Author's Accepted Manuscript

A Hybrid Method for the Probabilistic Maximal Covering Location-Allocation Problem

Marcos A. Pereira, Leandro C. Coelho, Luiz A.N. Lorena, Ligia C. de Souza

PII: \quad S0305-0548(14)00322-0
DOI: http://dx.doi.org/10.1016/j.cor.2014.12.001
Reference: CAOR3697
To appear in: Computers \& Operations Research

Cite this article as: Marcos A. Pereira, Leandro C. Coelho, Luiz A.N. Lorena, Ligia C. de Souza, A Hybrid Method for the Probabilistic Maximal Covering Location-Allocation Problem, Computers \& Operations Research, http://dx.doi.org/ 10.1016/j.cor.2014.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A Hybrid Method for the Probabilistic Maximal Covering Location-Allocation Problem

Marcos A. Pereira ${ }^{\mathrm{a}, *}$, Leandro C. Coelho ${ }^{\mathrm{b}, \mathrm{c}}$, Luiz A. N. Lorena ${ }^{\mathrm{d}}$, Ligia C. de Souza ${ }^{\text {d }}$
${ }^{a}$ São Paulo State University, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá, Brazil, 12516-410
${ }^{b}$ CIRRELT - Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
${ }^{\text {c }}$ Faculté des sciences de l'administration, Université Laval, 2325 de la Terrasse, Quebec City, Canada, G1K 0A6
${ }^{d}$ Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São José dos Campos, Brazil, 12221-010

Abstract

This paper presents a hybrid algorithm that combines a metaheuristic and an exact method to solve the Probabilistic Maximal Covering LocationAllocation Problem. A linear programming formulation for the problem presents variables that can be partitioned into location and allocation decisions. This model is solved to optimality for small and medium-size instances. To tackle larger instances, a flexible adaptive large neighborhood search heuristic was developed to obtain location solutions, whereas the allocation subproblems are solved to optimality. An improvement procedure

[^0]based on an integer programming method is also applied. Extensive computational experiments on benchmark instances from the literature confirm the efficiency of the proposed method. The exact approach found new best solutions for 19 instances, proving the optimality for 18 of them. The hybrid method performed consistently, finding the best known solutions for 94.5% of the instances and 17 new best solutions (15 of them optimal) for a larger dataset in one third of the time of a state-of-the-art solver.
Keywords: Facility location, congested systems, hybrid algorithm,
adaptive large neighborhood search, exact method, queueing maximal covering location-allocation model, PMCLAP.

1. Introduction

Facility location plays an important role in logistic decisions. Each day, many enterprises resort to quantitative methods to estimate the best or the more economical way to meet clients' demand for goods or services. In some cases, the availability of the service can be associated with a time or distance to an existing facility. In this case, the decision maker has to find the best location to open the facilities in order to satisfy most of the demand.

The Maximal Covering Location Problem (MCLP) is a facility location problem which aims to select some location candidates to install facilities, in order to maximize the total demand of clients that are located within a covering distance from an existing facility [6]. Examples of this problem appear, for instance, in the public sector to determine the location of emergency services such as fire stations, ambulances, etc. Private companies solve this problem to locate ATMs or vending machines, branches of a bank, stores of
fast food chains, cellular telephony antennae, etc. A more extensive list of applications can be found in [13], [15] and [27]. Variations of this problem, including negative weights and travel time uncertainty, can be found in [4] and [5]. Solution approaches to the MCLP include greedy heuristics [6, 12], linear programming relaxation [6], lagrangean relaxation [14], genetic algorithm [1], lagrangean/surrogate heuristic [19] and column generation [23].

In some applications, the number of clients and their associated demand allocated to a facility may have an impact on the behavior of the system. Depending on the nature of the service, clients may have to wait to be served. In such congested systems, the service quality is measured not only by the proximity to an open facility, but also by a service level, such as the number of clients in a queue or the waiting times. Under the assumption that the service requests are constant over time, this aspect can be modeled by simply adding capacity constraints to the MCLP model. However, this deterministic approach may yield idle or overloaded servers.

To deal with more realistic scenarios, Marianov and Serra [21] proposed a model considering the arrival of clients to a facility as a stochastic process depending on the clients' demands. The authors define a minimum limit on the quality of service based on the number of clients in the queue or on the maximum waiting time. This yields an extension of the MCLP called Queueing Maximal Covering Location-Allocation Model (QM-CLAM) or Probabilistic Maximal Covering Location-Allocation Problem (PMCLAP). Due to the complexity of the problem and to the size of real world instances, most research is devoted to the development of heuristic methods [10, 11].

Location-allocation models contain, at least, two types of decision variables: where to install a facility (location decision) and which clients to serve by the opened facility (allocation decision). Traditional solution approaches, such as branch-and-bound algorithms, deal with location and allocation decisions simultaneously: clients are allocated to a candidate location that is still being considered for the installation of a facility. However, a hierarchical approach appears as a natural heuristic algorithm: locate facilities first and, in a second step, allocate clients to them.

To explore this characteristic of the problem, a new iterative hybrid method is developed. The location part of the problem is dealt with by an Adaptive Large Neighborhood Search (ALNS) metaheuristic, and the corresponding allocation solution is obtained by solving an integer subproblem to optimality. The ALNS was proposed by Ropke and Pisinger [25] for a class of the vehicle routing problem, and has since then been employed for a myriad of other problems, including the vehicle scheduling problem [3, 22], the fixed charged network flow problem [17], the stochastic arc routing problem [18], several classes of vehicle routing problems [26], the inventory-routing problem [7, 8], and train timetabling [2]. We are aware of only one application of the ALNS to a problem with a facility location component [16], which is significantly different from the problem at hand.

The remainder of this paper is organized as follows. Section 2 provides a formal description and a mathematical formulation for the PMCLAP. The hybrid ALNS metaheuristic is described in Section 3. The results of extensive computational results on benchmark instances are presented in Section 4. Conclusions follow in Section 5.

2. Problem description and mathematical formulation

The MCLP, introduced by Church and ReVelle [6], aims at locating p facilities among n possible candidates, such that the maximal possible population is served. However, this problem does not consider capacities or congestion issues. To overcome this limitation, Marianov and Serra [21] introduced the PMCLAP, an extension of the MCLP in which a minimum quality on the service level is imposed, assuming that clients arrive to the facilities according to a Poisson distribution. The way to measure the demand at a facility is either counting the number of people waiting for the service, or by measuring the waiting time for the service.

