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A B S T R A C T

This paper investigates behaviour of stock price synchronicity to oil shocks across quantiles for Chinese oil
firms. The spillover effects of the oil market on a firm are segregated into firm-specific and market-wide
information. First, our results report a higher level of synchronicity by dynamic conditional correlations than by
R-square since the former better captures dynamic linear dependence. Second, we find strong evidence of size
effect. In particular, stock price synchronicity is generally higher in large-cap firms than in small-cap ones. Oil
shocks affect synchronicity in the upper quantiles differently based on firm size. Third, we also find that
synchronicity responds to oil shocks significantly in extreme low quantiles, implying that shocks in the oil
market are transmitted to Chinese oil firms via firm-specific information. Finally, we determine that oil shocks
have little or no immediate impact on stock price synchronicity; instead, cumulative lagged effect is evident.
This evidence highlights the lagging effect of spillover of oil shocks on Chinese oil firms.

1. Introduction

A considerable volume of work has shown that oil prices play an
important role in explaining stock price movement (see, for example,
Jones and Kaul, 1996; Kilian and Park, 2009; Aloui et al., 2012; Basher
et al., 2012; Kang et al., 2015). A common feature of the empirical
evidence on the response of stock markets to oil shocks is that they
focus on the aggregate market and its industry perspective. For
instance, Arouri (2011) investigates the responses of European sector
stock markets to oil price changes. Moya-Martínez et al. (2014)
examines the sensitivity of the Spanish stock markets at the industry
level to movements in oil prices. Martín-Barragán et al. (2013)
investigates the impact of oil shocks and stock market crashes on
correlations between oil and stock markets of Germany, Japan, UK and
US. In other words, these studies take a macro perspective in analysing
the role of oil price in determining stock returns. However, there is
little analysis of this linkage at the micro-level, especially for Chinese
stock market, and our focus is to investigate the spillover from the oil
market to individual firms.

Theoretically, the value of a firm is the present value of future cash
flow, that is, the stock price of individual firms reflects both firm-
specific information (such as, future cash flow) and market-wide
information (such as, discount rate) in accordance with Chan and
Hameed (2006), Xing and Anderson (2011) and Boubaker et al.

(2014). Oil shocks can affect the stock price of a firm by influencing
firm-specific information or market-wide information. For example,
rising oil prices negatively (positively) affect the future cash flows of an
oil-consuming (-producing) firm that reflects the significant reaction of
firm-specific information to oil shocks. In addition, rising oil prices also
increase interest rates in the economy by inflation and monetary policy.
This reflects market-wide information. Unlike the firm-specific infor-
mation, the change of market-wide information may result in a stock
price change in the overall stock market. This raises an interesting and
meaningful question for a firm: How do we know which of the two
information flows responds significantly to oil shocks? This paper seeks
to answer the question by examining the impact of oil shocks on stock
price synchronicity across extreme quantiles.

Stock price synchronicity is a measurement of how individual stock
prices co-move with the market, and it reflects the proportion of
systematic volatility relative to the total volatility or idiosyncratic
volatility. In line with prior literature, such as Morck et al. (2000),
Chan and Hameed (2006) and Douch et al. (2015), a relatively lower
level of stock price synchronicity indicates that the stock price variation
is more likely to be caused by firm-specific information, while a
relatively higher level indicates that market-wide information plays a
leading role, i.e., the stock prices of an individual firm follows changes
in the market. Intuitively, the foregoing characteristics of stock price
synchronicity provide a practical approach for the identification
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problem, and this motivates us to explore the impact of oil shocks on
stock price synchronicity in the quantile-regression framework. In
particular, oil shocks are regressed against synchronicities of a firm
across tail-quantiles. The significant coefficients in lower quantiles
imply that firm-specific factors change with oil shocks, so that spillover
effects of oil shocks are firm-specific information. Those of upper
quantiles indicate that oil shocks drive the changes of stock prices via
market-wide factors, thus the spillover effects of oil shocks are market-
wide information.

The primary purpose of this research is to extract information
intertwined in oil and stock markets. It will not focus on the relation-
ship between oil and stock returns, but will analyse the impact of oil
shocks on stock price synchronicity of a firm to extract useful
information and determine features that detect whether spillover
effects from the oil market to the stock market are firm-specific or
market-wide information for an individual firm.

The study contributes to the literature on this topic in three ways.
First, this is the first study to determine whether oil shocks affect stock
prices by the influence of firm-specified or market-wide information.
Second, we show that the dynamic conditional correlations (DCC) of
stock prices between an individual firm and the market are a reason-
able substitute for R-square to measure synchronicity. A large (small)
absolute value of correlation also means a high (low) level of R-square
and synchronicity. In contrast to R-square based synchronicity (Chan
and Hameed, 2006; Chan and Chan, 2014; Douch et al., 2015), DCC
based measurement is better able to capture the dynamic linear
dependence of price variations between an individual firm and the
stock market. Third, we analyse impacts of oil price shocks on stock
price synchronicity1 in the short and long run across extreme quantiles
where the infinite distributed lag models are expanded into quantile
regression. In this way, the impact of oil shocks on stock synchronicity
over any time interval can be analysed instead of using averaging data
in a series of regression models.

