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Abstract Managerial economics textbooks rarely include empirical examples of demand esti-
mation of any commodity from real data, perhaps because in reality one must consider coupled
demand systems. We suggest that on a national level and over a short time, the price–volume
data for onions provide a bona fide example of a single-commodity demand curve. Since the onion
has no real substitutes and taste for onions does not fluctuate, the demand curve does not shift
over time. Empirical analysis of aggregated national level data yields a demand curve with two
regimes: constant consumption at low prices, and constant budget at high prices.
© 2016 Production and hosting by Elsevier Ltd on behalf of Indian Institute of Management
Bangalore.

Introduction

The theory of demand and supply is a cornerstone of micro-
economics. The idea that the price of a commodity lies at the
intersection of its supply and demand curves is central to the
teaching of managerial economics (Salvatore & Srivastava,
2008). As per theory, production decisions of a firm are based
on the customers’ demand curve, which is again dependent
on the market structure and the price elasticity of demand
for a particular product. But how can we empirically esti-
mate the demand for a certain commodity?

The literature on demand estimation deals with systems
of equations that try to include all the variables that might
affect the demand for a commodity (Deaton & Muellbauer,
1980). At high levels of aggregation one estimates demand
for food vs non-food commodities. When dealing with demand
for food items, one accounts for different food categories such
as cereals, meat and fish, eggs, dairy, vegetables, fruits and
nuts, etc. (Green & Alston, 1990). Such regression models
however are too complicated to be introduced to students
encountering both economics and statistics for the first time.
For example, Chen (1977) has dealt with 23 simultaneous
equations in a complicated statistical model. Understand-
ing the implications of such models or replicating their es-
timation procedure is beyond the scope of the typical
introductory managerial economics course.

With this motivation, a teacher of managerial economics
might ask, “Is there a straightforward case of demand
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estimation from real data, of a single commodity, that one
can use as a classroom example?” In this paper we set out
to estimate the aggregate national demand curve for onions.
Our interest in onions was spurred by two factors: one was
the tremendous rise in onion prices observed from time to
time; the second was the fact that onions are a commodity
for which there are no close substitutes and therefore they
can possibly be studied as a single commodity demand system.
The typical features of the onion market have been de-
scribed in greater detail in a later section.

Demand estimation—theory

Identification problem

In empirically estimating the demand curve for any good, one
encounters the well known “identification problem” (Salvatore
& Srivastava, 2008), which is briefly described here for com-
pleteness. Historical data points on prices and quantities for
any commodity represent, in principle, different equilibria
where different pairs of demand and supply curves inter-
sect, as illustrated in Fig. 1(a).

Observed price quantity combinations (P1, Q1), (P2, Q2), and
(P3,Q3)couldbetheresultof the intersectionofdifferentdemand
curves D1, D2, and D3 and different supply curves S1, S2, and S3.
Hence thefitted lineAB that passes through theobservedpoints
E1, E2, and E3 would not represent accurately either a unique
underlying demand curve or supply curve (Fig. 1(a)).

In estimation of a demand curve, various exogenous vari-
ables that might affect demand need to be included, namely
(a) income, (b) prices of substitutes or complements, (c)
changes in tastes or preferences, and (d) changes in tech-
nology. Each of these variables would cause the demand curve
to shift up or down (rather than cause movement along the
demand curve). Subsequently, the estimated coefficient for
price in the regression model (with all these variables in-
cluded) gives an indication of the own price elasticity of
demand.

If it can be assumed that there have been no shifts in the
demand curve in the period of observation, then the ob-
served price–volume points must lie on the same demand
curve (see points E2′, E2 and E2″ in Fig. 1(b)).

Onions

Seeking a simple example for empirical demand estimation,
here we consider the demand for onions. Why onions?
Onions have received attention from both the popular press
as well as academia, mostly because onions prices have
risen steeply compared to other food commodities. Prices
of onions are believed to have toppled governments
(Economist, 2013). Moreover, the four exogenous factors
(a) through (d), discussed above, that affect demand of
other commodities may not affect onion demand signifi-
cantly as explained below.

(a) Income:Overabrief interval, theaggregatenational income
changes little,andonionsconstitutearelatively smallportion
of family expenditures in anycase; hencechanges in income
have little effect on demand of onions.

(b) Prices of substitutes: Onions have no real substitutes in
Indian cooking (contrast with cereals as a group; pulses;
green vegetables; meat, fish and poultry).