Formally, the problem is defined on a graph with a set \mathcal{N} of n nodes. Each node is associated with a demand d_{i} and a service radius (or covering distance) S_{i} in case a facility is located at the facility candidate i. Without loss of generality, a service radius equal to S is considered for all facilities. Let \mathcal{N}_{i} be a subset containing the list of nodes within S units of distance from node i, i.e., the set of location candidates j that can serve client i. In the PMCLAP, f_{i} represents the contribution of client i to the system congestion. This value is calculated as a fraction of the client's demand. It is assumed that clients will arrive to a facility according to a Poisson distribution with parameter rate μ. The parameter α defines the minimum probability of, at most:

- a queue with b clients, or;
- a waiting time of τ minutes.

To model the PMCLAP, we define two sets of binary variables: one for location and another for allocation decisions. Variables y_{j} are equal to one if and only if location $j \in \mathcal{N}$ is opened, and variables $x_{i j}$ are equal to one if and only if the demand of node i is associated with facility $j, i, j \in \mathcal{N}$. The problem can be formulated as follows:

$$
\begin{equation*}
\operatorname{maximize} \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}_{i}} d_{i} x_{i j} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{gather*}
\sum_{j \in \mathcal{N}_{i}} x_{i j} \leq 1 \quad i \in \mathcal{N} \tag{2}\\
\sum_{j \in \mathcal{N}} y_{j}=p \tag{3}\\
x_{i j} \leq y_{j} \quad i \in \mathcal{N} \quad j \in \mathcal{N} \tag{4}\\
\sum_{i \in \mathcal{N}} f_{i} x_{i j} \leq \mu \sqrt[b+2]{1-\alpha} \quad j \in \mathcal{N} \tag{5}\\
\text { or } \\
\sum_{i \in \mathcal{N}} f_{i} x_{i j} \leq \mu+\frac{1}{\tau} \ln (1-\alpha) \quad j \in \mathcal{N} \tag{6}\\
y_{j}, x_{i j} \in\{0,1\} \quad i \in \mathcal{N} \quad j \in \mathcal{N} . \tag{7}
\end{gather*}
$$

The objective function (1) maximizes the total served demand. Constraints (2) guarantee that each client is served by at most one facility. Constraint (3) defines the number of facilities to be opened. Constraints (4) link location to allocation variables, only allowing clients to be allocated to an opened facility. Constraints (5) ensure that facility j has less than b clients in the
queue with at least probability α, and constraints (6) ensure that the waiting time for service at facility j is at most τ minutes with probability of at least α. Constraints (7) define the binary nature of the variables. Obviously, $x_{i j}$ equals zero for all $j \notin \mathcal{N}_{i}$.

Constraints (5) and (6) are related to the probabilistic nature of the problem. For these constraints, Marianov and Serra [21] assume an $M / M / 1 / \infty / F I F O$ queueing system with service requests occurring at each demand node i according to a Poisson process with intensity f_{i}. As customers arrive at a facility j from different demand nodes, the request for service at this facility is the sum of several Poisson processes with intensity λ_{j} calculated as:

$$
\begin{equation*}
\lambda_{j}=\sum_{i \in \mathcal{N}} f_{i} x_{i j} \tag{8}
\end{equation*}
$$

According to equation (8), if variable $x_{i j}$ is one, then client i is allocated to facility j and the corresponding intensity will be included in the calculation of λ_{j}. In order to maintain the equilibrium of the system, an exponentially distributed service time with average rate μ, where $\mu>\lambda_{j}$, is assumed for all the facilities.

The PMCLAP is NP-hard [24], being harder to solve by exact methods in reasonable computation times as the size of the instance increases. We evaluate the performance of a state-of-the-art solver in Section 4.

3. Hybrid adaptive large neighborhood search algorithm

Considering the location and allocation decisions of the problem separately, an iterative hybrid method was developed. At each iteration, the location solution values are obtained by a powerful and flexible ALNS heuristic, in which an integer subproblem was embedded. This subproblem is then solved exactly by mathematical programming at each iteration, in order to determine the optimal allocation solution values and the solution cost.

Figure 1 shows a representation of a location solution for a network with $n=10$ location candidates and $p=3$ open facilities.

Figure 1: Representation of the location variable y.

In general terms, the idea of the ALNS is to iteratively destroy and repair parts of a solution with the aim of finding better solutions. There are a number of destroy and repair operators, and they compete to be used at each iteration. Operators that have performed better in the past have a higher probability of being used. In our implementation, destroy and repair mechanisms have been created with the aim of closing and opening facilities, exploring our knowledge of the problem. As a result, allocation decisions are not made by the heuristic, which yields an integer problem in which location decisions are already fixed. This problem is then solved to optimality by mathematical programming at each iteration. The algorithm can therefore be described as a matheuristic [20], i.e., as a hybridization of a heuristic and of a mathematical programming algorithm.

The hybrid method aims to maximize the demand satisfaction. Facilities are removed and inserted in the solution at each iteration by means of destroy and repair operators. A roulette wheel mechanism controls the choice of the operators, with a probability that depends on their past performance. More concretely, to each operator r are associated a score π_{r} and a weight ω_{r} whose values depend on the past performance of the operator. Then, given h operators, operator \bar{r} will be selected with probability $\omega_{\bar{r}} / \sum_{r=1}^{h} \omega_{r}$. Initially, all weights are set to one and all scores are set to zero. The search is divided into segments of θ iterations each, and the weights are computed by taking into account the performance of the operators during the last segment. At each iteration, the score of the selected operator is increased by σ_{1} if the operator identifies a new best solution, by σ_{2} if it identifies a solution better than the incumbent, and by σ_{3} if the solution is not better but is still accepted. After θ iterations, the weights are updated by considering the scores obtained in the last segment as follows: let $o_{r s}$ be the number of times operator r has been used in the last segment s. The updated weights are then

$$
\omega_{r}:= \begin{cases}\omega_{r} & \text { if } o_{r s}=0 \tag{9}\\ (1-\eta) \omega_{r}+\eta \pi_{r} / o_{r s} & \text { if } o_{r s} \neq 0\end{cases}
$$

where $\eta \in[0,1]$ is called the reaction factor and controls how quickly the weight adjustment reacts to changes in the operator performance. The scores are reset to zero at the end of each segment.

As in other ALNS implementations [8, 25, 26], an acceptance criterion based on simulated annealing is used. Let $z(\cdot)$ be the cost of solution \cdot. Given a
solution s, a neighbor solution s^{\prime} is always accepted if $z\left(s^{\prime}\right)>z(s)$, and is accepted with probability $e^{\left(z(s)-z\left(s^{\prime}\right)\right) / T}$ otherwise, where $T>0$ is the current temperature. The temperature starts at $T_{\text {start }}$ and is decreased by a cooling rate factor ϕ at each iteration, where $0<\phi<1$.

