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A B S T R A C T

In this paper, two test statistics are constructed respectively for individual and time effects in linear panel
data models by comparing estimators of the variance of the idiosyncratic error at different robust levels.
The resultant tests are one-sided, and asymptotically normally distributed under the null hypothesis. Power
study shows that the tests can detect local alternatives that differ from the null hypothesis at the parametric
rate. Due to the first difference and orthogonal transformations used in the construction of variance esti-
mators of the idiosyncratic error, the two proposed tests are robust to the presence of one effect and the
possible correlation between the covariates and the error components when the other one is tested. Monte
Carlo simulations are carried out to provide evidence on the finite sample properties of the tests.
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1. Introduction

In econometric analysis of panel data, the random individual and
time effects are usually used to capture the heteroscedasticity of
individual and time points. In practice, however, people often don’t
know whether the random effects exist or not, therefore this can
lead to the misspecification of the random effects. As a result, some
tests for the existence of the two random effects are essential when
we use the panel data models with random effects. Breusch and
Pagan (1980) proposed several Lagrange multiplier (LM) tests for
the existence of two random effects by testing whether their vari-
ances are zero or not, which are widely used in both the theory
and the application. Given that variances are nonnegative, one-sided
tests for such a problem should be more reasonable and powerful
than two-sided ones of Breusch and Pagan (1980). Correspondingly,
many one-sided tests and their modified versions have been devel-
oped for the existence of random effects, e.g. Honda (1985, 1991),
Moulton and Randolph (1989), Baltagi et al. (1992), King and Wu
(1997), etc. Moreover, Bera et al. (2001) suggested some simple
tests based on the ordinary least square (OLS) residuals for random
individual effect in the presence of serial correlation. Most of these
tests require the normality assumptions of the random effects and
the idiosyncratic error, which cannot be guaranteed in practice. Also

note that Bera et al. (2001) did not consider the potential time effect
which can distort the size of the tests. Montes-Rojas (2010) extended
the method of Bera et al. (2001) to spatial panel models. The reader
may refer to an excellent monograph by Baltagi (2008) for a detailed
review of the existing random effects tests.

Recently, there has been increasing interest in the tests’ robust-
ness to the misspecification of various assumptions, conditions and
model settings (Bera et al., 2001). Wu and Zhu (2011) proposed two
robust random effects tests for the linear panel data models, which
are based on the artificial autoregression modelled by the pairwise
differenced residuals over the individual and time indices. The simu-
lation results in this paper show that the tests of Wu and Zhu (2011)
obtain the robust properties at the cost of low power. Wu and Li
(2014) proposed several moment-based tests for the individual and
time effects in panel data models. As Wu and Li (2014) argued, these
tests have the desired properties as follows. The tests are very sim-
ple and easy to compute; the tests for individual effect are robust
to the existence of time effect and the possible correlation between
the covariates and the error components; the tests for time effect are
also robust to the existence of individual effect and the possible cor-
relation between the covariates and the error components. However,
since the centering transformation is used in both the construction
of the individual effect tests and the determination of the p-values
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of the time effect tests in real applications (see Wu and Li, 2014,
Sections 2 and 3), the tests of Wu and Li (2014) cannot be extended
to the cases with unbalanced panels. Moreover, since the time effect
tests of Wu and Li (2014) are not standard, one needs to center the
covariates so that the resultant tests can be performed with p-values
of critical values calculated from the standard chi-squared distribu-
tion with T − 1 degrees of freedom. These motivate us to develop
some new random effects tests as alternatives for panel data models.

The main contribution of this paper is as follows. To avoid dis-
tributional assumptions on the random effects and the idiosyncratic
error, we consider a robust method to test for the existence of ran-
dom effects in linear panel data models. Specifically, we compare
two estimators of the variance of the idiosyncratic error at differ-
ent robust levels, and construct the tests for the existence of random
effects in the panel data models with no distributional assumptions.
The resultant tests are one-sided, and asymptotically normally dis-
tributed under the null hypothesis, which is partly different from
those of Wu and Li (2014). Power study shows that the tests can
detect local alternatives that differ from the null hypothesis at the
parametric rate. Due to the first difference and orthogonal trans-
formations used in the construction of variance estimators of the
idiosyncratic error, the two proposed tests are robust to the presence
of one effect and the possible correlation between the covariates and
the error components when the other one is tested. Moreover, the
resultant tests don’t need any pretreatment of the data so that the
condition Q′EXi = 0 holds (see Wu and Li, 2014, p. 572). In addition,
the new tests proposed in this paper can be easily modified to test
for the existence of random effects in unbalanced panel data models.
The above two properties are main different points between the new
tests in this paper and the tests of Wu and Li (2014).

The rest of this paper is organized as follows. In the next
section, we introduce some notations and simply describe the
involved higher order moment estimation of the idiosyncratic error.
In Section 3 , we construct test statistics for the existence of random
effects, which are based on the difference of two estimators of the
variance of the idiosyncratic error at different robust levels. In this
section, the asymptotical behavior of the test statistics is investigated
theoretically. In Section 4 , Monte Carlo simulation experiments are
carried out for illustration. Some conclusions are given in Section 5 .
Proofs of theorems are postponed to the Appendix.

