events.

Table 4 presents the dependence measures, converted
through the estimated copulas of each bivariate relation-
ship. Firstly, all the measures (lower tail, upper tail, and tau)
exhibited a trend for decreasing behaviour in the direction
of the initial levels of the vine to the final ones, which was
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Figure 4 Scatter plot of the estimated residuals of the ARMA-GARCH models for the daily log-returns of the yield of US Treasury
bonds with 1-, 2-, 3-; 5-, 7- and 10-years of maturity from January 2, 1990 to April 12, 2012, totalling 5573 observations.

Table 3 Kendall’s tau* dependence matrix of the log-
returns of the yield of the U.S. Treasury bonds with 1-, 2-,
3-, 5-, 7- and 10-years of maturity from January 2, 1990 to
April 12, 2012, totalling 5573 observations.

Years One Two Three Five Seven Ten

One 1.0000 0.6392 0.5980 0.5624 0.5199 0.4912
Two  0.6392 1.0000 0.7071 0.7294 0.6654 0.6214
Three 0.5980 0.7971 1.0000 0.8149 0.7471 0.6976
Five 0.5624 0.7294 0.8149 1.0000 0.8539 0.7993
Seven 0.5199 0.6654 0.7471 0.8539 1.0000 0.8680
Ten 0.4912 0.6214 0.6976 0.7993 0.8680 1.0000
Sum 3.8107 4.4523 4.6547 4.7599 4.6543 4.4775

*The Kendall’s tau measure was chosen because it can identify
non-linear dependence, unlike the traditional linear correla-
tion.

expected as this is the nature of this hierarchical construc-
tion. However, some relationships in the last levels of the vines
exhibited large association, as for example, the association
between the bonds of 3-years and 2-years of maturity. The

separations of dependence measures in terms of maturity (at-
tributed to Lee et al., 2011) denote the presence of differ-
ent dealing participants: active dealers tend to short-term
maturities bonds and passive dealers tend to long-term
maturities.

Regarding the magnitude of the dependence, the tail mea-
sures obtained relevant values in most of the bivariate rela-
tionships, except those in the last levels of the vine where
even the absolute dependence (tau) was very low. The tail
dependences were very similar to the absolute one almost
in all cases. The dependences in the lower and upper tails
were equal, reflecting the fact that the Student’s t copula
is elliptical. It is noteworthy that the relationship between
the bonds with 3-years and 10-years in the estimated PCC ob-
tained negative sign, emphasising the differences that are veri-
fied in the dependences between two variables when one
isolates the effect of other variables.

Further, the estimated PCC rejected the null hypothesis
of the Clark test, which states that there is significant dis-
tinction in the fit of the utilised D-vine approach and the C-vine
construction, emphasising the advantages in choosing the
D-vine construction. Regarding the domain of the depen-
dence, the 7-year bond presented the greatest mean for the
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Table 4 Pair copula constructions* of the daily log-returns of the yield of the U.S. Treasury bonds with 1-, 2-, 3-; 5-; 7- and
10-years** of maturity from January 2, 1990 to April 12, 2012, totalling 5573 observations.

Relationship Parameters Dependence

Copula Family First Second Tau Lower Upper
Css Student’s t 0.9540 2.0001 0.8061 0.8076 0.8076
(o Student’s t 0.9169 2.3754 0.7386 0.7248 0.7248
Gr.10 Student’s t 0.9751 2.7243 0.8577 0.8398 0.8398
Cio2 Student’s t 0.8203 2.4097 0.6123 0.5979 0.5979
Gt Student’s t 0.8699 2.0001 0.6717 0.6789 0.6789
Gz Student’s t 0.7992 3.0880 0.5895 0.5357 0.5357
Cs.107 Student’s t —-0.1639 3.9423 —-0.1048 0.0475 0.0475
G0 Student’s t 0.4958 3.8048 0.3302 0.2612 0.2612
Cio.1z Student’s t 0.0305 4.7010 0.0194 0.0620 0.0620
Cs.103.7 Student’s t 0.1120 5.5431 0.0714 0.0587 0.0587
Gsap7.10 Student’s t 0.7888 2.6667 0.5786 0.5496 0.5496
G102 Student’s t 0.0196 8.2151 0.0125 0.0151 0.0151
Csap.7.10 Student’s t 0.1715 6.3907 0.1097 0.0542 0.0542
Gs.47.102 Student’s t 0.0922 4.5685 0.0588 0.0785 0.0785
Cs.13.7.102 Student’s t 0.0328 10.8638 0.0209 0.0061 0.0061
Clark test 518.0 p-value 0.0036

*Selected families and their estimated parameters. These parameters were converted in the lower tail, upper tail and Kendall’s tau de-

pendence measures.

**To facilitate the interpretation of the relationships, we use the number of years of maturity of each bond.

tau and tail measures, if considered in relation to the other
bonds. The 5-year, which had the largest association with the
others, lost dependence after the isolation of indirect effect.
This can be explained by the liquidity in the negotiation of
these bonds. Chordia, Sarkar, and Subrahmanyam (2005), in
their in-depth study of the relationship of bonds with liquid-
ity, find the association between monetary expansions and
increased liquidity, in which government bond sector plays
an important role in forecasting bond market liquidity.

