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A B S T R A C T

This article explores the dynamics of a general equilibrium when an individual’s rate of time preferences is
endogenous in a dynastic competitive economy. We postulate that altruistic parents allocate time to make their
children patient to improve their lifetime welfare. The paper shows multiplicity and instability of the
competitive equilibrium. Local and global indeterminacy emerges due to complementarity between a balanced
growth rate and parental time allocation. Indeterminacy implies income and growth disparity among
generations. In contrast, a balanced growth path is unique and determinate in the corresponding social
optimum. A unique social optimum introduces a potential policy instrument for stabilizing a cyclical
competitive equilibrium.

1. Introduction

Time preference of the present vis-à-vis the future is a pivotal
component of human decisions on a finite lifetime horizon. Future
orientation is an important component of noncognitive abilities
influenced by the members of a family as well as society. An individual
makes a decision by balancing her own utility and her family’s welfare,
given that her time preferences are affected by intentional investment
within the family and by an external habit formation in society. In
particular, when parents make a conscious decision to influence the
economic success of their children (Mulligan, 1997), they are altruis-
tically motivated to invest their time and efforts to improve their
children’s cognitive and noncognitive abilities including knowledge,
problem-solving, human capital, ingenuity, perseverance, discipline,
patience, persistence, self-esteem, and other positive attributes.

While the conventional literature focuses on cognitive abilities for
intergenerational correlations, recent empirical studies consider non-

cognitive abilities to explain human capital accumulation and skill
formation (see the excellent survey in Carneiro and Heckman, 2003)
and intergenerational transmission from parents to their offspring
(Gouskova et al., 2010). However, the mechanism for observed
intergenerational correlations across generations is not well under-
stood in the literature. To fill this gap, we postulate that parents
influence children’s tastes or preferences and thereby shape children’s
attitudinal and personal traits toward future decisions.1 The main
purpose of this paper is to provide an underlying mechanism for
intergenerational differences and similarities when parents devote their
time and resources so that their children delay gratification of future
outcomes and welfare.

The vehicle of our analysis is a dynamic general equilibrium model
for a dynastic competitive equilibrium and its corresponding social
optimum in an overlapping-generations economy. This paper, however,
departures from the conventional overlapping-generations economy by
introducing the formation of time discounting in a dynasty competitive
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economy. In the spirit of Becker and Mulligan (1997) and Doepke and
Zilibotti (2005a, 2005b),2 we explore how parents instill children’s
future orientation and study the property of endogenous time dis-
counting to delay gratification in a dynastic overlapping-generations
economy. That is, our intention is to explain how parents shape the
time-discounting characteristic of their children’s attitudinal and
personal traits and thereby determine the dynamics of macroeconomic
allocations. Assuming parental influence on children’s time prefer-
ences, children make their own future-oriented decisions on physical
capital accumulation as well as their own consumption and leisure–
parental choices and future generations’ welfare. Investment on
children’s time preferences involves time-variant cost in the sense that
parents must forgo their own leisure to rear and parent their children.
We posit that parents allocate a flow of their time by forgoing leisure to
instill patience into their children. That is, an altruistic individual’s
decision involves the balance between felicity from her own leisure and
her children’s well-being.3 Hence, our analysis helps us to understand a
dynastic competitive economy by taking into account individual
incentives and market structures on intergenerational correlations
including consumption, leisure, income and wealth, capital accumula-
tion, and economic growth.4

Our main results are as follows. Extending our analysis to an
overlapping-generations economy with endogenous time discounting,
we first define the convex value functions for the decentralized
competitive equilibrium and its corresponding social optimum and
then derive their associated equilibrium and optimum policy functions
on two periods of parental time allocations. These policy functions
characterize the evolution of endogenous time discounting and thereby
pin down consumption, leisure, parenting, and capital over dynastic
overlapping generations. We derive the conditions under which the
dynastic competitive equilibrium exhibits a unique transitional path
and a unique balanced growth path. Furthermore, under the standard
conditions on the time discount function, we show the possibility of
multiple competitive balanced growth paths. Multiplicity arises when
(i) the marginal intensity of the time-discounting formation is strong;
(ii) the marginal disutility of forgoing leisure is low for parental time
spent with children given a constant marginal utility of consumption;
and (iii) the parental time allocation in equilibrium is small enough,
and thus children is relatively impatient. Therefore, the amount of
parental time spent and the endogenous rate of time preferences are
the primal sources of the multiplicity of balanced growth paths in a
dynastic competitive economy.5

Indeterminacy in this paper is intuitive from the fact that the
stationary equilibrium growth rate is non-monotonic with parental
time spent with children in a dynastic competitive economy. Non-
monotonicity arises because the immediate disutility of parenting is
compensated by the altruistic reward from the future utility gain when
children’s patience stimulates saving and capital and thus increases the
children’s lifetime welfare. Non-monotonicity, therefore, induces the

complementarity between savings and investment in patience. Thus,
each balanced growth path enjoys a different long-run growth rate
among rational expectations competitive equilibria. That is, global
indeterminacy emerges, and the sunspot equilibrium is self-fulfilled in
a dynastic competitive economy (see Benhabib and Farmer, 1999;
Cazzavilan and Pintus, 2004). An important implication is that
indeterminacy can be used as an instrument to explain income and
growth disparities within the same generation or across different
generations in dynastic competitive economies with the same funda-
mentals, including preferences and technology (Galor and Zeira, 1993).
Hence, the self-fulfilling equilibrium exhibits income and growth
disparities in a dynastic competitive equilibrium with endogenous
children’s time preferences. This finding therefore implies that, with
the endogenous time preference formation, parental time spent with
children can account for income and growth disparity within and/or
across generations.

Notwithstanding global indeterminacy in a dynastic competitive
economy, we establish global determinacy in the corresponding social
planning economy. The balanced growth path is unique because a
social planner takes into account the intertemporal external effects of
parental time allocation over dynastic generations. That is, the social
optimum allocation completely internalizes the spillover effects of the
parental effort to shape children’s time preferences and thus restores
the uniqueness of the social optimum allocation under parental
altruism to children within the same family. Consequently, the
balanced growth rate of the social optimum is determined under the
standard joint conditions on felicity and technology, including the
intensity of altruistic preferences, and is independent of the parental
time allocation for children’s time preferences. Thus, the social
planning mechanism is properly designed for Pareto improvement in
the long run even though time discounting is endogenously shaped
over generations in dynastic competitive economies. This invites a
potential policy instrument under which a Pareto efficient allocation
can be implemented in the decentralized competitive economy.

We, however, discern that local indeterminacy, if exists, is likely to
arise in the corresponding social optimum allocation when the parental
time allocation is small so that a propositional rate of time discounting
is large with respect to the inverse of the leisure allocation. Hence, both
the level and marginal changes of the time discount function are critical
to the possibility of local indeterminacy in the transitional social
optimum. The increasing marginal impatience in this paper is con-
sistent with the indeterminacy condition in the literature including
(e.g., Jafarey and Park, 1998). We also demonstrate that endogenous
time preferences generate non-monotonicity of the balanced growth
path with respect the parental time allocation so that complementarity
arises between saving and investment in patience. The conditions on
the local indeterminacy in the social optimum are compatible to those
in the dynastic competitive equilibrium. Hence, a social planning
mechanism in the short run, if indeterminacy exists, fails to select
the unique transitional dynamic path around the unique balanced
growth path in an overlapping-generations economy with endogenous
time preferences.

To verify our analytic results, we demonstrate numerical examples
for theoretically and empirically plausible parameter values in a
dynastic competitive economy and its corresponding social optimum
allocation. We use a set of parameter values that verifies the unique-
ness or multiplicity of a balanced growth path and a transition dynamic
path in both the decentralized competitive equilibrium and its corre-
sponding social optimum allocation. Furthermore, a set of parameter
values illustrates the local stability of the balanced growth path and
thus the local indeterminacy in the competitive transitional paths. The
numerical exercises also allow us to pin down the bifurcation para-
meter values on time preferences of parental time allocation for Hopf
and Flip bifurcation in the decentralized competitive economy.

Finally, the paper exercises a simple comparative dynamic analysis
to provide theoretical justification for a few empirical observations on

2 See Doepke and Zilibotti (2005a, 2005b) for an overlapping-generations economy in
which each family chooses occupation and invests future-enhancing capital. Becker and
Mulligan (1997) considered a finite lifetime model in which each individual invests her
own future-enhancing capital throughout her lifetime horizon.

3 We assume intergenerational altruism (which is also called “pure altruism”). The
literature widely uses this modeling approach to capture inter vivos transfer or bequest
motives (e.g., Barro 1974; de la Croix and Michel, 2002). However, empirical studies
challenge these altruistic models and, in general, point out their poor empirical
performance (see Altonji et al., 1997). Nonetheless, as an effective working hypothesis
to catch a clear-cut alternative to self-interest motives, we use the altruistic approach to
create the parental incentive to invest in children’s patience.

4 Guryan et al. (2008) pointed out that parental time spent with children is different
from the patterns of leisure or home production. Following their view of time spent with
children, we treat parental time allocation as investment for children.

5 In an infinite horizon model with the patient capital stock, Strulik (2012) found the
conditions for the unique transitional and balanced growth path, whereas Kawagishi
(2014) showed, in the presence of consumption and investment externalities, indeter-
minate transitional paths in conjunction with multiple balanced growth paths.

T. Haruyama, H. Park Economic Modelling 61 (2017) 235–247

236



intergeneration correlations in the existing literature. First, the paper
shows that parental time spent with children makes children patient,
which increases children’s savings and future consumption but reduces
leisure for the adult and thus also reduces the adult’s own savings and
capital investment for future consumption. These two conflicting
effects determine the economic growth in a dynastic competitive
economy (also see Haaparanta and Puhakka, 2004). Second, we find
the consumption ratio between the young period and old period, whose
slope becomes steeper when an individual becomes patient. This
finding implies that time discounting is not exogenously constant but
endogenously changes over an individual’s lifetime. This result justifies
the consumption pattern over the life cycle (Gourinchas and Parker,
2002). Third, we demonstrate that the time discount function affects an
adult’s consumption ratio over generations (Carroll and Summer,
1991). This finding suggests that the intergenerational correlation
due to the time that parents allocate to their children has noncognitive
personal traits including patience and future orientation (Carneiro and
Heckman, 2003). Finally, the high intensity of altruism and the low
marginal utility of leisure–parenting time increase the parental time
allocation for shaping children’s patience for the future orientation.
The social optimum path grows fast when parents are altruistic,6 the
marginal utility is high with respect to leisure, and total factor
productivity is large. These comparative dynamic relations are a
testable hypothesis in the literature.

