
Economic Modelling 60 (2017) 1–10
Contents lists available at ScienceDirect
Economic Modelling
http://d
0264-99

n Corr
E-m
journal homepage: www.elsevier.com/locate/econmod
How are Africa's emerging stock markets related to advanced markets?
Evidence from copulas

Jones Odei Mensah, Paul Alagidede n

Wits Business School, University of the Witwatersrand, 2 St Davids Place, Parktown, Johannesburg 2193, South Africa
a r t i c l e i n f o

Article history:
Received 13 February 2016
Received in revised form
6 August 2016
Accepted 19 August 2016

JEL classification:
C32
F36
F37
G10
G11
G15

Keywords:
Copula
Quantile
Tail dependence
Comovement
African Stock Markets
Spillover
x.doi.org/10.1016/j.econmod.2016.08.022
93/& 2016 Elsevier B.V. All rights reserved.

esponding author.
ail address: paul.alagidede@wits.ac.za (P. Alag
a b s t r a c t

The finance literature provides ample evidence that diversification benefits hinges on dependence be-
tween assets returns. A notable feature of the recent financial crisis is the extent to which assets that had
hitherto moved mostly independently suddenly moved together resulting in joint losses in most ad-
vanced markets. This provides grounds to uncover the relative potential of African markets to provide
diversification benefits by means of their correlation with advanced markets. Therefore, we examine the
dependence structure between advanced and emerging African stock markets using copulas. Several
findings are documented. First, dependence is time-varying and weak for most African markets, except
South Africa. Second, we find evidence of asymmetric dependence, suggesting that stock return
comovement varies in bearish and bullish markets. Third, extreme downward stock price movements in
the advanced markets do not have significant spillover effects on Africa’s emerging stock markets. Our
results, implying that African markets, with the exception of South Africa, are immune to risk spillover
from advanced markets, improves the extant literature and have implications for portfolio diversification
and risk management.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The nature of dependence across stock returns plays a crucial
role in asset pricing, portfolio allocation and policy formulation.
Investment practitioners pay close attention to the comovement
between equity markets, as a proper grasp of its nature and
measurement affects the risk-return trade-off from international
diversification; typically, international portfolio diversification
becomes less effective when markets are in turmoil. Policy makers,
on the other hand, are more interested in how strong linkage
across stock markets influences the transmission of shocks, its
consequences as well as implications for risk management.

There is vast literature on the dependence between interna-
tional stock markets, mainly spurred by the seminal contribution
of Grubel (1968) who asserted that investors could obtain welfare
gains by diversifying their portfolio internationally, where the
gains hinges primarily on the correlation between stocks. Linear
correlation has been used as the canonical measure of association
idede).
between stocks due to its convenient properties (see Embrechts
et al. 2002). Early works in this area were based on models that
jointly price stocks under the assumption of constant correlation
(Agmon, 1972; Solnik, 1974). Subsequent contributions present
evidence that stock return comovement varies with time (Brooks
and Del Negro, 2004; Forbes and Rigobon, 2002; Kizys and
Pierdzioch, 2009). Owing to the drawbacks of linear correlation,
multivariate GARCH models have become the typical approach of
modelling time-varying stock dependence and there is ex-
ponential growth of research in this area (see Syllignakis and
Kouretas, 2011; Gjika and Horvath, 2013; Baumöhl and Lyócsa,
2014; Kundu and Sarkar, 2016). However, one major limitation of
the multivariate GARCH approach is the assumption that return
innovations are characterised by a symmetric multivariate normal
or Student-t distribution (Patton, 2006; Garcia and Tsafack, 2011).
Evidently, this assumption seems to be at odds with the empirics;
the distribution of financial returns possesses heavy tails than
those of the normal distribution and dependence between stocks
returns are usually nonlinear and asymmetric (Embrechts et al.
2002).

Against this background, researchers have resorted to a rela-
tively new approach, copula, to model the dependence between
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stock returns. Copulas are functions that join multivariate dis-
tributions to their one-dimensional margins. For instance, given
two random variables X1 and X2 with marginal distributions ( )F x1 1

and ( )F x2 2 , we can express their joint cumulative distribution
function as ( ) = ( ) ( )⎡⎣ ⎤⎦F x x C F x F x, , ,1 2 1 1 2 2 (Sklar, 1959). We can infer
from this expression that to obtain the joint distribution, one
needs to know how X and Y are related, in addition to their in-
dividual marginal distributions. In this regard, the copula function
C provides this other information. Thus, copulas by definition
provide a realistic description of the dependence structure be-
tween random variables over their whole range of variation,
including linear and non-linear dependence, symmetric and
asymmetric dependence, and extreme or tail dependence. More-
over, copula functions are invariant to non-linear strictly increas-
ing transformations of the data, unlike conventional measures of
dependence, such as linear correlations (Embrechts et al. 2002).
For example, the dependence between X1 and X2 will be the same
as the dependence between ln( X1) and ln(X2).

Owing to these useful properties, copula models have attracted
special attention in recent academic works. For example, Yang et al
(2015) investigates the dependence structure among international
stock markets using hierarchical Archimedean copulas and finds
strong dependence between Emerging and European stock mar-
kets, weak dependence between Frontier and other markets, and
evidence of contagion during the global and the EU debt crisis.
Similarly, using static copulas, Basher et al (2014) studies the de-
pendence pattern across GCC stock returns and concludes that
dependence is asymmetric. Bhatti and Nguyen (2012) uses con-
ditional extreme value theory and time-varying copula to capture
the tail dependence between the Australian financial market and
other selected international stock markets and documents evi-
dence of tail dependence. Mensah and Premaratne (2014) also
examine the dependence structure among banking sector stocks
from 12 Asian markets using static and time-varying copulas and
uncovers evidence of asymmetric dependence. Intriguingly, almost
all of these studies are mainly focused on international markets,
other than those from Africa.

