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ABSTRACT: HOW efficiently a second-order model is handled is analysed for 
simplified equations governing waterhammer appearance in piping systems. A 
series solution method and a Newton-Raphson method with new calculation 
steps are proposed, which are efficient numerical methods, through omitting 
trivial terms computed within a truncation error. With fewer calculations than 
required previously, the proposed methods can give a solution with a required 
accuracy without any iteration. The second-order model, therefore, offers more 
accurate and efficient methods than those offered hy a first-order model. How
ever, the second-order model causes an error in computing steady flows; ways 
to remove or reduce this error are shown. The validity of the analyses is ex
amined by numerical computations in which system parameters are varied over 
a wide range of parameters. 

INTRODUCTION 

In predicting and controlling waterhammer and transients, it is re
quired to precisely compute the behavior of pipeline systems using 
methods which reduce the time for calculations as much as possible. In 
spite of the importance of this problem, this issue has not been inves
tigated sufficiently. 

The method of characteristics is mainly employed to solve hydraulic 
problems in piping systems. The method of specified time intervals (5) 
and the characteristic-grid method (2) are known as solution procedures 
for the basic equations. For the simplified equations, in which smaller 
terms are neglected, first and second-order models (2, 4, 6, 7, and 8) are 
used to solve transients problems in relative stiff pipes. When viscous 
effects are very important, a first-order model may give an incorrect an
swer and, in extreme cases, cause a numerical instability in the solution. 
In order to improve the accuracy of the solution without using smaller 
time steps, a second-order model is applied. A first-order model gives 
an explicit solution while a second-order model usually gives an implicit 
solution which is obtained after a few iterations. 

Therefore, for computational purposes , at each grid point a second-
order model would need several calculations, as much as would be re
quired in a first-order model. However, if a second-order model can yield 
a solution with nearly the same amount of calculations as a first-order 
model requires, the former is more efficient than the latter. 

The object of this paper is to answer the question, "How efficiently 
can a solution with the required accuracy be obtained by a second-order 
model?" Methods for handling a second-order model without any iter-
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ation are analyzed. First, a truncation error due to discretization in de
riving finite-difference equations is estimated using a small parameter 
related to the product of a friction factor and a time step size. The terms 
smaller than the truncation error are omitted, and two new numerical 
methods (a series solution method and a Newton-Raphson method with 
new calculation steps) are proposed as efficient solution procedures, which 
are applicable not only to a system with high friction losses but also to 
a system with moderately high friction losses. However, it is shown that 
the methods presented cause an error due to an inadequate estimate of 
a steady flow. Ways to remove or reduce this error will be shown. 

The validity of the analyses is examined by numerical computations 
in which the system parameters are varied widely. 

BASIC EQUATIONS 

Under a condition that the velocity in a pipe, V, is much smaller than 
a wavespeed of pressure pulse, a*, the basic equations for momentum 
and mass are: 

dV dH 

^ + s - + ^ r = o a) 

dH a*2dV 
and — + —- — = 0 (2) 

dT g 8X w 

For example, if the Darcy-Weisbach formula is applied to the friction 
term, we have 

F = — (3) 
2D V ' 

m = 1 (4) 

in which V = average flow velocity (m/s); H = head above the datum 
line (m); D = diameter of the pipe (m); F = friction factor; / = Darcy-
Weisbach friction coefficient; g = gravitational acceleration (m/s2); m = 
exponent of the power in the friction term; and X = distance along the 
pipe (m), and T = time (sec). 

Characteristic Equations.—Transforming Eqs. 1 and 2 into dimen-
sionless characteristic forms, we have: 

dx 
C : Jt=2- (5) 

dh + Bdv + 2<rv\v\m dt = 0 (6) 

dx 
c'- 7t = -2 (7) 

-Ah + Bdv + 2<rv\v\'ndt = 0 (8) 

in which C+ and C~ = symbols for advancing and receding characteristic 
lines; V0 = characteristic velocity, H0 = characteristic head; L0 = char-
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R(v,h) 
AX _ A X 

At 

P(v+, h+) Q(v",h") 

FIG. 1.—Time and Space Grid Model for Computation at Interior Points 

acteristic length; v = V/V0, h = H/H0; t = T/(2L0/a*); x = X/L0, B = 
(a*V0/gHoy, and a = FV%+1L/(gH0). 