The main features of the algorithm are described in the next subsections. Optional initial solutions are described in Section 3.1. The list of destroy and repair operators is provided in Section 3.2. The subproblem resulting from each ALNS iteration and its solution procedure is described in Section 3.3, and an improvement procedure is described in Section 3.4. Finally, the parameters of the implementation and a pseudocode are provided in Section 3.5.

3.1. Initial solution

The algorithm can be initialized from an empty solution or from an arbitrary solution, e.g., randomly selecting p facilities to be opened. If the solution is empty, then no destroy operator can be applied at the first iteration, and only repair operators are used to open p facilities. This implementation starts with a random solution. Several papers have already demonstrated that the quality of the initial solution does not influence the overall performance of the ALNS algorithm [2, 7, 8].

3.2. List of operators

When designing the operators, the characteristics of the problem have been carefully considered. Given a solution, destroy and repair operators will close and open facilities, taking advantage of the problem's characteristics
to conveniently exploit different neighborhoods. The list of the developed destroy and repair operators follows.

3.2.1. Destroy operators

1. Randomly close ρ facilities

This operator randomly selects ρ facilities and closes them. Here, ρ is a random number following a semi-triangular distribution with a negative slope, bounded at $[1, p]$, as shown in Figure 2.

Figure 2: Probability density function of the semi-triangular random variable ρ.

According to this distribution, the value of ρ is calculated as in (10), where u is a random variable with uniform distribution in the interval $[0,1]$:

$$
\begin{equation*}
\rho=\left\lfloor p-\sqrt{(1-u)(p-1)^{2}}+0.5\right\rfloor \tag{10}
\end{equation*}
$$

This operator is useful for refining the solution since it does not change the solution much when ρ is small, which happens frequently due to the shape of its probability distribution. However, it still yields a major transformation of the solution when ρ is large.

2. Close the facility with the fewest potential clients

This operator identifies the opened facility with the fewest potential clients and closes it. Here, each opened facility j is evaluated and the number of clients within S units of distance from it is counted. It is useful for closing a facility which has few clients, allowing for a facility with a greater potential to be opened.

3. Close the facility with the smallest potential total demand

This operator closes the facility with the smallest potential demand allocated to it. It is similar to the previous removal heuristic, but here the total demand within S units of distance from each opened facility j is considered.

4. Close one of the two closest facilities

This operator identifies the two closest facilities opened in the current solution and randomly closes one of them. The rationale behind this operator is to avoid too much overlapping and to allow a facility to be opened such that more clients are served.

3.2.2. Repair operators

All repair operators identify the number of open facilities in the solution and are repeated as many times as necessary such that at the end of the repairing procedure the solution contains exactly p open facilities.

1. Randomly open one facility

This operator randomly opens one facility in the current solution. It is useful to diversify the search towards a good solution.

2. Open a facility located at, at least, $2 S$ units from all open facilities

This operator opens a facility at the first candidate that is located more than $2 S$ units from all open facilities. If no such facility exists, the one located the farthest away from all open facilities is inserted. The motivation for this operator is to open a facility to serve clients not yet served by any of the opened facilities.

3. Open a facility with the highest service potential (clients)

This operator evaluates all closed facilities and identifies the one that could serve the highest number of clients not yet served by any of the opened facilities. The idea is to serve clients not yet covered by any other facility, but this time overlapping is allowed, which helps increasing the service level. This is useful for the probabilistic part of the problem. In the event where all clients are already covered, a random facility is opened.

4. Open a facility with the highest service potential (demand)

This operator evaluates all closed facilities and identifies the one that could serve the highest demand not yet covered by any of the opened facilities. The idea is to serve the demand not yet covered by any other facility, but this time overlapping is allowed, which helps increasing the service level, useful for the probabilistic part of the problem. In the event where all the demand is already covered, a random facility is opened.

3.3. Subproblem solution

Once the ALNS heuristic has destroyed and repaired the solution, one needs to make all allocation decisions taking into account the probabilistic con-
straints in order to obtain the solution value. This is done efficiently by mathematical programming by solving the following IP, in which variables y_{j} are updated to their values \bar{y}_{j} obtained from the ALNS heuristic. In this formulation, the bounds on \bar{y}_{j} are already defined, implying that the constraint on the number of open facilities is automatically respected:

$$
\begin{equation*}
\operatorname{maximize} \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} d_{i} x_{i j} \tag{11}
\end{equation*}
$$

subject to

$$
\begin{gather*}
\sum_{j \in \mathcal{N}} x_{i j} \leq 1 \quad i \in \mathcal{N} \tag{12}\\
x_{i j} \leq \bar{y}_{j} \quad i \in \mathcal{N}_{j} \quad j \in \mathcal{N} \tag{13}\\
\sum_{i \in \mathcal{N}_{j}} f_{i} x_{i j} \leq \mu \sqrt[b+2]{1-\alpha} \quad j \in \mathcal{N} \tag{14}\\
\text { or } \\
\sum_{i \in \mathcal{N}_{j}} f_{i} x_{i j} \leq \mu_{j}+\frac{1}{\tau} \ln (1-\alpha) \quad j \in \mathcal{N} \tag{15}\\
x_{i j} \in\{0,1\} \quad i \in \mathcal{N} \quad j \in \mathcal{N} . \tag{16}
\end{gather*}
$$

This problem is significantly easier to solve than the problem defined by (1)-(7). Here, at each iteration one just needs to update the bounds on variables $x_{i j}$ in constraints (13). Solving this subproblem by mathematical programming is relatively simple, given that one can take advantage of the fact that only a small portion of the problem changes at each iteration, thus the reoptimization is rather fast. Indeed, one can solve several of these problems per second.