The remainder of the paper is organized as follows. Section 2
provides a brief review of the literature. Section 3 introduces a dynastic
competitive economy with endogenous time discounting and charac-
terizes a dynamic competitive equilibrium allocation. Section 4 studies
the global multiplicity of balanced growth paths. Section 5 shows the
local indeterminacy of transitional dynamic paths in a decentralized
competitive economy. Section 6 examines the property of a corre-
sponding social optimum allocation for a dynastic competitive econo-
my. Section 7 discusses uniqueness, stability, and determinacy of a
social optimum allocation. Section 8 provides a few numerical exam-
ples to illustrate the properties established in the dynastic competitive
and social optimum allocations. Section 9 provides the concluding
remarks.

2. Related literature on endogenous time preferences and
overlapping generations

The economy in this paper considers endogenous growth and time
preferences in an otherwise standard overlapping-generations model.
Previous studies, including Galor and Ryder (1989) and de la Croix and
Michel (2002), establish the existence, uniqueness, and stability of the
competitive equilibrium and social planning optimal path with a
neoclassical technology.7 However, the economy herein allows perpe-
tual economic growth and permits the intergenerational interaction in
preferences in a dynastic competitive economy. For complex and
cyclical dynamics, de la Croix and Michel (1999) introduced consump-
tion externalities (e.g., external habit stocks) to generate the cyclical
dynamic path in nonseparable lifetime utility. On the other hand, we
posit that an intergenerational connection in time preferences causes
endogenous business cycles though the parental time spent with
children under altruistic motivations in a dynastic economy. Unlike
the finite lifetime economy we propose, Becker and Boyd (1992) and
Park (2000) showed that the infinite time horizon model exhibits
uniqueness and stability when the time discount function is endogen-

ously determined in both a growing and non-growing economy.8 The
literature, including Nourry (2001), clearly shows that more than one
steady state emerge in overlapping-generations models when the
economy extends to one with consumption and production external-
ities, many goods and sectors, an endogenous labor supply, and
increasing returns technology. However, we keep the usual features
of a standard overlapping-generations economy, including its usual
dimensions of goods and sectors, where time discounting is a function
of a flow, rather than a stock (e.g., Becker and Mulligan, 1997;
Kawagishi, 2014), of the parental time allocation.

Doepke and Zilibotti (2005b) examined the effect of the parental efforts
of the endogenous rate of children’s time preferences based on intergenera-
tional income correlations by occupation choices with intergenerational
impatience. Doepke and Zilibotti (2005a, 2005b) introduced future capital
stocks to determine time discounting and emphasized the intergenerational
correlations between parents and their children. Although they acknowl-
edged the existence of multiple equilibria and instability over generations,
Doepke and Zilibotti (2005b) did not advance the discussion. In fact, unlike
our complementarity condition on a parental time allocation and children’s
welfare, their potential multiplicity is due to a simultaneous choice of future
capital stocks and occupations with an associated constant income profile.
Moreover, the present paper also keeps the usual dimensions of the
standard overlapping-generations model by assuming that our time
discount function is not a stock but a flow variable in a sense that time
discounting is formed by a period-by-period time allocation. This feature of
our model strengthens the indeterminacy results.

Our multiplicity and instability properties of the dynastic competitive
equilibrium are complimentary to those in the overlapping-generations
literature. Galor and Ryder (1989) showed the uniqueness of the (non-
trivial) steady state equilibrium under a strengthen Inada condition on
preference and technology. However, unlike our growing economy with
endogenous time preferences, Galor and Ryder demonstrated that the self-
fulfilling expectation is unique under the restrictive monotonicity conditions
on the capital policy function and also recognized that indeterminacy is
possible when the Inada conditions are weakened in the neoclassical
models of technology and preferences. Contrary to our results with AK–
technology, Reichlin (1986) found equilibrium cycles and bifurcations when
a few input factors in production are strongly complementary with a unique
stationary equilibrium. On the other hand, Michel and Venditti (1997)
demonstrated endogenous fluctuations when the felicity function is not
separable from current and future consumption and the rate of time
preferences is small, which contradicts our finding of high time discounting
in a dynastic competitive economy. Sarkar (2007) also demonstrated that
an increase in the time discount function in income, consumption, or
investment—unlike a decrease in time discounting in terms of parental time
allocation in our economy—leads to endogenous equilibrium cycles in an
infinite horizon economy with recursive preferences in an infinite lifetime
model.9

3. Dynastic competitive economy

The paper sets up a dynastic general equilibrium model. We
consider both a decentralized competitive economy and its correspond-
ing planning economy. The dynastic competitive economy consists of
infinitely many identical households and producers and three types of
goods: labor–leisure–parenting, private and public capital stocks, and
a final output and consumption good. The economy is populated by

6 Charles and Hurst (2003) provided evidence of the wealth correlation across
generation, which leads to economic growth in our model because all savings are
consumed in the adult period in a dynastic economy.

7 Galor and Ryder’s (1989) conditions for uniqueness and stability for the steady state
is not applicable to our model because their condition is in a non-growing economy with
neoclassical technology, whereas we focus on a persistently growing economy with linear
AK–technology.

8 Many studies examine endogenous time preferences in an infinitely lived agent
model, whose time discount function is determined by consumption or income (e.g., see
Epstein and Hynes, 1983; Becker and Boyd, 1992). Alternatively, de la Croix and Michel
(1999) introduced internal and external habits to influence children’s preferences and
showed the possibility of complex dynamic paths of equilibrium.

9 Hirose and Ikeda (2015) extended the instability property to multicountry economies
in the presence of more than two decreasing-marginal-impatient countries. Also see
Kawagishi (2014).
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overlapping generations of altruistic individuals who live for the two
periods, the young and the old in a lifecycle.10 Preferences of every
individual in the dynastic economy are identical except time prefer-
ences. The utility of each individual depends on consumption when
young and old, leisure and parental time spent with his children when
old, and his children’s utility. Individual’s time preferences are
endogenously formed during his young period. An altruistic parent
devotes his time and efforts to influence his children’s noncognitive
abilities, in particular, children’s time discounting in preferences.
There is no human capital accumulation, bequest, and pension.

The production sector is standard in a perpetually growing economy.
Each producer produces the final output by using private capital and labor.
The final output is either consumed or invested on the future capital stocks.
The private capital stocks generate positive spillovers to other producers
and thus creates public capital stocks as productive externalities. This
technology leads to a linear AK–technology in aggregate capital stocks,
thereby permitting long-run economic growth in a dynastic competitive
economy. All agents are endowed with perfect foresight. Time is discrete on
the infinite horizon. There is no uncertainty or population growth.

Formally, in each period t , each producer employs two input
factors, capital stocks Kt and labor Lt, to produce the final output Yt
by taking advantage of productive public capital stocks K͠t in the
decentralized competitive market. At a given rate of interest and wages
in competitive input markets, the representative producer pays the
wage for labor and rent for private capital. The production function is
assumed to be the constant returns to scale of the private labor and
capital. As previously mentioned, each producer’s capital investment
generates positive externalities as public capital stocks so that aggre-
gate technology yields increasing returns to scales in a decentralized
competitive economy. Endogenous growth models (e.g., Romer, 1986)
clearly define the property of this aggregated AK–technology.11 In
particular, this technology allows the aggregate competitive economy to
be perpetually growing without a finite limit.

More specifically, the production function F K L K( , ; )͠t t t is defined as

Y F K L K A K L= ( , ; ) = ,͠ ∼
t t t t t t

α
t

α1− (1)

where α0≤ ≤1, and A∼t consists of the total factor productivity A and
production externalities K͠t in a decentralized competitive market. That
is, A AK≡ ͠∼

t t
α1− . As previously mentioned, production externalities K͠t as

public capital stocks are assumed to be the sum (i.e., K∑ t) of the
individual producer’s private capital stocks Kt .

12 Assuming that capital
fully depreciates after one period in production, the representative
producer maximizes its profits at real interest rate r1+ t and real wage
rate wt in the competitive factor market. For each period t ≥ 1, the
necessary conditions for the producer’s problem are

r F
K

αA1+ = ∂
∂

= ,t
t (2)

w F
L

α AK= ∂
∂

= (1− ) ,t
t

t
(3)

where L =1t and K K=͠ t t at the market equilibrium. For given public
capital stocks K͠t, the constant returns to scale of private inputs ensure
the existence of a dynastic competitive equilibrium. Unlike a usual AK–

growth model (e.g., Rebelo, 1991), the non-zero wage income avoids a
trivial dynastic competitive equilibrium. The modified AK–production
technology exhibits positive constant returns to aggregate capital
stocks Kt , and thus the dynastic competitive economy enjoys persistent
long-run economic growth.13

In each period, new individuals are born, and each individual lives two
periods. Every individual has one child at the beginning of her adult life.
All individuals are identical within and across generations. An individual
in the representative household is endowed with one unit of time for
labor–leisure-parenting in each period. When young, she consumes from
wage income, supplies labor for production, and saves for the next period
consumption; when old, she consumes from the return from savings and
allocates one unit of time for leisure for her own felicity and parental time
spent for shaping her children’s patience. For our purposes, we abstract
away from transmitting cognitive abilities, for example, facilitating
education and human capital accumulation.14 This assumption allows
us to focus on the effect of noncognitive abilities in the intergenerational
correlation (Cunha et al., 2010).

Each individual has the same felicity function and time preference
function. A particular aspect of the individual’s lifetime utility is that
individual time preference is not exogenous and the corresponding time
discounting is formed during her childhood. We postulate that dynastic
altruism motivates a parent concerning her children’s welfare who then
allocates parental time with her children to shape their preferences, in
particular, their time discount rates.15 Hence, each individual’s time
discount factor depends on the amount of time that the parent decides to
allocate to instill patience in her children. To focus on intergenerational
interactions of time preferences, we assume that there is neither bequest
nor income transfer to the next generations in a dynastic economy. Unlike
future-oriented capital stocks as in Becker and Mulligan (1997) and
Doepke and Zilibotti (2005a, 2005b), parental devotion to children’s time
preferences is a flow of forgoing leisure so that no intergenerational
formation of time preferences exists on the infinite horizon in the dynastic
competitive economy.16 That is, the rate of time discounting is not directly
inherited from the previous generations and therefore is not a state
variable over generations.