Finite-Difference Equations.—A time and space grid model for com
putation is shown in Fig. 1. The velocities, v+ and v~, and the heads, 
h+ and h~, at points P and Q are known while v and h at point R are 
unknown. 

Eq. 9 is a first-order approximation to integration of the friction term 
h 

v\v\mdt = v(U)\v{h)\m{t2 -h) (9) 

It is already known that the first-order model may be inadequate to deal 
with unsteady flow situations in pipeline systems with high friction losses. 
Thus, in order to improve the accuracy Eq. 10 has been used as a sec
ond-order approximation to the integration 

v\v\mdt~ 
v(t1) + v(t2) v(h) + v(t2) (tl-h) (10) 

From Eqs. 6, 8, and 10, we obtain the following finite-difference equa
tions which are usually solved by the Newton-Raphson method 

C+: (h - h + ) + B(v - v + ) + e(o + v + )\v + v+\m = 0 (11) 

C": -Qi -h~) + B{v- V) + e(v + v~)\v + v~\m = 0 (12) 

in which e = aAf/2m and At = t2 - tx. 
Newton-Raphson Method.^—The elimination of h from Eqs. 11 and 12 

leads to an algebraic equation for the unknown velocity v. 

h~ -h+ + B(2v-v~ -v + ) + €[(v + v + )\v + v+\m 

+ (v + v~)\v + v~\m] = 0 (13) 

In general the left-hand side of Eq. 13 does not become zero for an as
sumed value of v in the iterative process. Denoting the error correspond
ing to the left-hand side of Eq. 13 by "E," the derivative of E with re
spect to v gives 

dE 
— = IB + e(m + l)[|i> + v + \m +\v + v~\m] (14) 
dv 
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(u+ + v~)/2 is usually used as the first estimate of v. If a criterion to 
end the iterative process is known, the iterations are carried out at each 
grid point until the criterion is satisfied by replacing the value v given 
before by v + Aw: 

AV = -JE-- <15> 
dv 

in which Av denotes a correction term. 
The incompleteness of this method is that the criterion is not suffi

ciently clear. One can not predict how many times the calculations should 
be repeated before reaching the required accuracy. 

Truncation Error.—The proposed new explicit method will save cal
culation time by disregarding smaller terms within a truncation error. 
The truncation error due to the second-order approximation is estimated 
using Crandall's method (1). 

Assuming that the values of v are positive (or negative) between P 
and R or between Q or R, the velocity in the friction term is expanded 
at point P or Q in the Taylor's series: 

(y-At)2 

v(t) = v(t1 + y • At) = Mh) + v1(t1)' y • At + v2(t1) + ... (16) 

in which y, given by Eq. 17, = a parameter expressing characteristic lines 
along which the integration is formed: 

t = t1 + y-At (17) 

in which 0 § j / £ 1. In addition, vk{tx) is fcth differential coefficient of 
v with respect to (y • At). 

The transformation of the parameter in the left-hand side of Eq. 18 
from t to y leads to the right-hand side: 

»m+1(t)dt = At- vm+1(t1 + yM)dy (18) 
! Jo 

The integrand in the right-hand side of Eq. 18 becomes 

vm+1(tt + y-Af) = z>o"+1| 1 + (m + l ) - y At 
I v0 

+ 
2 1 , w > 2 

m(m + 1 ) 1 - ) +(m + l ) -
\Vo/ v0_\ 

— + . . . (19) 

in which y - A t < < 1, and vk denotes vk(t{) for simplicity. Substitution 
of Eq. 19 into Eq. 18 yields 

At- o m + 1 ( t 1 + y A t ) d y = Atu0"+ x 1 + - - - A t 
2 v0 

. , (m + 1 ) * ! 

