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In partial shading conditions, reverse voltage may impose on the shaded photovoltaic modules and cause
the ‘‘hot spot” problem. In this paper, a novel topological structure of photovoltaic array is proposed for
operational safety and efficiency in possible partial shading, and the maximum power point tracking
(MPPT) is also implemented on each photovoltaic module. This new structure consists of the photovoltaic
module control device (PMCD) and branch voltage stabilization device (BVSD), which differentiate the
MPPT at levels of each photovoltaic module (PVM-level MPPT) and minimum control unit (MCU-level
MPPT). The MPPT of large-scale photovoltaic system can be formulized as a large-scale global optimiza-
tion (LSGO) problem. Therefore, a novel multi-context cooperatively coevolving PSO (CCPSO-m) algo-
rithm is proposed for solving the LSGO. Numerical result shows that the CCPSO-m outperforms some
state-of-the-art algorithms evidently, and each photovoltaic module works on its own maximum power
point effectively in the proposed structure of PV array. Finally, the large-scale photovoltaic system can
achieve PVM-level (or MCU-level) MPPT, conquer the ‘‘hot spot” problem, and improve output power
under complex environmental conditions significantly.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing interest in greenhouse effect and other environ-
mental issues, has asked for the development and installation of
renewable energy systems, which could generate clean power with
less cost and pollute emission. Some sustainable sources, e.g., wind,
tidal, geothermal and solar energy, have become extremely impor-
tant for replacing the fuel generation and improving the perfor-
mance of energy supply, and some advanced control methods are
also adopted in the process of power generation and utilization as
well (Yin C. et al., 2014; Yin C. et al., 2015; Lai J.G. et al., 2016). For
exploring the solar energy, the photovoltaic modules which are
composed of several cells in series and parallel connections, are
widely used in aerospace (Girish et al., 2007; Lee et al., 2015), archi-
tecture (Kibria et al., 2016;Wu and Xia, 2015), electric power gener-
ation (Choi and Lai, 2010; Kaabeche and Ibtiouen, 2014), and other
applications (Atmaca, 2015; Vinnichenko et al., 2014). However,
due to varying environmental conditions, e.g., irradiance and tem-
perature, photovoltaic module is usually regarded as an unstable
power supplier (Pierro et al., 2015). It is necessary to develop control
methods of these photovoltaic modules in an attempt to ensure the
security and efficiency of photovoltaic system.

In a solar generation system, the energy harvesting component
is the photovoltaic array, which is usually composed of several
modules in series and parallel connections. Under uniform irradi-
ance condition, current and voltage of each photovoltaic module
are almost the same, and the whole system works in good perfor-
mance. However, when the irradiance becomes non-uniform,
shading of even a single module can reduce the efficiency of the
entire system significantly, and possibly cause permanent thermal
damage (Maki and Valkealahti, 2013; Sullivan et al., 2013; Dein
et al., 2013). Partial shading (or ‘‘non-uniform irradiance”) would
also cause the so-called ‘‘hot spot” problem (Moreton et al.,
2015). Shading modules in series branches may be imposed on
reverse voltages and served as loads of photovoltaic system. As a
result, these modules absorb power, and their surface temperature
increases rapidly, which will cause permanent thermal damage of
these shading branches. The gap of terminal voltages between dif-
ferent branches may also cause damage of the entire system. To
conquer this ‘‘hot spot” weakness, the conventional method is to
add bypass diodes across each module in parallel connections
reversely, and to add blocking diodes in series connections at each
branch (Ziar et al., 2014; d’Alessandro et al., 2014; Pennisi et al.,
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Fig. 1. Photovoltaic cell equivalent circuit.
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2011). This method can ensure operational safety of the photo-
voltaic system, however, it also presents a significant reduction
of the power output.

Suffering from the varying irradiance and temperature, effective
control of currency or voltage is necessary to introduce the maxi-
mum power output, which is defined as the maximum power point
tracking (MPPT) problem. The conventional MPPT algorithms can
be classified in two categories: online algorithms and offline algo-
rithms. Online MPPT algorithms include the perturbation and
observation method (P&O) (Piegari and Rizzo, 2010), the incremen-
tal conductance method (INC) (Tey and Mekhilef, 2014), and other
P&O or INC variants (Petrone et al., 2011; Zan et al., 2013; Radjai
et al., 2014). Offline MPPT algorithms are usually based on the
mathematical model or empirical data of photovoltaic module,
e.g., artificial neural networks (ANN) based MPPT algorithm
(Kulaksiz and Akkaya, 2012), support vector machine (SVM) based
MPPT algorithm (Chen et al., 2013), particle swarm optimization
(PSO) based MPPT algorithm (Renaudineau et al., 2015), genetic
algorithm (GA) based MPPT algorithm (Nafeh, 2011). In the exist-
ing online MPPT algorithms, e.g., the P&O, a perturbation is given
to trigger the system, and then the feedback information is
obtained for the MPPT control. Obviously, the repeated perturba-
tion may cause system instability. In contrast, in the existing off-
line MPPT algorithms, no perturbation is required. The control
input is computed beforehand, and the MPPT is usually imple-
mented on each photovoltaic branch but not each module, so the
resulted point cannot be the ideal maximum. Furthermore, when
the photovoltaic array is really large (e.g., with thousands of mod-
ules), most algorithms show their inabilities to achieve the MPPT of
each photovoltaic module (PVM-level MPPT). They fail to find the
acceptable solution close to the global optimum.