Formally, an individual’s lifetime utility functionUt for generation t
is from the consumption of ct when young, consumption dt+1 and
leisure lt+1 when old, and his children’s utility Ut+1 in the next
generation t + 1. The individual’s lifetime utility is the time-separable
discount sum of felicities when young and old, plus his children’s
lifetime utility. In the first period of his life, a young individual
inelastically supplies one unit of labor L =1t for production and earns
the labor income at competitive market wage wt.

17 In the second
period, an old individual spends all of his income on his own
consumption, transfers no income to his children out of his savings st
from the previous young period, and allocates one unit of endowed
time between enjoying his own leisure lt+1 and spending parental time
pt+1 with his children.

10 Our setting can be extended to a three-period model including a child period in
addition to the young and old periods. Our main results prevail depending on what
choice variables are available in a child period (see, e.g., de la Croix and Michel, 2002).
However, the two-period model that we employ in this paper provides a full mechanism
to depict the role of parental time allocation for children’s impatience on dynamics of a
dynastic competitive economy.

11 See Romer (1986) for a role of productive externalities in the infinite horizon
model. Doepke and Zilibotti (2005b) also adopted AK–technology with future capital
stocks in an overlapping-generations model.

12 We are aware that the congestion effect of production externalities is not present in
an endogenous growth model. However, it is easy to deal with this scale effect on long-
run growth when we demonstrate a numerical analysis on our property of a dynastic
economy (Li, 2003).

13 We use a model of endogenous growth because it greatly simplifies analysis. Our
tentative calculation suggests that even if the neo-classical technology is assumed,
complicated dynamics similar to those reported here are likely to arise. We believe that
our model is sufficient to illustrate the key results without introducing unnecessary
complications.

14 A more realistic model may involve allocating parental resources on children’s
education and human capital accumulation in addition to shaping children’s noncogni-
tive abilities (herein, patience in preferences).

15 In the previous studies, “future-oriented capital” is regarded as a form of “human
capital.” Furthermore, this literature debates whether future-oriented capital is a tangible
or a non-tangible good and includes cognitive or noncognitive skills (Becker and
Mulligan, 1997; Mulligan, 1997). Also see Loewenstein (1987).

16 See Gouskova et al. (2010).
17 Even though labor–leisure–parenting is endogenously determined in the competi-

tive economy, we abstract from endogenously choosing labor supply thus maintaining its
dynamics as in a two-sector overlapping-generations economy. This assumption
strengthens rather than weakens our indeterminacy results (see the detail discussion
in Benhabib and Farmer (1999)).
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The lifetime utility Ut of the representative individual born in
generation t , t≥1, is defined as18

U u c β p v d l γU= ( ) + ( ) ( , ) + ,t t t t t t+1 +1 +1 (4)

where u c( )t and v d l( , )t t+1 +1 are felicity functions when young and old,
respectively; ct and dt+1 are consumption when young and old,
respectively; lt+1 is allocated for leisure when old.19 Every parent is
altruistic to the degree γ on her children’s utility. Following Doepke and
Zilibotti (2005a, 2005b), each parent spends her time to instill patience
in her children. Hence, the time discount factor β p( )t for generation t is
a function of parental time spent pt by the parent of generation t within
the same family. We assume that the felicity function u c( )t for the young
is increasing, twice differentiable, and concave in ct .

20 We also impose
the Inada condition on u c( )t ; that is, u clim ( )=∞

c
t

→0
1

t
, where u c( )t1 is a

marginal utility of ct . The felicity function v d l( , )t t+1 +1 for the old is also
increasing, twice differentiable, and concave in d l{ , }t t+1 +1 and satisfies
the Inada conditions; that is, v d llim ( , )=∞

d
t t

→0
1 +1 +1

t+1
; v d llim ( , )=∞

l
t t

→0
2 +1 +1

t+1
,

where v1 and v2 are the marginal utility of dt+1 and lt+1, respectively.
21

These assumptions on u c( )t and v d l( , )t t+1 +1 are standard in the
literature. Recall that the time discount factor β p( )t is endogenous. It
is natural to assume that the time discount function is increasing in pt
with β β0 < (0)≤ (1)<1.22 An increasing time-discount function shows
that the more parental time spent with children, the more patient and
future-oriented children become within the same family. We also
assume that the time discount function β p( )t is concave and twice
differentiable in pt. The concavity of the discount function, along with
the concave felicity functions, makes the individual’s optimization
problem a convex problem. The Inada and boundary conditions on
the lifetime utility ensure an interior nontrivial dynamic path, and we
impose the differentiability condition on the felicity and discount
function for the dynamic comparative and stability analyses.

The budget constraints for the representative individual of genera-
tion t are

c s w+ = ,t t t (5a)

d
R

s= 1 ,t
t

t+1
+1 (5b)

l p+ =1,t t+1 +1 (5c)

where wt is the wage rate and R =t r+1
1

1 + t+1
is the inverse of the rate of

interest to the capital, r1+ t+1 in (2). Given wt and Rt+1 in the dynastic
competitive economy, the individual chooses c d l p{ , , , }t t t t+1 +1 +1 to
maximize her lifetime utility subject to the lifetime budget constraints

(5a) and (5b) and leisure–parenting time constraints (5c).
Now, we formally define the value function U p( )t t for the represen-

tative individual’s optimization problem as

U p max u c β p v d l γU p( ) = { ( ) + ( ) ( , ) + ( )},t t c d l p t t t t t t[ , , , ] +1 +1 +1 +1t t t t+1 +1 +1 (6)

where d =t
w c
R+1

−t t
t+1

and l p=1−t t+1 +1 from (5a), (5b) and (5c). For

simplicity, we consider a solution such that these constraints are
binding in each period t ≥ 1.23 In the dynastic competitive economy,
including the individual budget constraints, the dynamic Euler–
Lagrangian conditions for the individual’s problem are summarized as

u c
β p
R

v d p( ) −
( )

( ,1− )=0,t
t

t
t t1

+1
1 +1 +1 (7a)

β p v d p γU p( ) ( ,1− ) − ′ ( ) = 0,t t t t t2 +1 +1 +1 +1 (7b)

where U′t+1 is the derivative of U p( )t t+1 +1 with respect to pt+1. Eq. (7a)
depicts the intertemporal non-arbitrage condition for consumption
within generation t . That is, the marginal utility of consumption of the
young is equal to the time-discounted marginal utility of consumption
of the old, along with the marginal returns of savings from the
foregoing consumption of the young. Eq. (7b) is the intergeneration
non-arbitrage condition for parental time allocation between genera-
tion t and t + 1. That is, the present value of the marginal utility of the
leisure of the old is equal to the discounted marginal lifetime utility of
her child. In addition, the envelope condition of the value function
U p( )t t+1 yields

U p β p v d p′ ( ) = ′( ) ( ,1− ).t t t t t+1 +1 +1 +2 +2 (7c)

This shows that along the optimal path the marginal lifetime utility
of parental time allocation is equivalent to the marginal increase in the
discounted second-period utility of the child when the discount factor
increases marginally due to a one-unit increase in parenting time.
Finally, combining (7b) and (7c) implies that the marginal utility of
leisure is equal to the marginal increase in the child’s welfare due to the
marginal increment of patience weighting on the children’s lifetime
utility. Finally, the present value of the capital stocks in terms of the
marginal utility of consumption approaches zero, so that generation t ’s
lifetime utilityU p( )t t is bounded as time goes to infinity. That is, we have
a transversality condition:24

β p u c Klim ( ) ( ) =0.
t

t t t
→∞

1 +1 +1 (7d)

In summary, we have the following theorem:

Theorem 1. Under the assumptions on preferences including time
preference and technology, the dynastic competitive equilibrium
c d K l p r w{ , , , , , 1+ , }t t t t t t t+1 +1 +1 +1 +1 with the initial condition K p{ , }1 1 is
characterized by the set of necessary and sufficient conditions (2), (3),
(7a), (7b), (7c), and (7d) including the market clearing conditions:

Y c s d= + + ,t t t t (8a)

l p L+ = ,t t t+1 +1 +1 (8b)

s K= ,t t+1 (8c)

K K= ,͠ t t+1 +1 (8d)

L =1,t+1 (8d)

for t≥1 in the dynastic overlapping-generations economy with
endogenous time preferences.

The dynastic competitive equilibrium is characterized by the set of

18 Chakraborty and Das (2005) developed a two-period overlapping generations
model where the probability of surviving at the old period depends on health investment
from the young’s wage income. In the model, the “effective” discounting for the old’s
felicity is endogenized through own health expenditure. Bhattacharya and Qiao (2007)
used a similar setup to endogenize a rate of longevity. Both approaches, however, differ
from ours in the sense that a time discount factor (herein, the rate of children’s time
preferences) is endogenized due to intergenerational investment (herein, parental time
allocation) in a dynamic general equilibrium model.

19 Alternatively, we can apply the discount factor β p( )t not only on the adult’s
consumption, v d p( ,1− )t t+1 +1 , but also on her children’s lifetime utility, U p( )t t+1 +1 .
However, this alternative definition of the utility function does not alter any of our main
results as long as we properly adjust the level effect of the discount factor. Moreover, we
can formulate the lifetime utility as weighted time-discounting felicities such that
U β p u c β p v d l γU=(1 − ( )) ( )+ ( ) ( , )+t t t t t t t+1 +1 +1. Given a proper normalization, this lifetime
utility is equivalent to one in the present model and thus supports the main results in our
analysis.

20 The felicity of u c( )t is thought of as a reduced form of v c l( , )t t with l =0t , for all t ≥ 1.
That is, c( )≡t v c( ,0)t .

21 u c( )t1 denotes the derivative with respect to ct ;v d l( , )t t1 +1 +1 and v d l( , )t t2 +1 +1 are the
derivatives with respect to dt+1 and lt+1, respectively.

