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Abstract An approximation space is a key concept in rough set theory, which plays
an important role to approximate reasoning about data. An interval-valued fuzzy
(IVF, for short) approximation space is an approximation space in the IVF environ-
ment. In this paper, IVF rough approximation operators are investigated with topo-
logical structures of IVF approximation spaces given.
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1. Introduction

Rough set theory was proposed by Pawlak [10] as a mathematical tool to handle im-
precision and uncertainty in data analysis. It has been successfully applied to machine
learning, intelligent systems, inductive reasoning, pattern recognition, mereology, im-
age processing, signal analysis, knowledge discovery, decision analysis, expert sys-
tems and many other fields [11-14].

The basic structure of rough set theory is an approximation space. Based on it,
lower and upper approximations can be induced. Using these approximations, knowl-
edge hidden in information systems may be revealed and expressed in the form of
decision rules.
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As a generalization of Zadeh’s fuzzy set, IVF sets were introduced by Gorzalczany
[3] and Turksen [16], and they were applied to the fields of approximate inference,
signal transmission and controller. Mondal et al. [9] defined a topology of IVF sets
and studied their properties.

An IVF approximation space is an approximation space under the IVF environ-
ment. By replacing crisp relations with IVF relations, Sun et al. [15] introduced the
IVF rough sets based on an IVF approximation space, defined IVF information sys-
tems and discussed their attribute reduction. Gong et al. [4] presented the IVF rough
sets based on approximation spaces and studied the knowledge discovery in IVF in-
formation systems. Zhang et al. [21] obtained decomposition theorems on IVF rough
approximations.

It is well known that topology is a branch of mathematics, whose concepts exist
not only in almost all branches of mathematics but also in many real life applications.
Topologies are widely used in the research field of machine learning and cybernetics
(see [1, 2, 5-7, 17]). For example, Choudhury and Zaman [2] applied the theory of
topology to study the evolutionary impact of learning on social problems; Korete-
lainen [5] used topologies to detect dependencies of attributes in information systems
with respect to gradual rules. The concept of topological structures and their gener-
alizations mean the most powerful notions and give important bases for dealing with
data and system analysis.

The purpose of this paper is to investigate topological structures of IVF approxi-
mation spaces.

2. Preliminaries

Throughout this paper, “interval-valued fuzzy” will be denoted briefly by “IVF”. U
denotes a nonempty set called the universe. I denotes [0, 1] and [/] denotes {[a, b] |
a,b € Iand a < b}. F?(U) denotes the family of all IVF sets in U. a denotes [a, a]
for each a € [0, 1].

Some relations and operations are defined as follows ([3, 16]): for any [ay, b;], [a2,
by] € [1],

[ai,b1] = [a2, b2] & a1 = a»,b1 = by;

[a1,b1] < a2, b2] &= a1 < az, by < by;

[a1,b1] < [a2,b2] & lay,b1] < [az, b2] and [ay, D] # [az, b2 ];

1—-[ai,bi]or[a), b1 =[1-by,1-ay).

Obviously, ([a,b]) = [a, b] for each [a, D] € [I].
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Definition 2.1 [3, 16] For each {[a;,b;] | j € J} C [I], we define

\iapbj=1\/a;,\/ bjand Nlajb)=1/\a; )\ bjl,

JjeJ Jjel Jjel JjeJ Jjel JjeJ

where \/ a; =sup{a;|j€ Jyand A a;j=inf{a;| je€ J}.
jeJ jel

Definition 2.2 [3, 16] An IVF set A in U is defined by a mapping A : U — [I].
Denote

A(x) = [A"(x),A"(x)] (xeU).

Then A= (x) (resp. A*(x) ) is called the lower (resp. upper) degree to which x belongs
to A. A~ (resp. A" ) is called the lower (resp. upper) IVF set of A.

The set of all IVF sets in U is denoted by FO(U).

Leta,b el [(17?] represent the IVF set which satisfies [a,/\l_;](x) = [a, b] for each
x € U. We denoted [a, a] by a.

We recall some basic operations on F@(U) as follows ([3, 16]): For any A, B €
FO(U) and [a, b] € [1],

(1) A= B A(x) = B(x) for each x € U.

(2) ACB & A(x) < B(x) foreach x € U.

(3) A=B° < A(x) = B(x)° foreach x € U.

(4) (AN B)(x)=A(x) A B(x) for each x € U.