In this study, a novel topological structure of photovoltaic array
is proposed in an attempt to conquer the ‘‘hot spot” problem and
achieve PVM-level MPPT. On one hand, a bidirectional Cuk con-
verter as the ‘‘photovoltaic module control device (PMCD)” is uti-
lized to control every two photovoltaic modules in a series
branch. On the other hand, a boost converter as the ‘‘branch volt-
age stabilization device (BVSD)” is utilized to control terminal volt-
age of each parallel branch. In the new topological structure, each
module in series is not required to work in the same current and
each branch in parallel is not required to work in the same voltage
either. Under the condition of uniform irradiance or partial shad-
ing, the PVM-level MPPT is applicable based on the proposed struc-
ture. Furthermore, the large-scale photovoltaic array with
thousands of modules is studied to control each module’s operat-
ing point, which is a large-scale global optimization problem. To
solve this LSGO problem, a novel multi-context cooperatively coe-
volving particle swarm optimization (CCPSO-m) algorithm is also
proposed in this paper. Numerical result shows that the CCPSO-
m outperforms some state-of-the-art PSO variants on most of the
test functions, and can solve the large-scale MPPT problem
effectively.

The main contributions of this paper include three folds. Firstly,
a novel topological structure of photovoltaic array based on PMCD
and BVSD is proposed to conquer the ‘‘hot spot” problem. Secondly,
a new MPPT method of large-scale photovoltaic array is studied in
the approach of large-scale global optimization, in which the PVM-
level (or MCU-level) MPPT is formulated into a LSGO problem.
Thirdly, a new CCPSO-m algorithm is proposed in an attempt to
improve the performance of some existing PSO variants on solving
LSGO problems.

The rest of this paper is organized as follows: Section 2
presents an overview of some related works, including the
conventional topological structure of photovoltaic array and some
existing MPPT algorithms. Section 3 studies the structure and
operational principle of PMCD and BVSD, and proposes a new
topological structure of large-scale photovoltaic array. In Sec-
tion 4, the large-scale MPPT optimization problem is studied in
terms of the related variables and fitness function. Section 5 stud-
ies the CCPSO-m algorithm, and gives some numerical results and
analysis. Section 6 simulates the new structure of large-scale pho-
tovoltaic array and CCPSO-m based MPPT algorithm. Finally, this
paper is concluded in Section 7.
2. Related work

2.1. Topological structure of photovoltaic array

It is well known that the output power of a single photovoltaic
cell is relative small (only several Wp per cell). Therefore, a photo-
voltaic module is usually composed of several cells in series and
parallel connections, and a photovoltaic array is also composed
of many modules in series and parallel structures as well. The elec-
trical characteristics of a photovoltaic cell can be analyzed via a
well-established model (Laudani et al., 2014), which can be
approximated by an equivalent circuit as shown in Fig. 1.

Shown as Fig. 1, ISC denotes the current generated through a
photovoltaic effect; ID denotes the flowing-through current of the
PN junction across the cell; Rs and Rp denote the series and parallel
resistance of the model respectively; Ish denotes the leakage cur-
rent; V and I are the output voltage and current of the cell.

As photovoltaic array is composed of many modules in series
and parallel connections, shading of even a single module can
reduce the output power of the entire system significantly. Shad-
ing, especially partial shading is extremely harmful for photo-
voltaic system. Shown as Fig. 1, if the photovoltaic cell is totally
shaded, the current source ISC will be zero and the diode will
become reversely biased. As connected in series with other cells
under full irradiance condition, the current I flowing through the
module will then travel through Rp. This leads to a voltage drop
across Rs and Rp. Thus instead of generating power, this shaded cell
will actually consume power and get hot, which will cause the ‘‘hot
spot” problem. Furthermore, in terms of the branches in parallel,
terminal voltage of the shaded branch will decrease immediately.
Then, if the terminal voltage of full irradiance branch is larger than
open circuit voltage of the shaded branch, the gap of terminal volt-
age between these branches may also cause a reverse current flow-
ing through the shaded branch, which will cause the thermal
damage to photovoltaic modules.

A widely used method to conquer the aforementioned problems
is to utilize bypass diode and blocking diode. In this fold, a typical
structure is given in Fig. 2. On one hand, a bypass diode is added in
parallel with each photovoltaic module reversely. When a module
is shaded to a certain degree, voltage drop of the shaded module
will be larger than 0.7 V and the bypass diode will be turned on.
In this way, the shaded module is protected by the bypass diode.



Fig. 2. Topological structure based on bypass-blocking diode.
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On the other hand, the blocking diode is added in series at each
branch, so that the reverse current is avoided if a branch is shaded.

2.2. MPPT algorithms of photovoltaic array

As an unstable power supplier, the photovoltaic cell is influ-
enced by irradiance and temperature easily. Under certain environ-
mental conditions, output power of a photovoltaic module is
decided by its operating point, and the output power can be max-
imized by controlling the operating point of each module, which is
the so-called MPPT. The process of MPPT must be dynamic, i.e. the
operating point has to be continuously adjusted in response to the
varying irradiance and temperature. As the environmental condi-
tions are constantly changing, and meanwhile P–V curve itself
exhibits non-linear characteristics, tracking the MPP is a compli-
cated process especially when the photovoltaic array is composed
of thousands of modules.