22 Strictly speaking, the upper bound of the time discount function can be greater than
1 as long as it is finite, when an individual places more weight on future felicity than
present felicity. Furthermore, p =1t and thus β(1) cannot be a solution because it violates
the Inada condition on v d l( , )t t+1 +1 .

23 It is clear that these constraints are binding under the assumptions on the felicity,
production, and discount function.

24 We can impose an alternative transversality condition: β p U plim ( ) ( )=0
t

t t t
→∞

+1 +1 . This
condition also ensures boundedness of the lifetime utility so that the individual’s
maximization problem is well defined over generations.
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conditions in Theorem 1. Since the utility and profit maximization is a
convex problem, the associated first-order conditions are not only
necessary and but also sufficient for the competitive equilibrium. These
equilibrium conditions portray an important extension of the standard
overlapping-generations economy (e.g., de la Croix and Michel, 2002;
Galor and Ryder, 1989) to a dynamic general equilibrium in the
presence of production externalities and the endogenous formation of
time preferences. The former leads to a perpetually growing economy;
the latter justifies the intergenerational similarity and correlation in the
presence of noncognitive abilities in the dynastic economy.

For further analysis on the role of endogenous time preferences of
the dynastic competitive equilibrium, we specify the felicity functions
for the young and the old, respectively, as

u c c( ) = ,t t
a

v d l d l( , ) = ,t t t
a

t
b

+1 +1 +1 +1

where a b0 < < 1,0 < < 1. Then, by substituting (7c), the correspond-
ing first-order conditions to (7a) and (7b) are, respectively,

⎛
⎝⎜

⎞
⎠⎟c

β p
R d

p1 −
( ) 1 (1− ) =0,

t
a

t

t t

a

t
b

1−
+1 +1

1−

+1
(9a)

bβ p d p γβ p d p( ) (1− ) − ′( ) (1− ) =0.t t
a

t
b

t t
a

t
b

+1 +1
−1

+1 +2 +2 (9b)

With these conditions, we analytically pin down the rate of growth
and derive the dynamic equation of the parental time allocation in the
dynastic competitive economy. First, by modifying (9a) and then
plugging it into the household’s budget set c R d w+ =t t t t+1 +1 in (5a)
with R =t αA+1

1 in (9a), we have

c w
p p

=
1+Φ( , )

,t
t

t t+1 (10a)

where p p β p αA pΦ( , )≡[ ( )( ) (1− ) ]t t t
a

t
b a+1 +1

1
1− . Second, because

K s w c≡ = −t t t t+1 from (5a), we obtain25

K w
p p

p p
=

Φ( , )
1 + Φ( , )

.t t
t t

t t
+1

+1

+1

Third, by substituting w α AK= (1 − )t t into the previous equation,
we obtain the following capital policy function:

K α AK
p p

p p
= (1− )

Φ( , )
1 + Φ( , )

.t t
t t

t t
+1

+1

+1 (10b)

From now on, we call (10b) “the k-policy function” for the dynastic
competitive equilibrium. The k-policy function dictates the dynamic
properties of the dynastic competitive equilibrium in terms of the
parental time allocations over generations.

The next lemma reports the rate of economic growth Γt+1, which is
obtained by rewriting the k-policy function in (10b):

Lemma 1. Under the assumptions in the dynastic competitive
economy, the following first-order difference equation depicts the
growth rate Γt+1 of the dynastic competitive equilibrium in Theorem 1:

K
K

α A
p p

p p
Γ ≡ = (1− )

Φ( , )
1 + Φ( , )

,t
t

t

t t

t t
+1

+1 +1

+1 (11)

where p p β p αA pΦ( , )≡[ ( )( ) (1− ) ]t t t
a

t
b a+1 +1

1
1− .

Eq. (11) shows that the rate of economic growth Γt+1 is a function of
equilibrium parental time allocations pt and pt+1. To understand the
channels through which they affect growth, first consider pt . It is the

old’s parental time, which instills patience in the child by increasing her
discount factor β p( )t . Its increase boosts savings and capital stocks at
t + 1 (i.e., a higher Kt+1). The higher value of pt+1 comes at the cost of a
lower leisure time lt+1, which in turn reduces the marginal utility of
consumption of the old v d l( , )t t1 +1 +1 . It lowers the saving incentive, thus
discouraging growth (i.e., a lower Kt+1). These opposing effects of pt and
pt+1 induce non-monotonic transitional economic growth in a dynastic
competitive economy and thus suggest the possibility of dynastic
growth cycles over generations along with the dynamics of the time
discount formation.

We now consider the special case that parents devote no time for
the children, that is, p p= =0t t+1 , and thus β β β(0) ≡ ,0< <10 0 . This
economy collapses to a usual dynastic competitive economy with
constant exogenous time preferences. Then, from (11),

α AΓ ≡ = (1 − )t
K

K+1
Φ(0,0)

1 + Φ(0,0)
t

t
+1 , where β αAΦ(0,0)≡[ ( ) ]a a0 1

1− . The econom-

ic growth rate becomes time invariant with no parental time allocation.
This economic growth rate is equivalent to that of the standard AK–
growth model. This confirms that endogenous time preferences play a
crucial role for nontrivial transitional dynamics in the dynastic
competitive economy.

We also find that the growth rate is zero when no limiting spillover
effect of the private investment exist (i.e., α → 1) such as in a standard
AK–technology in an endogenous growth model. This rate of returns to
capital limits wage income close to zero (i.e., w α AK= (1 − ) ≅0)t t and
thus limits consumption to zero due to the lack of positive saving in the
young period and thus no income in the old period.26 This finding
suggests that, in contrast to an infinite horizon AK–growth model (e.g.
Rebelo, 1991), the standard AK–technology supports no positive long-
run growth in a competitive overlapping-generations economy. This
result justifies our technology with production externalities in produc-
tion to ensure strictly positive wage income and capital accumulation
for a persistently growing dynastic competitive economy.

Now we characterize the pattern of consumption in the lifecycle and
the evolution of consumption over generations by combining the
competitive equilibrium conditions in Theorem 1. First, (5a), (5b),
and (10a) yield that R d s w c w= = − =t t t t t t

p p
p p+1 +1

Φ( , )
1 + Φ( , )

t t

t t

+1

+1
. Then, using this

expression with (10a), the consumption ratio for the young and the old
is αA p p= Φ( , )d

c t t+1
t

t
+1 for generation t . This consumption ratio is useful

for understanding how the pattern of consumption changes over an
individual’s lifecycle. Note that the ratio becomes steeper for a higher
value of A, which is interpreted as the total factor productivity. That is,
as (11) shows, a fast-growing economy is associated with a steep
increase in lifetime consumption (Carroll and Summer, 1991). Second,
the slope of the lifecycle consumption path becomes steeper when a
person becomes more patient; that is, β p′( )>0t , ceteris paribus. This
result is consistent with the findings of Carneiro and Heckman (2003)
and Bowles and Gintis (2002), which pointed out that a steep
consumption profile empirically indicates the presence of intergenera-
tional correlation in a life-cycle model.27

Moreover, by using (8a) with s R d=t t t+1 +1, we find that the adult’s
consumption ratio d

d
t

t
+1 between generation t − 1 and t is identical to the

economic growth rate Γt+1, i.e., α A=(1 − )d
d

p p
p p

Φ( , )
1 + Φ( , )

t
t

t t

t t

+1 +1

+1
. This result

predicts that, regardless the young’s consumption, the consumption
schedule over the adult periods resembles the economic growth path
when time discounting is endogenous. As a result, the intergenerational
correlation over consumption mainly depends on the altruistic parental
time allocations to parents’ own children under the endogeneity of time

25 This model is capable of introducing population growth by rewriting the individual
budget constraints accordingly; for example, K N s N n N= , =(1+ )t t t t t+1 −1, where n is a
population growth rate. However, this extension holds the main results as long as fertility
is exogenous. A complete analysis of endogenous fertility is our interest in this paper so
that we will leave the issue of population growth to future research (Barro and Becker,
1989).

26 Strictly speaking, a zero wage income in equilibrium permits no consumption for
the old adult so that it violates the Inada condition on felicity functions; therefore,
dynastic competitive equilibrium does not exist.

27 However, the literature is not conclusive on whether a steep consumption profile in
the life cycle results from cognitive or noncognitive abilities including personality traits.
Doepke and Zillibotti (2005a, 2005b) pointed out the same property in the lifecycle
consumption pattern along with endogenous time preferences.
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discounting as noncognitive personal traits. The preference hetero-
geneity of impatience leads to a different consumption and income
profile among families within and over dynastic generations. Therefore,
this analysis provides a mechanism that shows parental investment in
children’s time preferences has an important effect on persistent
consumption disparity among generations.

Finally, we obtain the second-order difference equation of parental
time spent pt and pt+1. By substituting the consumption ratio d

d
t

t
+1 for the

old over generations into (9b), we summarize the dynamics of the
dynastic competitive equilibrium in terms of a second-order difference
equation of the parental time allocation path p p p{ , , }t t t+1 +2 in the
following lemma. In the remainder of this paper, we take advantage of
the second-order difference equation, called “the p-policy function,”
which can acts as a workhorse to analyze the property of the dynastic
competitive equilibrium.

Lemma 2. Under the assumptions of the dynastic competitive
economy, the following second-order difference equation of the p-
policy function of p p p{ , , }t t t+1 +2 dictates the dynastic competitive
equilibrium in Theorem 1:

⎡
⎣⎢

⎤
⎦⎥

b
γ

p p
β p
β p

α A
p p

p p
= (1− ) (1− )

′( )
( )

(1− )
Φ( , )

1 + Φ( , )
,t

b
t

b t

t

t t

t t

a

+1
1−

+2
+1 +1 +2

+1 +2 (12)

where p p β p αA pΦ( , )≡[ ( )( ) (1− ) ]t t t
a

t
b a+1 +1

1
1− .

The p-policy function in the previous lemma is an implicit function
of the path of parental time spent p p p{ , , }t t t+1 +2 . In addition to the non-
monotonic dynamics of the economic growth component

α A(1 − ) p p
p p

Φ( , )
1 + Φ( , )

t t

t t

+1

+1
as in (11), the other components of the p-policy

function also complicate the dynamics of the competitive equilibrium
path: the weighted marginal rates of time discounting β p

β p
′( )

( )
t

t

+1 and the

intensity on felicities of leisure associated with pt+1 and pt+2 in the first
two terms in (12). The next two sections investigate in detail these joint
effects on the dynamics of the dynastic competitive equilibrium.