(5) (AU B)(x)=A(x) V B(x) for each x € U.

(6) ([, b]A)(x) = [a, b] A [A~(x), A*(x)] for each x € U.

Obviously,
A=B & A" =B andA* = B*; ({a,0))° = [a, b1 ([a,b] € [1]).

Definition 2.3 [9] A € FO(U) is called an IVF point in U if there exist [a, b] € [1]-{0}
and x € U such that

o= {geth
We denote this A by xiq).
Definition 2.4 [9] 7 € FO(U) is called an IVF topology on U if
@ 0,Ter,

(ii)) A, Betr = ANBer,
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(i) {A;]jedicT = UAjer

jel

The pair (U, 7) is called an IVF topological space. Every member of T is called an
IVF open set in U. Its complement is called an IVF closed set in U.

We denote ¢ = {A| A° € T}.

The interior and closure of A € FO(U) denoted respectively by int(A) and cl(A),
are defined as follows: int(A) or int,(A) = U{B e 1| BC A}, cl(A) orcl.(A) =N{B e
| B2A}.

Proposition 2.1 [9] Let t be an IVF topology on U. Then for any A, B € FO(U),
(1) int(1) = 1, cl(0) = 0.
(2) int(A) C A C cl(A).
(3) A C B= int(A) C int(B), cl(A) C cl(B).
(4) int(A°) = (cl(A))", cl(A°) = (int(A))".
(5) int(A N B) = int(A) N int(B), cl(A U B) = cl(A) U cl(B).
(6) int(int(A)) = int(A), cl(cl(A)) = cl(B).
Definition 2.5 [19] Let R be a crisp relation on U. For each x € U, denote
R,(x)={yeU|(y,x) €R} and Ry(x)={ye U|(x,y) €R}.
R, (x) and R(x) are called the predecessor and successor neighborhood of x, respec-
tively.
3. IVF Approximation Spaces and the IVF Rough Sets
Recall that R is called an IVF relation on U if R € FO(U x U).
Definition 3.1 [15] Suppose that R is an IVF relation on U. Then R is called
(1) reflexive if R(x, x) = 1 for each x € U.
(2) symmetric if R(x,y) = R(y, x) for any x,y € U.
(3) transitive if R(x,z) > R(x,y) A R(y,z) for any x,y,z € U.
Given R is an IVF relation on U. R is called a preorder (resp. equivalence) if R is

reflexive and transitive (resp. reflexive, symmetric and transitive).

Definition 3.2 [15] Let R be an IVF relation on U. The pair (U, R) is called an IVF
approximation space. For each A € FO(U), the IVF lower and IVF upper approxi-
mation of A with respect to (U, R), denoted by R(A) and R(A), are two IVF sets and
are respectively defined as follows:

R(A)(x) = A(A(Y) V(I -Rxy)) (xeU)

yeu
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and

R = \/(Ap) ARy (xeU).

yeU

The pair (R(A), R(A)) is called the IVF rough set of A with respect to (U, R).
Remark 3.1 Let (U, R) be an IVF approximation space. Then

(1) foreach x,y € U,

RODG) = Ry, ») and R())) = T =Ry, »);

~— o~ — o~

(2) for each [a,b] € [1], R([a, b)) 2 [a,b] 2 R({a, b]).

Proposition 3.1 [15] Let (U,R) be an IVF approximation space. Then for each
A e FOW),

(RA))™ = RY (A7), (RA))" = R-(AY),

(R(A))” =R (A7) and (R(A))" = R*(A").

Proposition 3.2 [20] Let (U, R) be an IVF approximation space. Then for any A, B €
FOW), {A;| je Jy € FOU) and la,b] € [1],

(1) R(D) =1,R©) =0.
(2) A< B= R(A) C R(B), R(A) C R(B).
(3) R(A°) = (R(A)), R(A°) = (R(A))*.

@ R(NA)=NRA).RUA) = URA).
JjeJ jeJ jeJ jel
(5) R({a;5] U A) = [a,5] U R(A), R(la, bJA) = [a, bIR(A).
Proposition 3.3 [20] Let (U, R) be an IVF approximation space. Then

Ris reflexive = (ILR) YA € FO(U),R(A) C A.
&= (IUR) VA € FO(U),A C R(A).