3.4. Improvement procedure

An improvement procedure to polish a given good solution and try to locally improve it was also developed. This is done whenever the ALNS algorithm finds a new best solution, and at every θ iterations. In the improvement procedure, a mathematical programming model with the best known solution is defined, allowing two facilities to be closed and other two facilities to be opened. This can be seen as a neighborhood search in which all combinations of two opened facilities are closed and all combinations of two closed facilities are opened. If this yields an improved solution, the ALNS is updated with it. The improvement procedure consists of solving the following IP, in which \bar{y}_{j} is a binary vector indicating whether facility j is opened (one) or closed (zero).

$$
\begin{equation*}
\operatorname{maximize} \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} d_{i} x_{i j} \tag{17}
\end{equation*}
$$

subject to

$$
\begin{gather*}
\sum_{j \in \mathcal{N}} y_{j}=p \tag{18}\\
\sum_{j \in \mathcal{N}} x_{i j} \leq 1 \quad i \in \mathcal{N} \tag{19}\\
x_{i j} \leq y_{j} \quad i \in \mathcal{N}_{j} \quad j \in \mathcal{N} \tag{20}\\
\sum_{i \in \mathcal{N}_{j}} f_{i} x_{i j} \leq \mu \sqrt[b+2]{1-\alpha} \quad j \in \mathcal{N} \tag{21}
\end{gather*}
$$

or

$$
\begin{equation*}
\sum_{i \in \mathcal{N}_{j}} f_{i} x_{i j} \leq \mu_{j}+\frac{1}{\tau} \ln (1-\alpha) \quad j \in \mathcal{N} \tag{22}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{j \in \mathcal{N}} \bar{y}_{j} y_{j}=p-2 \tag{23}\\
y_{j}, x_{i j} \in\{0,1\} \quad i \in \mathcal{N} \quad j \in \mathcal{N} . \tag{24}
\end{gather*}
$$

In this problem, (17)-(22) are equal to (1)-(6). The added constraint (23) ensures that $p-2$ of the opened facilities need to remain open. The algorithm needs to open two closed facilities to respect constraint (18). This local search heuristic is not added as an operator of the ALNS because it is significantly more complex than the remaining operators.

3.5. Parameter settings and pseudocode

The parameter settings used in the ALNS implementation are now described. These were set after an early tuning phase. The maximum number of iterations $i_{\text {max }}$ depends on the starting temperature $T_{\text {start }}$ and on the cooling rate ϕ. These parameters were set as follows:

$$
\begin{gather*}
T_{\text {start }}=30000 \tag{25}\\
\phi=\left(0.01 / T_{\text {start }}\right)^{1 / i_{\max }} \tag{26}
\end{gather*}
$$

This makes the cooling rate a function of the desired number of iterations, adjusting accordingly the probability that the ALNS mechanism will accept worsening solutions. The stopping criterion is satisfied when the temperature reaches 0.01 . In this implementation, the maximum number of iterations $i_{\max }$ was set to 1000 for instances with less than 100 clients, 2000 for instances with less than 500 clients, and 3000 for instances with more than 500 clients. The segment length θ was set to 200 iterations, and the reaction factor η was
set to 0.7 , thus defining the new weights by 70% of the performance on the last segment and 30% of the last weight value. The scores are updated with $\sigma_{1}=10, \sigma_{2}=5$ and $\sigma_{3}=2$. Algorithm 1 shows the pseudocode of the ALNS implementation.

4. Computational experiments

This section provides details and results of the extensive computational experiments carried out to assess the quality of the ALNS matheuristic. The algorithm was coded in $\mathrm{C}++$ and the subproblems were solved by CPLEX using Concert Technology version 12.6. All computations were performed on machines equipped with an Intel Xeon ${ }^{\text {TM }}$ processor running at 2.66 GHz . The ALNS algorithm needed less than 1 GB of RAM memory. The model described in Section 2 was implemented in CPLEX and executed on machines with up to 48 GB of RAM. All the machines run under the Scientific Linux 6.0 operating system.

A large dataset of benchmark instances with three classes of instances was solved: 26 instances contain 30 nodes, 24 instances contain 324 nodes, and 24 instances contain 818 nodes. The number p of facilities to open varies from two to 50 . The service radius is equal to 1.5 miles for the instances with 30 nodes, 250 meters for instances with 324 nodes, and 750 meters for instances with 818 nodes. The 30-node dataset was proposed by Marianov and Serra [21] and the 324 and 818-node datasets were proposed by Corrêa et al. [10]. These datasets have since then been used to evaluate the heuristic of Marianov and Serra [21], the constructive genetic algorithm of Corrêa and

```
Algorithm 1: Hybrid ALNS matheuristic - part 1
    Initialize: set all weights equal to 1 and all scores equal to 0 .
    \(s_{\text {best }} \leftarrow s \leftarrow\) initial solution, \(T \leftarrow T_{\text {start }}\).
    while \(T>0.01\) do
        \(s^{\prime} \leftarrow s ;\)
        select a destroy and a repair operator using the roulette-wheel mecha-
    nism based on the current weights. Apply the operators to \(s^{\prime}\) and update
    the number of times they are used;
    solve subproblem defined by (11)-(16), obtaining \(z\left(s^{\prime}\right)\).
    if \(z\left(s^{\prime}\right)>z(s)\) then
        \(s \leftarrow s^{\prime} ;\)
        if \(z(s)>z\left(s_{\text {best }}\right)\) then
            \(s_{\text {best }} \leftarrow s ;\)
                update the score for the operators used with \(\sigma_{1}\);
            apply the improvement procedure to \(s_{\text {best }}\).
        else
            update the score for the operators used with \(\sigma_{2}\).
        end if
    else
        if \(s^{\prime}\) is accepted by the simulated annealing criterion then
            \(s \leftarrow s^{\prime} ;\)
                update the scores for the operators used with \(\sigma_{3}\).
        end if
        end if
```

```
Algorithm 1: Hybrid ALNS matheuristic - part 2 (continued)
22: if the iteration count is a multiple of \(\theta\) then
23: update the weights of all operators and reset their scores;
                apply the improvement procedure to \(s_{\text {best }}\).
        end if
        \(T \leftarrow \phi T ;\)
    end while
    return \(s_{\text {best }}\);
```

Lorena [9], the clustering search algorithm of Corrêa et al. [10], and the column generation heuristic of Corrêa et al. [11].

The name of the instances in tables 1-3 contains the values of the parameters used in each run. For example, instance 30_2_0_0_85 refers to a 30 -node problem with two facilities, the congestion type based on the number of clients (0 for queue size, 1 for waiting time), the congestion parameter (number of clients b on the queue, or the waiting time τ in minutes) and the minimum probability α, in percentage value. The rate parameter μ is fixed at 72 for the 30 -node network, and at 96 for the 324 and 818 -node networks. The parameter f_{i} that appears in formulations (1)-(7), (11)-(16) and (17)-(24) is calculated as $f d_{i}$, with $f=0.01$ for the 324 and 818 -node network. For the 30 -node network, $f=0.015$ (queue size type constraints) or $f=0.006$ (waiting time type constraints).

Tables 1-3 contain, for each instance, the best and the average solutions (when available) and the respective solution times obtained from six different methods. The best solution value for each instance is presented in boldface.