2. Model and notations

Consider the linear panel data model with two-way error
components

yit = a + X′
itb + li + kt + uit , i = 1, 2, . . . , n, t = 1, 2, . . . , T, (1)

where a is the intercept term, Xit is the it-th observation on K covari-
ates, and b is the K-dimensional vector of coefficients of covariates.
And, l i is the individual effect with zero mean and finite variance
(hereafter s2

li
) and kt is the time effect with zero mean and finite

variance (hereafter s2
kt

). The variances of random effects l i and kt

are allowed to be heterogeneous so that the model settings are more
general. The idiosyncratic error uit varies with individual and time,
which is assumed to be independent and identically distributed. The
covariates {Xit, t = 1, 2, . . . , T} are independent and identically dis-
tributed across individuals, and predetermined, i.e. E(Xituis) = 0 for
s ≥ t. We allow non-zero correlation among the random effects l i,kt

and the covariates Xit (see, e.g., Hsiao, 2003, Mundlak, 1978), which
is often omitted in the existing random effects tests in the literature.
Moreover, when focusing on the existence of one effect, we don’t
need any informations of the other one. In addition, it is worthwhile
to point out that the asymptotic results in this paper are based on the

setting that the individual number n goes to infinity and time length
T is fixed, which is widely used in the literature (Wu and Li, 2014).

As a necessary step, the parameter estimation should be con-
sidered firstly. Although there exist more efficient estimators when
the effects are not misspecified, we prefer to use the robust within
estimator on the misspecification of the random effects,

b̂ =
[

X′
(

In − Jn

n

)
⊗
(

IT − JT

T

)
X
]−1

X′
(

In − Jn

n

)
⊗
(

IT − JT

T

)
y, (2)

where y = (y11, y12, . . . , y1T, y21, y22, . . . , y2T, . . . , yn1, yn2, . . . , ynT)′,
X = (X11, X12, . . ., X1T, X21, X22, . . . , X2T, . . . , Xn1, Xn2, . . . , XnT)′, and Il is
an identity matrix of dimension l, Jl denotes a l × l matrix of ones,
and “⊗ ” denotes the Kronecker product. As Wu and Li (2014) argued,
under some regularity conditions, it holds that, regardless of the
presence of individual and time effects,

√
n(b̂ − b) D→ N(0,S−1

1 S2S
−1
1 )

as n → ∞, where S1 = E
[
X′

i

(
IT − JT

T

)
Xi

]
− EX′

i

(
IT − JT

T

)
EXi

and S2 = E
[
(Xi − EXi)′

(
IT − JT

T

)
uiu′

i

(
IT − JT

T

)
(Xi − EXi)

]
with Xi =

(Xi1, Xi2, . . . , XiT)′ and ui = (ui1, ui2, . . . , uiT)′. See Wu and Li (2014) or
Baltagi (2008) for more details on the within estimator.

As argued in the Introduction, most of the tests for random effects
are Lagrange multiplier tests which need the assumptions of nor-
mal distribution of the effects and the idiosyncratic error. Wu and Li
(2014) proposed several moment-based tests, which don’t need dis-
tributional assumptions on the error component disturbances. This
paper will propose some new moment-based tests as alternatives.
Note that Wu and Su (2010) used the first difference over the individ-
ual index and the orthogonal transformation over the time index to
wipe out the possible time and individual effects and constructed the
second order moment estimator (hereafter ĉu

2) and the fourth order
moment estimator (hereafter ĉu

4) of the idiosyncratic error. Clearly,
the resultant moment estimators are robust to the misspecification
of random effects, and they will play a key role in the construction
of test statistics for individual and time effects in this paper. In order
to save space, we only give the expressions of the two moment esti-
mators ĉu

2 and ĉu
4 of the idiosyncratic error uit as follows (Wu and Su,

2010, p. 1935),

ĉu
2 =

1
n(T − 1)

m∑
j=1

M′
2

(
Dy2j − DX2jb̂

)(2)

=
1

n(T − 1)

m∑
j=1

(
Dy2j − DX2jb̂

)′ (
IT − JT

T

)(
Dy2j − DX2jb̂

)
, (3)

ĉu
4 =

1
nc0

m∑
j=1

M′
4(Dy2j − DX2jb̂)(4) − 3(ĉu

2)2
[

2(T − 1)
c0

− 1
]