This paper yields some interesting results. Firstly, the stock price
synchronicity of the DCC based measurement generally reports a
higher level than the R-square based measurement. One possible
explanation might be that the latter has poor data fitting to non-
normality and heteroscedasticity in financial time series and poor
ability to capture dynamic linear dependence. Secondly, stock price
synchronicity has significant reaction to oil shocks across the extreme
low quantiles that provides strong evidence to support that shocks in
the oil market transmitted to Chinese oil firms are firm-specific
information. This is consistent with the conclusion that oil shocks
have a significant impact on energy-related stock indexes and oil firms
(see Cong et al. (2008), Broadstock et al. (2012)). The impacts of oil
shock on synchronicity are different based on firm size. The large-cap
firms seem to have an insignificant response to oil shocks in the upper
quantiles, however, the response of small-cap firms is significant. One
possible explanation is that large-cap firms pay lower interest rates and
are able to maximize advantages from early payment discounts on
trade credit (see Vickery (2008), Narayan and Sharma (2011)).
Therefore, shocks in the oil market have limited impact on market-
wide factors of large-cap firms. Thirdly, oil shocks have no immediate
effect on stock price synchronicity for Chinese oil firms. However, long-
run effects are evident. Chen and Lv (2015) noted that Chinese refined
oil price reflects only extreme changes in the world crude oil price.
Because of the special oil price adjustment mechanism, domestic oil
price variations will lag behind changes in international crude oil
prices. Another reason may be the proposed under reaction hypothesis
(see, for example, Narayan and Sharma, 2011). Short-horizon stock
market investors underreact to information while long horizon inves-

tors overreact to information, i.e., investors do not respond strongly
enough to new information. A strong reaction takes time; hence, the
effect of information is felt after some time. Thus, we conclude that the
spillover effect of oil shocks is lagging information for Chinese oil firms.

The rest of the paper is organized as follows. Section 2 reviews the
literature. Section 3 describes the data and discusses the method for
calculating synchronicity. Section 4 introduces the econometric meth-
odology. Section 5 shows the empirical results. Section 6 concludes the
paper.

2. Literature review

Given the crucial role of crude oil in the world economy, there is a
growing body of research to explore the behaviour of stock price in
response to oil shocks. Theoretically, oil shocks can affect stock returns
via different channels. For example, Jones and Kaul (1996), based on a
standard cash flows/dividends valuation model, found that the oil price
shock had a decisive effect on the real stock returns in US, Canada,
Japan and England. Huang et al. (1996) noted that oil prices were able
to affect specific stock prices by changing future cash flows or discount
factors, where the discount factor was composed of the expected
inflation rate and the expected interest rate. Narayan and Sharma
(2011) adduced the strong evidence of the effects of size on oil price
affecting firm returns. In spite of these listed and unlisted paths, we
simply classify them as the “firm-specific factors” and “market-wide
factors” in accordance with the literature of Morck et al. (2000) and
Chan et al. (2013). Our focus is to analyse the quantile behaviour of
stock price synchronicity in response to oil shocks. In this way, we will
distinguish oil shocks as firm-specific or market-wide information for
individual firms.

Studies concerning stock price synchronicity have received increas-
ing attention recently. For instance, Chan and Hameed (2006) examine
the relation between the stock price synchronicity and analyst activity
in emerging markets. Gul et al. (2010) use Chinese listed firms to
analyse the impacts of largest-shareholder ownership concentration,
foreign ownership, and audit quality on the amount of firm-specific
information incorporated into share prices. Xing and Anderson (2011)
research the linkage between stock price synchronicity and public firm-
specific information in the United States. Zhang et al. (2016) investi-
gate the ability of R-square and idiosyncratic volatility to capture firm-
specific return variation. Feng et al. (2016) investigate the effect of
ownership structure and analyst coverage on stock price synchronicity
in China. Some other research includes the literature of Chung et al.
(2011), Chan et al. (2013), An and Zhang (2013), Devos et al. (2015),
Douch et al. (2015), and so on. Differing from their focus on firm
characteristics, we investigate the reaction of synchronicity to oil
shocks, i.e., cross-market information. More specifically, we propose
the following three hypotheses that have not been previously tested:

Hypothesis 1. That oil shocks affect stock price synchronicity
differently across the extreme quantiles.2

Hypothesis 2. That oil shocks affect stock price synchronicity
differently based on firm size.

Hypothesis 3. That there is a lagged effect of oil shocks on stock price
synchronicity.

The motivation for testing the above hypotheses comes from
discussions concerning the linkages between oil prices and the stock
market, such as, the studies about quantile behaviour in Sim and Zhou
(2015) and Zhu et al. (2016); the issues related to firm size in Vickery
(2008) and Narayan and Sharma (2011); and the question of the lagged
effect in Jones and Kaul (1996) and Chang and Yu (2013). Our paper,
following this research, tests these hypotheses for Chinese oil firms.

1 There is a fairly sizable quantity of literature investigating the short- and long-run
effects of oil price movements on stock prices. See Apergis and Miller (2009) and Ghosh
and Kanjilal (2016) as a simple example.

2 In fact, the tested procedure for this hypothesis is shown in the following two
hypotheses.
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3. Data and stock price synchronicity

3.1. Data

This paper investigates the impact of oil shocks on stock price
synchronicity in the extreme lower and upper quantiles. Cong et al.
(2008) establish that the real stock return of most Chinese stock
market indices is statistically insignificant to oil price movement except
for the manufacturing index and some oil firms. Therefore, the time-
series data we adopt consists of eight stocks of petroleum firms in
China. Table 1 gives the details. The source of stock prices of individual
firms is from CSMAR Solution (www.gtarsc.com), and the Shanghai
and Shenzhen composite index. The oil prices of West Texas
Intermediate (WTI) are obtained from EIA (www.eia.gov).