+ (m + 1) m\ — I H— M ! + . , (20) 
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The right-hand side of Eq. 10 becomes 

v(h) + v(t2)
nm+1 

At 
^ , (m + 1) v, 

2 UQ 

(m + 1) 

Vo. 

m lvi\ +v2 

% 

(At)2 

+ .. •At (21) 

in which v(t2) = v(tx + At). Using Eqs. 10, 18, 20, and 21, the truncation 
error is estimated as follows 

-£2 

v(t)m+1dt 
v(t1) + v(t2) 

— v0 

ih-h) 

m(m + l) |SV ( z>2l(At)3 

2 W V I 12 
+ 0(At4) (22) 

Since the truncation error is of the same order as At3 or e3, i.e., 0(e3), 
it follows that the left-hand side of Eq. 13 may be different from the 
value of zero in 0(e3). 

NEW EXPLICIT METHOD (SERIES SOLUTION METHOD) 

The solution of Eq. 13 containing the truncation error can be obtained 
explicitly. Unknowns, v and h, at point R can be expanded into power 
series of the small parameter e as shown in Eqs. 23 and 24, because v 
and h must include e implicitly. The terms smaller than 0(e3) are ne
glected in the following analysis. 

(23) 

(24) 

v = il0 + e ili + e2"2 + 0(e3) 

h = h0 + e/h + e2/i2 + 0(e3) . 

where the condition that e < < 1 is needed for convergence of the so
lution of Eqs. 23 and 24, and uk and hk are fcth component of the power 
series of e for v and h, respectively. The substitution of the solution, 
which is shown by Eqs. 23 and 24, into Eqs. 11 and 12 yields Eqs. 25, 
26, and 27 for velocity v. 

v+ + v~ + (h+ -h~) 

u0 = • (25) 

« 1 = 
(ti0 + v + )\u0 + v+\'" + (u0 + v )\u0 + v' 

_ (26) 

u2= -(m + 1)(|M0 + |M0 + » T ) 
2B 

(27) 

Thus, the new explicit method is formulated as: 

1. From Eqs. 25-27, u 0, u 1, and u 2 are calculated by use of the four 
knowns, v+, v~, h+, and h~, at points P and Q. 

2. Using Eq. 24, an unknown velocity v at point R becomes known. 
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t + At 

FIG. 2.—Grid Model for Computation at Boundary Points (Left: at Upstream 
Boundary, Right: at Downstream Boundary) 

3. When v becomes known, either Eq. 11 or Eq. 12 can be used to 
find an unknown head h. 

Calculation at Boundary Points.—Now, we will describe the calcu
lation technique at boundary points by the series solution method. Fig. 
2 shows grid models at boundary points. 

Eq. 12 holds along C~ for the upstream end (see Fig. 2). If the velocity 
v at the boundary is given by vb, we obtain 

hb = h~ + B(vb - »-) + e(vb + v~)\vb-+ v~\m (28) 

and if h is given by hb, in the same way as the calculation at interior 
points, we get 

7 hb~h~ 
Vh = U0 + 6H] + 6 H 2 ; U0 = z H V 

\u0 + v-\m 

hb-h-

B 

«1 = - ( # 0 + V ) • 
B 

u2 = ~(m + l)|w0 + v~ 
. M l 

B ' 
(29) 

Eq. 11 holds along C+ for the downstream end. If the velocity at the 
boundary, v, is given by vb, we have 

hb = h+ -B(vb-v + ) -n{vb + v + )\vb + v+\m (30) 

and if the head, h, is given by hb, we obtain 

h+~hb 
vb = uQ + i.u\ + e u2; u0 = • 

B 
+ v+; 

Ml = ~ («o + W + ) -
\u0 + v 

u2 = -(m + l)\u0 + v^ (31) 

Calculation of Steady Flow.—Velocities in a steady flow are known 
along C+ or C~. Therefore, it should be noted that a theoretical solution 
of a steady flow does not contain any truncation error, since the friction 
term can be integrated without any approximations. Consequently, an 
implicit solution of Eq. 13 can be expressed in an infinite series of e. If 
the series solution method, which is valid for transients, is applied to a 
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steady flow, the following error is produced: By putting v+ = v = 1 
and h+ - h~ = 2<r/M, we have 

8 = v " 1 = h \m + 1 9 2 i+ 1 2 8 P ) (32) 

in which 8 = the order of the error estimated for a steady flow, and M 
= the number of reaches. 