The existing MPPT algorithms can be classified in two major
categories: online MPPT and offline MPPT. One popular online
MPPT algorithm is the P&O method (Piegari and Rizzo, 2010;
Koutroulis et al., 2001), in which a perturbation is given to trigger
the system repeatedly, and then the feedback information is
obtained for the MPPT control. Besides, the incremental conduc-
tance (INC) is another widely used online MPPT method due to
its simplicity and reliability (Tey and Mekhilef, 2014; Radjai
et al., 2014). INC adjusts the operating point U to move toward
the MPP Umax according to its conductance dI/dU, which is shown
as Eq. (1).

if dI=dU > �I=U then U < Umax

if dI=dU < �I=U then U > Umax

if dI=dU ¼ �I=U then U ¼ Umax

8><
>:

ð1Þ

However, the basic P&O and INC methods inherently have
several drawbacks (Jubaer and Zainal, 2015). Firstly, it causes an
unending oscillation of the output power when tracking reaches
the vicinity of maximum power point (MPP), which will reduce
the energy harvesting efficiency. Secondly, P&O and INC are prone
to lose tracking accuracy, especially under partial shading
conditions. Thirdly, when conditions of irradiance and temperature
changes, it will cost a relatively long time to find the new MPP by
perturbing the system continually.

To conquer these drawbacks, Jubaer and Zainal proposed an
improved P&O by introducing a dynamic perturbation step-size
to reduce oscillation, and they also introduced boundary condi-
tions to prevent P&O diverging away from the MPP (Jubaer and
Zainal, 2015). Fermia et al. proposed a novel predictive & adaptive
P&O method (Femia et al., 2005). Abdelsalam et al. proposed
another P&O method with high performance for photovoltaic-
based microgrids (Abdelsalam et al., 2011).

Offline MPPT method mainly contains the utilization of neural
network (Kulaksiz and Akkaya, 2012), optimization algorithms
(Benyoucef et al., 2015; Shi and Zhang, 2014) and some other
advanced control algorithms. These methods are mainly based on
the mathematical model or learning model of photovoltaic system.
Generally, these methods can solve the complex and nonlinear
problems easily. Xu et al. utilized the self-adaption BP-ANN for
MPPT of photovoltaic system (Xu et al., 2012). In their study, the
irradiance and temperature are regarded as the input variables of
ANN, while the corresponding MPPs are regarded as the output
values. The ANN is trained by a series of input and output data at
first, and then it can give the MPPs of any certain environmental
conditions. Liu et al. utilized the PSO algorithm for MPPT of dis-
tributed photovoltaic system (Liu et al., 2010). In their study, the
current of each branch is regarded as the optimizing variable,
and output power of the system is regarded as the fitness value.
As a result, the MPPT problem is transformed into an optimizing
problem, which can be solved by PSO.

However, most of the existing MPPT algorithms aim at tracking
the MPP of a certain photovoltaic module or several modules in
series or parallel connections. In terms of a large-scale photovoltaic
array with thousands of modules, to track the MPP of each module
in time become challenging, especially under complex and varying
environmental conditions. In this study, a topological structure of
large-scale photovoltaic array is developed, the large-scale MPPT
is transformed into a LSGO problem, and a novel optimization
method is then proposed to solve this problem.
3. A new topological structure for large-scale photovoltaic array

It is well known that the photovoltaic module is an unstable
power supplier. Its I–V curve and P–V curve change frequently
according to the variance of irradiance and temperature. The casual
I–V curve and P–V curve under different environmental conditions
can be plotted as Figs. 3 and 4 respectively. It can be found that the
MPP of a photovoltaic module varies along with the irradiation and
temperature. In order to maximize output power of the photo-
voltaic array under varying environmental conditions, it is neces-
sary to track the MPP of each module in time.
3.1. Structure of PVM-level MPPT

To control the operating point of each photovoltaic module, two
DC–DC converters are introduced to modify the conventional topo-
logical structure of photovoltaic array with thousands of modules
in series and parallel connections. Although Lei has utilized a bidi-
rectional converter to control two photovoltaic modules in series
(Lei, 2011), there is few study on the structure and control method
of a photovoltaic array with a lot of modules in series and parallel
structures. In this study, a bidirectional Cuk converter is utilized as
the photovoltaic module control device (PMCD), and a boost con-
verter is also utilized as the branch voltage stabilization device
(BVSD) in a new topological structure.



Fig. 3. I–V curve of a photovoltaic module under different environmental conditions.

Fig. 4. P–V curve of a photovoltaic module under different environmental conditions.

Fig. 5. Structure of bidirectional Cuk converter based PMCD.
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Structure of a bidirectional Cuk converter and its connection
with photovoltaic module are shown as Fig. 5. Under uniform irra-
diation, the two switches S1 and S2 keep open (off) and the con-
verter does not work. Under partial shading conditions, e.g., PV2

is shaded but PV1 is not, S1–D2 can be activated by a PWM wave
imposed on S1. As a result, the converter is equivalent to a unidirec-
tional Cuk circuit (V1 is the input and V2 the output), in which
power is transferred from the V1 terminal to the V2 terminal. The
duty cycle of S1 can be controlled by a common proportional-
integral (PI) controller, which is formulized as
K1ðsÞ ¼ kp½ðV2ref � V2Þ � ðV1ref � V1Þ�

þ ki
s½ðV2ref � V2Þ � ðV1ref � V1Þ� ð2Þ
K2ðsÞ ¼ 1� K1ðsÞ ð3Þ
where K1 and K2 denote the duty cycle of S1 and S2, kp and ki denote
the parameters of the PI controller. V1 and V2 are the voltage of PV1

and PV2 respectively. V1ref and V2ref denote the reference values of V1

and V2 (control target), which are always set to the MPPs given by a
certain MPPT algorithm.

Similarly, when PV1 is shaded but PV2 not, S2–D1 will be active
and the converter is equivalent to another unidirectional Cuk cir-
cuit (V2 is the input and V1 the output). Therefore, the operating
point of both PV1 and PV2 can be controlled independently under
varying environmental conditions.