In the CPLEX section of each table, an asterisk denotes a new best known solution obtained by an exact method. For the column generation heuristic, the column Gap (\%) contains the percentage difference between the solution and a heuristic upper bound. Notice that some of the values are non-zero even when the corresponding instance is solved to optimality, which is an indication that this algorithm may be using the value of the best known solution to terminate the execution.

For the ALNS results, each instance was executed 3 times. The Average column in the ALNS section shows the consistency of the proposed method. The figures presented in the Time (s) columns are also averages.

As presented in Table 1, the proposed exact method proved optimality for all 26 instances. The ALNS algorithm obtained the optimal solution for all instances, performing better than all the methods of the literature as highlighted in the Average row at the bottom of the table, being 10 times faster than CPLEX.

In Table 2, using the proposed exact method, CPLEX proved optimality for 23 out of 24 instances. The ALNS algorithm was able to find the optimal solution for 19 instances and performed better than the literature in all other five instances.

In Table 3, CPLEX proved optimality for all instances. The ALNS algorithm finds 19 of them and performed better than the previous state-of-the-art heuristic for one instance.

Due to the probabilistic constraints, the PMCLAP can be considered a capacitated facility location problem, a class of problems that are hard to be
Table 1: Detailed computational results for the instance set with 30 nodes

Instance	CPLEX			MS heuristic [21]		Constuctive GA [9]			Clustering Search [10]			Column Generation [11]			ALNS		
	Solution	Gap (\%)	Time (s)	Solution	Time (s)	Best	Average	Time (s)	Best	Average	Time (s)	Solution	Gap (\%) ${ }^{1}$	Time (s)	Best	Average	Time (s)
30_2_0_0_85	3700	0.000	0	3700	0.000	3700	3700	0.310	3700	3700.0	0.009	3700	0.000	0.530	3700	3700.0	12.333
30_2_0_1_85	5100	0.000	0	4630	0.000	5090	5090	0.360	5090	5090.0	0.018	5090	0.196	5.550	5100	5100.0	9.000
30_2_0_2_85	5210	0.000	0	4780	0.000	5210	5210	0.380	5210	5210.0	0.016	5210	1.321	4.770	5210	5210.0	4.667
30_2_0_2_95	4520	0.000	0	4470	0.000	4520	4513	0.300	4520	4520.0	0.015	4520	0.000	0.700	4520	4520.0	11.333
30_3_0_0_85	5390	0.000	0	5210	0.000	5390	5390	0.510	5390	5390.0	0.025	5390	0.119	28.030	5390	5390.0	5.000
30_3_0_1_85	5390	0.000	0	5210	0.000	5390	5390	0.480	5390	5390.0	0.024	5390	0.742	3.770	5390	5390.0	3.000
30_3_0_1_95	5270	0.000	6	5080	0.000	5240	5240	0.480	5240	5240.0	0.024	5240	0.763	14.750	5270	5270.0	44.667
30_3_0_2_85	5390	0.000	1	5210	0.000	5390	5390	0.470	5390	5390.0	0.023	5390	0.742	1.880	5390	5390.0	3.667
30_3_0_2_95	5390	0.000	0	5230	0.000	5390	5390	0.500	5390	5390.0	0.027	5390	0.622	11.450	5390	5390.0	3.667
30_3_1_49_90	2160	0.000	0	2160	0.000	2160	2160	0.530	2160	2160.0	0.009	2160	0.000	0.360	2160	2160.0	13.333
30_4_0_1_95	5390	0.000	0	5260	0.000	5390	5390	0.540	5390	5390.0	0.026	5390	1.391	30.880	5390	5390.0	8.333
30_4_1_42_85	4600	0.000	0	4550	0.000	4600	4600	0.610	4600	4600.0	0.022	4600	0.000	0.810	4600	4600.0	105.667
30_4-1_48_90	1920	0.000	0	1890	0.000	1920	192	0.660	1920	1920.0	0.014	1920	0.000	0.440	1920	1920.0	17.333
30_4_1_49_90	2880	0.000	0	2870	0.000	2880	2877	0.590	2880	2880.0	0.013	2880	0.000	0.450	2880	2880.0	15.000
30_5_0_0_95	5330	0.000	13	5210	0.000	5330	5323	0.800	5330	5317.6	0.041	5330	0.375	6.910	5330	5330.0	288.667
30_5_1_40_85	3050	0.000	93	2910	0.000	3020	3001	0.740	3050	3033.2	0.021	3050	0.000	0.890	3050	3050.0	234.000
30_5_1_42_85	5390	0.000	1	5210	0.000	5390	5390	0.770	5390	5390.0	0.035	5390	0.464	34.170	5390	5390.0	15.000
30_5_1_48_90	2400	0.000	1	2280	0.000	2390	2390	0.740	2400	2398.8	0.019	2400	0.000	3.080	2400	2400.0	26.667
30_5_1_50_90	4700	0.000	1	4670	0.000	4700	4700	0.730	4700	4700.0	0.028	4700	0.000	0.830	4700	4700.0	42.667
30_6_0_0_95	5410	0.000	1	5390	0.000	5410	5392	0.840	5410	5391.0	0.037	5410	1.054	42.410	5410	5410.0	62.333
30_6_1_40_85	3610	0.605	10803	3480	0.000	3610	3610	0.910	3610	3608.8	0.031	3610	1.022	30.640	3610	3610.0	514.000
30_6_1_41_85	5330	0.188	10802	5120	0.000	5300	5274	1.000	5330	5286.4	0.038	5300	0.755	11.740	5330	5330.0	322.333
30_6_1_50_90	5390	0.000	1	5060	0.000	5390	5390	0.970	5390	5390.0	0.038	5390	0.395	48.440	5390	5390.0	31.667
30_7-1_40_85	4060	0.000	1	3860	0.000	4060	4060	1.030	4060	4060.0	0.039	4060	0.517	18.920	4060	4060.0	301.000
30_7-1_41_85	5410	0.000	1	5300	0.000	5390	5390	0.880	5390	5390.0	0.035	5350	2.159	41.840	5410	5410.0	61.333
30_8_1_41_85	5470	0.000	0	5390	0.000	5470	5470	0.950	5470	5470.0	0.032	5470	0.000	1.200	5470	5470.0	8.333
Average	4533.1	0.030	835.577	4389.6	0.000	4528.1	4525.0	0.657	4530.8	4527.1	0.025	4528.1	0.486	13.286	4533.1	4533.1	83.269