Although studies abound, there is no empirical evidence on the
dependence structure of African stock markets with other inter-
national stock markets. Only a smattering of papers has focused on
the comovement of Africa's emerging stock markets with other
international markets, despite the region's growing importance in
the global economy. It is also instructive to note that the few ex-
isting empirical studies on Africa (Adjasi and Biekpe, 2006; Ala-
gidede, 2009; Alagidede et al. (2011) focus on comovement using
cointegration techniques, which has major weaknesses. For in-
stance, it requires long span of data, which many of the equity
markets in Africa, with the exception of a few, do not have, thus
rendering a number of the previous studies questionable. More-
over, using linear dependence measures is at odds with the widely
acknowledged fact that return distributions are non-normal. It is
therefore essential to assess the dependence between African
stock markets and other international markets with more accurate
measures of dependence.

The contribution of this paper is twofold. Firstly, to the best of
our knowledge, this is the first study that applies copula models to
investigate the time-varying dependence structure between in-
ternational and African stock returns. We characterize the bivari-
ate dependence structure between African and other international
stock returns through copulas. To model the dynamic dependence,
we use the Generalised Autoregressve Score (GAS) model pro-
posed by Creal, Koopman and Lucas (2013), which uses the stan-
dardized score of the copula log-likelihood function to update
parameters over time. The GAS model performs well in capt-
uring different types of dynamics compared to the lagged and
autoregressive specification in Patton (2006) and the DCC speci-
fication in Christoffersen et al (2012) and Christoffersen and Lan-
glois (2013). Thus, our study provides new insight on the depen-
dence structure of African stock markets.

Secondly, this study is novel as it investigates African stock
market quantiles conditional on advanced stock price movements,
with the aim of uncovering shock spillovers. In this respect, a few
studies have applied copula and quantile models in order to cap-
ture shock spillovers. For example, Sim and Zhou (2015) used a
quantile-on-quantile regression to characterize the effect of oil
price shock quantiles on US stock return quantiles. Subsequently,
Reboredo and Ugolini (2016) used a copula-based approach to
investigate the impact of quantile and interquantile oil price
movements on different stock return quantiles for a broad set of
global indices. They compute unconditional and conditional
quantile stock return quantiles based on marginal models for stock
returns and copula functions for oil-stock dependence and proof
the effectiveness of this approach. In line with Reboredo and
Ugolini (2016), we capture the dependence structure between
stock returns and compute unconditional and conditional quantile
using marginal models and copulas.

Foreshadowing the main results, we document that African and
advanced market dependence structure is time varying and differs
across African stock markets. South Africa's upside and downside
dependence with advanced markets is clearly distinguishable from
the remaining African stock markets. Yet, we find no downside
spillover effects, even for South Africa whose tail dependence is
clearly distinguishable, thus leading to the conclusion that ex-
treme stock market events have a limited impact on African stocks.
The paper concludes that there could be limit to portfolio di-
versification benefits, from the perspective of international in-
vestors, if the South African index and typical African stock indices
are held together in a portfolio.

The rest of the paper is structured as follows. Brief discussion of
copula theory is undertaken in Section 2. Section 3 presents the
empirical application of copula models. Section 4 presents the data
while results and analysis are undertaken in Section 5. Section 6
concludes the paper.
2. Copula theory

This section of the paper presents a brief discussion of copula
theory. Sklar (1959) first introduced the idea of copula, which
states that an n-dimensional joint distribution can be decomposed
into its n univariate marginal distributions and an n-dimensional
copula: Let ( )= …X X X, , n1 denote a random vector with distribution
function F and with marginal functions ~ ≤ ≤F X F I n, ,1i i i . There
exist a distributional function C , known as the copula of the
variable X , that maps [0,1]n into [0,1] such that

( … ) = ( ) … ( ) ( )⎡⎣ ⎤⎦F x x C F x F x, , , , . 1n n n1 1 1

Thus, the copula C of the variable X is the function that maps
the univariate marginal distributions Fi to the joint distribution F .
Alternatively, the copula function can be understood by means of
the “probability integral transformation” (PIT), ( )=U F Xi i i , (Patton,
2012). As shown in Patton (2012), conditional on the fact that Fi is
continuous the variable Ui will have the ( )Unif 0,1 distribution ir-
respective of the original distribution Fi:

( ) ( )= ~ = … ( )U F X Unif i n0, 1 , 1, , 2i i i

Hence, we can understand the copula C of the variable X as the
joint distribution of the vector of probability integral transforma-
tions, = [ ]′U U U, ...i n1 , and thus is a joint function whose ma-
rgins are ( )Unif 0,1 (Patton, 2012). Differentiating the above
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representation once with respect to all its arguments, we obtain
the joint probability density function as follows:

( ) ∏( … ) = ( ) … ( ) × ( )
( )=

f x x c F x F x f x, , , ,
3

n n n
i

n

i i1 1 1
1

where ( … )= ∂ ( … )
∂ … ∂c u u, , n
C u u
u u1

, ,
, ,

n n

n

1

1
Estimation of the joint cdf F consist the following two steps:

(i) We identify and estimate the marginal (ii) we identity and es-
timate the copula functions. The flexibility of separating the
marginal distributions and the copula means that one can com-
bine different family of distributions, which will be valid. For ex-
ample, combining a skewed distributed variable with a symme-
trically distributed variable via t-copula will be a valid joint dis-
tribution, although strange. Hence, the abundant research on
modelling univariate distributions becomes useful to the re-
searcher, leaving just the task of modelling the dependence
structure (Patton, 2012). A further account of unconditional co-
pulas can be found in Cherubini Luciano and Vecchiato (2004),
Nelsen (2007) and Heinen and Valdesogo (2012).