, (4)

where m = [ n
2 ] ([a] being the integer part of a, hereafter), b̂

is the within estimator of Eq. (2), c0 =
∑T

l=2
l2−3l+3

l(l−1) , M2 =∑T
j=2 q(2)

j , M4 =
∑T

j=2 q(4)
j , qj = 1√

j( j−1)
[( j − 1)e( j) − ∑j−1

k=1 e(k)],

j = 2, 3, . . . , T, with e(k) standing for the k-th column vector of
the identity matrix IT. Moreover, Dy2j = (Dy2j,1,Dy2j,2, . . . ,Dy2j,T)′,
DX2j = (DX2j,1,DX2j,2, . . . ,DX2j,T)′ and “D” stands for the difference
operator over the individual index, i.e. Dy2j,t = y2j,t − y2j−1,t. Here-
after, we denote n(k) = n ⊗ · · · ⊗ n︸ ︷︷ ︸

k

for any vector or matrix n. Under

some moment conditions, the above two estimators are respectively
consistent and asymptotically normally distributed. The reader can
refer to Wu and Su (2010, p. 1935–1936) for more details.
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3. Test for random effects

Firstly, we consider the test for the individual effect. Recalling the
heterogeneity of individual effect and the nonnegativity of variances,
we consider the null hypothesis

Hl
0 : Dl = 0, (5)

and the alternative hypotheses

Hl
1 : Dl ≥ 0 and Dl �= 0,

where Dl = diag(s2
l1

,s2
l2

, . . . ,s2
ln

), and s2
li

is the variance of l i.
Under the null hypothesis (5), since there is no individual effect, the
orthogonal transformation is not needed in the estimation of the
variance of the idiosyncratic error. We only need to eliminate the
potential time effect by the first difference over the individual index
and then obtain an estimator of the variance of the idiosyncratic error
uit, which is denoted by

ĉu
2,1 =

1
nT

m∑
j=1

(Dy2j − DX2jb̂)′(Dy2j − DX2jb̂). (6)

Note that, the estimator ĉu
2 of Eq. (3) is consistent under both the

null hypothesis Hl
0 and the alternatives Hl

1. However, the estimator
ĉu

2,1 of Eq. (6) is only consistent under the null hypothesis Hl
0, and no

longer consistent under the alternatives Hl
1. Clearly, the difference

of the two estimators should be small under the null hypothesis Hl
0

and large under the alternatives Hl
1. In the light of this finding, we

construct the following test statistic on the basis of the difference of
the two estimators

Tl =
√

n√
V1n

(ĉu
2,1 − ĉu

2),

where the scalar V1n is used to standardize the statistic and defined
in Eq. (13).

Theorem 1. Suppose that E(u4
it) < ∞ , E ‖ Xi ‖4< ∞, |S1|> 0 and

cov(X′
iiT , u′

iiT ) = 0. Under the null hypothesis (5), we have

Tl D→ N(0, 1)

as n → ∞, where N(0, 1) is the standard normal distribution.

If the null hypothesis (5) is violated, then the test T l is usually
large. In the following, we study theoretically the power proper-
ties of T l , and describe briefly its asymptotic behavior. To check
the sensitivity of the test, we consider the local alternatives with
homogeneous variance of l i

Hl
1n : Dl = CnIn, (7)

where Cn is a positive constant sequence. In the following, we
give two assumptions needed in the power study of the proposed
test Tl .

(A) {l i} are independent and identically distributed with mean
zero and positive variance s2

l .

(B) E(l iui) = 0, n
1
2 E
(
l2

i ‖ ui‖2)< ∞, and n
1
4 E (liXi) = X.

Theorem 2. Suppose that E
(
u4

it

)
< ∞ , E ‖ Xi ‖4< ∞, |S1|> 0 and

cov(X′
iiT , u′

iiT ) = 0 and Assumptions (A) and (B) hold. As n → ∞, we
then have, if ncCn → q, (q �= 0), 0 ≤ c < 1

2 ,

Tl → +∞,

in probability, and if n
1
2 Cn → s2

1 ,

Tl D→ N(cl , 1),

where N(cl , 1) is the non-centrally standard normal distribution with

bias cl =
s2

1√
V1

, and V1 defined in Eq. (12).

This result shows that the test Tl has asymptotic power 1 for
global alternatives (c = 0) and local alternatives distinct from the
null at a rate n−c with 0 < c < 1

2 . It can detect alternatives that
converge to the null at a rate n− 1

2 , and then the test is sensitive to
alternatives. For the alternatives that are distinct from the null at the
rate n− 1

2 , asymptotic p-values can be derived from the standard nor-
mal distribution. Moreover, the power of the test is related to the
variance of the effect.

Remark 1. The method can also be used to test the time trend of the
individual effect in panel data model as follows,

yit = X′
itb + li + kt + nit + uit.

Specifically, we use the first order difference across time index to
remove the time trend, and then using the same method to estimate
the higher order moment as that of Wu and Su (2010). Based on
the difference between the new second moment estimator and the
moment estimator ĉu

2 of Eq. (3) for the case with no time trend, we
can construct a test for the existence of time trend. The details are
omitted here.