Table 2: Detailed computational results for the instance set with 324 nodes

Instance	CPLEX			MS heuristic [21]		Constuctive GA [9]			Clustering Search [10]			Column Generation [11]			ALNS		
	Solution	Gap (\%)	Time (s)	Solution	Time (s)	Best	Average	Time (s)	Best	Average	Time (s)	Solution	Gap (\%) ${ }^{1}$	Time (s)	Best	Average	Time (s)
324_10_0-0_85	37180	000	13	37081	220	37145	37069.0	8.100	37173	37163.2	3.460	37180	0.000	275.110	37180	37180.0	1255.333
324_10_0_0_95	21460	0.000	9	21386	0.140	21431	21373.0	8.630	21455	21447.2	3.160	21460	0.000	65.200	21460	21460.0	865.667
324-10_0_1_85	51000	. 000	22	750	0.200	0880	50711.0	7.690	50948	50946.3	3.410	51000	9.000	507.810	51000	1000.0	1435.000
324-10_0-1_95	35360	0.000	14	35250	0.160	35342	35304.0	7.790	35359	35354.6	3.170	35360	0.00	47.330	35360	35360.0	857.000
324_10_0_2_85	59740	0.000	22	59598	0.200	59624	59437.0	7.620	59693	59688.5	3.330	59740	0.000	604.480	59740	59740.0	987.667
324-10_0_2_95	45390	000	9	300	0.200	45347	45245.0	7.810	45374	45354.6	3.100	45390	0.000	327.840	45390	5390.0	1292.000
324_10_1_40_85	27700	0.000	14	27583	0.170	27675	27602.0	8.540	27698	27692.1	3.370	27700	0.000	238.390	27700	27700.0	1406.333
324_10_1_41_85	29360	0.000	6	29288	0.140	29324	29260.0	8.270	29351	29341.9	3.520	29360	0.000	145.880	29360	29360.0	1182.667
324_10_1_42_85	30950	. 000	11	30902	0.170	30932	8895.0	8.340	30948	30943.3	3.330	30950	0.000	42.910	30950	0950.0	1034.667
324_10_1_48-90	26920	0.000	15	26855	0.140	26883	26835.0	8.350	26917	26910.6	3.500	26920	0.000	144.720	26920	26920.0	1492.667
324_10_1_49_90	28330	. 000	22	28206	0.250	28280	28221.0	8.280	28318	28310.3	3.430	28330	0.000	315.700	28330	28330.	1747.000
324_10-1_50_90	29680	. 000	6	29638	0.220	29641	29593.0	8.260	29672	29665.5	3.360	29680	0.000	81.810	29680	29680.0	1127.333
324-20_0_0-85	$74360 *$	0.000	198	73981	0.830	73407	73001.0	23.690	74165	74106.7	9.710	74358	0.003	2630.440	74360	74357.7	6191.667
324_20_0_0_95	42920	0.000	22	42714	0.730	42577	42318.0	4.300	42840	42804.9	9.370	42920	0.000	2425.520	42920	42919.7	3936.333
324_20_0_1_85	102000*	0.000	612	100628	1.020	99576	98353.0	24.690	101374	101177.4	9.070	101973	0.024	10801.330	101978	101974.0	7212.667
324_20_0_1_95	70720	0.000	55	70368	0.740	70471	70308.0	23.400	70656	70628.2	9.060	70720	0.000	1067.410	70720	70720.0	4417.333
324_20_0_2_85	119470*	0.008	10804	118451	0.770	116639	115235.0	23.330	118771	118613.6	8.990	119448	0.019	10801.590	119455	119447.3	6388.000
324_20_0_2_95	90780*	0.000	74	90424	0.810	89970	89355.0	24.150	55	90521.2	9.400	90780	0.000	2369.980	90780	90780.0	6667.333
324-20-1_40-85	55400^{*}	0.000	52	55006	0.840	54804	54414.0	23.920	55306	55226.7	9.650	55396	0.007	8457.660	55399	55398.3	5488.667
324_20_1_41_85	58720	0.000	85	58577	1.020	58009	57571.0	24.700	58604	58583	10.330	58720	0.000	1377.420	58720	58720.0	7417.667
324_20_1_42_85	61900	0.000	35	61637	0.880	61545	61266.0	23.810	61847	61822.6	9.740	61900	0.000	735.140	61900	61900.0	3561.333
324_20_1_48_90	53840^{*}	0.000	49	53377	0.630	53300	52958.0	24.320	53793	689	9.820	53838	0.004	4645.490	53839	53838.7	5912.667
324_20_1_49_90	56660^{*}	0.000	167	56180	1.340	56216	55813.0	24.150	56532	429.	9.550	56654	0.009	10800.920	56655	56655.0	7130.667
324_20_1_50_90	59360^{*}	0.000	56	59119	0.940	58941	58577.0	26.030	59285	59242.6	10.080	59360	0.000	1273.390	59360	59360.0	5551.333
Average	52883.3	0.000	515.500	52595.8	0.532	52415.0	52113.1	16.174	52776.5	52736.0	6.455	52880.7	0.003	2507.645	52881.5	52880.9	3523.292