The literature due to Patton (2006) extends Sklar's theorem to
conditional distributions, making it useful for time series appli-
cations. Since the marginal distribution for returns of financial
series exhibit time-varying means and volatility, the conditional
copula, serves as a useful tool in capturing the dependence in that
regard. Let ( )= …X X X, ,t t nt1 denote a stochastic process and t de-
note an information set available at time t , and let the conditional
distribution of ( )… || −X X, ,t nt t1 1 be Ft . Then

( ) ( )( … )= … ( )− − −
⎡⎣ ⎤⎦  F x x C F x F x, , , , 4t t nt t t t t t nt nt t1 1 1 1 1 1

An important step required in applying Sklar's theorem to
conditional distribution is to ensure that the conditioning in-
formation be same for all marginal distributions and the copula.
The common practice is to assume that the marginal models de-
pend only on their respective past information whereas the copula
can be conditioned on past information of all series. An account of
the case when differing information sets are used can be found in
Fermanian and Wegkamp (2012).
3. Empirical methods

3.1. Marginal models

Prior to fitting the bivariate copula models, we must first spe-
cify appropriate models for the conditional marginal distributions.
Financial time series exhibit some well-documented character-
istics such as long-memory, fat-tails, and conditional hetero-
scedasticity. Thus, it suffices to apply autoregressive-moving
average (ARMA(p,q)) models to the conditional means (where p is
the order of the autoregressive part and q is the order to the
moving average part) as well as generalised autoregressive con-
ditional heteroskedasticity (GARCH(p,q)) models to the conditional
variances (where p and q are the order of the GARCH and ARCH
terms, respectively) as follows:

∑ ∑ε φ θ ε= + + +
( )=

−
=

−Y c Y
5

t t
i

p

i t i
i

q

i t i
1 1

ε σ= ~ ( ) ( )z z NIID, 0, 1 6t t t t

∑ ∑σ ω α ε β σ= + +
( )=

−
=

−
7

t
i

q

i t i
i

p

i t i
2

1

2

1

2

where Yt is the log-difference of stock market price at time t; c is
the constant term in the mean equation;εt is the real-valued dis-
crete time stochastic process at time t; zt is an unobservable
random variable belonging to an i.i.d. process; σt

2 is the conditional
variance of εt;ω, αi and βi are the constant, ARCH parameter, and
GARCH parameters respectively. In the case of GARCH (1,1) model,
the following inequality restrictions must be satisfied to ensure
that the model is rightly specified: (i) ω ≥ 0, (ii) α ≥ 01 , (iii) β ≥ 01
and (iv) α β+ < 11 1 . When α β+ = 11 1 then the conditional variance
will not converge on a constant unconditional variance in the long
run (Bollerslev, 1986). We estimate the GARCH models by max-
imum likelihood.

3.2. Copula models

Eq. (1) outlined the copula distribution for n number of assets.
For simplicity, this study only considers bivariate copulas. Hence,
the bivariate distribution F with margins F1,F1can be written as:

( ) = ( ) ( ) ( )⎡⎣ ⎤⎦F x x C F x F x, , , 81 2 1 1 2 2

The copula of the joint distribution function for a random
vector = ( )X X X,1 2 can be written as

( ) = ( ) ( ) ( )
− −⎡⎣ ⎤⎦C u v F F u F v, , , 91

1
2

1

where the quantile functions of margins is − ( )=F u1
{ }( )≥ ∈ [ ]x:F x u uinf , 0,1 .
An important observation from Eq. (8) is that the joint dis-

tribution is split into marginal parts and the dependence structure
(copula) without losing any information. As mentioned earlier, the
marginal parts, F1 and F1, are not required to be from the same
distribution family.

An advantage of copula models is that for many forms we can
easily obtain tail dependence which measures captures the prob-
ability that the two random variables are in their lower (upper)
joint tails. The tail dependence captures the behaviour of the
random variables during extreme events. For example, given two
stock market returns, X1 and X2, tail dependence measures the
probability that we will observe an extremely large fall (rise) of
stock market X1 given that the stock market X2 has experienced an
extreme fall (rise). The tail dependence determines whether the
two markets crash or boom together, thus investors holding long
portfolios are mainly concerned with the downward movement,
whereas the risk of large upward movement is the concern of
investors holding short positions. We can define the lower and
upper tail dependence between X1 and X2 as:

τ { ( ) ≤ | ( ) ≤ } = ( )
( )→ →F X u F X u

C u u
u

lim Pr lim
,

10
L

u u0 1 2 0

τ { ( ) ≥ | ( ) ≥ } = − + ( )
− ( )→ →F X u F X u

u C u u
u

lim Pr lim
1 2 ,

1 11
U

u u1 1 2 1

where τL and τ ∈ ( )0, 1U . If the above limits exist and if τL and τ > 0U ,
X1 and X2 tend to be left (lower) or right (upper) tail dependent.

For the purpose of capturing different patterns of tail dependence,
we estimate Eq. (8) for four different copula specifications as shown in
Table 1. The functional forms considered are the Gaussian (Normal),
Student's t, Gumbel, and rotated Gumbel copulas. The Gaussian copula
is the most widely used in finance due to its convenient properties.
However, it is unable to capture tail dependence. The Student's t co-
pula on the other hand assumes symmetric dependence for both
lower and upper tails of the joint distribution. The rotated Gumbel
copula is useful only when examining dependence during market
crashes; conversely, the Gumbel copula is able to capture only upper
tail dependence, thus making it useful during periods of market boom.



Table 1
Copula specifications.

Copula Distribution Parameter Space Independence Lower tail dependence Upper tail dependence

Normal ρ Φ Φ Φ( ) = ( ( ) ( ))ρ − −C u v u v, ; ,N
1 1 ρ ∈ ( − )1, 1 ρ = 0 0 0

Student-t ρ( ) = ( ( ) ( ))ρ − −C u v d T t u t v, ; , ,T d d d, 1 1 ρ ∈ ( − )1, 1 ∈ ( ∞)d 2, ρ = 0 ρϑ ( )T d, ρϑ ( )T d,

Gumbel κ( ) = { − [( − ( )) + ( − ( )) ] }κ κ κC u v u v, ; exp ln lnG
1/ κ ∈ ( ∞)1, κ = 1 0 − κ2 21/

Rotated Gumbel κ κ( ) = + − + ( − − )C u v u v C u v, ; 1 1 , 1 ;RC G κ ∈ ( ∞)1, κ = 1 − κ2 21/ 0

Notes: The column titled “Independence” shows the parameter values that lead to independence copula. uand vdenotes the cumulative density functions of the standardized

residuals from the marginal models and ≤ ≤u v0 , 1. Φρ is the bivariate cumulative distribution of the standard normal with correlation coefficient ρ, and Φ−1is the inverse

function of the univariate normal distribution. ρTd, is the bivariate student's t distribution with correlation coefficient ρ and degree of d, which captures the extent of

symmetric extreme dependence; −t 1 is the inverse function of the univariate Student's t distribution. κ denotes the parameters for the Gumbel and rotated Gumbel copulas.