4. Topological Structures of IVF Approximation Spaces
Let (U, R) be an IVF approximation space. We denote

% = {A € FO(U) | R(A) = A},

se= A Ry, r= \V Rxy).

x,yeU x,yeU, x#y

Theorem 4.1 Let (U, R) be an IVF approximation space. If R is reflexive, then

(1) 7g is an IVF topology on U;
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(2) for each A € FO(U),

int,(A) C R(A) C A C R(A) C cly, (A);
(3) for each [a,b] € (1], [a,B] € Tx N 75

Proof (1) (i) By Propo%mon 3.2(1), R(l) = 1 Then 1 € 7.
By Proposition 3.3, R(O) c 0. Then R(O) =0.So00 € &.

(ii) Let A, B € tg. By Proposition 3.2(4),
R(AN B) = R(A) N R(B).

Then RANB)=ANB. ThusANB € 1.
(iii) Let {A; | j € J} € 7¢. Then R(A;) = A; for each j € J. By Proposition 3.2(2),

R Jap 2 Jrap = Ja;.
Jel Jel jeJ
By Proposition 3.3, R(U Aj) C U Aj.
jeJ Je
ThenR(UJ A)) = UA andso UA € Tg.
jE]
Thus, 7p is an IVF topology on U

(2) For each A € FO(U), we have
inty (A) = U{B |Betgand BC A} = U{}_e(B) | B € tg and B C A} C R(A).
By Propositions 2.1(4) and 3.2(3),
cley(A) = (intr, (A))° 2 (R(A)" = R(A).
By Proposition 3.3,
int,(A) C R(A) C A C R(A) C clr, (A).

(3) For each [a, b] € [1], by Proposition 3.3, R({a, b]) = [a,b]. Then [a,b] € 7.
By Proposition 2.1(4),

cloy([a,B1) = Gintr, (@, 1)) = (intr,([a, 1)) = ([, bI)° = [a, b].

So m € Th.

Theorem 4.2 Let (U, Ry) and (U, Ry) be two IVF approximation spaces. If Ry and R,
are preorders, then

(l) R] QRQ = TR, c TR, -

(2) TR, = TR, <:>R1 =R2.
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Proof (1) Let Ry € R,. For each A € 7g,, Ry(A) = A. For each x € U, by the
transitivity of Ry,

Ri(A)@) = R (Ra(A)(x)
= ARA)3) v (T = Ry(x.y)

yeu

= AA@@ V(T = Ra, 90 v (T = Ri(x,))
yeU zeU

= AN\A@ v T = R0.2) vV (T = Rix, 1))
yeU zeU

= A\A@ V([ = R(.2) v (T = Ri(x )
yeU zeU

> A(N\A@ V([ = R0.2) v (1 = Ralx, )
yeU zeU

= ANN\A@ V (T = Ra(x, ) A R, 2))
yeU zeU

> A(A\A@ V(T = Ra(x, )
yeU zeU

= NA@ V (0 - Ra(x.2))
el

= Ry(A)(x) = AW).

Then Ry (A4) 2 A.
By Theorem 3.7(2), Ri(A) C A
Then Ri(A)=A and so A € 1g,. Thus 7z, C 7g,.

(2) Let g, = Tg,. By Remark 3.1(1) and Theorem 4.3(2),

Ri(x,y) = RioD®) = clr, 1)) = clr, 1)) = Ro(x, )

forany x,y € U. Then R = R;.
The converse implication is trivial.

Definition 4.1 Let R be an IVF relation on U. R is called pseudo-constant if there
exists [a, b] € [I] such that for any x,y € U,

1, if x=y,

R(x,y) =
(o) {[a,b], if x#y.

We write this R by [a, b]".
Obviously, every IVF pseudo-constant relation is an IVF equivalence relation.

Remark 4.1 (1) For any [ay, b1], (a2, b2] € [1],

[al,b]] < [az,bz] 1mp11es [(,ll,blrF c [az,bz]*.
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(2) If R is a reflexive IVF relation on U, then s C R C t;.

For each A € F?(U), we denote

Ry ={(x,y) e UXU | A(x) # AW},
Rp-={(x,y) e UXU|A"(x) > A"(n)},

Ra+ ={(x,y) e UX U | A" (x) > A*(y)}.

Obviously,

Ry-=¢ — A =aforsomeacl.
Ry =0 & A'=aforsomeacl.

Ri=¢ &< Rjy-=Rp+=¢ Aszorsome[a,b]e[l].