For each data series, continuously compounded weekly returns
used in this paper are calculated r p p= 100 × (ln( ) − ln( ))i t i t i t, , , −1 , where
pi t, and pi t, −1 represent Wednesday closing prices of two adjacent
weeks, and the last available closing value is used if the market was
closed for trading on Wednesday. In addition, we will drop the first-
month data of individual firms after listing on the stock exchange. Key
summary statistics of the return data are collected in Table 2. The
return series behave similarly to what we usually observe in the
literature: they are far from normally distributed and exhibit excess
kurtosis and volatility clustering. Evidence from ARCH(10) LM tests

suggests the utilization of ARCH- or GARCH-type models to capture
the time-variation volatility characteristics.

3.2. Stock price synchronicity

Our measure of stock price synchronicity is based on the literature
of Bozos et al. (2013), where the dynamic bi-variant EGARCH model is
used to estimate the time-varying synchronicities. This measurement
shows us the detailed time-series behaviour of synchronicity in
comparison to the R-square based measurement in Morck et al.
(2000), Chan and Hameed (2006) and Douch et al. (2015). The basis
for measuring synchronicity in Bozos et al. (2013) is, essentially, the
time-varying correlations, thus, an obvious alternative approach is to
conduct the DCC model.

According to Engle (2002), the bi-variate DCC model is formulated
as:

r μ ϕ r ε ε H z= + ′ + , = ,t t t t t t−1
1/2 (1)

D ω ω α α ε ε β β D= diag{ , } + diag{ , }◦ ′ + diag{ , }◦ ,t i market i market t t i market t
2

−1 −1 −1
2

(2)

Q θ θ Q θ z z θ Q= (1 − − ) + ′ + ,t t t t1 2 1 −1 −1 2 −1 (3)

P q q Q q q= diag{ , } diag{ , },t i t market t t i t market t,
−1/2

,
−1/2

,
−1/2

,
−1/2

(4)

where rt is a two-dimensional vector of the weekly returns of an
individual stock (ri t, ) and market (rm t, ), zt is the standardized innova-
tion, D hi t h= diag{ , , }t market t

1/2
,

1/2 is a diagonal matrix with time-varying
standard deviations, and the degree of persistence is measured by β for

Table 1
Details of the sample firms.

Stocks Abb. Industry Listing Date

(a) Shenzhen stock exchange
Shenzhen Guangju

Energy Co.Ltd
GJNY Wholesale of Energy

Products
2000-07-24

Sinopec Shandong
Taishan Petroleum
Co.Ltd

TSSY Wholesale of Energy
Products

1993-12-15

Maoming Petro-Chemical
Shihua Co.Ltd

MHSH Petroleum Processing and
Coking Products

1996-11-14

Yueyang Xingchang
Petro-Chemical Co.Ltd

YYXC Petroleum Processing and
Coking Products

1997-06-25

(b) Shanghai stock exchange
Sinopec Group ZGSH Petroleum and Natural Gas

Extraction
2001-08-08

Wintime Energy Co.Ltd YTNY Comprehensive 1998-05-13
Sinopec Shanghai Petro-

Chemical Co.Ltd
SSSH Petroleum Processing and

Coking Products
1993-11-08

PetroChina Co.Ltd ZGSY Petroleum and Natural Gas
Extraction

2007-11-05

Notes: GJNY, ZGSH and ZGSY represent large-capitalization firms; the market
capitalization of ZGSH and ZGSY is much larger than GJNY.

Table 2
Summary statistics for weekly returns.

GJNY TSSY MHSH YYXC ZGSH YTNY SSSH ZGSY

Mean 0.051 0.015 -0.122 0.014 0.032 -0.202 0.021 -0.333
Std.dev 7.189 8.013 6.968 7.784 5.250 9.376 7.051 4.194
Coef.var 141.731 551.913 -57.113 556.710 162.851 -46.509 330.623 -12.595
Median 0.035 0.000 -0.150 -0.105 -0.145 0.103 -0.278 -0.377
Skew -0.262 -1.710 -2.122 -1.591 -0.643 -1.600 -0.445 -0.235
Kurtosis 8.227 13.982 17.615 14.765 6.114 13.350 14.605 5.308
Min -46.674 -73.778 -69.699 -75.451 -36.030 -70.092 -59.215 -22.919
Max 39.392 41.215 23.230 27.576 27.892 49.235 51.083 19.206
JB test 2111.06*** 9174.27*** 12593.05*** 8391.44*** 1130.14*** 6233.43*** 9472026*** 475.98***

ARCH(10) 106.030*** 19.871** 29.510*** 116.920*** 19.409** 21.996** 59.265*** 48.856***

Nobs 740 1058 916 878 689 789 1057 396

Notes: 1) Nobs is the numbers of observations. Coef.var is the abbreviation of coefficient of variation. JB test is the Jarque-Bera test for normality. 2) The methodology to test for ARCH
effects is based on the Lagrange multiplier test with the null of no ARCH effects. 3) Summary statistics for the returns of Shanghai composite index and Shenzhen composite index are
not reported because of the different samples used for individual firms, and the authors will provide the data if needed. 4) **, *** represent statistical significant at the 5% and 1% levels,
respectively.

Fig. 1. Comparison of functions used to calculate DCC-based stock price synchronicity.
Notes: 1) The part of negative definition domain was not plotted because these functions
are even functions. 2) The line of x2 represents the approach proposed by Bozos et al.

(2013). 3) The line of
⎛
⎝⎜

⎞
⎠⎟ln x

x
| |

1− | |
was adopted in this paper, and detailed reasons are listed

in the text.
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the conditional variance process. Q is the unconditional correlation
matrix of the zt, Pt is the dynamic conditional correlation matrix, ° is the
Hadamard product of two identically sized matrices. Then, the

correlation can be calculated by ρ q q q= /i maket t i market t i t market t, , , , , , .
To capture the potentially asymmetric effects of positive and

negative shocks on conditional variance, the exponential GARCH

Table 3
Model selection of the DCC model by BIC.