J.O. Mensah, P. Alagidede / Economic Modelling 60 (2017) 1–104
3.3. Generalized Autoregressive Score (GAS) model

The time-varying copulas are estimated based on the Gen-
eralized Autoregressive Score (GAS) model of Creal et al (2013). We
assume the copula parameter evolves as a function of its own
lagged value and a “forcing variable” related to the scaled score of
the copula log-likelihood. This approach uses strictly increasing
transformation (e.g. log) to copula parameters in order to ensure
that parameters are constrained to lie in a particular range
(e.g ρ ∈ ( − )1, 1 ). Following Patton (2012), the evolution of the
transformed parameter is denoted by:

δ δ= ( ) ⇔ = ( ) ( )−f h h f 12t t t t
1

where

θ β α= + + ( )+
−f f I s 13t t t t1

1/2

ρ
δ≡ ∂

∂
( )

( )
s c u vlog , ;

14
t t t t

δ≡ ′ = ( ) ( )− ⎡⎣ ⎤⎦I E s s I 15t t t t t1

By these expressions, the future value of the copula parameter
depends on a constant, the present value, and the score of the
copula log-likelihood −I st t

1/2 . We apply the GAS model to the time-
varying Gaussian, Gumbel and rotated Gumbel copulas.1 We use

( ) ( ){ } { }δ = − − +f f1 exp 1 expt t t to ensure that the Gaussian
copula parameter lie in (�1, 1). We use the function
δ = + ( )f1 expt t to ensure that the Gumbel and rotated copula
parameter is greater than one.

We can estimate the copula parameters using two alternative
frameworks: Maximum Likelihood Estimation (MLE) method and
the Inference functions for the Margins (IFM). We estimate the
copulas in this study by the latter method due to its advantages
over the MLE. First, unlike the MLE, the IFM requires few com-
putations; second, it is highly efficient; thirdly, the goodness of the
margins can be assessed separately from that of the copula; lastly,
the series of random variables are not required to be of equal
length (Bhatti and Nguyen, 2012).

3.4. Advanced stock return quantile effects on African stock return
quantiles

Apart from the dependence structure, we also examine whe-
ther extreme price movements in the advanced stock markets
1 For the student-t copulas, we considered the ARMA(1,q)-type process Patton
(2006) for the linear dependence parameter as follows ρ =t

( )( ) ( )Λ ψ ψ ρ ψ+ + ∑− =
−

−
−

−t u t v.t q j
q

v t j v t j1 0 1 1 2
1

1
1 1 Where Λ = ( − )( + )− − −e e1 1x x

1
1 is

modified logistic transformation that which forces the value of within the interval
(-1,1).
have any spillover effects on African stocks. In this regard, we
examine the impact of lower quantile advanced stock price
movements on African stock price quantile. In line with Reboredo
and Ugolini (2016), the α-quantile of stock return distribution at
time t, given by.

α( ≤ ) =αp y qt t
y
,
t , can be computed as:

α= ( ) ( )α
−q F 16t

y
y,

1t
t

where yt is the stock return, α( )−Fy
1

t
is the inverse of the dis-

tribution function of yt . The α-quantile for low values of alpha is
typically referred to as value-at-risk (VaR). Furthermore, we can
obtain the conditional α − quantile of African stock return dis-
tribution at time t for a given β-quantile of advanced market stock
return given by ( ) α≤ ≤ =α β βp y q x qt t

y x
t t

x
, , ,
t t t as:

α= ( )
( )α β

|
| ≤

−
β

q F
17t

y x
y x q, ,

1t t
t t t

xt
,

where α( )
| ≤

−
β

F
y x q

1
t t t

xt
,

denotes the inverse distribution of yt condi-

tional on the fact that ≤ βx qt t
x
,
t .

Given the conditional mean and variance information (Eqs. (4)–
(6)), we compute the unconditional α − quantile of the stock re-
turn as

μ α σ= + ( ) ( )α
−q F 18t

y
t t,

1t

Moreover, since Sklar's theorem allows us to express the joint
distribution of y and x as ( ) = ( ( ) ( ))F x y C F x F y, ,X Y X Y, , we can
compute the conditional quantiles using copula as

( )( )= ^
( )α β α β

| − |q F F q 19t
y x

y y t
y x

, ,
1

, ,
t t

t t
t t

4. Data

We use the following stock indices: FTSE/JSE All Share (JSEOVER)
for South Africa, Hermes Financial (EGHFINC) for Egypt, Nigeria All
Share (NIGALSH), Nairobi SE (NSE20) for Kenya, FTSE 100 for United
Kingdom and the S&P 500 COMPOSITE for the United Sates. These
are tradeable indices readily available to market participants; hence,
the returns are a true reflection of the gains an investor could make
by holding them in a portfolio. The four African markets are the
largest, in terms of listed companies, in their respective sub regions,
that is Southern Africa, North Africa, East Africa, and West Africa.
Another reason for this selection is that all the markets have daily
data for a relatively long sample period. The data is gleaned from
Datastream and covers the period January 2000 to April 2014.
The returns are calculated as 100 times the difference in the log of
prices.

Table 2 shows the descriptive statistics. The mean percentage
returns are close to zero in all cases and small compared to the
standard deviations indicating high volatility in all the markets.



Table 2
Descriptive statistics.