(c) Taste: Onions are a popular ingredient in Indian cooking,
and the Indian consumer’s taste for onions varies little
over time.

(d) Technology: Technology does not play an important role
(for instance, dried onion powder is not a common sub-
stitute for fresh onions in Indian recipes).

All of these factors could in principle lead to a shift in the
demand curve (as opposed to movement along the demand
curve). Since none of these factors contributes significantly
to the demand for onions, it can be assumed that the con-
sumers’ aggregate demand curve does not shift up or down
(at least in the short run). Hence it would seem to follow that

Both demand and supply curves have shifted over 
time. Dotted line AB joining the observed price-
volume points represents neither the true supply 
nor the true demand curve. 
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Figure 1 The identification problem. (a): Both demand and supply curves have shifted over time. Dotted line AB joining the ob-
served price–volume points represents neither the true supply nor the true demand curve. (b): Only supply curves have shifted over
time, and observed price–volume points lie on the true underlying demand curve.
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observed onion price and quantity data lie on the aggregate
demand curve, with changes in prices predominantly caused
by shifts in supply. Tentatively accepting this conclusion, we
now attempt to estimate this demand curve.

Data and analysis

Description of data

We used data from two sources for the analysis.

1. Agricultural Marketing Information Network
(http://agmarknet.nic.in/) has daily data on prices and
arrivals for about 400 mandis across India (the number of
mandis reported upon varied from day to day). The daily
data from the agmarknet portal gives minimum, maximum,
and modal prices and quantity of arrivals for about 400
mandis nationwide. Not every mandi has data for every
day. Data were collected for 252 days from February 1,
2013 to October 24, 2013. These data were used for the
price volume analysis that follows.

2. The National Horticulture Board (NHB) (www.nhb.gov.in)
has data on both wholesale and retail prices. However, the
data are reported for fewer (about 30) mandis across India
than in the agmarknet portal.1 We downloaded monthly
averaged data for 22 months to look at the trends in prices.
Daily data from the same source were used to look at the
relationship between wholesale and retail prices.

Aggregation of data

Daily data of prices and quantities of arrivals of onions re-
corded at each of about 400 mandis were downloaded for the
agmarknet portal. For each day the arrivals (or volumes) at
each mandi, sorted in decreasing order, were added up. It
was observed that, typically, less than 10% of all mandis con-
tributed 80% of total volumes for each day. The sum of volumes
at these main contributing mandis was then taken to repre-
sent the volume for the day. The price point for that day was
taken to be the volume averaged modal price over these main
mandis. Subsequently, daily price and volume data points were
averaged (volume weighted) over non-overlapping periods of
seven days each to get weekly data, thereby eliminating day-
of-the-week effects. Thus we have national level price volume
data for 36 weeks.2

In contrast to the agmarknet data, the data from the NHB
required less processing. Aggregated monthly prices, both
wholesale and retail, were available for 32 mandis across India.
For each month, weighted average retail and wholesale prices
were calculated (where the price reported in each mandi was
weighted by its contribution to the total volume across all
mandis reported). These prices were collected for 22 months.
Daily data for 557 days over the same period were also ob-
tained from this website. With regard to the daily data, two

points are noteworthy: first, data were not reported for
Sundays and holidays; and second, there were a few obvious
data entry errors that were manually corrected wherever
detected.

Analysis and results

Retail vs wholesale prices

Fig. 2 shows the results of a linear regression analysis of daily
retail prices against corresponding wholesale prices. Themodel
fit is excellent (R2 = 0.993). It is seen that the mark-up over
wholesale prices is about 24% plus a constant of about Rs 275
per quintal (or Rs 2.75 per kg).

Statistically, the model shown in Fig. 2 is clearly robust.
The R2 is very high and the p-values are miniscule. However,
visual examination of the data points suggests that there may
be heteroskedasticity in the data. We performed a Breusch
Pagan test3 (see for example Stock & Watson, 2011) in R. The
test statistics were BP = 100.5879, df = 1, p-value < 2.2e-
16. That is, the data are indeed heteroskedastic. A possible
economic interpretation of heteroskedasticity in the data is
the following:

1. When prices are low and volumes are high, competition
between retailers is greater, margins are smaller, and the
scatter in the data seems to be smaller.