GJNY TSSY MHSH YYYX ZGSY YTNY SSSH ZGSY

DCC-GARCH
AR(0) MVN 11.649 14.080 12.022 12.168 10.806 12.816 11.633 9.908

MVT 11.165 11.817 11.440 11.654 10.536 11.722 11.267 9.642***

AR(1) MVN 11.661 12.485 12.040 12.183 10.821 12.808 11.654 9.932
MVT 11.179 11.836 11.457 11.670 10.547 11.745 11.285 9.662

DCC-EGARCH
AR(0) MVN 11.701 12.455 12.031 12.115 10.760 12.614 11.595 9.958

MVT 11.172 11.744*** 11.379*** 11.654 10.506*** 11.685*** 11.254*** 9.680
AR(1) MVN 11.708 12.470 12.080 12.132 10.777 12.862 11.616 9.976

MVT 11.185 11.765 11.396 11.672 10.519 11.707 11.272 9.696

ADCC-GJR-GARCH
AR(0) MVN 11.654 14.047 11.893 12.139 10.790 12.768 11.623 9.959

MVT 11.156*** 11.761 11.409 11.642*** 10.532 11.738 11.266 9.687
AR(1) MVN 11.667 14.130 11.908 12.155 10.806 12.772 11.644 9.982

MVT 11.172 11.785 11.426 11.662 10.535 11.762 11.285 9.706

Notes: *** represents the suggested model. Actually the same models can be selected by AIC, Shibata, H-Q and log-likelihood.

Table 4
DCC and ADCC model specification and parameter estimation.

Parameters GJNY TSSY MHSH YYXC ZGSH YTNY SSSH ZGSY

μ i 0.006 0.207 -0.124* 0.027 0.051 -0.055 -0.137 -0.222**

(0.176) (0.241) (0.070) (0.178) (0.132) (0.196) (0.149) (0.108)

ω i 1.040 0.075*** 0.017*** 2.695** 0.042*** 0.119*** 0.316 0.487
(0.992) (0.007) (0.004) (1.090) (0.005) (0.015) (0.551) (0.337)

αi 0.101** 0.189*** 0.148*** 0.223*** 0.136*** 0.179** 0.292 0.243**

(0.043) (0.014) (0.021) (0.069) (0.007) (0.073) (0.213) (0.120)

βi 0.903*** 0.979*** 0.994*** 0.810*** 0.986*** 0.969*** 0.912*** 0.756***

(0.051) (0.001) (0.000) (0.058) (0.000) (0.004) (0.152) (0.103)

γ i -0.040 0.070*** 0.043** -0.141*** 0.067*** 0.074*** 0.060*

(0.033) (0.018) (0.018) (0.053) (0.020) (0.025) (0.036)

μ maket 0.185 0.134 0.249** 0.151 0.047 0.015 0.067 0.043
(0.141) (0.119) (0.124) (0.124) (0.124) (0.116) (0.115) (0.167)

ω maket 0.818 0.139*** 0.173 1.056*** 0.075*** 0.129*** 0.105*** 0.658
(0.507) (0.010) (0.169) (0.405) (0.010) (0.010) (0.009) (0.426)

αmarket 0.142*** 0.273*** 0.307*** 0.109*** 0.240*** 0.186*** 0.279*** 0.158***

(0.045) (0.031) (0.081) (0.035) (0.021) (0.023) (0.014) (0.056)

βmarket 0.856*** 0.955*** 0.943*** 0.827*** 0.971*** 0.951*** 0.964*** 0.840***

(0.056) (0.002) (0.056) (0.046) (0.002) (0.003) (0.001) (0.058)

γmarket 0.002 -0.019 -0.010 0.053 0.010 -0.024 0.011
(0.048) (0.021) (0.028) (0.045) (0.019) (0.022) (0.019)

θ 1 0.000 0.106*** 0.036*** 0.003 0.068* 0.071*** 0.075* 0.019
(0.007) (0.038) (0.008) (0.004) (0.036) (0.015) (0.042) (0.032)

λ 0.949*** 0.877*** 0.962*** 0.871*** 0.813*** 0.924*** 0.883*** 0.651***

(0.080) (0.046) (0.009) (0.059) (0.163) (0.017) (0.075) (0.184)

θ3 0.090 0.136**

(0.127) (0.058)

λ 4.000*** 4.000*** 4.000*** 4.534*** 5.631*** 4.000*** 4.001*** 4.000***

(0.227) (0.211) (0.200) (0.268) (0.586) (0.251) (0.139) (0.195)

Notes: 1) The stability condition α β γ+ + /2 < 1 is satisfied for standard G.ARCH model and GJR-GARCH model. Standard errors are in parentheses. 2) *, **, *** represent statistical

significant at the 10%, 5% and 1% levels, respectively.
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Fig. 2. The time series behaviour of stock price synchronicity (right y-axis) and dynamic conditional correlation (left y-axis). Notes: SYN.Rsq denotes the synchronicity of R-square
based measurement, SYN.cor denotes those of DCC-based measurement average every year, Correlation denotes the annual average dynamic condition correlation, and the dynamic
condition correlations are also plotted in a grey dotted line.
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(EGARCH) model of Nelson (1991) is compared,

D ω α z E z γ z β

D

ln = diag{ } + diag{ ( | | − | | )} + diag{ } + diag{ }

◦ln .
t i i i t i t i i t i

t

2
, −1 , −1 , −1

−1
2 (5)

Cappiello et al. (2006) propose the asymmetric DCC (ADCC) model
by combining the DCC model with the GJR-GARCH to reveal asym-
metries not only on the conditional variance process but also on the
conditional correlation process, the details are as follow.