Table 3: Detailed computational results for the instance set with 818 nodes

Instance	CPLEX			MS heuristic [21]		Constuctive GA [9]			Clustering Search [10]			Column Generation [11]			ALNS		
	Solution	Gap (\%)	Time (s)	Solution	Time (s)	Best	Average	Time (s)	Best	Average	Time (s)	Solution	Gap (\%) ${ }^{1}$	Time (s)	Best	Average	Time (s)
818_10_0_0_95	21460	0.000	557	21429	4.940	21455	21449.3	43.650	21460	21459.9	11.230	21460	0.000	163.08	21460	21460.0	6818.000
818_10_0_1_95	35360	0.000	657	35339	13.050	35356	35346.0	50.450	35360	35360.0	11.540	35360	0.000	207.69	35360	35360.0	10407.000
818_10_0_2_95	45390	0.000	648	45375	12.090	45387	45377.4	49.370	45390	45390.0	12.170	45390	0.000	251.33	45390	45390.0	7400.000
818_10_1_48_90	26920	0.000	586	26907	11.380	26915	26901.0	48.350	26920	26920.0	11.320	26920	0.000	185.41	26920	26920.0	8212.000
818_10_1_49_90	28330	0.000	659	28309	8.630	28320	28298.0	47.780	28330	28330.0	12.230	28330	0.000	196.06	28330	28330.0	8052.667
818_10_1_50_90	29680	0.000	682	29661	18.280	29678	29673.8	47.810	29680	29680.0	11.330	29680	0.000	199.28	29680	29680.0	9078.333
818_20_0_0_85	74360	0.000	785	74313	75.050	74341	74279.4	90.040	74360	74359.8	66.810	74360	0.000	412.74	74360	74360.0	17183.667
818_20_0_0_95	42920	0.000	562	42793	25.670	42870	42817.7	76.200	42920	42918.9	54.840	42920	0.000	248.13	42920	42920.0	9890.333
818_20_0_1_85	102000**	0.000	1491	101933	76.060	101955	101898.8	89.190	102000	101998.9	67.360	102000	0.000	447.06	102000	102000.0	16602.000
818_20_0_1_95	70720	0.000	610	70644	37.030	70653	70557.1	80.420	70720	70719.2	62.910	70720	0.000	390.03	70720	70720.0	16880.667
818_20_0_2_85	119480*	0.000	1579	119397	105.480	119445	119306.4	89.180	119480	119477.6	74.360	119480	0.000	473.52	119480	119480.0	19074.667
818_20_0_2_95	90780	0.000	841	90730	75.190	90747	90672.9	84.990	90780	90779.6	66.800	90780	0.000	460.19	90780	90780.0	14622.667
818_20_1_40_85	55400^{*}	0.000	833	55325	66.110	55341	55235.7	88.330	55400	55399.0	61.040	55400	0.000	293.62	55400	55400.0	15044.333
818_20_1_41_85	58720^{*}	0.000	641	58637	69.630	58706	58677.6	. 620	58720	58719.9	57.310	58720	0.000	372.28	58720	58720.0	14384.000
818_20_1_42_85	61900^{*}	0.000	929	61814	71.810	61839	61719.7	90.430	61900	61898.8	58.710	61900	0.000	380.64	61900	61900.0	14487.000
818_20_1_48_90	53840	0.000	640	53728	22.410	53814	53762.2	87.870	53840	53839.6	59.560	53840	0.000	343.08	53840	53840.0	13808.667
818_20_1_49_90	56660	0.000	948	56602	34.340	56605	56465.3	88.710	56660	56660.0	67.420	56660	0.000	324.64	56660	56660.0	13008.333
818_20_1_50_90	59360	0.000	877	59269	39.840	59336	59279.8	87.040	59360	59359.9	58.480	59360	0.000	364.84	59360	59360.0	14568.667
818_50_0_0_85	185900**	0.000	2956	185426	756.720	184428	184153.6	177.340	185880	185775	364.200	185898	0.001	3695.94	185637	185587.7	24094.333
818_50_0_1_85	255000**	0.000	6332	254509	730.200	253438	252884.6	171.860	254985	254905.0	387.370	255000	0.000	5072.75	254996	254987.3	23978.000
818_50_0_2_85	298700*	0.000	4435	298217	757.730	296763	296182.8	171.740	298582	298517.6	392.290	298490	0.070	6004.53	298692	298648.3	23729.667
818_50_1_48_90	134600*	0.000	785	134088	596.110	134079	133999.4	177.670	134598	134561	335.000	134600	0.000	2317.55	134597	134593.3	25037.333
818_50_1_49_90	141650*	0.000	1719	141281	571.170	140439	140143.4	174.960	141586	141532	356.800	141650	0.000	2713.86	141650	141606.7	24425.000
818_50_1_50_90	148400^{*}	0.000	1946	147931	667.670	147202	147123.8	173.960	148383	148321.9	337.400	148400	0.000	2444.64	148397	148378.0	25031.667
Average	91563.8	0.000	1362.417	91402.4	201.941	91213.0	91091.9	98.957	91553.9	91536.9	124.937	91554.9	0.003	1165.120	91552.0	91545.1	15659.125

solved by exact methods. To test this assumption, a new network with 1177 nodes was tested in order to evaluate the performance of CPLEX and ALNS on a larger problem. These instances used the same set of parameters of the 818-node network but with a service radius of 950 meters. Table 4 presents the results for an one-hour and a three-hour run of CPLEX and three onehour runs for ALNS. As shown on Table 4, the ALNS heuristic is capable of providing consistently good results even for larger instances. In fact, in two of them the heuristic was capable of finding better solution values than CPLEX, even with only one third of the running time. This study also shows the difficulties for CPLEX to obtain good solution values for more restricted instances, i.e., those with fewer facilities.

5. Conclusion

This study presented a hybrid method for solving the probabilistic maximal covering location-allocation problem. The algorithm is based on an adaptive large neighborhood search heuristic to determine the location decisions of the problem. Allocation subproblems are solved exactly by mathematical programming at each iteration. A flexible improvement procedure polishes good solutions obtained by the metaheuristic. A high performance solver has been employed to obtain bounds and prove optimality for some instances. This exact approach has found new best known solutions for 19 instances, proving optimality for 18 of them. The hybrid method performed very consistently, finding the best known solutions for $94,5 \%$ of the instances, outperforming the state-of-the-art heuristic method from the literature. A new dataset was tested and confirmed the superiority of the heuristic in instances that are

Table 4: Detailed computational results for the instance set with 1177 nodes

Instance	CPLEX 1 h		CPLEX 3h			ALNS			
	Solution	Gap (\%)	Solution	Gap (\%)	Time	Run 1	Run 2	Run 3	Average
1177_10_0_0_95	21460	0.000	21460*	0.000	3336	21460	21460	21460	21460.0
1177_10_0_1_95	35360	-1515.054	35360 *	0.000	4361	35360	35360	35360	35360.0
1177_10_0_2_95	45377	-1300.672	$4539{ }^{*}$	0.000	4601	45390	45390	45390	45390.0
1177_10_1_48_90	26920	-2127.272	26920*	0.000	5111	26920	26920	26920	26920.0
1177_10_1_49_90	28259	-2075.814	28330^{*}	0.000	5766	28330	28330	28330	28330.0
1177_10_1_50_90	29473	-2013.025	29680*	0.000	5040	29680	29680	29680	29680.0
1177_20_0_0_85	38747	-1632.177	74360 *	0.000	4117	74360	74360	74360	74360.0
1177_20_0_0_95	29357	-2403.658	$42920 *$	0.000	4201	42920	42920	42920	42920.0
1177_20_0_1_85	42256	-1639.396	102000*	0.000	10306	102000	102000	102000	102000.0
1177_20_0_1_95	37848	-1529.910	70720^{*}	0.000	5092	70720	70720	70720	70720.0
1177_20_0_2_85	44715	-1543.741	119475	-7.285	10801	119480*	119480*	119480*	119480.0
1177_20_0_2_95	40996	-1692.855	90780*	0.000	6392	90780	90780	90780	90780.0
1177_20_1_48_90	36211	-1929.767	53840^{*}	0.00	5813	53840	53840	53840	53840.0
1177_20_1_49_90	56657	-0.005	$56660{ }^{*}$	0.000	3449	56660	56660	56660	56660.0
1177_20_1_50_90	38813	-1435.902	$59360{ }^{*}$	0.000	4364	59360	59360	59360	59360.0
1177_50_0_0_85	38747	-1796.918	185900*	0.000	7882	185671	185653	185511	185611.7
1177-50_0_1_85	43192	-1601.702	254999*	0.000	10801	254959	254966	254979	254968.0
1177-50_0_2_85	283145	-159.584	298311	-146.387	10801	298687	298688*	298683	298686.0
1177_50_1_48_90	134596	-0.003	134600*	0.000	6791	134600	134578	134492	134556.7
1177_50_1_49_90	141648	-0.001	141650^{*}	0.000	3637	141105	141477	141306	141296.0
1177_50_1_50_90	147574	-8.163	148400^{*}	0.000	4369	148239	148370	148387	148332.0
1177_70_1_40_85	48479	-1308.048	193893*	-0.004	10802	193392	193130	193495	193339.0
1177_70_1_41_85	49522	-1384.187	205513*	-0.003	10801	204099	203793	203727	203873.0
1177_70_1_42_85	203544	-261.101	216650*	0.000	10772	215354	215744	216186	215761.3
Average	68454.000	-1223.290	109882.125	-6.403	6641.917	109723.6	109735.8	109751.1	109736.8