Structure of a boost converter based BVSD and its connection
with a photovoltaic branch is shown as Fig. 6. Each branch is con-
nected in parallel through the BVSD, in which the terminal of each
branch is the input of BVSD, and outputs of all the BVSDs are con-
nected in parallel.

In a large-scale photovoltaic array with thousands of modules,
all the modules are divided into several parts at first, and the struc-
ture of each part is the conventional series and parallel connection.
In every series branch of each part, a PMCD is connected to every
two PVs as Fig. 5, and the terminal of each branch is connected
to a BVSD as Fig. 6. In this way, if the theoretical MPP of each PV
is given to the corresponding device under certain environmental
conditions, the PVM-level MPPT is applicable. The new structure
of large-scale photovoltaic array is shown as Fig. 7.



Fig. 6. Structure of boost converter based BVSD.
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3.2. Structure of MCU-level MPPT

Regarding the increasing cost of the PVM-level structure, in
which the PMCD and BVSD are connected to each photovoltaic
module and branch, a minimum control unit (MCU) based topology
structure can be introduced into the large-scale photovoltaic sys-
tem. Each MCU consists of several photovoltaic modules connected
in a certain topology. For example, 2 modules in parallel and 5
modules in series, which is shown as Fig. 8. In this MCU-level
structure, a large-scale photovoltaic array with npv-MCU modules
can be divided into npv-MCU/sMCU MCUs, in which each one has sMCU

modules. As shown in Fig. 8, the MPPT control is imposed on each
Fig. 7. Topological structure of large-scale pho
MCU instead of each photovoltaic module, in an attempt to save
cost of investment in practical applications.

4. The large-scale MPPT optimization problem

Many optimization algorithms are utilized to solve the MPPT
problem, e.g., particle swarm optimization (PSO) (Shi and Zhang,
2014), genetic algorithm (GA) (Shaiek et al., 2013), artificial bee
colony algorithm (ABC) (Benyoucef et al., 2015). However, com-
plexity of the problem increases exponentially as dimensions
increase, and most of the algorithms fail to find MPP of each mod-
ule as the scale of photovoltaic array becomes extremely large. In
order to achieve MPPT of large-scale photovoltaic array, the oper-
ating voltage of each module can be regarded as optimizing vari-
able, and the output power of entire array can be regarded as the
fitness value. Then the MPPT of large-scale photovoltaic array is
transformed into a LSGO problem.

In the following simulation experiments, an engineering analyt-
ical model of silicon solar cells proposed in reference (Su et al.,
2001) is utilized. The model matches I–V curve of real photovoltaic
cells well, which can be formulized as

I ¼ ISC 1� C1 exp V
C2Voc

� �
� 1

h in o

C1 ¼ 1� Im
ISC

� �
exp � Vm

C2Voc

� �

C2 ¼ Vm
VOC

� 1
� �

ln 1� Im
ISC

� �h i�1

8>>>>><
>>>>>:

ð4Þ

ISC ¼ ISCref S
Sref

ð1þ aDTÞ
VOC ¼ VOCref lnðeþ bDSÞð1� cDTÞ
Im ¼ Imref

S
Sref

ð1þ aDTÞ
Vm ¼ Vmref lnðeþ bDSÞð1� cDTÞ

8>>>><
>>>>:

ð5Þ
tovoltaic array based on PMCD and BVSD.



Fig. 8. Topological structure of large-scale photovoltaic array based on MCU.
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where Sref = 1000W/m2 is the reference irradiation, and Tref = 25 �C
is the reference temperature. DS = S � Sref is the difference between
irradiation S and its reference Sref, and DT = T � Tref is the difference
between temperature T and its reference Tref. ISCref, VOCref, Imref and
Vmref are four main parameters of the photovoltaic module, which
can be provided by the producer. As suggested in reference Su
et al. (2001), a, b and c are compensation factors of the model, which
equal to 0.0025(/�C), 0.0005(W/m2) and 0.00288/(/�C), respectively.
e denotes the natural logarithm which equals to 2.71828.

4.1. Model of PVM-level MPPT

In order to achieve the PVM-level MPPT, operating voltage of
each module is regarded as the optimizing variable, and the recip-
rocal of the total output power is regarded as the objective function
value. As a result, the large-scale MPPT problem in PVM-level can
be formulized as

min 1Pnpv
i¼1

Vi�ISCi 1�C1i exp
Vi

C2iVOCi

� �
�1

h in o

s:t: Vi 2 ½Vl Vu�
ð6Þ

where npv denotes the number of photovoltaic modules in the large-
scale array. Vi denotes the operating voltage of the ith module. Vl

and Vu denote the lower and upper bound of Vi respectively. In gen-
eral, Vl is set to 0 and Vu is usually set to the largest open circuit
voltage (VOC) of the module under extreme conditions.

4.2. Model of MCU-level MPPT

In terms of the MCU-level MPPT, P–V (or P–I) curve of the
shaded MCUs become multimodal under partial shading
conditions, which causes the increasing complexity of MPPT. To
regard the current of each MCU as optimizing variable, and the
output power of the entire system as fitness function value, the
MCU-level MPPT can be formulized as
min 1PnMCU
i¼1

Pnsc
j¼1

IiC2ijVOCij�log 1
C1ij

1� Ii
npc�ISCij

� �
þ1

h i

s:t: Ii 2 ½Il Iu�
ð7Þ

where nMCU denotes the number of MCUs, which equals to npv-MCU/
sMCU. npv-MCU represents the number of photovoltaic modules in the
large-scale array, and sMCU represents the number of photovoltaic
modules in each MCU. Ii (i = 1, 2, . . ., nMCU) is current of the ith
MCU, Il and Iu are the lower and upper bound of Ii. In general, Il is
set to 0, and Iu is usually set to the short-circuit current of each
MCU under extreme conditions. C1ij, C2ij, VOCij and ISCij denote the
corresponding parameters: C1, C2, VOC and ISC of the photovoltaic
module PVjt (j = 1, 2, . . ., nsc; t = 1, 2, . . ., npc) in the ith MCU. nsc and
npc denote the modules in series and in parallel connections within
each MCU. Obviously, in the structure shown as Fig. 8, nsc and npc
equal to 5 and 2 respectively.
5. Multi-context cooperatively coevolving PSO