D ω α γ I ε ε ε

β D

= diag{ } + (diag{ } + diag{ ⋅ ( < 0)})◦ ′

+ diag{ }◦ ,
t i i i i t t t

i t

2
, −1 −1 −1

−1
2 (6)

Q Q A QA B QB G QG A z z A B Q B G n n G= ( − − − ) + ′ + + ′ .t t t t t t
′ ′ ′ ′

−1 −1
′

−1
′

−1 −‵1

(7)

where A,B, andG are diagonal parameter matrices and n I z z= ( < 0)ot t t.
Utilizing the estimated dynamic conditional correlations, we define

the stock price synchronicity as

SYN ρ ρ= ln( /(1 − )).i t i t i t, , , (8)

It has a similar mathematical formula as the R-square based
computation (Morck et al., 2000; Chan and Hameed, 2006; Xing and
Anderson, 2011; Nguyen and Truong, 2013). In fact, market partici-
pants can rely more on the information observed from the market
movement if an individual stock is highly correlated with the market,
i.e., a high level of synchronicity. This also reflects the aversion towards
investment, since investors generally pay more attention to the extreme
cases when the correlation between individual stocks and the market is
very higher or low. The curve representing synchronicity is assigned a
steeper curve with the larger absolute values at the ends, as shown in
Fig. 1. Compared with the prior literature, our measure of stock price
synchronicity is appealing for its ability to (i) capture the dynamic
linear dependence of price variations between individual firms and the
stock market; (ii) model the basic statistical characteristics of stock
yields, such as volatility clustering, sharp peaks and fat tail. Thus, the

following empirical results will show a higher level of synchronicity
than R-square based measurement.

4. Econometric methodology

To discuss the lagged impact of oil shocks on stock price synchro-
nicity across quantiles, we expand the infinite distributed lag (DL)
models into the framework of quantile regression. The polynomial
inverse lag (PIL) technique of Mitchell and Speaker (1986) is applied to
uncover the true lag structure for its flexibility and computational
simplicity. Then, we estimate the short- and long-run impacts of this
lag structure.

Consider the following distributed lag equation:

∑SYN μ w oil ε= + Δ + ,t
i

i t i t
=0

∞

−
(9)

where wi’s are the class of lag structures. Applying the PIL technology,
we have w δ i= ∑ ( + 1)i j

n
j

j
=2

− , then the distributed lag model (9) can be
written as

∑ ∑ ∑ ∑SYN μ
δ

i
oil

δ
i

oil ε= +
( + 1)

Δ +
( + 1)

Δ + .t
j

n

i

t
j

j t i
j

n

i t

j
j t i t

=2 =0

−1

−
=2 =

∞

−
(10)

In practice, the second summation, called the remainder term, has
no available data for computation. Mitchell and Speaker (1986)
estimate the regression model by dropping this remainder term as this
term is negligible for t greater than about eight, in other words, we wish
to estimate

∑SYN μ δ z ε= + + ,t
j

n

j jt t
=2 (11)

where z oil i= ∑ Δ ( + 1)jt i
t

t i=0
−1

−
−1, for t T= 9, …, . For a given degree of

polynomial n estimates of δj ’s are obtained by the OLS method, then the
estimator and confidence interval of lag weights can be derived by the
delta method.

Table 5
Summary statistic and unit root test for the stock price synchronicity.

(a) Summary statistic

GJNY TSSY MHSH YYXC ZGSH YTNY SSSH ZGSY

Mean 1.016 0.162 -0.097 0.372 0.800 0.182 0.485 1.261
Std.dev 0.550 1.064 0.796 0.549 0.326 0.819 0.685 0.081
Coef.var 0.541 6.566 -8.200 1.479 0.407 4.510 1.413 0.064
Median 1.035 0.275 -0.051 0.441 0.808 0.208 0.558 1.265
Skew -0.489 -0.855 -0.886 -0.928 -0.871 -0.259 -1.876 -2.256
Kurtosis 0.450 1.425 1.564 2.761 4.425 -0.566 8.637 14.832
Min -0.712 -4.577 -3.576 -2.046 -1.057 -1.892 -4.795 0.643
Max 2.252 2.862 1.372 1.967 1.832 1.831 2.273 1.543
JB test 35.904*** 218.764*** 213.418*** 405.673*** 651.325*** 19.049*** 3901.839*** 3992.487***

Numbers
Total 735 1052 910 873 685 784 1051 394
ρ| | ≤ 0.20 0 90 38 12 0 32 34 0

ρ| | ≥ 0.80 179 98 0 19 22 54 43 15

(b) Unit root test

ADF test
T+C -3.099(0) -4.755(0)*** -2.968(0) -5.644(0)*** -7.265(0)*** -4.442(0)*** -10.084(0)*** -8.005(0)***

C -2.9982(0)** -4.752(0)*** -2.643(0) -5.308(0)*** -7.270(0)*** -3.970(0)*** -9.714(0)*** -7.957(0)***

N -1.203(0) -4.683(0)*** -2.654(0) *** -4.341(0)*** -2.357(1)** -3.825(0)*** -6.640(0)*** -0.439(1)

PP test
T+C -3.187(4)* -4.771(1)*** -2.926(9) -5.644(0)*** -7.156(1)*** -4.492(10)*** -10.338(8)*** -8.159(3)***