difficult to solve by exact methods.

Acknowledgments

The first author thanks the CIRRELT, the Department of Operations and Decision Systems and the Faculty of Administration Sciences of Université Laval for partial financial support for his research trip. The third author thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, under grants 476862/2012-4 and 300692/2009-9. The authors thank Calcul Québec for providing parallel computing facilities. The authors thanks the useful comments and suggestions of two anonymous referees.
[1] R. G. I. Arakaki and L. A. N. Lorena. A constructive genetic algorithm for the maximal covering location problem. In Proceedings of the 4 th Metaheuristics International Conference, Porto, Portugal, 2001.
[2] E. Barrena, D. C. Ortiz, L. C. Coelho, and G. Laporte. A fast and efficient adaptive large neighborhood search heuristic for the passenger train timetabling problem with dynamic demand. Technical report, CIRRELT-2013-64, Montreal, Canada, 2013.
[3] P. Bartodziej, U. Derigs, D. Malcherek, and U. Vogel. Models and algorithms for solving combined vehicle and crew scheduling problems with rest constraints: an application to road feeder service planning in air cargo transportation. OR Spectrum, 31(2):405-429, 2009.
[4] O. Berman, Z. Drezner, and G. O. Wesolowsky. The maximal covering problem with negative weights. Geographical Analysis, 41(1):30-42, 2009.
[5] O. Berman, I. Hajizadeh, and D. Krass. The maximum covering problem with travel time uncertainty. IIE Transactions, 45(1):81-96, 2013.
[6] R. Church and C. ReVelle. The maximal covering location problem. Papers in Regional Science, 32(1):101-118, 1974.
[7] L. C. Coelho, J.-F. Cordeau, and G. Laporte. The inventory-routing problem with transshipment. Computers \mathcal{G} Operations Research, 39(11):2537-2548, 2012.
[8] L. C. Coelho, J.-F. Cordeau, and G. Laporte. Consistency in multi-vehicle inventory-routing. Transportation Research Part C: Emerging Technologies, 24(1):270-287, 2012.
[9] F. A. Corrêa and L. A. N. Lorena. Using the constructive genetic algorithm for solving the probabilistic maximal covering location-allocation problem. In Proceedings of the I Workshop on Computational Intelligence, Ribeirão Preto, Brazil, 2006.
[10] F. A. Corrêa, A. A. Chaves, and L. A. N. Lorena. Hybrid heuristics for the probabilistic maximal covering location-allocation problem. Operational Research. An International Journal, 7(3):323-344, 2008.
[11] F. A. Corrêa, L. A. N. Lorena, and G. M. Ribeiro. A decomposition approach for the probabilistic maximal covering location-allocation problem. Computers § Operations Research, 36(10):2729-2739, 2009.
[12] M. S. Daskin. Network and Discrete Location: Models, Algorithms and Applications. John Wiley \& Sons, New York, 1995.
[13] R. D. Galvão. Uncapacitated facility location problems: contributions. Pesquisa Operacional, 24(1):7-38, 2004.
[14] R. D. Galvão and C. ReVelle. A lagrangean heuristic for the maximal covering location problem. European Journal of Operational Research, 88(1):114-123, 1996.
[15] T. S. Hale and C. R. Moberg. Location science research: A review. Annals of Operations Research, 123(1-4):21-35, 2003.
[16] V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic. An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers \mathcal{E} Operations Research, 39(12):3215-3228, 2012.
[17] M. Hewitt, G. L. Nemhauser, and M. W. P. Savelsbergh. Combining exact and heuristic approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on Computing, 22(2):314-325, 2010.
[18] G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighbourhood search heuristic for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44(1):125-135, 2010.
[19] L. A. N. Lorena and M. A. Pereira. A lagrangean/surrogate heuristic for the maximal covering location problem using Hillsman's edition. International Journal of Industrial Engineering, 9(1):57-67, 2002.
[20] V. Maniezzo, T. Stützle, and S. Voß. Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. Springer, New York, 2009.
[21] V. Marianov and D. Serra. Probabilistic maximal covering location-allocation models for congested systems. Journal of Regional Science, 38(3):401-424, 1998.
[22] A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. A comparison of five heuristics for the multiple depot vehicle scheduling problem. Journal of Scheduling, 12(1):17-30, 2009.
[23] M. A. Pereira, L. A. N. Lorena, and E. L. F. Senne. A column generation approach for the maximal covering location problem. International Transactions in Operations Research, 14(1):349-364, 2007.
[24] H. Pirkul and D. A. Schilling. The maximal covering location problem with capacities on total workload. Management Science, 37(2):233-248, 1991.
[25] S. Ropke and D. Pisinger. An adaptive large neighborghood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4):455-472, 2006.
[26] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle routing problems with backhauls. European Journal of Operational Research, 171(3):750-755, 2006.
[27] D. Serra and V. Marianov. New trends in public facility location modeling. Technical Report Working Paper 755, UPF Economics and Business, Barcelona, 2004.

[^0]: *Corresponding author. Phone: +55 12 3123-2897; Fax: +5512 3123-2845.
 Email addresses: mapereira@feg.unesp.br (Marcos A. Pereira), leandro.coelho@cirrelt.ca (Leandro C. Coelho), lorena@lac.inpe.br (Luiz A. N. Lorena), li. correasouza@gmail.com (Ligia C. de Souza)