Lemma 4.1 Let R be a reflexive IVF relation on U. Then for each A € FO(U),
(1) if Ra- # &, then
2) (R(A)” = A~ — (ILLY(x,y) € Ry, 1 = R*(x,y) > A~(x) V A(y),
b) (R(A)” = A~ = (JIULV(x,y) € Ry, R (3,x) <A~ (X) AA(¥);
(2) if Ry+ # @, then

a) (RA)* = A* & (ILUV(x,y) € R+, 1 = R™(x,y) > A*(x) V A*(3),
b) R(A)* = A+ & (IUU(x,y) € R, R* (3, %) < A*(x) A A*().

Proof (1) a) Necessity. Suppose that (R(A))” = A™. For each x € U, by Proposition
3.2,

A GV (0 =R (x,y) = (RA) () = A™(x).
yeU

Then

A~ VA-R*(x,y) 2 A™(x) (x,y € U). (%)
For each (x,y) € R4-, A™(x) > A™(y). By (%),

L-RY(x,y) 2 A (x) = A"(x) VA ().
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Sufficiency. Suppose that (/LL) holds. If x € U and y € (R4-),(x), then

A OV -R(xy) = A () VA () VA ()= A ().
If x € U and y ¢ (Ry-),(x), then A~(y) = A™(x) and so
AMVU-R(xy))2A()2A ().
Thus for each x € U,

RA) ) = \A GV =R () 2 A().

yeU

This implies that (R(A))” 2 A™.
By Proposition 3.3, R(A) € A. Then (R(A))" CA™.
Hence (R(A))" =A".
b) Necessity. Suppose that (R(A))™ = A~. For each y € U, by Proposition 3.2,

\/ (A=) AR (3,) = RA)™ () = A~().

xeU

Then
AT()AR (y,x) <A™(Y) (x,y € U). ()

For each (x,y) € Ra-, A™(x) > A™(y). By (+%),
R (y,x) <A (0)=A"(x) NAT(y).
Sufficiency. Suppose that (/LL) holds. If y € U and x € (Ry),(y), then
AT VR 3,0) <A (D)AA(X)AA () <A ).
Ify € U and x ¢ (Ry),(y), then A™(x) < A™(y) and so
A™(x) AR (y,%) S A™(x) < A().

Thus for each y € U,

®A) ) = \/ (A" () AR (,0) <A™,

xeU

This implies that (R(A))™ C A™.

By Proposition 3.3, R(A) 2 A. Then (R(A))" 2 A™.
Hence (R(A))" = A™.

(2) The proof is similar to (1).

Theorems 4.3 and 4.4 below give topological structures of IVF approximation
spaces.
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Theorem 4.3 Let (U, R) be an IVF approximation space. If R is reflexive, then tg =
(A € FO(U) | Rs- = & or A satisfies (ILL), Ry- = ¢ or A satisfies (ILU))}.

Proof This holds by Lemma 4.1 and Theorem 4.1.
Theorem 4.4 Let (U, R) be an IVF approximation space. If R is reflexive, then
(D) Ty S TR C Ty

(2) Foreachla,b] € [Ilwitha < b, Ty ={A € FOW)|Ry-=0 or V A~(x) <

l—b, Ry =0 or \/ A*(x) < 1 —a). o
xeU
3) Tpor = FOU), 1111y = {[@,B] | [a. b] € [1]).

@) If{xi | x € U) C 15, then g = FO(U).

Proof (1) This holds by Theorem 4.2(1) and Remark 4.1(2).

(2) This holds by Theorem 4.3.

(3) This holds by (2).

(4) Let {x; | x € U} € 7x°. For any x,y € U, by Theorem 4.1, I_Q(xi)(y) c
cle,(x1)(y) = x1(y). By the reflexivity of R and Proposition 3.3,

RGO 2 x1 ().

Then I_Q()q)(y) = x;(y). By Remark 3.1(1),

- I, y=x
Ry, x) = R(xp)(y) = x1(y) = 4 _
0, y#ux.
Thus R = [0,0]*. By (3), 7z = FO(U).
5. Conclusion

Topology and rough set theory are widely used in the research for computer science.
In this paper, we have studied topological structures of IVF approximation spaces
and gave connections between topology and rough set theory, which may improve
our understandings of the two theories. In the future, we will consider some concrete
applications of our results.
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