C -3.063(4)** -4.768(1)*** -2.590(9)* -5.495(2)*** -7.161(1)*** -3.955(9)*** -9.890(8)*** -8.103(3)***

N -1.248(0) -4.697(1)*** -2.602(9)*** -4.437(5)*** -1.903(18)* -3.798(9)*** -6.764(6)*** -0.274(15)

Notes: 1) “T + C”: Unit root regression with an intercept and a time trend, and “C” for a regression with an intercept but no time trend, “N” for a regression with no intercept nor time
trend. 2) The summary statistic and unit root test for the returns of WTI is not listed for the same reasons as for stock indexes. However, the returns of WTI used for each variable are
stationary. 3) *, **, *** represent statistical significant at the 10%, 5% and 1% levels, respectively.
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We expand the OLS estimation and inference in a more general
class of quantile models, where all of the lag weights are allowed to be
τ-dependent, and thus they can alter the location, scale and shape of
the conditional density. To compare with the foregoing discussion and
facilitate later lag structures of quantile frameworks, we make an
assumption that the lag structures are invariable across various
quantiles, then the lag weight can be written as
w τ δ τ i( ) = ∑ ( )( + 1)i j

n
j

j
=2

− . Solving the following problem

∑ ρ SYN μ z δmin ( − − ′ ),
μ R δ R t

T

τ t t
∈ , ∈ =9

n−1 (12)

where ρ u u τ I u( ) = ( − ( < 0))τ as in work of Koenker and Bassett (1978),
z z z= ( , …, )′t t nt2 and δ δ δ= ( , …, )′n2 are the n( − 1)-dimension vec-
tors, we get the estimator μ τ( ) and δ τ( )j ’s, then the τ th conditional
quantile function of SYNt, conditional on It , can be given by

∑ ∑Q τ I μ τ
δ τ

i
oil( | ) = ( ) +

( )
( + 1)

Δ ,SYN t
j

n

i

t
j

j t i
=2 =0

−1

−t

where It is the σ-field generated by oil oil{Δ , …, Δ }t 1 , and called the PIL-
QDL model. Implicit in this perspective is the belief that there is no
difference in declining speed of lagged marginal effects for the whole
distribution meaning that δ τ( )j ’s hold all of the inequality over τ .
Further, one can obtain the effects of oil price shock on stock price
synchronicity over any time interval, such as the short-run impact
(w τ( )0 ) and the long-run impact ( w τ∑ ( )i i ).

5. Empirical results

In our empirical process we conducted an investigation following
the steps below. First, we calculate the dynamic conditional correlation
(ρt) based on the DCC/ADCC models, and then obtain stock price
synchronicity (SYNt). Second, the stationarity of variables is tested with
several types of unit-root tests. Third, we get a quick glance of short
and long-run effects of oil price shocks on stock price synchronicity by
plotting their PIL-QDL estimates and corresponding 95% confidence
intervals against the lower and upper quantiles. Of special notice here
is the range of lower and upper quantiles, that is, let
N I ρ= ∑ (| | ≤ 0.2)lower

t t and N I ρ= ∑ (| | ≥ 0.8)upper
t t , the lower and upper

quantiles are defined as T N N= [0.01, / ]lower lower total and
T N N N= [( − )/ , 0.99]upper total upper total , respectively. Therefore, the im-
plication that low synchronicities reflect firm-specific variations and
high synchronicities reflect high return variations caused by market-
wide shocks can be guaranteed not only in the relative levels but also in
the absolute levels. Fourth, the sup-Wald test is applied in QDL model
to examine the existence of short, medium and long-run effects across
the lower and upper quantiles. Finally, we show the detailed time-
series behaviours of the impacts (over any time interval) of some
special quantiles. This paper involve two critical issues: (i) comparison
of the DCC-based measurement and R-square-based measurement of
stock price synchronicity; (ii) investigation of the short-run and long-
run impacts of oil shocks on stock price synchronicity in the extreme
lower quantiles and upper quantiles.

Table 3 lists a series of DCC models to calculate the stock price

Fig. 3. The short-run impacts of oil price shocks on stock price synchronicity.
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synchronicity, and the model selected by BIC. Table 4 presents the DCC
and ADCC parameter estimates. Note that the statistical significance of
the short- and long-term persistence parameters (α and β) gives
support to the conclusion of volatility clustering. One other thing to
note is that the significantly positive γ for TSSY, MHSH, ZGSH, YTNY
and SSSH implies that good news leads to more volatility than bad
news. This counter-intuitive phenomenon contravenes the intention of
model specification and reflects the juvenility of the capital market. The
short- and long-term persistence parameters of (asymmetric) dynamic
conditional correlation (θ1 and θ2) behave similarly to those of the
variance process. The dynamic conditional correlations are mean
reverting because the estimated coefficient, θ ,1 θ2 and θ /23 , sum to a
value less than one.

Fig. 2 shows the time series behaviour of stock price synchronicity
as well as the dynamic conditional correlation. A recurring finding that
can be seen is that the synchronicity of DCC based measurement
(average every single year) generally reports a higher level than those of
R-square based measurement. The main reason is that the DCC-
GARCH model can capture the dynamic linear dependence between
the firm-returns and the market-returns. Greater variability is shown in
the synchronicity of R-square based measurements in contrast to the
DCC-based measurements, in other words, a very low R-square may be
reported at some points where we attribute poor results to non-
normality and heteroscedasticity in the return series. The OLS estima-
tion is also sensitive to outliers. Relatively high synchronicity can be
observed in GJNY (listed on the Shenzhen stock exchange), ZGSH and
ZGSY (listed on the Shanghai stock exchange). This reveals the size

effect. Large-cap oil firms are likely to have a higher level of
synchronicity than small-cap ones.