In the following, we consider the test for the time effect. Recall-
ing that the individual number n is set to large and the time length T
small for the panel data considered in this paper. The above method
can be adopted to construct test for the time effect, however, the
resultant test for time effect should be different from that for individ-
ual effect since the two indices n and T are not symmetric. The null
hypothesis is

Hk
0 : Dk = 0, (8)

and the alternative hypotheses

Hk
1 : Dk ≥ 0 and Dk �= 0,

where Dk = diag(s2
k1

,s2
k2

, . . . ,s2
kT

), and s2
kt

is the variance of kt. We
adopt the same method as the above to construct a statistic to test
for time effect

Tk =
√

n√
V2n

(ĉu
2,2 − ĉu

2),

where the scalar V2n is used to standardize the statistic and defined
in Eq. (15), and

ĉu
2,2 =

1
n(T − 1)

n∑
i=1

(
yi − Xib̂

)′ (
IT − JT

T

)(
yi − Xib̂

)
. (9)
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Theorem 3. Suppose that E(u2
it) < ∞ , E ‖ Xi ‖2< ∞, |S1|> 0 and

cov(X′
iiT , u′

iiT ) = 0. Under the null hypothesis (8), we have

Tk D→ N(0, 1)

as n → ∞, where N(0, 1) is the standard normal distribution.

Consider the local alternatives as follows,

Hk
1n : Dk = CnIT , (10)

where Cn is a positive constant sequence.

Theorem 4. Suppose that E(u2
it) < ∞ , E ‖ Xi ‖2< ∞, |S1|> 0 and

cov(X′
iiT , u′

iiT ) = 0 . As n → ∞, we have, if ncCn → q (q �= 0),
0 ≤ c < 1

2 ,

Tk → +∞,

in probability, and if n
1
2 Cn → s2

2 ,

Tk D→ N(ck, 1),

where N(ck, 1) is the non-centrally standard normal distribution with

bias ck =
s̃2

2√
V2

, and the expressions of V2 and s̃2
2 can be found in

Eqs. (14) and (16), respectively.

Remark 2. The conditions |S1|> 0 and cov(X′
iiT , u′

iiT ) = 0 in
Theorems 1–4 are to guarantee the root-n consistency and asymp-
totic normality of the within estimator b̂. In fact, in the proofs of the
theorems we only need the property of root-n consistency of param-
eter estimator b̂. And correspondingly, the within estimator b̂ can be
replaced by the other ones only if they are root-n consistent whether
the random effects exist or not.

4. Finite sample properties via simulations

In the following, we conduct some simulation experiments to
examine the performance of the resultant tests in the above section.
Consider the panel model as follows

yit = a + X′
itb + li + kt + uit , (11)

where a = 0.5,b = (1, 2)′, Xit
i.i.d.∼ N(0, I2) and li

i.i.d.∼ c1U(−1, 1)

(the uniform distribution on the interval [−1, 1]), kt
i.i.d.∼ c2U(−1, 1).

As to the idiosyncratic error term, we consider the two distribution
settings: uit

i.i.d.∼ N(0, 1) and uit
i.i.d.∼ (w2

1 − 1) (w2
1 being the stan-

dard chi-square distribution with 1 degree of freedom). Firstly, we
consider the individual effect test. Let c1 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
where c1 = 0.0 corresponds to the null and c1 �= 0.0 to the alterna-
tives. To show the test’s robustness on the existence of time effect,
we let c2 = 0.0 and 1.0, where c2 = 0.0 or 1.0 stands for the
absence or presence of time effect. Secondly, we carry out the sim-
ulation for the time effect test, and consider the similar settings as
the above. The sample sizes are designed as all the combinations of
n = 100, 200, and T = 10, 20, and the simulation results are based
on 1000 replications of the experiments. The simulation results show
that our tests perform well. It is noteworthy that, regardless of the
existence of time effect, the empirical size of the individual effect
test is close to the nominal size and the empirical power is high even

when the sample size is moderate or small. The time effect test has
the similar simulation results. See Tables 1 and 2 for more details.

Nextly, we compare seven existing tests in the literature with our
tests using simulation experiments. For the sake of statements, we
first present their expressions. Denoted by ũ the residuals from the
standard linear panel data model without random effects, let

A = 1 − ũ′(In ⊗ JT )ũ
ũ′ũ

and B =
ũ′ũ−1

ũ′ũ
.

The LM test (BPl) for random individual effect developed by
Breusch and Pagan (1980) is

BPl =
nTA2

2(T − 1)
.

Under the null hypothesis of no individual effect, the test is
asymptotically distributed as w2

1. As the test for random effects
should be one-sided, Honda (1985) suggested the modified version
of the two-sided test BPl , which is denoted by Hl ,

Hl = −
√

nT
2(T − 1)

A.

Bera et al. (2001) made some adjustments and obtained two
robust versions of the above two tests, which are denoted by BSY1
and BSY2, respectively,

BSY1 =
nT2(A + 2B)2

2(T − 1)(T − 2)
, BSY2 = −

√
nT2

2(T − 1)(T − 2)
(A − 2B).