In order to solve the MPPT problem of a large-scale photovoltaic
system with thousands of modules, an effective large-scale opti-
mization algorithm is required. Large-scale global optimization
(LSGO) problem, which appears frequently in modern engineering
applications, attracts attention of many researchers. The search
space and interactions between variables may grow exponentially
as the dimension increases, so to optimize LSGO problem becomes
extremely difficult. To conquer these difficulties, a cooperative co-
evolution (CC) framework based on a philosophy of ‘‘divide and
conquer” is proposed by Potter and Jong (Potter and Jong, 1994).
Based on the basic CC framework, Van den Bergh and Engelbrecht
proposed two improved algorithms CPSO-SK and CPSO-HK (Van
den Bergh and Engelbrecht, 2004). However, these two algorithms
only tested on functions of up to 30 dimensions, and that is far
away from LSGO. Li and Yao applied random grouping and adap-
tive weighting mechanism and proposed the CCPSO (Li and Yao,
2009) and CCPSO2 (Li and Yao, 2012) algorithms. In this study, a
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novel CCPSO-m algorithm is proposed in an attempt to improve the
performance on LSGO, and then the CCPSO-m is utilized to solve
the PVM-level and MCU-level MPPT problem of large-scale photo-
voltaic array.
5.1. Multi-context CC framework

In the basic CC framework, a high-dimensional problem is
decomposed into several relatively low-dimensional subcompo-
nents, and each of these subcomponents is evolved by a separate
subpopulation. Each individual in each subcomponent represents
only several dimensions of the search space and it is impossible
to compute its fitness value directly without a context. For this
purpose, the best particle of each subcomponent is used to com-
bine a single context vector (Potter and Jong, 1994), and based
on this context vector, searching efforts will be made on a small
portion of components for each subcomponent while the other
components keep fixed and same as the context vector.

It has been proved that the basic CC framework can solve some
problems with a relatively high dimension, however, it also fails to
find the global optimum as complexity or dimension becomes
large enough (Van den Bergh and Engelbrecht, 2004; Li and Yao,
2009; Li and Yao, 2012). In this study, p context vectors are intro-
duced to modify the single-context mechanism of basic CC (it is
obvious that when p = 1, the new framework equals to basic CC),
in an attempt to increase the possibility of evolving each subcom-
ponent towards the global optimum. These context vectors are ini-
tialized with the best p particles in the D-dimensional initialized
population. When evolve a certain subcomponent, each particle
can choose one context vector from the p ones randomly.

Furthermore, in order to evolve all the context vectors, a cross-
over mechanism of these context vectors is introduced in every c
iterations (cycles), where c can be regarded as a parameter of the
new algorithm. The process of crossover can be designed as fol-
lows: composing a new context vector (CVnew) by interchanging
variables randomly between the best one (CVbest) and the worst
one (CVworst) of the p existing context vectors, updating CVworst

with CVnew if it is better. The process described above is repeated
for k times, comparing and updating the newest CVworst of each
time with CVnew1, CVnew2, . . ., CVnewk respectively. This crossover
mechanism aims to evolve all the context vectors and explore
some potential optimums with a relatively less cost.
5.2. CCPSO-m algorithm

In addition to the multi-context and its crossover mechanism,
in the new CCPSO-m algorithm, a particle position updating rule
based on Gaussian distribution is introduced, which is formulized
as Eq. (8)

Pj � xiðt þ 1Þ ¼ 1
2
ðPj � yiðtÞ þ ŷðtÞÞ þ Nð0;1ÞjPj � yiðtÞ � ŷðtÞj ð8Þ

where Pj � yiðtÞ denotes the personal best position of the ith particle
in jth subcomponent, and ŷðtÞ denotes the global best position.
Pj � xiðt þ 1Þ denotes the next position of the ith particle in jth sub-
component, and N(0, 1) denotes a standard Gaussian distribution.
Furthermore, the random grouping and dynamic group size pro-
posed in reference Yang et al. (2008) are also applied in CCPSO-m.
The procedure of CCPSO-m can be illustrated in the following steps

(1) A population of NP particles is initialized in the D-
dimensional searching space, and initialized the global best
position and p context vectors.

(2) Decomposing the searching space into several subcompo-
nents randomly at the beginning of each iteration.
(3) Recording the fitness value of the global best before and after
each iteration, if there is no improvement of this fitness value,
a new group size s (number of variables in each subcompo-
nent) is chosen uniformly at random from a set S; otherwise,
the group size s remains unchanged. Here S is a set of group
size in advance, e.g., S = {5, 10, 20, 50, 100, 200}. Obviously,
each subcomponent has D/s dimensions.

(4) For each subcomponent, choosing a context vector for each
particle randomly and update position of each particle using
Eq. (8).

(5) Updating personal best position of each particle and its cor-
responding context vector.

(6) In every c iterations (cycles), executing the crossover process
of the p context vectors as described in Section 5.1.