Descriptive statistics of stock price synchronicity is provided in
Panel (a) of Table 5. As in previous analysis, a relatively high level of
means and mediums is shown in the stock price synchronicity for
GJNY, ZGSH and ZGSY, while their coefficients of variation are
relatively small. Evidence from the JB test confirms the non-normality
of synchronicities, revealing the appropriateness and necessity of
quantile regression that improves non-normal skewness and kurtosis
in estimates. The dynamic conditional correlation that is less than 0.20
or greater than 0.80, is given for each variable. Clearly, it is better to
carry out quantile regression across Γlower and Γupper rather than use the
general definition of lower and upper quantiles because stock price
synchronicity is observed at a high level for GJNY, ZGSH and ZGSY
even in lower quantiles, while those for MHSH in the upper quantiles
are at a low level. Panel (b) of Table 5 shows that the unit root null can
be rejected for each variable, providing evidence of a stationary
variable.

We then plot the estimates of short and long-run effects and
corresponding 95% confidence intervals against the lower and upper
quantiles, respectively. From Fig. 3, it can be seen that the short-run
impacts, w τ( )0 ’s, are statistically insignificant for each variable exclud-
ing YYXC in the majority of lower quantiles, TSSY in a few lower
quantiles and YTNY in a minority of upper quantiles. In spite of the
significance, the short-run impacts exhibit very small magnitudes. Both
of them suggest that oil price shocks have little or no short-run effects
on stock price synchronicity, meaning that oil shocks may play a

Fig. 4. The long-run impacts of oil price shocks on stock price synchronicity.

C. Peng et al. Economic Modelling 61 (2017) 248–259

255



negligible role in current return variations. Thus, neither firm-specific
factors nor market-wide factors of oil firms immediately respond to oil
shocks.

Fig. 4 shows the effects of oil price shock on stock price synchro-
nicity in the long run, w τ∑ ( )i

T
i=0 . The QR estimates of long-run effects

are statistically significant for both the lower and upper quantiles, and
their magnitudes are large enough to be different from zero, indicating
that the oil price shocks affect stock price by both firm-specific and
market-wide factors. Combining the evidence from short and long-run
impacts, we confirm the existence of lagged effect (Hypothesis 3). The
spillover effect of oil shocks on stock price is lagged information for
Chinese oil firms.

Note that the long-run impact of oil shocks on stock price
synchronicity for ZGSH and ZGSY are quite different. The QR
estimates are only significant at a few particularly high quantiles with
small magnitude. Thus it is reasonable to neglect the impact of oil price
shock on ZGSH and ZGSY under normal circumstance. That is, the
response of market-wide factors to oil shocks is limited. Combined with
the fact that the market capitalization of ZGSH and ZGSY are very
much larger than those of other sampled oil firms, we conclude that
there is size effect in the long-run impacts (Hypothesis 2).

The sup-Wald tests are applied to check the significance of short
and long-run effects. The null hypotheses for each variable are
designated by H01: w τ( ) = 00 , τ T∀ ∈ lower (short-run impacts in the
lower quantiles), H02:w τ( ) = 00 , τ T∀ ∈ upper (short-run impacts in the
upper quantiles), H03: w τ∑ ( ) = 0i

T
i=0 , τ T∀ ∈ lower (long-run impacts in

the lower quantiles) and H04: w τ∑ ( ) = 0i
T

i=0 , τ T∀ ∈ upper (long-run
impacts in the upper quantiles). Once again the sup-Wald tests prove
the conclusions drawn in Fig. 3 and Fig. 4 as shown in Table 6. In
addition, we also report the results of the lagged marginal effects (w τ( )i ,
i = 1, 2, 3) and medium-run impact ( w τ∑ ( )i i=0

3 , w τ∑ ( )i i=0
12 , w τ∑ ( )i i=0

24

and w τ∑ ( )i i=0
49 represent the monthly, quarterly, semi-annually and

annually cumulative effects, respectively) to describe the time-series
behaviours. Most of the lagged marginal effects in the last month are

not significant but the medium-run impacts are significant, corre-
sponding with previous results. We believe that oil price shocks exhibit
a gradually deepening influence on stock price synchronicity rather
than an immediate impact. Both firm-specific factors and market-wide
factor are more susceptible to previous news and information than
current news pertaining to the oil market.

From the above results, we not only validate the measurement
method for stock price synchronicity but also verify that oil price shock
seems to have long-run impacts but little short-run impacts on
synchronicity. This paper finally gives more detail on time-series
behaviours: how does oil price shock affect the stock price synchroni-
city over different time intervals?

Fig. 5 shows the short-run impact and lagged marginal impacts (the
last two years) at some special quantiles. The magnitude of lagged
marginal effects is small around zero in spite of statistical significance,
and it approaches zero with the increase of order, conforming to the
truth that a shock in the oil market at some point may have a delayed
influence on the stock market but this lagged marginal influence will
gradually diminish as time goes by. Further, the short-run impact and
lagged marginal impacts are very weak even though their cumulative
impacts cannot be regarded as a negligible value.