Mean Std. Dev. Skewness Kurtosis JB ( )Q 2 ( )Q 22 ARCH(2)

South Africa 0.00045 0.0124 -0.1893 6.79 2244.98a 7.9277 b 392.6 a 180.43 a

Egypt 0.00046 0.0162 -0.5519 12.54 14,275.55 a 62.003 a 296.78 a 144.19 a

Kenya 0.00020 0.0094 0.3041 34.45 153,138.70 a 387.33 a 1252.3 a 644.41 a

Nigeria 0.00053 0.0133 -0.8079 399.68 24,357,436.00 a 47.995 a 932.58 a 917.64 a

United States -3.48E-06 0.0124 -0.1474 9.36 6275.25 a 17.114 a 529.25 a 243.76 a

United Kingdom 5.99E-05 0.0128 -0.1752 11.2060 10,442.3200 a 35.163 a 661.16 a 337.14 a

Notes: The table displays the summary statistics for daily stock returns of the various markets from January 2000 to April 2014. Std. Dev. denotes the standard deviation. JB

refers to the Jarque-Bera test for normality. ( )Q 2 and ( )Q 22 are the Ljung-Box-Q-statistics and Ljung-Box-Q2-statistics for serial correlation of order 2 in returns and squared
returns. ARCH(2) is the Lagrange multiplier test for autoregressive conditional heteroscedasticity of order 2. a and b denote statistical significance at 1% and 5% , respectively.

Table 3
Linear Correlation.

US UK South Africa Kenya Nigeria

UK 0.5323
South Africa 0.5881 0.3448
Kenya 0.0303 0.0100 0.0227
Nigeria 0.0046 0.0020 0.0201 0.0054
Egypt 0.1292 0.0704 0.1497 0.0518 0.0254

Table 5
Goodness of fit tests.

Breusch-Godfrey serial correlation LM test p-value

First moment Second
moment

Third
moment

Fourth
moment

South Africa 0.5808 0.9852 0.9969 0.9995
Egypt 0.4158 0.4172 0.9961 0.999
Kenya 0.7343 0.9474 0.6931 0.9899
Nigeria 0.3840 0.1053 0.2508 0.1611
USA 0.2497 0.1756 0.1560 0.1955
UK 0.5522 0.9945 0.9990 0.9907

Notes: The table presents the p-values for the test for serial correlations in the
standardized residuals of the stock returns, based on Breusch-Godfrey serial cor-
relation LM at 10 lags. The test was carried out for four moments
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Comparing the means, we notice Nigeria is the highest, followed
by South Africa, whereas USA shows the lowest performance over
the sample period. Furthermore, with the exception of Kenya, all
the stock returns are negatively skewed and have excess kurtosis,
suggesting a relatively higher probability of extreme negative re-
turns compared to extreme positive returns. The Ljung-Box test
confirms the presence of strong autocorrelation. The Jarque-Bera
statistic (Jarque and Bera, 1980, 1981) strongly rejects the null
hypothesis of normality in the return distributions. Finally, the
ARCH-LM test (Engle, 1982) strongly confirms the presence of
ARCH-effects in the individual series, thus, it suffices to model the
return distributions with GARCH models.

Table 3 shows linear correlation among the six markets. Of im-
portance is the correlation between the United States and African
Table 4
Estimates of the marginal models.

South Africa Egypt Kenya

Panel A: Conditional mean
c 0.0008 a 0.0007 a 0.0005

(0.0002) (0.0003) (4.257
φ1 0.0393 b -0.1940 b 0.0864

(0.0176) (0.0884) (4.966
φ2

θ1 0.3686 a

(0.0831)

Panel B: Conditional variance
ω 0.0000 a 0.0000 a 0.0000

(0.0000) (0.000) (0.000
α1 0.0867 a 0.0484 a 0.1256

(0.0098) (5.0866) (0.003
β1 0.8994a 0.8398 a 0.8605

(0.0111) (0.0044) (0.002
Asym 0.0818 a

(0.0105)
α β+1 1 0.9864 0.9132 0.9861
Log Like 11,564.61 10,416.47 13,074

Notes: The table shows the marginal model estimates for the stock returns over the pe
conditional mean, modelled using an ARMA(p,q) model; Panel B contains parameter es
constant, AR(1), AR(2) and MA(1) terms. ω,α1, β1 are the constant, ARCH, and GARCH
parenthesis are the standard errors. a and b indicates statistical significance at 1% and 5
markets on one hand, and the correlation between the United
Kingdom and African markets on the other hand. The ranking for
the USA-related pairs from lowest to highest is USA-Nigeria, USA-
Kenya, USA-Egypt and USA-South Africa. Similarly, the linear cor-
relation from lowest to highest for the UK-related pairs is UK-Ni-
geria, UK-Kenya, UK-Egypt and UK-South Africa. With the exception
of the USA-South Africa (0.5881) and UK-South Africa (0.3448),
correlation is generally low among the remaining pairs. At the
Nigeria USA UK

b 0.0004 b 0.0004 a 0.0005 a

3) (0.0002) (0.0000) (0.0001)
b 0.3451a 0.8906 a -0.0588 a

6) (0.0191) (0.0320) (0.0189)
0.0529 a 0.0339 c -0.0335 b

(0.0175) (0.0189) (0.0170)
-0.9513 a

(0.0250)

a 0.0000 a 0.0000 a 0.0000 a

0) (0.0000) (0.0000) (0.0000)
a 0.2625 a 0.1004 a 0.0816 a

8) (0.0222) (0.0076) (0.0064)
a 0.5886 a 0.8908 a 0.9078 a

1) (0.0238) (0.0079) (0.0069)

0.8510 0.9913 0.9895
.77 12,745.34 11,842.44 11,771.45

riod January 2000 to April 2014. Panel A contains the parameter estimates for the
timates from GARCH (p,q) models of the conditional variance. c ,φ1, φ2, θ1 are the
terms. Asym denotes the asymmetry term from the GJR-GARCH model. Values in
%, respectively



Table 6
Estimates of static and time-varying copulas: US-related Pairs.