Considering that e = a-At/2m and At = 1/(2M) and assuming that 
the exponent m = 1, we have 

6 = ^ ( 3 3 ) 

8 = 1.25 Y3 + 0.75 Y4 + 0.125 Y5 (34) 

in which Y = cr/(BM). 
The series solution method may yield an unstable solution due to the 

inadequate estimate of a steady flow if Y is taken to be so large that 8 
approaches O(10_1). Then, the adequate number of reaches, M, should 
be selected from Eq. 35 so that 8 becomes less than O(10~3): 

M = — (35) 
(BY) 

Although this criterion is satisfied with a small number of reaches in 
usual cases, a larger number of reaches is required to avoid a numerical 
instability in calculations of a system with a high friction loss. In that 
case, a Newton-Raphson method with improved calculation steps should 
be used. 

New Formulation of Newton-Raphson Method.—We will show that 
the Newton-Raphson method does not need any iterative process if an 
initial value of the unknown velocity, v, is properly estimated. To do 
this, the iterative process has to be analysed using the algorithm. The 
substitution of (v+ + v~)/2 into Eq. 15 leads to the first correction Av°: 

A"° = " ^ F J + 0(6) (36) 

From this, it is clear that the nonviscous solution, u0, should be used 
as the first estimate of v, because the first iteration gives only «0 • Then, 
we have 

Az;° = - ^ Kfio + v + )\u0 + v + \m + (u0 + i r ) | f i 0 + v~\m] 
2D 

+ ( m*B
1

2
) £ flfio + v + \m + |tf0 + v~\mWo + v + )\u0 + v + \m 

+ (M0 + v-)\u0 + v-\m] + 0 ( e 3 ) (37) 

The second correction term is given by 

Av1 = 0(e3) (38) 

The first and second terms in the right-hand side of Eq. 37 correspond 
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TABLE 1.—Comparison Among Solution Procedures in Terms of Efficiency in 
Caicuiations 

Solution procedure 
(1). 

Series solution method 
Newton-Raphson method 
First-order model 

Addition and 
subtraction 

(2) 

9 
11 
5 

Multiplication 
and division 

(3) 
7 
9 
5 

Exponentiation 
calculation 

(4) 

2 
2 
2 

to the second and third terms in the right-hand side of Eq. 23. This 
shows that the Newton-Raphson method guarantees a second order 
convergence, which means that each iteration near the true solution yields 
a solution with a higher accuracy by the square of e than that obtained 
before. Therefore, when the nonviscous solution, u0, is used as an ini
tial estimate of v, any iteration is not required to obtain the solution 
with the accuracy of 0(e3). 

The new calculation steps of the Newton-Raphson method are: (1) Cal
culate the inviscid solution il0 from Eq. 25; (2) calculate the terms, (-E) 
and (dE/dv), from Eqs. 13 and 14, and divide the former by the latter 
and, as the result, the correction AD is obtained; (3) let v be («0 + Az>); 
and (4) the unknown, h, is found by substituting v into Eq. 11 or Eq. 
12. 

The Newton-Raphson method also does not hold for a steady flow. 
The error, 8, which is caused in calculating the steady flow by the New
ton-Raphson method, can also be estimated using Eq. 32 as with the 
series solution method. Consequently, we have 

8 = v - 1 = 1 ^ 1 6 - 64^ + 1 2 8 ^ j + 0(e6) (39) 

It is clear from the comparison between Eq. 32 and Eq. 39 that the 
error with the Newton-Raphson method becomes much smaller than that 
with the series solution method. 