However, none of these tests is feasible when the potential time
effect kt exists. Baltagi et al. (1992) derived a LM test for individ-
ual effect, which has the validity of the Breusch-Pagan statistic and
allows for the presence (or absence) of time effect. Their individual
effect test is as follows,

BCLl =

√
2s̃2

2 s̃
2
m√

T(T − 1)
[
s̃4
m + (n − 1)s̃4

2

] D̃l ,

D̃l =
T
2

{
1
s̃2

2

[
ũ′(J̄n ⊗ J̄T )ũ

s̃2
2

− 1

]
+

n − 1
s̃2
m

[
ũ′(En ⊗ J̄T )ũ
(n − 1)s̃2

m

− 1

]}
,

where s̃2
2 = ũ′(J̄n⊗IT )ũ

T and s̃2
m = ũ′(En⊗IT )ũ

T(n−1) with En = In − J̄n and

J̄n = Jn
n . Moreover, the above tests need normality assumptions for

the random effects and the idiosyncratic error, which cannot be guar-
anteed in practice. Wu and Zhu (2011) proposed a residual-based
random effect test as follows,

WZl =
√

m(T − 1)

(
m∑

i=1

T∑
t=2

n2
2i,t−1

)−1 m∑
i=1

T∑
t=2

n2i,t−1n2i,t ,

where n2i,t = Dy2i,t − b̂′DX2i,t and m =
[ n

2

]
. Wu and Li (2014)

proposed a moment-based individual effect test as follows,

WLl =

√
nT(T − 1)

2
(
ŝ2

1u

ŝ2
0u

− 1),

where ŝ2
1u and ŝ2

0u are respectively the two estimators of the
variance of the idiosyncratic error at different robust levels, see
Wu and Li (2014, p. 570–571) for more details.

For the sake of comparison, we consider the same data generat-
ing process (DGP) as those of Wu and Li (2014). That is, the DGP is
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Table 1
The empirical size and power of the test Tl for individual effect in model (11). The nominal size is 5%.

Error distribution n T c2 c1 = 0.0 c1 = 0.2 c1 = 0.4 c1 = 0.6 c1 = 0.8 c1 = 1.0

N(0, 1) 100 10 0 0.058 0.178 0.720 0.991 1.000 1.000
100 20 0 0.048 0.357 0.971 1.000 1.000 1.000
200 10 0 0.052 0.236 0.903 1.000 1.000 1.000
200 20 0 0.051 0.563 1.000 1.000 1.000 1.000
100 10 1 0.060 0.208 0.713 0.998 1.000 1.000
100 20 1 0.051 0.371 0.979 1.000 1.000 1.000
200 10 1 0.052 0.231 0.904 1.000 1.000 1.000
200 20 1 0.052 0.564 1.000 1.000 1.000 1.000

w2
1 − 1 100 10 0 0.059 0.116 0.377 0.787 0.968 0.998

100 20 0 0.053 0.195 0.729 0.986 1.000 1.000
200 10 0 0.049 0.140 0.533 0.963 1.000 1.000
200 20 0 0.048 0.234 0.920 1.000 1.000 1.000
100 10 1 0.053 0.111 0.382 0.771 0.982 0.996
100 20 1 0.048 0.187 0.721 0.995 1.000 1.000
200 10 1 0.053 0.133 0.552 0.939 1.000 1.000
200 20 1 0.053 0.269 0.925 1.000 1.000 1.000

still from the model (11), but some settings such as the distribution
assumptions are different from the above. Denote Xit = (X1,it, X2,it)′,
and assume that X1,it, X2,it, l i and kt follow the normal distributions
with mean zero, var(X1,it) = var(X2,it)= 1, var(li) = s2

l , var(kt) =
s2
k , corr(X1,it, l i) = q, and uit follows the standard normal distribu-

tion, N(0, 1), or
√

0.6t5 (the Student t-distribution with 5 degrees of
freedom). When q �= 0, X1,it and X1,is are also correlated for t �= s,
and then we further set corr(X1,it, X1,is) = q2. Note that sl = 0 or
> 0 corresponds respectively to the size or the power, and sk = 0
or > 0 to the absence or the presence of the time effect. Let X1,i =
(X1,i1, . . . , X1,iT)′. Sequences {X1,i}, {X2,it}, {l i}, {kt} and {uit} are set to
be i.i.d., and are independent of each other except for {X1,i} and {l i}
with q �= 0. The sample sizes are (n, T) = (100, 10) and (200, 10),
the experiments are replicated 1000 times to obtain the empirical
sizes and powers of the tests. We check the different performances
of the tests in various cases including the correlation coefficient q

between the covariates and random effects. Table 3 lists the empiri-
cal sizes and powers of the test Tl and other tests for the individual
effect in the case with normally distributed errors. Since the results
are similar to those in Table 3 we do not report the results in the case
with t-distributed errors to save space. From the results in Table 3
we can obtain some conclusions as follows. When there are no time
effect and no correlation between the covariates and the random
effects (i.e. q = 0.00), all the tests including BPl , Hl , BSY1, BSY2 and
BCLl have the desired empirical sizes and high powers. When the
potential time effect exists and there is no correlation between the

covariates and the random effects, the four tests BPl , Hl , BSY1, BSY2
have worse performance, in contrast, the test BCLl still performs
well. For the correlated setting (e.g. q = 0.50), however, all the above
five tests have distorted empirical sizes. In contrast, the tests WZl ,
WLl and Tl perform well in various settings and are robust to the
misspecification of the random effects and the correlation between
the covariates and the random effects. Among the three robust tests,
the power of the tests Tl and WLl are significantly higher power
than that of the test WZl , which is consistent with our expectations.
Although both the two tests Tl and WLl have the desired perfor-
mance in various cases, the latter performs slightly better than the
former in the simulation study.