Fig. 6 provides the lagged cumulative effects over different time
horizons, i.e., medium-run impacts. One of the most important
findings is that the magnitude of lagged cumulative effects is large
enough to be different from zero, indicating the important medium-run
impacts at these quantiles. However, ZGSH and ZGSY still have small
magnitudes at the higher quantiles and this leads to the insignificance
of sup-Wald tests, implying strong evidence of size effects once again.
Both insignificant and significant lagged cumulative effects for all
quantiles converge to finite values, thus the substantial influence of
oil price shocks on synchronicity is stable and limited after a certain
period. Although able to identify the trace of positive or negative
medium-run impacts at any specific quantile, we cannot find the
emergence of common trends. In particular, the lagged cumulative
effects cannot be roughly summarized as positive or negative, negative

Table 6
Sup-Wald tests for the lower and upper quantiles.

GJNY TSSY MHSH YYXC ZGSH YTNY SSSH ZGSY

(a) For Tlower

w τ( )0 7.883* 0.887 16.375*** 0.533 0.190
w τ( )1 8.261** 1.411 16.375*** 0.573 0.045
w τ( )2 14.369*** 3.013 16.375*** 1.284 0.255
w τ( )3 22.157*** 2.677 16.375*** 2.307 0.254

w τ∑ ( )i i=0
3 34.194*** 3.541 16.375*** 2.342 0.358

w τ∑ ( )i i=0
12 109.543*** 15.614*** 16.375*** 8.378** 18.138***

w τ∑ ( )i i=0
24 88.139*** 82.431*** 16.375*** 35.476*** 36.893***

w τ∑ ( )i i=0
49 94.946*** 134.648*** 16.375*** 45.009*** 41.259***

w τ∑ ( )i
T

i=0
105.614*** 156.627*** 16.375*** 46.051*** 41.335***

(b) For T upper

w τ( )0 1.291 3.787 0.653 4.033 6.885* 1.003 1.733
w τ( )1 3.244 0.814 1.368 2.329 7.898** 1.240 0.416
w τ( )2 20.476*** 3.426 4.085 2.100 12.711*** 7.031 2.579
w τ( )3 18.356*** 0.640 11.134*** 0.781 7.386* 2.589 0.783

w τ∑ ( )i i=0
3 11.461** 15.214*** 7.377** 5.034 12.864*** 2.164 3.642

w τ∑ ( )i i=0
12 49.967*** 15.422*** 39.003*** 2.839 9.185** 24.297*** 1.584

w τ∑ ( )i i=0
24 18.943*** 3.507 37.984*** 2.383 44.623*** 101.595*** 4.446

w τ∑ ( )i i=0
49 18.210*** 25.141*** 34.170*** 3.712 80.497*** 137.618*** 6.138*

w τ∑ ( )i
T

i=0
18.320*** 55.266*** 29.956*** 8.816** 109.970*** 140.627*** 8.007**

Notes: 1) Tlower and T upper are the extreme lower and upper quantiles. 2) w τ( )0 is the short-run impact, w τ( )1 , w τ( )2 and w τ( )3 represent the lagged marginal effects, w τ∑ ( )i i=0
3 , w τ∑ ( )i i=0

12 ,

w τ∑ ( )i i=0
24 and w τ∑ ( )i i=0

49 denote the medium-run effect, representing the monthly, quarterly, semi-annually and annually lagged cumulative effects, respectively. w τ∑ ( )i
T

i=0 : long-run

impact. 3) The degree of polynomial n is determined by Bayesian information criterion (BIC). Critical values are obtained by simulations following Chuang et al. (2009). 4) *, **, ***

represent statistical significant at the 10%, 5% and 1% levels, respectively.
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Fig. 5. Instant (short-run) and lagged marginal effects of oil price shock on the stock price synchronicity. Notes: (1) Numbers of x-axis represent the lag order; 2) the plotting quantiles
involved 0.01, N N0.5 /lower total , N N/lower total for lower quantiles and N N N( − )/total upper total , N N N( − 0.5 )/total upper total and 0.99 for upper quantiles.
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Fig. 6. Cumulative lagged effects of oil price shock on the stock price synchronicity. Notes: 1) “M”, “Q”, “Six-M” and “Y” denote the medium-run effect, representing the monthly,
quarterly, semi-annually and annually cumulative effects, respectively. 2) the lower quantiles: 0.01, N N0.5 /lower total , N N/lower total; the upper quantiles: N N N( − )/total upper total ,

N N N( − 0.5 )/total upper total and 0.99.
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influence is detected in MHSH, YYXC and YTNY while TSSY and SSSH
are positive; both positive and negative effects are observed in GJNY.

6. Conclusions

This paper investigates the quantile behaviour of stock price
synchronicity in response to oil shocks for Chinese oil firms where
spillover effects of the oil market on a firm are separated into firm-
specific and market-wide information.

Using time series data of listed Chinese oil firms and WTI, the
results can be summarized as follows. First, we posit that dynamic
conditional correlation is a suitable and advantageous alternative to R-
square for calculating stock price synchronicity because of its greater
ability to capture dynamic linear dependence and model the statistic
characteristics of stock returns. The DCC-based synchronicity does
report a higher level in comparison to R-square-based measurements.
Second, we find strong evidence of size effect. In particular, firms with
relatively small capitalization seem to have a lower level of stock price
synchronicity than those with large capitalization. The synchronicity of
small-cap oil firms is more susceptible to oil shocks than those with
very large capitalization. That is, only market-wide factors of small-cap
firms respond significantly to oil shocks. Third, we also find that
synchronicity has a significant reaction to oil shocks in extreme low
quantiles that is consistent with the earlier conclusion that oil shocks
show significant impact on energy-related stock indexes and oil firms.
Thus, oil shocks contain firm-specific information for Chinese oil firms.
Finally, oil shocks have little or no immediate impact on stock price
synchronicity; instead, the cumulative lagged effect is evident. This
evidence highlights the lagged spillover effect of oil shocks on Chinese
oil firms.
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