Next, the efficiency in calculations is compared among three solution 
procedures (the series solution method, the Newton-Raphson method, 
and the explicit method for the first-order model) by counting the min
imum number of times of operations (addition, subtraction, multiplica
tion, division, and exponentiation calculation), which are required for 
obtaining an unknown velocity v at each grid point. The result is shown 
in Table 1, from which we can find that each solution procedure has the 
same number of exponentiation calculation times (twice times). There
fore, it follows that at each grid point the work for solving v by the 
second-order model is almost the same as that by the first-order model, 
because the exponentiation calculation consumes much more time than 
other kinds of operations. 

NUMERICAL RESULTS 

In the following, numerical computations, will be used to examine the 
usefulness and limitation of the series solution method and the Newton-
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^z. 
" Z ~ <' 

Ho Lo 

¥o M 
FIG. 3.—Simple Piping System 

Raphson method with the new calculation steps. The system shown in 
Fig. 3 is a model for computation, which is composed of a constant-head 
reservoir at the upstream end, a control valve at the downstream end, 
and a single pipe leading from the reservoir to the valve. 

Waterhammer and transients are caused by closing the valve, which 
begins to move at time zero and is completely closed in a dimensionless 
time tc. The velocity at the valve varies linearly with time during that 
time interval. The exponent, m, in the friction term, is assumed to be 
1.0. Then, an unknown velocity v can be explicitly determined using Eq. 
13 as roots of quadratic equations and solutions of linear equations. The 
solution procedures using the roots and the solutions is denoted by the 
"algebraic solution" method, which is available for comparisons with 
other solution methods of the second-order model, since the "algebraic 
solution" method holds for a steady flow. 

Each calculation begins with an initial steady condition set at time zero, 
and then is carried forward using the algorithm for each solution 
procedure. 

Case 1.—The system parameters and the valve closure time are: B = 
1.0 and 2.0; a = 0.2, 0.4, and 0.8; and tc = 1.0 and 5.0. The numbers of 
reaches, M, are determined from Eq. 35 so that 8 becomes 10 ~3, 10 ~i, 
and 10 "5. In Tables 2 through 4, the numerical results are compared with 
the most probable values calculated with M = 100 in terms of the max
imum waterhammer head. It is clear that, even for systems with mod-

tc 

(1) 
1.0 

TABLE 

B 
(2) 

1.0 

2.0 

cr 
(3) 

0.2 

0.2 

2.—Maximum Waterhammer Head Computed 

M 
(4) 

2 
5 

10 
100 

2 
5 

10 
100 

Series 
solution 
method 

(5) 

1.93717 
1.92972 
1.92861 
1.92823 
2.93654 
2.93168 
2.93097 
2.93073 

Newton-
Raphson 
method 

(6) 

1.93447 
1.92926 
1.92849 
1.92823 
2.93583 
2.93155 
2.93093 
2.93073 

"Algebraic 
Solution" 
method 

(7) 

1.93391 
1.92915 
1.92846 
1.92823 
2.93567 
2.93152 
2.93092 
2.93073 

First-
order 
model 

(8) 

1.87111 
1.90701 
1.91789 
1.92722 
2.87309 
2.90948 
2.92041 
2.92972 
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TABLE 3.—Maximum Waterhammer Head Computed 

tc 

(1) 
1.0 

B 
(2) 

1.0 

2.0 

cr 
(3) 

0.4 

0.8 

0.4 

0.8 

M 
(4) 

4 
10 
20 

100 
8 

19 
40 

100 
2 
5 

10 
100 

4 
10 
20 

100 

Series 
solution 
method 

(5) 

1.85643 
1.84863 
1.84751 
1.84715 
1.67082 
1.66341 
1.66220 
1.66190 
2.87433 
2.85945 
2.85721 
2.85646 
2.71287 
2.69726 
2.69502 
2.69430 

Newton-
Raphson 
method 

(6) 

1.85169 
1.84788 
1.84732 
1.84714 
1.66537 
1.66249 
1.66199 
1.66187 
2.86893 
2.85851 
2.85697 
2.85646 
2.70339 
2.69577 
2.69465 
2.69428 