We compare our time effect test with the existing tests in the lit-
erature such as the two-sided test BPk (Breusch and Pagan, 1980), the
modified one-sided test Hk (Honda, 1985), the conditional LM test
BCLk (Baltagi et al., 1992), the residual-based test WZk (Wu and Zhu,
2011) and the moment-based test WLk (Wu and Li, 2014). The sim-
ulation results are similar to those of the individual effect tests and
then not reported here to save space.

5. Conclusions

On the basis of the comparison of various estimators of the vari-
ance of the idiosyncratic error, two new tests are constructed for
the existence of random effects in linear panel data models with

Table 2
The empirical size and power of the test Tk for time effect in model (11). The nominal size is 5%.

Error distribution n T c1 c2 = 0.0 c2 = 0.2 c2 = 0.4 c2 = 0.6 c2 = 0.8 c2 = 1.0

N(0, 1) 100 10 0 0.061 0.095 0.323 0.738 0.945 0.991
100 20 0 0.053 0.142 0.495 0.930 0.997 1.000
200 10 0 0.052 0.121 0.486 0.888 0.980 1.000
200 20 0 0.053 0.153 0.691 0.987 0.999 1.000
100 10 1 0.061 0.095 0.336 0.724 0.951 0.989
100 20 1 0.049 0.137 0.490 0.941 0.997 1.000
200 10 1 0.052 0.112 0.485 0.884 0.983 0.992
200 20 1 0.052 0.158 0.706 0.990 1.000 1.000

w2
1 − 1 100 10 0 0.061 0.080 0.160 0.389 0.669 0.885

100 20 0 0.054 0.100 0.229 0.548 0.889 0.987
200 10 0 0.053 0.100 0.223 0.544 0.845 0.959
200 20 0 0.055 0.107 0.353 0.797 0.983 1.000
100 10 1 0.060 0.085 0.165 0.377 0.684 0.868
100 20 1 0.045 0.081 0.207 0.551 0.893 0.990
200 10 1 0.053 0.085 0.231 0.556 0.843 0.956
200 20 1 0.053 0.102 0.338 0.771 0.973 0.999
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Table 3
Empirical size and power of the test Tl and other seven tests for individual effect in model (11). The nominal size is 5%.

q sk sl BPl BSY1 Hl BSY2 BCLl WZl WLl Tl

(n,T) = (100,10)
0.00 0.00 0.00 0.054 0.048 0.040 0.045 0.038 0.062 0.050 0.058

0.00 0.10 0.099 0.081 0.157 0.138 0.144 0.087 0.193 0.150
0.00 0.20 0.656 0.584 0.763 0.707 0.743 0.205 0.795 0.550
0.50 0.00 0.268 0.281 0.005 0.011 0.046 0.052 0.054 0.060
0.50 0.10 0.149 0.185 0.013 0.021 0.171 0.068 0.193 0.147
0.50 0.20 0.163 0.219 0.211 0.232 0.741 0.203 0.762 0.542
1.00 0.00 0.909 0.658 0.000 0.006 0.053 0.046 0.064 0.066
1.00 0.10 0.836 0.626 0.000 0.014 0.190 0.067 0.205 0.171
1.00 0.20 0.512 0.488 0.017 0.063 0.763 0.239 0.786 0.586

0.50 0.00 0.10 0.035 0.038 0.045 0.033 0.043 0.061 0.057 0.067
0.00 0.20 0.068 0.063 0.089 0.094 0.086 0.081 0.200 0.156
0.00 0.20 0.292 0.250 0.383 0.349 0.372 0.204 0.765 0.544
0.50 0.00 0.284 0.280 0.003 0.011 0.066 0.060 0.077 0.068
0.50 0.10 0.198 0.224 0.003 0.024 0.106 0.088 0.214 0.168
0.50 0.20 0.077 0.145 0.057 0.085 0.421 0.199 0.770 0.555
1.00 0.00 0.907 0.655 0.000 0.010 0.057 0.044 0.079 0.069
1.00 0.10 0.858 0.607 0.000 0.007 0.120 0.093 0.218 0.168
1.00 0.20 0.713 0.528 0.001 0.034 0.430 0.244 0.773 0.588