4. Balanced growth path in the dynastic competitive
economy

This section characterizes the dynastic competitive equilibrium by
investigating the property of the p-policy function. Before examining
the transitional dynamic equilibrium path, we focus on a balanced
growth equilibrium path in the dynastic competitive economy. The
balanced growth equilibrium path satisfies the long-run stationary
condition such that consumption paths ct and dt and the capital stocks
kt grow at a strictly positive constant rate Γt, and leisure lt and the
parental time allocation pt are constant over periods; that is, there
exists t≥1 such that l l= >0t , p p= >0t for t t≥ . Then, the p-policy
function of (12) in the balanced growth path satisfies

⎡
⎣⎢

⎤
⎦⎥

b
γ

p β p
β p

α A p p
p p

=(1− ) ′( )
( )

(1− ) Φ( , )
1 + Φ( , )

,
a

(13)

where p p β p αA pΦ( , ) = [ ( )( ) (1− ) ]a b a
1

1− .
The steady state p-policy function provides the existence and

uniqueness conditions for the competitive balanced growth path.
More specifically, first, because β p( ) is concave, the term β p

β p
′( )
( )

is

nonincreasing in p .28 Second, p pΦ( , ) can be either increasing or
decreasing in p , depending on the value of p . Third, when p pΦ( , ) is
nonincreasing, that is, ≤0p p

p
dΦ( , )

d
, along with concave β p( ), the right-

hand side of (13) monotonically decreases in p . Fourth, by a simple
calculation, ≤0p p

p
dΦ( , )

d if and only if ≤β p
β p

b
p

′( )
( ) 1 −

. Hence, the unique

steady state p exists in the case of ≤β p
β p

b
p

′( )
( ) 1 −

, and thus the balanced

growth path c d K l p r w{ , , , , ,1+ , }t t t is unique in the dynastic competi-
tive economy.

On the other hand, when p pΦ( , ) is nondecreasing in p , that is,
≥β p

β p
b

p
′( )
( ) 1 − , the right-hand side of (13) is not monotonic in p .

Consequently, the mixed effects of p suggest that more than one
steady state solution p for (13) can exist in balanced growth paths.29

Therefore, multiple balanced growth paths can exist in a dynastic
competitive economy. We, however, cannot show the result analyti-
cally, and thus we numerically demonstrate the possibility of its
multiplicity in Section 8. The multiplicity of the balanced growth paths
also invites the complex transitional dynamics in the dynastic compe-
titive economy. In the following sections we demonstrate, along with
various bifurcations, the aggregate instability and indeterminacy of the
transitional dynamic equilibrium paths.

The following theorem summarizes the previous argument:

Theorem 2. Under the assumptions in the dynastic competitive
economy, suppose that ≤β p

β p
b

p
′( )
( ) 1 − , the steady state p-policy function

in (13) has a unique parental time allocation and thus the dynastic
competitive equilibrium allocation c d K l p r w{ , , , , , 1+ , }t t t is globally
determinate. On the other hand, suppose that ≥β p

β p
b

p
′( )
( ) 1 −

, the steady

state p-policy function in (13) can yield multiple parental time
allocations and thus dynastic competitive equilibrium allocation
c d K l p r w{ , , , , , 1+ , }t t t can be globally indeterminate.

The global indeterminacy is based on the joint effect from parental
time allocation p and the amount of leisure p1− . Theorem 2 shows that
the global indeterminacy can arise when the weighted marginal time
discounting β p

β p
′( )
( )

is greater than the weighted marginal utility of leisure

or the weighted marginal disutility of the parental time allocation

=v d p
ν d p

b
p

( , 1 − )
( , 1 − ) 1 −

t
t

2 +1
+1

. Notice that an increase in p decreases β p
β p
′( )
( )

and

increases b
p1 −
. This relation implies that a small p is most likely to

satisfy the global indeterminacy condition. Therefore, global indeter-
minacy arises when the parental investment does not make children
patient enough in the family.

Now we closely examine the properties for the growth rate of the
balanced growth path. From (11) in Lemma 1, the balanced growth
rate with the constant parental time allocation p is

K
K

α A p p
p p

Γ ≡ = (1− ) Φ( , )
1 + Φ( , )

,t

t

+1

(14)

where p p β p αA pΦ( , ) = [ ( )( ) (1− ) ]a b a
1

1− . First, positive long-run ba-
lanced growth requires that A is large enough that

α A p p p p(1 − ) Φ( , )≥1+Φ( , ) at the steady state value of p . Second,
the positive long-run growth condition is again a joint condition of
technology and preferences including the time preferences factor β p( ).
However, unlike the marginal changes of time preferences in the p-
policy function, the long-run growth rate depends on the level, not the
marginal rate, of time discounting. Hence, the short-run property
prevails in the long run.30 Third, the simple observation shows that the
long-run growth rate Γ is also not monotonic because p pΦ( , ) is not
monotonic in parental time spent p . That is, the long-run growth rate Γ
increases when p pΦ( , ) increases in p , whereas long-run growth rate Γ
decreases when p pΦ( , ) decreases in p . In sum, the non-monotonicity
of the balanced growth rates affects the nonlinear balanced growth
condition in (14) and the nonlinear steady state p-policy function in
(13).

Then, we have the following lemma.

Lemma 3. In the dynastic competitive equilibrium, the balanced

growth rate Γ ≡ K
K
t

t
+1 for all t t≥ for a large t≥1 in (14) is non-

monotonic in p as is the balanced competitive equilibrium in (13).
More closely examining the balanced growth paths, we further

28 Note that
⎡
⎣⎢

⎤
⎦⎥d dp/ ≤ 0β p

β p
′ ( )
( )

is because β p( ) is concave.
29 In fact, both the sign of p p

p
dΦ( , )

d
and p p

p
d2Φ( , )

(d )2
are ambiguous.

30 Refer to (11) and (12).
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specify the time-discount function as in Doepke and Zilibotti (2005a):

β p β ηp( ) = + ,θ0

where β1> >00 and η > 0 is the intensity of the time-discounting factor
with the concavity parameter, θ0 < < 1. Then, the p-policy function in
(13) becomes in a balanced growth path:

⎡
⎣⎢

⎤
⎦⎥

b
γ

p θηp
β ηp

α A p p
p p

= (1− )
+

(1− ) Φ( , )
1 + Φ( , )

,
θ

θ

a−1

0 (15)

where p p β ηp αA pΦ( , ) = [( + )( ) (1− ) ]θ a b a0
1

1− . A few observations help us
to depict the shape of the right-hand side of the steady state p-equation
(15). First, the first two terms, p(1− ) and θ

p
, decrease the p-policy

function. Second, we also confirm that p pΦ( , ) is decreasing in p in the

case that ≤ηp
β ηp p

b
p+

θ
1 −

θ

θ0 . Hence, combining these conditions, the right-

hand side of the steady state p-policy function is monotonically
deceasing in p . Hence, the steady state parental time spent p is
unique, and thus the dynastic competitive equilibrium is also unique in
the dynastic competitive equilibrium. That is, the specification of the
time discount function shows that, ceteris paribus, the strong concavity
parameter θ of shaping offspring’s time discounting determines the
uniqueness of the steady state competitive equilibrium. This condition
is also compatible to the standard uniqueness condition in the over-
lapping-generations economy under which the felicity function is
concave with a large exogenous time-discount factor β0 (see, e.g., de
la Croix and Michel, 1999).

On the other hand, we also confirm that p pΦ( , ) is increasing in p
when ≥ηp

β ηp p
b

p+
θ

1 −

θ

θ0 . Hence, given that the first two terms of the right

hand side of (15) is decreasing in p , an increasing p pΦ( , ) in p implies
that the p-policy function is not necessarily monotonic in p , and thus
more than one balanced growth path is plausible in the long run.31

Thus, it verifies the possibility of multiple balanced growth paths along
with the multiple parental time spent p for shaping the children’s rates
of time preferences. In detail, the multiplicity of balanced growth paths
is most likely to arise whenever—with respect to a small marginal

utility of leisure i.e., =v d p
ν d p

b
p

( , 1 − )
( , 1 − ) 1 −

t
t

2 +1
+1

,—the intensity η of time discount

formation is large; the marginal increment θ of the discount function is
large (i.e., the weak concavity of the time discount function); and the
exogenous time discounting β0 is small. This analysis thus verifies that
endogenous time preferences affect the long-run equilibrium path in
the dynastic competitive economy.

5. Uniqueness and indeterminacy of a transitive competitive
equilibrium

In this section, we extend our analysis to examine the uniqueness
and stability property of a transitional dynamic equilibrium in the
dynastic competitive economy. We introduce a new variable z p≡t t+1 for
all t ≥ 1. Then, we redefine a second-order difference equation of the p-
policy function in (12) as a two-dimensional set of the first-order
difference equations of p z{ , }t t+1 +1 :

p z− =0,t t+1 (16a)

p z z b
γ

Ω( , , ) − =0,t t t+1
(16b)

where

⎡
⎣⎢

⎤
⎦⎥p z z z z β z

β p
α A z z

z z
Ω( , , ) ≡ (1− ) (1− ) ′( )

( )
(1− ) Φ( , )

1 + Φ( , )
,t t t t

b
t

b t

t

t t

t t

a

+1
1−

+1
+1

+1

z z β z αA zΦ( , )≡[ ( )( ) (1− ) ] .t t t
a

t
b a+1 +1

1
1−

Then, in the balanced growth path, we have p p=t and z z=t for all
t t> for a large t≥1. By applying the usual method, we linearize the first-
order difference Eqs. (16a) and (16b) and then evaluate them in the
balanced growth path p z{ , } in (13). The two-dimensional system of the
difference equations for the dynastic competitive economy is summar-
ized as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

p
z

p p
z z= 0 1

Μ Ν
−
− ,t

t
t

t

+1
+1 (17)

where Μ = − Ω
Ω

1
3
and Ν = − Ω

Ω
2
3
. Here, Ωi denotes a partial derivative of

p z zΩ( , , )t t t+1 with respect to the ith variable. Some tedious computa-
tions yield

β p
β p

p z zΩ =− ′( )
( )

Ω( , , ),1

⎡
⎣⎢

⎤
⎦⎥

b
p

β p
β p

a
a

β p
β p z z

p z zΩ = − 1−
1−

+ ′ ( )
′( )

+
1−

′( )
( )

1
1 + Φ( , )

Ω( , , ),2
′

⎡
⎣⎢

⎤
⎦⎥

b
p

ab
a p z z

p z zΩ =−
1−

+
1−

1
1−

1
1 + Φ( , )

Ω( , , ).3

To examine uniqueness and stability for the balanced growth path
of p z{ , }t t , we take advantage of the property of the 2 × 2 matrix

⎡
⎣⎢

⎤
⎦⎥J≡ 0 1

Μ Ν in (17). First, the determinant D J( ) and the trace T J( ) of the

matrix J are D J( )=−Μ and T J( ) = N, respectively. Second, both
variables p z{ , }t t are non-predetermined jump variables in the two-
dimensional difference equations. Third, the two distinct eigenvalues of
the matrix J provide the existence of stable or unstable manifolds. We
consider the three cases to determine whether each eigenvalue of the
matrixJ is in the stable or unstable manifold.