"Algebraic 
Solution" 
method 

(7) 

1.85073 
1.84771 
1.84728 
1.84714 
1.66428 
1.66228 
1.66194 
1.66186 
2.86782 
2.85830 
2.85692 
2.85646 
2.70136 
2.69542 
2.69456 
2.69428 

First-
order 
model 

(8) 

1.79316 
1.82622 
1.83679 
1.84509 
1.60694 
1.63901 
1.65105 
1.65756 
2.74222 
2.81402 
2.83578 
2.85444 
2.58633 
2.65244 
2.67359 
2.69017 

erately high friction losses, the second-order model gives much better 
results with respect to the accuracy and efficiency in calculations than 
those obtained by the first-order model. 

Case 2.—The system parameters and the valve closure time are: B ?= 
0.5, <J = 0.9, and tc = 0.0. In these systems with the parameters as shown 
previously, for example, in a long oil pipeline, a numerical instability 

TAILE 4.—Maximum Waterhammer Head Computed 

U 
(1) 
5.0 

B 
(2) 

1.0 

2.0 

CT 

(3) 

0.4 

0.8 

0.4 

0.8 

M 
(4) 

4 
10 
20 

100 
8 

19 
40 

100 
2 
5 

10 
100 

4 
10 
20 

100 

Series 
solution 
method 

(5) 

1.11293 
1.11232 
1.11223 
1.11220 
1.10549 
1.10558 
1.10558 
1.10559 
1.27440 
1.27214 
1.27178 
1.27165 
1.22586 
1.22465 
1.22446 
1.22440 

Newton-
Raphson 
method 

(6) 

1.11241 
1.11224 
1.11221 
1.11220 
1.10559 
1.10559 
1.10559 
1.10559 
1.27255 
1.27181 
1.27169 
1.27165 
1.22482 
1.22447 
1.22441 
1:22440 

"Algebraic 
Solution" 
method 

(7) 

1.11231 
1.11222 
1.11220 
1.11220 
1.10561 
1.10559 
1.10559 
1.10559 
1.27218 
1.27174 
1.27167 
1.27165 
1.22462 
1.22443 
1.22440 
1.22439 

First-
order 
model 

(8) 

1.10922 
1.11096 
1.11157 
1.11207 
1.10555 
1.10555 
1.10557 
1.10558 
1.25901 
1.26659 
1.26912 
1.27140 
1.21844 
1.22193 
1.22315 
1.22414 
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TABLE 5.—Maximum Waterhammer Head Computed for System with High Fric
tion Losses (Including Error Due to Steady Flow Calculation) 

tc 

(1) 

0.0 

B 
(2) 

0.5 

a 

(3) 

0.9 

M 
(4) 

5 
9 

20 
90 

Series 
solution 
method 

(5) 

1.40016 
1.35397 
1.34896 
1.35383 

Newton-
Raphson 
method 

(6) 

1.32351 
1.33539 
1.34570 
1.35367 

"Algebraic 
Solution" 
method 

(7) 

1.31713 
1.33269 
1.34504 
1.35364 

First-
order 
model 

(8) 

1.19289 
1.26518 
1.31517 
1.34708 

may result. The numbers of reaches are determined from Eq. 35 so that 
8 becomes 10 - 1 ,10 ~2, 10 ~3, and 10 ~4. In Table 5 the comparison is made. 
For M = 5 and 9 the series solution method gives unstable results due 
to the error in the steady flow calculations. Under these severe condi
tions, the Newton-Raphson method gives more stable results than those 
given by the series solution method. One of the methods to avoid in
accurate calculations is to set steady flow conditions at grid points where 
the flow should theoretically be steady. 

The numerical results, in that case, are shown in Table 6, from which 
we can see that the computed results are more accurate than those com
puted by setting the steady flow conditions at time zero. 