In a general form, these results highlight the importance
of risk management in terms of bonds diversification. This is
because such concentration of joint probability in the tails,
in particular for lower values, indicates that it can be diffi-
cult to minimise the risk of a portfolio based on investment
allocation in these bonds, especially in times of negative in-
novations, such as a crisis, which is when active managers most
need to protect their investments. Junker et al. (2006) seek
to focus on this approach; however, they do not delve in depth
on the relationship between Treasury bond maturities since
their work is more restricted to the comparison between fami-
lies of copulas.

Conclusion

This paper aimed to estimate the dependence structure
between Treasury bonds through a PCC. To that effect, we
used data from the US government Treasury bonds for 1-, 2-,
3-, 5-, 7- and 10-years of maturity. Initially we verified that
the daily yields presented a common evolution along the
sample. This long term equilibrium reflects the influence of
the monetary policy (see work of Chordia et al., 2005). In that
sense, there were falls in the yield rates during periods of

economic turbulence, which were intrinsically linked with the
attempt of the government to promote the economy through
an expansionist monetary policy with low interest rates.

Further, we realised that the variability of the yields de-
creases with the time taken for maturity of the bond, con-
firming the fact that the bonds with less maturity time were
more sensitive to economic turbulences. Moreover, the yields
presented strong dependence with past values, as emphasised
by the results of the marginal models. With the residuals of
the marginal models, which are isolated from the marginal
distribution, we found that all the bivariate associations
between the daily variations of the yields were strongly posi-
tive and with associations in the tails.

Subsequently, with the results of the estimated PCC, we
could verify that there is an absolute predominance of the
Student’s t copula in the relationships between the bonds.
Differing from Junker et al. (2006), who use normal copula
yields, these copulas assign dependence in the extreme values,
relevant in scenarios of crises. Regarding dependence, the
tail measures obtained relevant values in most of the rela-
tionships, and were similar to the absolute one in practi-
cally all cases. In terms of domain, the 7-year bonds presented
the greater mean for the tau and tail measures, when con-
sidered in relation with the other bonds. The 5-year bonds,
which had the largest association with the others in the pre-
vious step, lost dependence after the isolation of indirect
effect. This can be explained by the liquidity in the negotia-
tion of these bonds, especially the “flight-to-quality” of passive
dealers in stable long-term maturities. This isolation also
reduced significantly the magnitude of some relationships and
even changed the sign of one association.

These results highlight the importance of risk manage-
ment in terms of bonds diversification. This is because such
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concentration of joint probability in the tails, in particular
for lower values, indicates that it can be difficult to minimise
the risk of a portfolio based on investment allocation in these
bonds, especially in times of negative innovations, such as a
crisis, which is when managers most need to protect their in-
vestments. Further, the PCC is less restrictive on degree of
dependence than Archimedean structure defended by Lee
et al. (2011) and enables best performance of diversification.

For future research we suggest the estimation of PCC in
order to determine the dependence structure of commodi-
ties and other kinds of financial assets. Regarding Treasury
bonds, we recommend the comparison between the associa-
tion of their dependence in emerging and developed markets,
seeking to identify possible differences in the monetary policy,
and risk implications in Treasury bond portfolios.

Appendix

In this appendix we present the families of copulas which were
candidates to fit the bivariate relationships between the log-
returns of the US Treasury bonds. The families utilised were
elliptical (Normal and Student’s t) and Archimedean (Clayton,
Gumbel, Frank, Joe, BB1, BB7 and BB8).

The elliptical families are characterised by the symme-
try. Let p be the bivariate linear correlation. The Normal (or
Gaussian) and Student’s t copulas are defined, respec-
tively, in (A1) and (A2).

C(u, v) =D, (@' (u), ®(v)). (A1)

C(u,v)=t,,(t;'(u), £ (v)). (A2)

In (A1) and (A2), @' is the inverse of the standard uni-
variate normal distribution function; t;' is the inverse of the
univariate Student’s t distribution function with v degrees of
freedom.

The Archimedean copulas may be constructed using a func-
tion called generator. Let «zand fbe parameters. The Clayton,
Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8 copulas are rep-
resented, respectively, by formulations (A3) to (A10).

C%(u,v)= max[(u‘“ +Vo— 1)_1/a, OJ, o e[-1,0)u (0, +e)
(A3)

CG“m(u, v)= exp{—[(—lnu)“ + (—lnv)a:r/a}’ a €1, +) (A4)

Fra 1 (exp(—ow)—1)(exp(-av)-1)
¢ (u, v)——aln(1+ exp(—a)—1 J,
a & (—o0, 0) U (0, +eo). (A5)

1o

Coe(u,v) =1=[(1-u)" + (1=v)" = (1-u)"(1-v)"] ",

a €1, +e) (A6)
CB'(u, v)= {1 + [(u‘“ - 1)B +(v - 1)”}1/3 }_w, a>0, B=1
(A7)

(0 ) =1-(1-exp [ (tog(1- 10"+ (rogfo-1-) T} )
az1, B=21. (A8)

>0, B>1. (A9)

o = %(1—{1—[1—(1—;})"]“ [1- (1= pu)” |[1- (1—[3v)“:|}1a),
a=1 0<pB<1. (A10)

Further, we also utilised rotated versions of the pre-
sented copulas, with the exception for the Normal and Stu-
dent’s t families. When rotating the copulas by 180 degrees,
one obtains the corresponding survival copulas, while rota-
tion by 90 and 270 degrees allows the modelling of negative
dependence which is not possible with the standard non-
rotated versions.
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