In the first case that 1−Μ > Ν and −Μ <1, both eigenvalues are
inside the unit interval, and thus the two associated manifolds are
stable around a balanced growth path. Hence, the balanced growth
path is absolutely stable, and thus local indeterminacy emerges. There
exist infinitely many transitional paths, each of which converges to the
same balanced growth path. In the second case that 1−Μ > Ν and
−Μ >1, both eigenvalues are outside the unit interval, and thus the two
associated manifolds are unstable around a balanced growth path.
Hence, the balanced growth path is absolutely unstable, and thus every
transitional path, except the balanced growth path, explodes and thus
violates the transversality condition. Therefore, the transitional com-
petitive equilibrium path is trivially stationary. That is, the transitional
dynamic path is unique, and the balanced growth path is locally
determinate. In the third case that 1−Μ < Ν , one eigenvalue is inside
the unit interval and the other eigenvalue is outside the unit interval;
one stable and one unstable manifold exist around the balanced growth
path. Hence, the balanced growth path is (saddle) unstable; a con-
tinuum of the transitional paths near the balanced growth path exists
because the number of non-predetermined jump variables of p z{ , }t t

exceeds the number of stable manifolds. Therefore, the balanced equili-
brium path is locally indeterminate in the dynastic competitive economy.

We conclude that the first and third case exhibit local indetermi-
nacy and the existence of a continuum of transitional dynamic paths in
the dynastic competitive economy. Hence, local indeterminacy depends
on the marginal change β p′ ( )′ as well as the level change β p′( ) in the
rate β p( ) of time preferences. The non-monotonicity of p pΦ( , ) also
plays an important role in the local indeterminacy property of the
balanced equilibrium path. Therefore, the endogeneity of the time
preferences influences local indeterminacy in the dynastic competitive
economy. In Section 8, we use a set of plausible parameter values of the
dynastic competitive economy to provide a few numerical examples
that illustrate uniqueness and indeterminacy.

31 A few numerical examples in Section 8 illustrate that the right-hand side takes an
inverted U-shape in p .
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6. Social optimum allocations

In this section, we examine the property of a socially efficient
allocation corresponding to the dynastic competitive economy in the
presence of two externalities: the first one for the productive public capital
in technology and the second one for the parental time allocation for
shaping time preferences of the future offspring within the same family.
The benevolent social planner internalizes those externalities to maximize
the social welfare in an overlapping-generations economy. Formally, the
social planner optimizes its objective by taking into account the following
labor–leisure–parental time and the usual resource constraints given the
initial level of parenting p1 and of capital K1:

p l L+ = ,t t t (18a)

Y c d K= + + ,t t t t+1 (18b)

where L =1t in period t≥1 in the aggregate dynastic economy. The last
resource constraints are obtained by internalizing the capital externalities
K K=͠ t t in the planning economy, so that the aggregated technology is
realized as Y F K K AK= ( ,1; )=t t t t. Then, the social interest rate is

r A1+ * ≡ =t
F
K

∂
∂ t

. Hence, the social planning economy is reduced to an

endogenous growth model of AK–technology.
We now define the benevolent planner’s objective function as

∑W γ u c β p v d l γ W≡ lim [ ( ) + ( ) ( , )] + ,t
T s t

T s
s s s s

T
T

→∞ = +1 +1
+1

+1

for all t ≥ 1. Suppose that γ Wlim =0
T

T
T

→∞
+1

+1 ,32 the social welfare function

Wt is well defined under the concavity of the felicity function u c( )t and
v d l( , )t t+1 +1 and the time discount function β p( )t . Then, subject to the
resource feasibility constraints (18a) and (18b), the social planer
maximizes

∑ γ u c β p v d p[ ( )+ ( ) ( ,1− )],
t

t
t t t t=1

∞
+1 +1

given the initial level of parenting and capital stocks p K{ , }1 1 . It is clear
that the social planning problem is a convex program under the
assumptions on the felicity functions, time discount function, and
production function. Then, the dynamic Euler–Lagrangian condition
for the planner’s problem with respect to c K p{ , , }t t t+1 +1 +1 are

γu c β p v d p( ) − ( ) ( ,1− )=0,t t t t1 +1 1 +1 +1 (19a)

β p v d p γAβ p v d p( ) ( ,1− ) − ( ) ( , 1− )=0,t t t t t t1 +1 +1 +1 1 +2 +2 (19b)

β p v d p γβ p v d p( ) ( ,1− ) − ′( ) ( ,1− ) = 0.t t t t t t2 +1 +1 +1 +2 +2 (19c)

The following transversality condition ensures the bounded Wt
under the condition that the present value of capital becomes zero as
the period goes to the infinity:

β p u c Klim ( ) ( ) =0.
t

t t t
→∞

1 +1 +1 (19d)

Note that the social efficiency conditions (19a), (19b), (19c), and
(19d) for social optimization correspond to the competitive equilibrium
conditions (7a), (7b), (7c) and (7d) in the dynastic competitive
equilibrium. However, in contrast to the dynastic competitive equili-
brium, the social rate of interest is r A r αA1+ *= > 1+ =t t for t ≥ 1, by
internalizing production externalities. In addition, internalizing the
time preferences externalities over the generations increases in the
periods of the non-arbitrage condition in p p p{ , , }t t t+1 +2 .

In the next theorem, we characterize the corresponding social
optimum equilibrium to the dynastic competitive economy:

Theorem 3. In the dynastic competitive economy with endogenous
time preferences, the corresponding dynastic social optimum allocation
c d K l p{ , , , , }t t t t t+1 +1 +1 +1 with the initial condition p K{ , }1 1 is characterized

by the set of necessary and sufficient conditions: (i) the economic
feasibility conditions (18a) and (18b) and (ii) the dynamic Euler-
Lagrangian condition (19a), (19b), and (19c) including (iii) the
transversality condition (19d).

For further analysis on the social optimum allocation, we also
specify the felicity functions as in the dynastic competitive economy:
u c c( ) =t t

a, v d l d l( , ) =t t t
a

t
b

+1 +1 +1 +1. By applying the same method as the
dynastic competitive economy, we derive the social optimal growth rate
Γt+1 and the social p-policy function from the conditions (19a), (19b),
and (19c) for the social optimum.

The following lemma summarizes the result.

Lemma 4. In the dynastic competitive economy with endogenous time
preferences, the corresponding social optimum dynamics are governed
by the following second-order difference equation of the p-policy
function:

⎡
⎣⎢

⎤
⎦⎥

b
γ

p p
β p
β p

γA
β p
β p

p
p

= (1− ) (1− )
′( )

( )
( )
( )

(1− )
(1− )

,t
b

t
b t

t

t

t

t
b

t
b

a
a

+1
1−

+2
+1 +1 +2

+1

1−

(20)

with the following economic growth rate:

⎡
⎣⎢

⎤
⎦⎥

K
K

γA
β p
β p

p
p

Γ ≡ =
( )
( )

(1− )
(1− )

.t
t

t

t

t

t
b

t
b

a
+1

+1 +1 +2

+1

1
1−

(21)

In the remainder of this section, we focus on the balanced growth
condition for a social optimum allocation where p p= ∼

t for all t t>∼ for
some large t ≥1∼ on the second-order difference equation of the p-policy
function of p p p{ , , }t t t+1 +2 in (20) with the balanced growth rate in (21).

First, from (21), the social optimum balanced growth rate Γ∼ is

γAΓ = ( ) .∼
a

1
1− (22)

It is clear that the social optimum balanced growth rate is
generically unique. Moreover, the balanced growth rate is a joint
condition of preferences and technology, but it is independent of the
time discount function. This result is because the social planner
completely internalizes the formation of time preferences across the
generations. This long-run growth property with endogenous prefer-
ences is an extension of a social optimum with exogenous time
preferences in a standard dynastic economy and depends on the
intensity γ of altruism, the felicity parameter a in preferences, and
the total factor productivity A in technology. In detail, (22) shows that
the faster the social optimum path grows when parents are more
altruistic, the higher marginal utility of consumption is with respect to
leisure, and the higher total factor productive is.

Second, from (20), the balanced growth path c d K l p{ , , , , }∼∼ ∼ ͠ ∼
t t t+1

satisfies the following steady state p-policy function for the social
optimum path:

b
γ

p β p
β p

γA=(1− ) ′( )
( )

( ) ,∼ ∼
∼

a
a1−

(23)

where p∼ is the parental time allocation in the social optimum balanced
growth path. As in the competitive equilibrium, this steady state p-
policy function is dictated by the three components: the path of
parental time allocation, the weighted marginal change of the time
discount function, and the social optimum balanced growth rate in
(22). The right-hand side of the expression is monotonically decreasing
in p∼, since the time discount function β p( )∼ is increasing and concave.
As result, the social optimum balanced growth path is unique and thus
globally determinate.

The results are summarized as follows.