The results in cases 1, 2 show that the first-order model requires = 4 -
5 times the number of reaches required by the second-order model for 
obtaining a solution with almost the same accuracy. If the calculations 
are carried out to a given time, K- At, the ratio of the total number of 
computation points in space and time required by the first-order model 
to that by the second-order model is 

ratio: 
(NM + 1) 2NMK N(NM + 1) 

M + 1 2MK M + l 
(40) 

in which K = the integer; and N = the ratio of the number of reaches 
required by the first-order model to that by the second-order model for 
obtaining a solution with almost the same accuracy. Examination of Eq. 
40 shows that the first-order model requires =12-25 times the total num
ber of grid points required by the second-order model. 

TABLE 6.—Maximum Waterhammer Head Computed for System with High Fric
tion Losses (Not Including Error Due to Steady Flow Calculation) 

tc 

(1) 

0.0 

B 
(2) 

0.5 

a 

(3) 

0.9 

M 
(4) 

5 
9 

20 
90 

Series 
solution 
method 

(5) 

1.31261 
1.33157 
1.34487 
1.35363 

Newton-
Raphson 
method 

(6) 

1.31645 
1.33250 
1.34501 
1.35364 

"Algebraic 
Solution" 
method 

(7) 

1.31713 
1.33269 
1.34504 
1.35364 

First-
order 
model 

(8) . 

1.19289 
1.26518 
1.31517 
1.34708 
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SUMMARY AND CONCLUSIONS 

How efficiently the second-order model is handled is analysed for the 
simplified equations governing waterhammer appearance in piping sys
tems. The series solution method and the Newton-Raphson method with 
the new calculation steps are proposed by the writers through omitting 
trivial terms computed within the truncation error. 

With fewer calculations than required previously, the new methods 
can yield a solution with the required accuracy without any iteration. 
Then, compared with the procedure given by the first-order model, the 
second-order model offers more efficient and accurate procedures, which 
are applicable not only to systems wi th high friction losses but also to 
systems with moderately high friction losses. 

However, since the second-order model introduces an error in steady 
flow calculations, ways to remove or reduce this error are shown. 

The validity of the analyses is examined by the numerical computa
tions in which the system parameters are varied widely. 
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APPENDIX II.—NOTATION 

The following symbols are used in this paper: 

a* 
B 

C + 

C~ 
D 
E 
F 

f 
§ 

= 
= 
= 
= 
= 
= 
= 
= 
= 

wavespeed of pressure pulse; 
Allievi constant, a*V0/{gH0); 
advancing characteristic line; 
receding characteristic line; 
diameter of a pipe; 
error in the left-hand side of Eq. 13 in iterative process; 
general expression of coefficient of the friction term; 
Darcy-Weisbach's friction factor; 
gravitational acceleration; 
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H = head; 
H0 = characteristic head (constant head at an upstream 

reservoir); 
h = dimensionless' head , H/HB; 

ht = dimensionless head at a boundary ; 
hk = kth component of the series solution for h; 

h+ = dimensionless head k n o w n at point P ; 
h~ = dimensionless h e a d k n o w n at point Q ; 

K = integer; 
L0 = characteristic length (pipe length); 
M = number of reaches; 
m = exponent included in the friction term; 
N = ratio of the n u m b e r of reaches; 
T = time; 
t = dimensionless t ime, T/(2L0/a*); 

tc = dimensionless t ime for valve closure; 
Af = time step size; 
uk = kth component of the power series of e for v; 
V = flow velocity; 

V0 = characteristic velocity (initial s teady velocity); 
v = dimensionless velocity, V/V0; 

Vh = dimensionless velocity at a boundary; 
vkoxvk{ti) = kth differential coefficients for v expanded at point P or 

Q in the Taylor's series; 
vk = kth estimate of velocity v in the Newton-Raphson 

method; 
Au = correction term; 

Avk = kth correction term; 
v+ = dimensionless velocity known at point P; 
v~ = dimensionless velocity known at point Q; 
X = distance coordinate; 
x = dimensionless distance coordinate, X/L0; 

Lx = distance step size; 
Y = v/(BM); 
y = parameter related to time t; 
8 = error produced in steady flow calculations; 
e = 8At/2'"; and 
a = FV0

n+1L0/(gH0). 
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