(n,T) = (200,10)
0.00 0.00 0.00 0.043 0.045 0.045 0.036 0.040 0.045 0.056 0.055

0.00 0.10 0.148 0.133 0.223 0.200 0.215 0.075 0.256 0.181
0.00 0.20 0.870 0.811 0.921 0.875 0.913 0.322 0.933 0.767
0.50 0.00 0.498 0.396 0.000 0.008 0.062 0.047 0.065 0.060
0.50 0.10 0.249 0.268 0.006 0.041 0.243 0.096 0.260 0.183
0.50 0.20 0.296 0.372 0.348 0.387 0.959 0.326 0.965 0.795
1.00 0.00 0.969 0.781 0.000 0.015 0.062 0.052 0.069 0.066
1.00 0.10 0.929 0.721 0.001 0.036 0.238 0.077 0.249 0.168
1.00 0.20 0.658 0.564 0.015 0.096 0.936 0.313 0.939 0.753

0.50 0.00 0.00 0.046 0.058 0.047 0.057 0.041 0.061 0.063 0.064
0.00 0.10 0.076 0.077 0.123 0.127 0.117 0.085 0.269 0.207
0.00 0.20 0.493 0.433 0.608 0.537 0.598 0.318 0.925 0.760
0.50 0.00 0.476 0.397 0.001 0.005 0.062 0.048 0.068 0.055
0.50 0.10 0.343 0.331 0.004 0.019 0.126 0.099 0.271 0.208
0.50 0.20 0.133 0.222 0.084 0.129 0.626 0.293 0.935 0.750
1.00 0.00 0.973 0.760 0.000 0.009 0.043 0.057 0.058 0.066
1.00 0.10 0.942 0.743 0.000 0.019 0.123 0.087 0.267 0.191
1.00 0.20 0.834 0.658 0.001 0.049 0.616 0.306 0.933 0.733

no distributional assumptions. The resultant tests are one-sided,
and asymptotically normally distributed under the null hypothesis.
Power study shows that the tests can detect local alternatives dis-
tinct at the parametric rate from the null. Due to the first difference
and orthogonal transformations used in the construction of vari-
ance estimators of the idiosyncratic error, the two proposed tests
are robust to the presence of one effect and the possible correlation
between the covariates and the error components when the other
one is tested.

As argued in Remark 1, the method can be used to construct tests
for a time trend. Moreover, different from the method of Wu and Li
(2014), the method suggested in this paper can be easily extended
to construct test statistrics for the existence of random effects in the
two-way error component models with unbalanced panels. Specif-
ically, we use the difference operator to eliminate the time effect
and then use the same method of Wu et al. (2015) to construct test
statistics for the existence of random effects in the error component
models with unbalanced panels. We leave this for further study.
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Appendix A. Technical details

The proof of Theorem 1. By the same proof as that of Wu and Li
(2014), we can show that b̂ is asymptotically normal regardless of
the existence of random effects under the conditions with |S1|> 0
and cov(X′

iiT , u′
iiT ) = 0. Let U1 = diag{E(1, 1), E(2, 2), · · ·, E(T, T)} be a

partitioning diagonal matrix, and

U2 =

⎛
⎜⎜⎜⎜⎝

IT E(1, 2) + E(2, 1) · · · E(1, T) + E(T, 1)
E(1, 2) + E(2, 1) IT · · · E(2, T) + E(T, 2)

...
...

...
...

E(1, T) + E(T, 1) E(2, T) + E(T, 2) · · · IT

⎞
⎟⎟⎟⎟⎠ ,

where E(i, j) is a T × T matrix with element (i, j) = 1, and zero oth-
erwise. Under the null hypothesis (5), by Eqs. (3) and (6) and Taylor
series expansion, we have

ĉu
2,1 − ĉu

2 =
1
n

m∑
j=1

O′Du2j ⊗ Du2j + op

(
n− 1

2

)
,
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where O = 1
T vec(IT ) − 1

T−1 M2. It then follows from the conditions
E(u4

it) < ∞, E ‖ Xi ‖4< ∞, and the central limit theorem that,

√
n(ĉu

2,1 − ĉu
2) D→ N(0,V1)

as n → ∞, where

V1 = O′
[(

cu
4 +

(
cu

2

)2)U1 + 2(cu
2)2U2

]
O. (12)

Therefore, we have

√
n√

V1n

(
ĉu

2,1 − ĉu
2

)
D→ N (0, 1)

as n → ∞, where V1n is the empirical version of the limit variance
V1,

V1n = O′
[(

ĉu
4 +

(
ĉu

2

)2
)

U1 + 2
(
ĉu

2

)2
U2

]
O, (13)

and the definitions of ĉu
2 and ĉu

4 are respectively from the equations
of (3)–(4).

The proof of Theorem 2. Note that b̂ is asymptotically normal
regardless of the existence of random effects under the conditions
with |S1|> 0 and cov(X′

iiT , u′
iiT ) = 0. Under the alternatives (7), by

Eqs. (3) and (6) and Taylor series expansion, we have that

ĉu
2,1−ĉu

2 =
1
n

m∑
j=1

(
O′Du2j ⊗ Du2j + Dl ′

2jDl2j +
2
T
i′TDl2jDu2j

)
+op

(
n− 1

2

)
,

where O = 1
T vec(IT ) − 1

T−1 M2. If ncCn → q(q �= 0), 0 ≤ c < 1
2 , it then

follows from Assumptions (A) and (B) that, in probability,

Tl =
√

n
(
ĉu

2,1 − ĉu
2

)
= Cnn

1
2 + Op(1) → +∞.