Lemma 5. In the dynastic competitive economy with endogenous time
preference, the corresponding social optimum allocation
c d K l p{ , , , , }t t t t t+1 +1 +1 +1 is depicted by the balanced p-policy function in
(23) with the balanced growth rate in (22). Moreover, the social

32 This condition is considered to be an alternative transversality condition. Also see
argument in (19d).
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optimum balanced growth allocation c d K l p{ , , , , }∼∼ ∼ ͠ ∼
t t t+1 in the long run is

unique and thus is globally determinate.
In contrast to the multiplicity of balanced growth paths in the

dynastic competitive economy, the social planning program restores
the uniqueness of the balanced growth path by internalizing both the
production externalities and the generational preference externalities
in the leisure–parenting time allocation for intergeneration welfare.
Again, a simple observation of (23) confirms that a high intensity γ of
altruism, a low marginal utility b of leisure–parenting time, and a high
marginal utility a of consumption increase the parenting time alloca-
tion for shaping children’s time preferences in the long run.

7. Social optimum transitional dynamic path

Next we examine the local stability of the social optimum balanced
growth path and the indeterminacy of the social optimum transitional
dynamics. We adopt the same method as in the dynastic competitive
economy. We, first, define a new auxiliary variable z p≡t t+1. Second,
from (21), we have a two-dimensional dynamic system of the first-
order difference equations of p z{ , }t t for the social optimum:

p z− =0,t t+1 (24a)

p z z b
γ

Θ( , , ) − =0,t t t+1
(24b)

where
⎡
⎣⎢

⎤
⎦⎥p z z z z γ AΘ( , , )≡(1− ) (1− ) (1+ )t t t t

b
t

b β z
β p

β z z
β p z

a
a

+1
1−

+1
′( )
( )

( )(1 − )
( )(1 − )

1−t

t

t t b

t t b
+1 . Third,

we linearize the system of the first-order difference Eqs. (24a) and
(24b) and evaluate them at the balanced growth path p z{ , }∼∼ , where
p p= ∼

t , and z z= ∼
t for all t t> ∼ for some large t ≥1∼ . As result, we obtain a

two-dimensional linear system of the first-order difference equations:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

p
z

p p
z z

= 0 1
X Y

−
−

,∼
∼

t
t

t

t

+1
+1 (25)

where X ≡ − Θ
Θ

1
3
and Y ≡ − Θ

Θ
2
3
. Here, Θi denotes the partial derivative of

p z zΘ( , , )t t t+1 with respect to the ith variable. Fourth, some tedious
computations give us

a
β p
β p

p z zΘ =− 1
1−

′( )
( )

Θ( , , ),∼ ∼∼
∼

∼
1

⎡
⎣⎢

⎤
⎦⎥

a b
a p

β p
β p

a
a

β p
β p

p z zΘ = − 1− −
1−

1
1−

+ ′ ( )
′( )

+
1−

′( )
( )

Θ( , , ),∼ ∼
∼

∼
∼

∼
∼

∼
2

′

b
a p

p z zΘ =−
1−

1
1−

Θ( , , ).∼ ∼
∼

∼
3

Fifth, we take advantage of the determinant D Q( ) and the trace T Q( )

of the 2 × 2 matrix
⎡
⎣⎢

⎤
⎦⎥Q

Y
≡ 0 1

X in (25). Clearly, we have that D Q( )=−X

and T Q( ) = Y.
Finally, to examine the uniqueness and stability property of social

optimum, we recall that p z{ , }t t are non-predetermined jump variables. As
in the competitive equilibrium path, three cases of the two dimensional
dynamic system for social optimum are possible. In the first case that

1−X > Y and −X <1
⎛
⎝⎜

⎞
⎠⎟equivalently, > > − +b

p
β p
β p p

β p
β p1 −

′( )
( )

1
1 −

( )
′( )
′′

, the

two eigenvalues of the matrix Q are inside of the unit interval and thus
exhibit two stable manifolds. Therefore, the balanced growth path is
absolutely stable, and thus, the local indeterminacy emerges in social
optimum; a continuum of the transitional social optimum paths exists. In
the second case that 1−X > Y and −X >1
⎛
⎝
⎜⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠
⎟⎟maxequivalently, > , − +β p

β p
b

p p
β p
β p

′( )
( ) 1 −

1
1 −

( )
′( )

′′
, both eigenvalues are

outside of the unit interval. Hence, every transitional dynamic path,
except the balanced growth path, explores and thus violates the transvers-
ality condition. Therefore, the balanced growth path is only the social

optimum transitional path. Hence, the social optimum transitional path is
unique, and the balanced growth path is locally determinate. In the third

case that 1−X < Y
⎛
⎝⎜

⎞
⎠⎟equivalently, < − +β p

β p p
β p
β p

′( )
( )

1
1 −

( )
′( )

′′
, one eigenvalue

is inside of the unit interval and the other eigenvalue is outside of the unit
interval; thus, one stable and one unstable manifold exist. That is, a
continuum of the transitional paths exists near the balanced growth path
because the number of non-predetermined variables of p z{ , }t t exceeds the
number of the unstable manifolds.

We thus conclude that the first and third case yield the locally
indeterminate balanced growth path and the continuum of transitional
dynamic paths. Hence, local indeterminacy, if exists, is most likely to
arise when the parental time allocation is small so that the weighted
marginal change in the time discount function is enough with respect
to the joint effect of the inverse of allocation of leisure and the degree of
the concavity—the weighted change in the marginal changes—of the
time discount function.33 Again, as in the dynastic competitive
equilibrium, both the level and the marginal changes of the time
discount function are critical to the possibility of local indeterminacy.
We also cannot analytically solve for the eigenvalues so in the following
section we numerically examine the stability property of the corre-
sponding social optimum under a set of plausible parameter values for
the dynastic competitive economy.

8. Numerical examples of uniqueness, indeterminacy, cycles,
and bifurcations

We now consider numerical examples to illustrate the uniqueness
and stability property of the dynastic competitive equilibrium and its
corresponding social optimum allocation. Example I sets the following

parameter values: a = 0.7; b = 0.3;
⎛
⎝⎜

⎞
⎠⎟γ= 1

1 + 0.07

35

;
⎛
⎝⎜

⎞
⎠⎟β =0 1

1 + 0.1

35

;

⎛
⎝⎜

⎞
⎠⎟η β= −1

1 + 0.035

35
0; θ=0.5; A = 25; and α = 0.33.34 We find that both

the competitive equilibrium and the corresponding social optimum
allocation are unique.35 More specifically, by imposing these parameter
values into (13) and (14), we find that the steady state parental time
spent p is 0.213 and the long-run rate of growth Γ is 1.033 in the
dynastic competitive equilibrium whereas from (22) and (23) in the
corresponding social optimum allocation the steady state parenting
time spent p∼ is 0.488 and the balanced growth rate Γ∼ is 1.084. Hence, in
the presence of endogenous time preferences, both the competitive
equilibrium and its social optimum path are globally determinate in the
dynastic overlapping-generations economy.

Example I also demonstrates the unique transitional dynamic path
for both the competitive equilibrium and the corresponding social
optimum. Given the set of parameter values in Example I, the matrix J
in (17) yields that the determinant D J( )=1. 649 and the trace
T J( )=0. 180 in the balanced growth path competitive equilibrium.
Hence, D J( ) and T J( ) satisfy that D J T J1 + ( ) > ( ) and D J( ) >1.
Therefore, every competitive balanced growth path, except the ba-
lanced growth path, is locally unstable, and thus the balanced growth
path is the only transitional competitive dynamic path that satisfies the
transversality condition. Therefore, the transitional dynamic path is
unique and the balanced growth path is locally determinate. In the
corresponding social optimum allocation, we also show the unique
transitional dynamic path and the determinate balanced growth path.
In detail, first, the matrix Q in (25) has the determinant D Q( )=1. 466
and the trace T Q( )=0.502 and satisfies D Q T Q1 + ( ) > ( ) and D Q( ) >1.

33 This statement is drawn from the complementary range of the second case of
uniqueness and determinacy.

34 We believe that these numerical parameter values are reasonably plausible in a
dynastic economy in the literature, even though our intention is not to justify these
simulation results to fit the real economy.

35 Mathematica computes all numerical solutions.
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Therefore,D Q( ) and T Q( ) verify the local instability of the social
optimum in the long run, and the transitional social optimum path is
unique. Thus, the social optimum balanced growth path is locally
determinant.

Next, Example II demonstrates that steady state is unique both in
the competitive equilibrium and the social optimum, although it is
locally indeterminate in the former and determinate in the latter. In

this example, the parameter values are a = 0.7; b = 0.3;
⎛
⎝⎜

⎞
⎠⎟γ= 1

1 + 0.1

35

;

⎛
⎝⎜

⎞
⎠⎟β =0 1

1 + 0.1

35

;
⎛
⎝⎜

⎞
⎠⎟η β= −1

1 + 0.001

35
0; θ=0.3; A = 30; and α = 0.33.36 We

find that the competitive balanced growth path is unique with parental
time spent p =0.211 and the rate of growth Γ=1.088 in the decentralized
competitive economy. We also verify that the corresponding social
optimum balanced growth allocation is unique with parental time spent
p =0.036∼ and rate of growth Γ=1.006∼

. Interestingly, this example
provides additional information that the dynastic competitive economy
overspends parental time for instilling children’s patience and, in turn,
grows too fast in a decentralized competitive equilibrium.

To demonstrate the existence of a continuum of transitional paths
in the competitive equilibrium, we consider the matrix J in (17), which
yields determinant D J( )=1. 468 and trace T J( )= − 3. 954. Hence, D J( )
and T J( ) satisfy D J T J1 + ( ) < ( ) . Therefore, one stable and one
unstable manifold exist, and the competitive balanced growth path is
saddle unstable. Under the two-dimensional system of the non-
predetermined jump variables p z{ , }t t , a continuum of transitional
dynamic paths exist, and the balanced growth path is locally indeter-
minate in the competitive equilibrium. This example shows that local
indeterminacy coexists with global determinacy. As discussed in the
previous sections, endogenous time discounting plays a major role on
the coexistence of local and global indeterminacy. Turning to the
corresponding social optimum, the matrix Q in (25) gives D Q( )=24. 13
and T Q( )= − 1. 749, that is, D Q T Q1 + ( ) > ( ) and D Q( ) >1, confirm-
ing local determinacy.