Panel A: Parameter estimates for time-invariant copulas

South Africa Egypt Kenya Nigeria

Gaussian copula

ρ̂ 0.5692 a 0.1260 a 0.0084 0.0459 a

(0.0108) (0.0163) (0.0178) (0.0169)
AIC 1455.641 61.3942 2.2598 9.8206

Student-t copula

ρ̂ 0.5740 a 0.1265 a 0.0076 0.0460 a

(0.0097) (0.0162) (0.0179) (0.0171)

^−
d

1 0.1015 a 0.0287 a 0.0100 0.0100

(0.0165) (0.0137) (0.0098) (0.0100)
AIC 1501.1034 66.1012 4.7556 12.2578

Gumbel copula

κ̂ 1.5571 a 1.0700 a 1.0086 a 1.0207 a

CI95% [1.5203 1.5939] [1.0478
1.0921]

[0.9950 1.0222] [1.0021 1.0392]

AIC 1308.717 44.357 �85.1466 �43.082

Rotated Gumbel copula

κ̂ 1.5860 a 1.0726 a 1.0096 a 1.0237 a

CI95% [1.5472 1.6248] [1.0502
1.0949]

[0.9944 1.0248] [ 1.0050 1.0423]

AIC 1435.2998 48.302 �96.283 �38.247

Panel B: Parameter estimates for time-varying copulas

South Africa Egypt Kenya Nigeria
TVP-Gaussian
ψ0 1.2956 a 0.2199 a 0.0063 �0.0500

(0.0909) (0.0992) (0.0423) (0.4353)
ψ1 0.0336 a 0.0073 0.0293 a 0.0017 a

(0.0077) (0.0044) (0.0081) (0.0008)
ψ2 0.9848 a 0.9962 a 0.9000 a 0.9979 a

(0.0075) (0.0052) (0.0436) (0.0009)
AIC �1588.8831 �81.5262 �11.7411 �8.3358

TVP-Student-t
θ 15.0156 a 42.2699 168.7239 a 109.3105 a

(3.8400) (84.475) (3.9330) (21.8590)
α̃ 0.0285 a 0.0082) 0.0280 a 0.0017

(0.0090) (0.0090) (0.0080) (0.0010)

β̃ 0.9618 a 0.9882 a 0.8746 a 0.9979 a

(0.0140) (0.0170) (0.0360) (0.0011)
AIC �1615.879 �85.6932 �10.9631 �7.5584

TVP-Gumbel
ϖ �0.0090 a �0.0080 a �0.1873 �0.0128

(0.0019) (0.0024) (0.3425) (0.0174)
ᾱ 0.0754 a 0.0736 a �0.0066 0.0356 a

(0.0178) (0.0223) (0.0898) (0.0171)
β̄ 0.9849 a 0.9972 a 0.9581 a 0.9965 a

(0.0041) (0.0009) (0.0816) (0.0048)
AIC �1401.9678 �67.4109 6.6844 �0.1744

TVP-rotated Gumbel
ϖ �0.0082 �0.0084 �0.0144 �0.0147

(0.0149) (0.0103) (0.0357) (0.0138)
ᾱ 0.0756 0.0588 0.0321 0.0355 a

(0.0730) (0.0380) (0.0463) (0.0138)
β̄ 0.9852 a 0.9968 a 0.9963 a 0.9958 a

(0.0269) (0.0041) (0.0094) (0.0040)
AIC �1530.5475 �72.8748 15.2325 �3.6294

Notes: the table reports the maximum likelihood estimates for the different pair-
copulas. 95% confidence intervals are given in brackets. Standard errors are given in
parenthesis.

a denotes statistical significance at 1% level.

Table 7
Estimates of static and time-varying copulas: UK-related Pairs.

Panel A: Parameter estimates for time-invariant copulas

UK-South
Africa

UK-Egypt UK-Kenya UK-Nigeria

Gaussian copula

ρ̂ 0.3478 a 0.0613 a -0.0039 0.0130

(0.0161) (0.0178) (0.0162) (0.0140)
AIC 480.7052 15.9648 2.0566 2.626

Student-t copula

ρ̂ 0.3498 a 0.0624 a �0.0042 0.0136

(0.0148) (0.0182) (0.0162) (0.0142)

^−
d

1 0.0798 a 0.0100 0.0100 0.0100 a

(0.0227) (0.0184) (0.0143) (0.0030)
AIC 505.5392 20.1938 5.0554 3.9482

Gumbel copula

κ̂ 1.2555 a 1.0229 a 1.0030 a 1.0000 a

CI95% [1.2268 1.2841] [1.0030
1.0427]

[0.9867 1.0193] [0.9832 1.0169]

AIC 428.5182 �36.7376 �85.1466 �87.8474

Rotated Gumbel copula

κ̂ 1.2655 a 1.0405 a 1.0010 a 1.0052 a

CI95% [1.2359 1.2952] [1.0202
1.0609]

[0.9876 1.0145] [0.9875 1.0229]

AIC 462.2446 �6.4062 �96.283 �75.4704

Panel B: Parameter estimates for time-varying copulas

South Africa Egypt Kenya Nigeria
TVP-Gaussian copula
ψ0 0.6445 a 0.1207 a �0.0106 0.0266

(0.1567) (0.0571) (0.0355) (0.0345)
ψ1 0.0069 a 0.0028 0.0100 0.0093

(0.0020) (0.0017) (0.0073) (0.0096)
ψ2 0.9985 a 0.9965 a 0.8642 a 0.8121 a

(0.0015) (0.0037) (0.1121) (0.1803)
AIC �522.6071 �12.4225 4.1819 4.5830

TVP-Student-t
θ 14.6947 a 26.7856 a 53.5511 198.7639 a

(3.9230) (11.0560) (84.383) (2.2860)
α̃ 0.0063 a 0.003 b 0.0108 0.0098

(0.0020) (0.0020) (0.0090) (0.0110)