(7) If the stopping criteria are not satisfied, go to step (2).
5.3. CCPSO-m on benchmark functions

The performance of CCPSO-m is empirically evaluated on a
comprehensive set of 6 benchmark functions (F1 to F6), which are
proposed in the CEC’ 2008 special section on LSGO. F1 and F2 are
unimodal functions, and F3 to F6 are multimodal functions. F1, F4,
F6 are separable functions, and F2, F3, F5 are non-separable func-
tions. Details of these functions can be found in reference Li and
Yao (2012).

Performances of some state-of-the-art PSO variants are com-
pared with CCPSO-m, including CCPSO-SK (Van den Bergh and
Engelbrecht, 2004), CCPSO-SK-rg-aw (Li and Yao, 2009) and
CCPSO2 (Li and Yao, 2012), which are described as follows

� CCPSO-SK: Identical to the CCPSO-SK described in Van den Bergh
and Engelbrecht (2004), where K is the number of subcompo-
nents and is set to 10 in the following experiment.

� CCPSO-SK-rg-aw: CCPSO-SK employing both random grouping
and adaptive weighting, which is proposed in Li and Yao
(2009). K is also set to 10 in the following experiment.

� CCPSO2: Proposed in Li and Yao (2012) and the dynamic group
size is set to S = {2, 5, 10, 20, 50}.

� CCPSO-m: Dynamic group size is set to S = {2, 5, 10, 20, 50},
number of context vectors (p) is set to 5, crossover is executed
in every 50 cycles (c = 50), and repeat for 30 times (k = 30).

Experiments are conducted on the 6 test functions of 1000
dimensions. For each test function, the average results of 25 inde-
pendent runs are recorded, and the maximum number of fitness
evaluations (Max_FES) of each run is set to 5.0E+06, i.e., 5 ⁄ 106.
c1 and c2 of each PSO variant are set to 1.49, and the common ‘‘lin-
ear decreasing weight”x, which decreases from 0.9 to 0.4 linearly,
are also utilized. Results of this experiment are shown as Table 1,
the best, worst and average performance of 25 independent runs,
as well as the standard deviation, are listed in the table.

Shown as Table 1, in which the best performer is in bold,
CCPSO-m outperforms the other compared algorithms on F1, F3,
F4, F5 and F6. In terms of F2, there is no statistical difference
between CCPSO-m and CCPSO2, but they are slightly better than
CCPSO-SK and CCPSO-SK-rg-aw. CCPSO-m can find the global opti-
mum 0 with an enough accuracy when optimizing F1 and F4, much
better than the performance of CCPSO-SK and CCPSO-SK-rg-aw, and
even better than CCPSO2, which only has an accuracy of 7.35E�07
and 5.76E�03 respectively. A conclusion can be drawn from Table 1
that the performance of CC framework has been improved with the
introduction of multi-context and crossover mechanism, and the
proposed CCPSO-m outperforms some state-of-the-art CC-based
algorithms compared on LSGO with up to 1000 dimensions.



Table 1
Comparison of PSO variants on CEC’ 08 (F1 to F6) LSGO of 1000 dimensions.

Functions CCPSO-SK CCPSO-SK-rg-aw CCPSO2 CCPSO-m

F1 Average 4.96E+03 1.65E+04 7.35E�07 0.00E+00
Worst 5.76E+03 1.75E+04 1.98E�06 0.00E+00
Best 4.16E+03 1.55E+04 3.09E�07 0.00E+00
Std 3.98E+02 5.49E+02 4.47E�07 0.00E+00

F2 Average 7.10E+01 5.58E+01 1.58E+01 1.42E+01
Worst 7.40E+01 5.82E+01 1.69E+01 1.55E+01
Best 6.65E+01 4.90E+01 1.50E+01 1.12E+01
Std 1.90E+00 2.04E+00 4.52E�01 1.39E+00

F3 Average 1.82E+07 3.59E+08 2.06E+03 4.61E+01
Worst 3.42E+07 3.93E+08 2.35E+03 9.10E+01
Best 1.10E+07 3.10E+08 1.77E+03 6.68E+00
Std 4.78E+06 2.22E+07 1.51E+02 2.17E+01

F4 Average 2.67E+03 1.12E+03 5.76E�03 0.00E+00
Worst 2.89E+03 1.16E+03 9.92E�03 0.00E+00
Best 2.55E+03 1.09E+03 3.30E�03 0.00E+00
Std 7.73E+01 2.12E+01 1.82E�03 0.00E+00

F5 Average 4.49E+01 1.50E+02 3.15E�03 4.72E�11
Worst 5.52E+01 1.59E+02 1.48E�02 9.22E�11
Best 3.93E+01 1.41E+02 3.08E�08 6.33E�12
Std 3.66E+00 4.56E+00 4.95E�03 1.14E�11

F6 Average 4.61E+00 6.49E+00 3.27E�05 6.83E�13
Worst 4.84E+00 6.66E+00 4.18E�05 9.43E�13
Best 4.42E+00 6.31E+00 2.25E�05 2.63E�13
Std 9.98E�02 8.62E�02 6.10E�06 1.12E�13
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6. Simulation analysis of the large-scale MPPT

In this section, the new topological structure is simulated on a
small-scale photovoltaic array with 4 modules to verify its effec-
tiveness. With the application of CCPSO-m, the PVM-level and
MCU-level MPPT control is also simulated on a large-scale photo-
voltaic array.

6.1. Comparison of PMCD-BVSD based system and bypass-blocking-
diode based system

In order to verify the effectiveness of PMCD-BVSD topological
structure, a small-scale photovoltaic array with 4 modules is sim-
ulated under different environmental conditions, and the common
bypass-blocking diode system is studied for comparison. Struc-
tures of the two systems are shown as Figs. 9 and 10. Parameters
of each module are as follows: the maximum output power (Pm)
Fig. 9. Structure of bypass-blocking-diode system.
under the normal condition (1000 W/m2 and 25 �C) is 46.5 W,
and its corresponding operating voltage (Vm) is 15.78 V; under
the shaded condition (500W/m2 and 25 �C), Pm and Vm equal to
21.8 W and 14.78 V respectively.