Next, Example III shows the case of multiple steady states. The

parameter values in this example are a = 0.7; b = 0.3;
⎛
⎝⎜

⎞
⎠⎟γ= 1

1 + 0.12

35

;

⎛
⎝⎜

⎞
⎠⎟β =0 1

1 + 0.15

35

;
⎛
⎝⎜

⎞
⎠⎟η β= −1

1 + 0.01

40
0; θ=0.98; A = 55; and α = 0.33.

Parameter θ is noticeably different from those in Examples I and II.
That is, we use a weak concave time discount function in this example.
We then show that this dynastic competitive economy has two
competitive balanced growth equilibrium paths associated with the
two equilibrium parental time allocations p* and p**. The first
balanced competitive allocation satisfies p*=0.053 and the second
steady state satisfies p**=0.412. We also find that the associated
competitive balanced growth rates are Γ*=1.0034 and Γ**=1.105,
respectively.37 Hence, global indeterminacy arises in this example.
The multiplicity of the competitive balanced growth paths means that
the economic fundamentals with the same technology and preferences
including a time discount function cannot determine the unique
expectation balanced growth allocation. Therefore, either p* or p**
for the competitive equilibrium is self-fulfilling in the dynastic compe-
titive economy. The global indeterminacy property can explain the
persistent difference in economic growth and income disparity within
an intrageneration and/or across intergenerations in dynastic compe-
titive economies (Benhabib and Farmer, 1999; Galor and Zeira,
1993).38 More important to our context, the growth and income

inequality are due to how a parent influences the future orientation
of her children thus affecting the consumption, leisure, savings, and
parental time allocation of their offspring in future generations. Global
indeterminacy therefore justifies some empirical evidence on inter-
generational correlations on, for example, income, education, personal
attitudes and traits, and habits (Mulligan, 1997).

Furthermore, in the first balanced growth path p* in Example III,
the associated matrix J* in (17) yields determinant D J( *)=10. 58 and
trace T J( *)=23. 45 and so satisfies D J T J1 + ( *) < ( *) . Hence, one
stable and one unstable manifold exist, and thus the competitive
balanced growth path is saddle unstable. Therefore, a continuum of
transitional dynamic paths exists, and the balanced growth path is
locally indeterminate in the dynastic competitive equilibrium. On the
other hand, matrix J** in (17) associated with the second balanced
growth path p** has the determinant D J( **)=1. 781 and the trace
T J( **)=0. 0304 and thus satisfies D J T J1 + ( **) > ( **) and D J( **) >1.
Hence, the second balanced growth path is locally unstable so that
every transitional path, except the balanced growth path, explores and
thus violates the transversality condition. Therefore, this competitive
balanced growth path is determinate and the associated transitional
dynamic path is unique in the dynastic competitive economy. This
example confirms our theoretical result that local indeterminacy is
more likely to arise when parental time spent with children is small
(i.e., p p* < **), and thus children are less patient in the future (i.e.,
β p β p( *)< ( **)). Regarding the corresponding social optimum, steady
state is unique at p =0.054∼ with Γ=1. 0039∼

, D Q( )=48. 00 and
T Q( )=33. 25, confirming local determinacy. Table 1 summarizes the
results of those three examples.

So far, we have examined whether a dynastic competitive equili-
brium and the corresponding social optimum are determinate or
indeterminate, using different sets of parameter values. We now extend
this analysis to illustrate various bifurcations in the dynastic compe-
titive equilibrium. The following three examples consider a bifurcation
parameter in the felicity function. Example IV takes as a bifurcation
parameter a in felicity function of the young and the old,39 assuming

the other parameter values as follows: b = 0.19;
⎛
⎝⎜

⎞
⎠⎟γ= 1

1 + 0.075

35

;

⎛
⎝⎜

⎞
⎠⎟β =0 1

1 + 0.1

35

;
⎛
⎝⎜

⎞
⎠⎟η β= −1

1 + 0.033

35
0; θ=0.5; A = 26; and α = 0.33. Fig. 1

illustrates the result of the simulation exercise. The red curve shows the
combinations of the determinant D J( ) and the trace T J( ) as a
preference parameter a changes. First, local indeterminacy arises
approximately in the range a ∈ (0.747,0.783).40 The result is from the
dynastic competitive equilibrium, which satisfies D J T J1 + ( ) > ( )
and D J( ) <1 around a balanced growth path. On the other hand, for
a ∈ (0,0.747), ceteris paribus, the competitive balanced growth path is
absolutely unstable thus showing the local uniqueness in the balanced
growth path associated with each parameter a. Moreover, we find that
Flip bifurcation arises at a ≃ 0.783 at which D J T J1 + ( ) = ( ) holds,
whereas, Hopf bifurcation arises at a ≃ 0.747 with D J( ) =1.

Example V demonstrates the robustness of the emergence of Hopf
and Flip bifurcations in Example IV. Given the same set of the
parameter values as in Example IV, but with b a= 1 − , we find local
indeterminacy approximately in the range a ∈ (0.753,0.799), as Fig. 2
shows. We find Hopf bifurcation at a ≃ 0.753 and Flip bifurcation at
a ≃ 0.799. Again, as a robustness test of the bifurcation property in
Example IV and V, the final Example VI (see Fig. 3) maintains the same
parameter values except we choose b satisfying a b+ ≤ 1 given
a = 0.78. With the bifurcation parameter b, we find the absolute
stability and thus local indeterminacy when b ∈ (0.1885,0.22). We also

36 Example II is different from Example I mainly in the parameter values for the time
discount function η and θ , altruistic parameter γ and productivity A.

37 From (22), the balanced growth rate is 0.11 for the corresponding social optimum
in the dynastic competitive economy.

38 The income disparity within an intergeneration is from the fact that more than a
self-fulfilling equilibrium exist in two different economies with the same fundamentals
including the same initial conditions.

39 This result is consistent with the condition for multiplicity where a high discounting
factor violates the turnpike property in the literature (McKenzie, 1986; Michel and
Venditti, 1997).

40 Note that the numbers reported here are approximate due to the nature of
simulation.
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find Filp bifurcation at b=0. 1885. Examples IV, V, and VI bolster the
argument for the emergence of bifurcations accompanied with unique-
ness, indeterminacy, and instability with parental time allocations on
endogenous time preferences over the generations in the dynastic
competitive economy.

9. Concluding remarks

This paper examines an overlapping-generations economy when
time discounting in preferences is shaped by parental time spent with
children in the same family. The standard results, such as existence,
uniqueness, stability, and many other properties, do not necessarily
hold in the dynastic competitive economy in the presence of endogen-
ous time preference formation. For the dynastic competitive economy
with preference externalities over generations (i.e., an intergenera-
tional correlation in altruistic preferences), we find that the long-run
growth rate of a balanced growth path in the competitive economy is

not monotonic in terms of the equilibrium time allocation with
children. The non-monotonicity is due to the joint effect of the parental
time allocation, namely, the welfare loss from reducing leisure and the
altruistic award from patient children’s welfare gain. Multiple balanced
growth paths arise when the time discount function increases fast
enough in the parental time spent with children to shape their future
orientation. Indeterminacy of the balanced growth path and thus the
continuum of transitional dynamic paths results. Hence, the dynastic
competitive economy is locally and globally indeterminate. This finding
suggests a different income distribution within a generation and/or
across generations in the dynastic competitive growing economy with
endogenous children’s time preferences.

In contrast, the balanced growth path in the corresponding social
optimum is generically unique in the long run when the social planning

program eventually internalizes preference externalities over genera-
tions in the dynastic competitive economy. However, the social planner
can fail to ensure that the transitional dynamic path is unique in the
short-run social optimum. This result is mainly because preference
externalities are not completely internalized, and the parental time
allocation with children has a strong effect on not only the level change
but also the marginal changes in time discounting in the formation for
time preferences. This effect occurs over the dynastic overlapping
generations in an infinite horizon model with the multiple effects of
externalities. That is, we show that the social optimum dynamic path is
globally determinate in conjunction with either locally determinate or
indeterminate transitional paths in social optimum.

Table 1
Example I, II, and III: Parental time, long-run growth rate, and determinacy/indeterminacy.

Examples Competitive Economy Social Optimum

I p =0.213
Γ =1.033

Locally
determinate

p =0.488∼

Γ =1.084∼
Locally

determinate

II p =0.211
Γ =1.088

Locally
indeteminate

p =0.036∼

Γ =1.006∼
Locally

determinate

III p =0.053⁎

Γ =1.0034⁎
Locally

indeterminate
p =0.054∼

Γ =1.0039∼
Locally

determinate

p =0.412⁎⁎

Γ =1.105⁎⁎
Locally

determinate

Fig. 1. Example IV. Note: The red curve shows the combination of the determinant and
the trace as a changes from 0.71 to 0.81 in Example IV. The blue triangle shows the area
of local indeterminacy. Fig. 3. Example VI. Note: The red curve shows the combination of the determinant and

the trace as b changes from 0.171 to 0.22 in Example VI. The blue triangle (partly shown)
indicates the area of local indeterminacy.

Fig. 2. Example V. Note: The red curve shows the combination of the determinant and
the trace as a changes from 0.71 to 0.81 with a b= 1 − imposed in Example V. The blue
triangle shows the area of local indeterminacy.
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The competitive dynamics in the paper also provide the mechanism
of noncognitive abilities on empirically observed intergenerational
correlations. Patience is regarded as a component of noncognitive
abilities determining how well people focus on long-term tasks and
exert self-restrict. We find that the consumption pattern between the
young and old periods implies that the slope of the consumption path
becomes steeper when an individual becomes more patient during his
lifecycle. We also show that the consumption pattern over generations
is identical to the path of economic growth when the dynastic economy
is perpetually growing. The characteristics of the dynamic consumption
are an evidence of the endogenous formation of time discounting over
generations. Therefore, the parent’s time allocation for his own
children dictates the intergenerational correlation over consumption,
saving, investment, and income distribution under the formation of
time preferences as noncognitive personal traits.

In future works, we may incorporate into a model of the endogen-
ous time preferences bequest motives so that altruistic parents transfer
a part of their income to children as well as parental time to influence
their children’s time preferences. We may also examine the dynamics
of human capital accumulation when a trade-off exists between
parental time allocations to labor supply for production and children’s
formal and informal education. To evaluate a public policy on formal
education, future analysis should combine public education policy with
parental time allocation for future generations. Those extensions will
provide insights into the effects of public policies on the allocation of
the private and public education over multiple generations.
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