β̃ 0.9923 a 0.9937 a 0.8558 a 0.8015 a

(0.0030) (0.0030) (0.0600) (0.0960)
AIC �539.9817 �17.1798 2.8237 4.862

TVP-Gumbel
ϖ �0.0030 c �0.0125 �0.0149 a �0.1601

(0.0015) (0.0077) (0.0000) (0.2287)
ᾱ 0.0281 a 0.0390 a 0.0295 0.0400

(0.0070) 0.0192) (0.0759) (0.5577)
β̄ 0.9979 a 0.9964 a 0.9962 a 0.9622 a

(0.0011) (0.0022) (0.0010) (0.0541)
AIC �465.1842 �2.8861 11.7838 9.3908

TVP-Rotated Gumbel
ϖ �0.0026 a �0.0121 a �0.0183 a �0.1783 a

(0.0007) (0.0027) (0.0000) (0.0000)
ᾱ 0.0237 a 0.0406 c 0.0148 0.0070

(0.0068) (0.0217) (0.0151) (0.0540)
β̄ 0.9981 a 0.9964 a 0.9956 a 0.9606 a

(0.0004) (0.0006) (0.0007) (0.0059)
AIC �491.4105 �16.1150 14.6976 6.1919

Notes: the table reports the maximum likelihood estimates for the different pair-
copulas. 95% confidence intervals are given in brackets. Asymptotic standard errors
are in parenthesis. a and b denotes statistical significance at 1% and 5% levels,
respectively.
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surface, the low correlation seems to be an indication of the pos-
sible benefits from diversification. However, it is instructive to note
that the correlation coefficient only tell us about the average de-
pendence over the entire distribution, thus, it would be misleading
if one uses it to make inferences about diversification opportunities.
Besides other shortcomings, correlation is a linear measure and is
unable to capture the nonlinear dependence among the markets,
hence the need for the copula technique, which is more robust.
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Fig. 1. Time-varying Gaussian Copula dependence of the USA, UK and African stock markets. Notes: The black line denotes the time-varying dependence between the UK
stock market and African stock markets. The grey line denotes the time-varying dependence between the US stock market and African stock markets. African markets
considered include South Africa (RSA), Egypt (EGY), Kenya (KNY) and Nigeria (NIG).
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5. Empirical results

5.1. Estimates of marginal models

Prior to estimating the copula models, we apply an ARMA fil-
tration to the stock return series to ensure the residuals have an
expected return of zero and free from autocorrelation. We then
test the fitted series for ARCH-effects using the ARCH-LM test and
the results indicate that each of the series shows evidence of
heteroscedasticity. We therefore determine the optimal lag length
for each univariate GARCH and fit various specifications to the
second moments. Table 4 shows the estimates of the ARMA-
GARCH models for the stock returns. The best fitting models based
on the Akaike information criterion (AIC) are AR(I)-GARCH(1,1) for
South Africa, ARMA(1,1)-GJR-GARCH (1,1) for Egypt, ARMA(1,1)-
GARCH(1,1) for Kenya, AR(2)-GARCH(1,1) for USA and AR(2)-
GARCH(1,1) for Nigeria and U.K. Table 4 shows that the estimated
conditional variance is impacted by past squared shocks (between
0.7334 to 0.2624) as well as past conditional variance (around
0.5886 to 0.9078).

Subsequent to the marginal specifications, we use the empirical
distribution function to transform the standardized iid residuals
into uniform margins, thus making our model semiparametric.
Semiparametric models have much empirical appeal compared
with the fully parametric models (Patton, 2012). We then carry out
the goodness-of-fit for the marginal models by applying the
Breusch-Godfrey serial correlation LM (BGLM) (Breusch, 1978;
Godfrey, 1978) test to the probability integral transformations
(PITs) of the underlying error terms from each of the ARMA(p,q)-
GARCH(p,q) processes. We carry out the BGLM test for the first
four moments of the probability integral transforms (u and v) of
the standardized residuals from the marginal models; that is, we
regress ( − ¯)u u k and ( − ¯)v v k on 10 lags of both variables lags for
=k 1, 2, 3, 4. The p-values shown in Table 5 gives no indication of

serial correlation, thus justifying the appropriateness of the mar-
ginal models.

5.2. Copula estimates

Table 6 reports estimates of static and time-varying copula
dependence between the US and African stock markets. The re-
sults for the UK-related pairs are shown in Table 7. Since the
parameter estimates for the Gaussian and student-t copula cap-
tures the dependence between the markets, we can state that the
higher the value of ρ̂ , the higher the dependence between the
stock markets.

The ρ̂ estimates in Table 6 are statistically significant for all
African markets, with the exception of Kenya. The ρ̂ estimates for
South Africa shows a moderate positive relationship with the US
and it is clearly distinguishable from Egypt and Nigeria, which
show weak positive linear relationship with the US stock market.
Moreover, the time-varying Gaussian and student-t copula para-
meters both show the existence of time-varying dependence be-
tween the markets.

For the UK stock market, the Gaussian and student-t copula
parameter estimates in Table 7 show the existence of weak uphill
linear relationship with South Africa and Egypt only; ρ̂ is not
statistically significant for Kenya and Nigeria. Both the time-
varying Gaussian and student-t copula parameters corroborate the
existence of dynamic dependence for South Africa and Egypt.

Fig. 1 depicts the temporal evolution based on the Gaussian
copula GAS specification between the US and African stock mar-
kets (grey lines) on one hand, as well as the UK and African stock
markets (black lines), on the other hand. Clearly, there is no



Fig. 2. Time- varying lower and upper tail dependence of the US and UK with African stock markets. Notes: The red line denotes the time-varying lower tail dependence
implied by the TVP-rotated Gumbel copula. The red line denotes the time-varying upper tail dependence implied by the TVP-Gumbel copula. African markets considered
include South Africa (RSA), Egypt (EGY), Kenya (KNY) and Nigeria (NIG).
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similarity in the temporal evolution of dependence for the bi-
variate relationships. An upward trend can be found for the US-
Nigeria pair, while Egypt shows significant peaks, coinciding with
the sub-prime and Euro debt crises. The dynamic path for the
Kenyan and UK-Nigeria pair is akin to a white noise process, while
the US-South African pair exhibits mild clustering. These points to
the fact that African markets do not respond uniformly to events
in the advanced markets.