The two systems are compared in the same environmental con-
ditions. Irradiation of all the modules are 1000 W/m2 from 0 s to
2 s, except that PV12 is shaded for a second (S12 = 500W/m2 when
1 s < t < 2 s). The temperature is set to 25 �C during the entire pro-
cess. The output power of PV12 (shaded module) and PV11 (full irra-
diation module in shaded branch), and output power of the system
is shown as Figs. 11 and 12.

Shown as the figures, when PV12 is shaded with irradiation
500W/m2, output power of PV12 in the bypass-blocking diode sys-
tem decreases to 20.6 W from 46.5 W. In the PMCD-BVSD system,
the output power keeps to 21.8 W, which is the theoretical MPP of
the shaded environment. In the PMCD-BVSD system, after a short-
time adjustment (0.3 s), output power of PV11 recovers back to
46.5 W, which is the theoretical MPP of normal irradiation. How-
ever, in the bypass-blocking diode system, output power of PV11

decreases to 29.3 W. The overall output power is 161.1 W in the
PMCD-BVSD system but only 143.0 W in the bypass-blocking diode
system.

Furthermore, when the system is under complex environmental
conditions, which means irradiation of each module is different
from each other, e.g., S11 = 700 W/m2, S12 = 300W/m2,
S21 = 1000 W/m2, S22 = 500W/m2, simulation results are shown in
Table 2, where system-diode denotes the bypass-blocking diode
based system and system-device denotes the PMCD-BVSD based
system.

In Table 2, under complex environmental conditions, the
system-device proposed in this study outperforms the common
system-diode evidently. In system-device, each module operates
around its own theoretical MPP, however, certain deviations exist
in system-diode. Output power of system-diode is 78.25W and
104.01W in the two experiments. In contrast, output power of
system-device is 112.19 W and 116.59 W, which exceed the
system-diode about 43.4% and 12.09% respectively. In a word, with
the utilization of PMCD and BVSD, each photovoltaic module can
stably operate around its given value. As a result, in terms of a
large-scale photovoltaic array, an effective MPPT algorithm is
required to find MPPs of all the modules, which are then given to
each PMCD and BVSD as the reference values in time.

6.2. Comparison of different MPPT methods

6.2.1. PVM-level MPPT of large-scale photovoltaic system
In this section, the CCPSO-m algorithm is verified for the PVM-

level MPPT of large-scale photovoltaic array. The number of mod-
ules npv is set to 2000 in this simulation. CCPSO-m is compared
with the basic PSO and other state-of-the-art algorithms.

The basic PSO with constriction coefficient is utilized for com-
parison, in which c1 and c2 are set to 2.05, and v = 0.729 (Clerc
and Kennedy, 2002; Eberhart and Shi, 2000). In addition, some
state-of-the-art algorithms are also utilized for comparison,
including two PSO variants: CCPSO-SK and CCPSO2 described in
Section 5.3, and a DE variant: SaDE (Qin and Suganthan, 2005).
Parameter settings of CCPSO-SK and CCPSO2 are the same as Sec-
tion 5.3, and parameters of SaDE are the same as its original paper.

Settings of the photovoltaic module parameters described by
Eqs. (4) and (5) are as follows: ISCref = 4.515 A, VOCref = 44.852 V,
Imref = 3.989 A, and Vmref = 36.895 V. For each compared method,
the average results of 25 independent runs are recorded. Popula-
tion size of all the algorithms is set to 15, and maximum number
of fitness evaluations (Max_FES) is set to 5.0E+05. In CCPSO-m
and CCPSO2, the dynamic group size is set to S = {10, 20, 50, 100},
and the number of context vectors of CCPSO-m is set to 5. Consid-



Fig. 12. Output power of PMCD-BVSD based system when PV12 is shaded.

Fig. 11. Output power of bypass-blocking diode based system when PV12 is shaded.

Fig. 10. Structure of PMCD-BVSD system.
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Table 2
Comparison of the two systems under complex environmental conditions.

Irradiation (W/m2) Operating point of
system-diode (V)

Operating point of
system-device (V)

Theoretical
MPP (V)

Output power of
system-diode (W)

Output power of
system-device (W)

Power
promotion (%)

S11 = 700
S12 = 300
S 21 = 1000
S 22 = 500

V11 = 18.19
V 12 = 14.19
V 21 = 18.46
V 22 = 13.92

V 11 = 15.27
V 12 = 14.05
V 21 = 15.78
V 22 = 14.77

V r11 = 15.28
V r12 = 14.04
V r21 = 15.78
V r22 = 14.78

78.25 112.19 43.4

S 11 = 900
S 12 = 700
S 21 = 600
S 22 = 400

V 11 = 17.32
V 12 = 15.07
V 21 = 15.91
V 22 = 14.81

V 11 = 15.61
V 12 = 15.28
V 21 = 15.05
V 22 = 14.44

V r11 = 15.62
V r12 = 15.28
V r21 = 15.04
V r22 = 14.45

104.01 116.59 12.09

Table 5
Comparison of different methods on MPPT of MCU based system.

Method Result (W) Error (%)

CCPSO-m 9.0855074E+05 0.13
CCPSO2 8.5317634E+05 6.22
CCPSO-SK 5.3208647E+05 41.51
SaDE 6.6536143E+05 26.86
PSO 5.0323447E+05 44.69

Table 4
Settings of the complex environmental conditions.