2. When volumes are low and prices are high, economies of
scale suffer, inefficiencies are greater, absolute margins
may be bigger, and day-to-day fluctuations in margins can
be relatively larger. So the scatter in aggregated daily data
is higher.

1 Note that the agmarknet data, covering many more mandis, is more
comprehensive than the NHB data. It therefore gives a more accu-
rate view of the aggregated arrivals (volumes) on a national scale.
2 These data are available in .csv format on the journal website (or
by email from the author). 3 Using the R package “lmtest” and the command “bptest”.

y = 1.2423x + 275.47
R² = 0.9926
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Figure 2 Retail vs wholesale prices (daily data from 32 mandis
for 557 days).
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A model with heteroskedastic robust standard errors was
built.4 However, it was found that the fitted coefficients in
the model only changed in the fourth decimal place. There-
fore, the linear fit is deemed to be sufficiently robust and ac-
curate, and it seems that on average there is not any undue
profiteering between wholesale and retail markets, even at
high price levels. As a result, it is permissible to look at ag-
gregate volumes vswholesaleprices to study the demand curve
(even though the individual customer sees the retail prices).

Aggregated weekly volume vs wholesale price

Now we consider Fig. 3, which shows the aggregated weekly
volume vs wholesale price, on log–log axes, from the
agmarknet data.

Two regression fits are shown in the curve (for detailed
results see the Appendix). The first model is a simple linear
regression for the entire data (adjusted R2 = 0.814). However,
the data suggest a breakpoint (i.e. a point where the slope
changes suddenly). So we also fit a segmented model to the
data using R (Vito, 2008). The result, plotted in the same
figure, is clearly superior (adjusted R2 = 0.901).

The logarithmic break point is estimated to be 7 39. with
a standard error of about 0 1018. (highly statistically signifi-
cant with a negligibly small p-value). This corresponds to a
wholesale price of about Rs. 1620 per quintal. For log(price)
<7.39, the slope of the regression line is estimated to be
−0 04196. with a standard error of 0 15469. which shows
that the slope there is not significantly different from zero
(p value = 0 788. ). Accordingly, we conclude that if the whole-
sale price is lower than about Rs. 16 per kg, then the Indian
consumers are insensitive to price.

For log(price) >7.39, the slope of the regression line is es-
timated to be −1 04200. with a standard error of 0 09958. ,

i.e. the slope is not significantly different from −1. The slope
of approximately −1 suggests that, in this regime, volume is
inversely proportional to price. A doubling of the price, in this
range, is accompanied by roughly halved consumption, and
the total aggregate national expenditure remains approxi-
mately constant.

Summary

To summarise, we have two main findings. The first is that
there is a statistically robust linear relationship between
wholesale and retail prices (albeit with greater variability in
retail prices in high price regimes). The second, and perhaps
more interesting, finding of this study is that there is an em-
pirically observed break point in the volume–price relation-
ship for onions, suggesting that volumes begin dropping when
the price exceeds a certain threshold.

Going by the empirically estimated demand curve, we
suggest that the price elasticity of onions is negligible below
a threshold, and is about −1 for prices above this threshold.
The low elasticity at low prices indicates Indians’ prefer-
ence for a fixed amount of onions in their diet. The zero elas-
ticity regime is one of constant consumption, while the
elasticity of −1 suggests constant aggregate expenditure on
onions.

Thus, we have met the original goals of this study. We have
found a commodity whose demand curve can reasonably be
estimated from readily available data and which in turn leads
to an interpretation that is both simple and at the same time
interesting. We suggest that this may be used as a class-
room example in the teaching of managerial economics.
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Appendix A
Linear model

4 Using the R package “car” and the command “coeftest”.

Figure 3 Total arrivals vs. weighted average price.

Call:
lm(formula = lwvol ~ lwprice)
Residuals:
Min 1Q Median 3Q Max
−0.41825 −0.11262 0.00615 0.08486 0.41929
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.32462 0.38067 42.88 <2e-16 ***
lwprice −0.63852 0.05146 −12.41 3.55e-14 ***
—
Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1
Residual standard error: 0.1788 on 34 degrees of freedom
Multiple R-squared: 0.8191, Adjusted R-squared: 0.8138
F-statistic: 153.9 on 1 and 34 DF, p-value: 3.554e-14
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Segmented model

Appendix B:
Supplementary material

Supplementary data to this article can be found online at
doi:10.1016/j.iimb.2016.01.002.
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