5.3. Tail dependence between advanced and African stock returns

The Gumbel (rotated Gumbel) captures upper (lower) tail de-
pendence structure between the markets. Given that the implied
tail dependence is defined as − κ2 21/ , we can say that a higher
value of κ̂ from the Gumbel (rotated Gumbel) indicates higher
upper (lower) tail dependence between the stock markets. The
static Gumbel (rotated Gumbel) parameter κ̂ in Tables 6 and 7 is
statistically significant for both the US and UK related pairs.
Comparing the values reveals moderate dependence for US-South
Africa and weak dependence for all other pairs, except UK-Nigeria
whose Gumbel copula parameter κ(^ = )1.000 implies no upper tail
dependence. Thus, we can say that, with the exception of South
Africa, the remaining three African markets are generally less
sensitive to the advanced markets.

Fig. 2 illustrates the dynamic upper (lower) tail dependence
based on the TVP Gumbel (rotated Gumbel) copula GAS specifi-
cation. Dependence in the tails closely evolve and lower tail seems
to be mostly greater than upper tail, suggesting the presence of
asymmetry in some bivariate relationships. South Africa shows a
more volatile tail dependence with the US compared to other
African countries. Kenya's tail dependence with UK and US seems
to be the least volatile among all the pairs. Although there is no
clear similarity in temporal evolution of tail dependence for the
bivariate pairs, most of them seemed to have responded to the
Global Financial Crises and Euro Crisis with peaks of turbulence
(e.g. US-Egypt, UK-Egypt, UK-South Africa, and US-Nigeria), which
is in line with studies that point to an increase in financial market
dependence during crisis (Kenourgios et al. 2011; Righi and Cer-
etta, 2013; Mensah and Premaratne, 2014). Yet, with the exception
of South Africa, there is weak tail dependence for the remaining
African markets, suggesting a low probability of contagion or
shock spillovers. The lack of strong association at the tails for
Egypt, Kenya and Nigeria, points to the mild segmentation of these
markets from the advanced stock markets and this could be due to
barriers such as the quality of information on most African mar-
kets. As noted, South Africa's tail dependence with the advanced
markets is relatively stronger compared to the other African
countries. South Africa is a member of BRICS, and it comes as no
surprise that its stock index moves closely with the developed
markets. South Africa is the UK's largest trading partner in Africa.
Moreover, there is a dual listing agreement between South Africa's
stock exchange and that of UK, so most of South Africa's large
companies have exposure to UK. On the other hand, the USA is
South Africa's third largest trading partner, both in terms of ex-
ports and imports. Again, the economic and financial status of the
USA coupled with the fact that it has the largest stock market in
the world makes it very influential on both advanced and emer-
ging markets, including South Africa.



Fig. 3. Downside Value-at-Risk (VaR) and conditional Value-at-Risk (CoVaR) for African stock market returns. Notes: The blue line denotes time-varying 5%-Value-at-Risk.
The red line denotes conditional Value-at-Risk for the US-related pairs. The green line denotes conditional Value-at-Risk for the UK-related pairs. African markets considered
include South Africa (RSA), Egypt (EGY), Kenya (KNY) and Nigeria (NIG).
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5.4. Conditional quantile spillover effects

The weak dependence, particularly at the lower tails for Egypt,
Kenya and Nigeria, is an indication that these African markets,
with the exception of South Africa, are reasonably immune to risk
spillovers from the advanced markets. In other words, the degree
of comovement is too low to warrant the easy spread of con-
tagious shocks from the advanced stock markets along with its
broad systemic implications. To shed more light on the spillover
implications of the weak tail dependence uncovered in the pre-
vious paragraphs, we examine the impact of USA and UK quantile
stock return movements on African stock return quantiles. We use
information from the marginal and copula models to compute the
unconditional and conditional stock return quantiles following
Equation (18, 19). In the interest of space, we consider only ex-
treme downwards (0.05) stock price movements.

Fig. 3 depicts the dynamics of both unconditional and conditional
stock return quantiles over the entire sample period. As can be vi-
sually perceptible by plots in Fig. 3, we found that unconditional stock
return quantiles were below the conditional quantiles for all African
countries, suggesting the absence of any significant spillover effects
from the US and UK markets. This corroborates the weak lower tail
dependence reported for the copula models. We can therefore say
that extreme downward stock price movements in the US and UK do
not have significant spillover effects on Africa's emerging stock mar-
kets. Although the South African index is distinguishable from the
other three African indices, in terms of its tail dependence with the
advanced markets, we do not find compelling evidence of spillover
effects from extreme events, as would be expected.
6. Conclusion

This paper examines the dependence structure among African
and advanced stock markets using daily stock prices from January
2000 to April 2014 and copulas. The empirical results show that
dependence is time-varying and weak for most African markets,
except South Africa. Further, we find evidence of asymmetric de-
pendence, suggesting that stock return comovement varies in
bearish and bullish markets. The results indicate a relatively strong
downside and upside dependence in South Africa compared to
other African markets. Finally, extreme downward stock price
movements in the advanced markets do not have significant
spillover effects on Africa's emerging stock markets.

In general, the evidence presented has important implications
for market participants and policy makers in diverse ways. First,
the presence of weak dependence between the African stock
markets (excluding South Africa) and advanced stock markets
points to the potential gains for international investors holding
African stocks. Moreover, policymakers in quest of drawing greater
portfolio investment to the continent may find the results useful.
However, there could be limits to international portfolio diversi-
fication benefits if the South African index is held together with
stock indices of typical African nations. Our finding should re-
generate interest amongst practitioners to reassess how assets are
allocated for effective diversification. Second, our results imply
that African markets, with the exception of South Africa, are im-
mune to risk spillovers from the more advanced markets and the
tendency to boom or crash together is minimal. In light of recent
volatility in global stock markets with the associated spread of
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contagious shocks from advanced to emerging markets, as well as
the broad macroeconomic implications, our findings might be
useful to policy makers and regulators, particularly in African
countries, in designing and implementing appropriate interven-
tion policies.
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