MCU index Modules Irradiation
(W/m2)

Temperature
(oC)

Theoretical
MPP (W)

1–500 PV11, PV12 1000 25 5.7350072E+02
PV21, PV22 800 22
PV31, PV32 600 20
PV41, PV42 400 18
PV51, PV52 200 16

501–1000 PV11, PV12 200 16 3.7302576E+02
PV21, PV22 100 15
PV31, PV32 800 22
PV41, PV42 600 20
PV51, PV52 400 18

1001–1500 PV11, PV12 400 18 4.9351633E+02
PV21, PV22 200 16
PV31, PV32 100 15
PV41, PV42 1000 25
PV51, PV52 800 22

1501–2000 PV11, PV12 1000 25 3.7948283E+02
PV21, PV22 600 20
PV31, PV32 400 18
PV41, PV42 200 16
PV51, PV52 100 15
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ering the terrible environmental conditions, optimizing space of
operating voltage Vi (i = 1, 2, . . ., 2000) is set to [0, 60]. The environ-
mental conditions are as follows: PV1 to PV500 are under 1000
W/m2 and 25 �C (with theoretical MPP 147.6749W), PV501 to
PV1000 are under 600W/m2 and 20 �C (with theoretical MPP
81.9742W), PV1001 to PV1500 are under 200W/m2 and 16 �C (with
theoretical MPP 24.9042W), PV1501 to PV2000 are under 100
W/m2 and 15 �C (with theoretical MPP 12.1322W). As a result,
the theoretical MPP of the entire array is about 1.3334E+05W,
which can be computed with the point by point comparison
(PPC). In this comparison, results are shown as Table 3.

In Table 3, PSO and CCPSO-SK fail to find the global optimum of
a 2000-dimensional MPPT problem due to the ‘‘curse of dimen-
sion”, and the relative errors are 31.44% and 29.81% respectively.
CCPSO2 and SaDE perform much better than PSO and CCPSO-SK,
however, they still have the relative errors of 2.15% and 3.49%
respectively. CCPSO-m obtains the best performance, and can find
the maximum power point with the highest accuracy.

6.2.2. MCU-level MPPT of large-scale photovoltaic system
CCPSO-m, CCPSO2, CCPSO-SK, SaDE and PSO are utilized in

MCU-based MPPT of the large-scale photovoltaic system. The num-
ber of MCUs nMCU is set to 2000 in this simulation, each MCU
contains 10 modules as connected as Fig. 8. Note that the entire
photovoltaic array then contains 20,000 modules. Under the
reference environmental condition of 1000 W/m2 and 25 �C, the
short-circuit current of each module is around 4.52 A. As a result,
to consider the terrible environmental conditions with redundancy
current, decision space of Ii (i = 1, 2, . . ., 2000) in Eq. (7) is set to
[0 15] A. The complex environmental conditions are set as Table 4,
and P–V curve of MCU under each environmental condition is
shown in Fig. 13. Similarly, the theoretical MPP of the entire array
is about 9.0976E+05W. The other parameter settings of each com-
pared algorithm are the same as Section 6.2.1. The average results
of 25 independent runs are shown as Table 5.

In a large-scale photovoltaic system based on the MCU-level
structure, the MPPT can be solved by optimizing a large-scale
multimodal problem. In Table 5, performance of the compared
algorithms deteriorates when the MCUs are under complex envi-
ronmental conditions. PSO and CCPSO-SK have the worst perfor-
mance with relative errors 44.69% and 41.51% respectively,
which are far away from the global optimum. CCPSO2 and SaDE
Table 3
Comparison of different MPPT methods.

Method Result (W) Error (%)

CCPSO-m 1.3332757E+05 0.01
CCPSO2 1.3047035E+05 2.15
CCPSO-SK 9.3589306E+04 29.81
SaDE 1.2869569E+05 3.49
PSO 9.1414916E+04 31.44
obtain relative errors 6.22% and 26.86% respectively, which are
much better than PSO and CCPSO-SK. However, they cannot
outperform CCPSO-m, which achieve the best performance with
the relative error 0.13%.

7. Conclusion

A new MPPT method of large-scale photovoltaic system is pro-
posed to conquer the ‘‘hot spot” problem, to ensure operational
safety and to improve the output power under complex environ-
mental conditions. This study mainly includes two aspects: topo-
logical structure and MPPT algorithm. Firstly, a bidirectional Cuk
converter is utilized to control the operating point of each module,
and a boost converter is utilized to control the terminal voltage of
each branch. Therefore, a new topological structure is proposed
based on these two devices. Secondly, MPPT of large-scale photo-
voltaic system is modeled as the LSGO, and a novel multi-context



Fig. 13. P–V curve of MCU under partial shading condition.
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cooperatively coevolving PSO algorithm (CCPSO-m) is proposed to
solve this large-scale problem.

According to the simulation results, each photovoltaic module
can operate around its reference value stably on the new structure.
The proposed CCPSO-m has competitive performance with other
state-of-the-art algorithms. CCPSO-m is successfully applied to
the MPPT problem of a large-scale photovoltaic system with
2000 modules, and even 20,000 modules in the MCU-based struc-
ture. According to the numerical results, performance of CCPSO-m
is much better than the other algorithms in this large-scale MPPT
application.

In a word, MPP of each photovoltaic module (or MCU) can be
tracked effectively. The new photovoltaic system can avoid ‘‘hot
spot” problem and achieve maximum output power under com-
plex environmental conditions. In future, more efforts will be made
to simplify the large-scale optimization algorithm and to improve
the accuracy of mathematical model of photovoltaic module. New
methods that can reduce time cost of the MPPT process are also
parts of future work.
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