In the case with n
1
2 Cn → s2

1 , it follows from Assumptions (A) and
(B), E(u4

it) < ∞, E ‖ Xi ‖4< ∞, and the central limit theorem that, as
n → ∞,

√
n
(
ĉu

2,1 − ĉu
2

)
= s2

1 +
1√
n

m∑
j=1

O′Du(2)
2j + op(1) D→ N

(
s2

1 ,V1

)
.

So, we have,

√
n√

V1n

(
ĉu

2,1 − ĉu
2

)
D→ N(cl , 1)

as n → ∞, where V1n is the empirical version of the limit variance

V1, and cl =
s2

1√
V1

, see (Eqs. (12)–(13)) for the expressions of V1 and

V1n.

The proof of Theorem 3. Recalling the asymptotic normality of b̂

regardless of the existence of random effects under the conditions

with |S1|> 0 and cov(X′
iiT , u′

iiT ) = 0. Under the null hypothesis (8),
by Eqs. (3), (9) and Taylor series expansion, we obtain that

ĉu
2,2 − ĉu

2 =
1

n(T − 1)

m∑
j=1

M′
2(u2j−1 ⊗ u2j−1 + u2j ⊗ u2j − Du2j ⊗ Du2j)

+ op(n− 1
2 )

=
1

n(T − 1)

m∑
j=1

M′
2(u2j−1 ⊗ u2j + u2j ⊗ u2j−1) + op(n− 1

2 ).

Let

U3 =

⎛
⎜⎜⎜⎜⎝

E(1, 1) E(2, 1) · · · E(T, 1)
E(1, 2) E(2, 2) · · · E(T, 2)

...
...

...
...

E(1, T) E(2, T) · · · E(T, T)

⎞
⎟⎟⎟⎟⎠ ,

where E(i, j) is a T × T matrix with element (i, j) = 1, and zero other-
wise. Further, by the conditions E(u2

it) < ∞, E ‖ Xi ‖2< ∞, and the
central limit theorem, we have that,

√
n
(
ĉu

2,2 − ĉu
2

)
D→ N(0,V2)

as n → ∞, where

V2 =
(cu

2)2

(T − 1)2
M′

2(IT2 + U3)M2. (14)

Therefore, we have

Tk =
√

n√
V2n

(
ĉu

2,2 − ĉu
2

)
D→ N(0, 1)

as n → ∞, where V2n is the empirical version of the limit variance
V2,

V2n =

(
ĉu

2

)2

(T − 1)2
M′

2(IT2 + U3)M2. (15)

The proof of Theorem 4. Recalling the asymptotic normality of b̂

regardless of random effects under the conditions with |S1|> 0 and
cov(X′

iiT , u′
iiT ) = 0. Under the alternatives (10), by Eqs. (3) and (9)

and Taylor series expansion, we have that

ĉu
2,2 − ĉu

2 =
1

n(T − 1)

m∑
j=1

M′
2(u2j−1 ⊗ u2j + u2j ⊗ u2j−1 + 2k ⊗ k + u2j−1 ⊗ k

+ k ⊗ u2j + u2j ⊗ k + k ⊗ u2j−1) + op(n− 1
2 ),

where ui = (ui1, ui2, . . . , uiT)′ and k = (k1,k2, . . . ,kT)′. If ncCn →
q(q �= 0), 0 ≤ c < 1

2 , it then follows easily that, in probability, as
n → ∞,

Tk =
√

n
(
ĉu

2,2 − ĉu
2

)
= Cnn

1
2 + Op(1) → +∞.
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In the case with n
1
2 Cn → s2

2 , it follows from E(u2
it) < ∞, E ‖ Xi ‖2<

∞, and the central limit theorem that,

√
n(ĉu

2,2 − ĉu
2) = s̃2

2 +
1√
n

m∑
j=1

1
T − 1

M′
2(u2j−1 ⊗ u2j + u2j ⊗ u2j−1) + op(1)

D→ N(s̃2
2 ,V2)

as n → ∞, where V2 is defined in Eq. (14), and

s̃2
2 =

1
T − 1

T∑
t=1

(
k∗

t − k̄∗
)2

, k̄∗ =
1
T

T∑
t=1

k∗
t , (16)

and k∗
t = n

1
4 kt being the random variable with mean zero and variance

s2
2 . So, we have

Tk =
√

n√
V2n

(
ĉu

2,2 − ĉu
2

)
D→ N(ck, 1)

as n → ∞, where V2n is the empirical version of the limit variance V2, and

ck =
s̃2

2√
V2

, see (Eqs. (14)–(16)) for the expressions of V2, V2n and s̃2
2 . �
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