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A B S T R A C T

Forecasting house price has been of great interests for macroeconomists, policy makers and investors in recent
years. To improve the forecasting accuracy, this paper introduces a dynamic model averaging (DMA) method to
forecast the growth rate of house prices in 30 major Chinese cities. The advantage of DMA is that this method
allows both the sets of predictors (forecasting models) as well as their coefficients to change over time. Both
recursive and rolling forecasting modes are applied to compare the performance of DMA with other traditional
forecasting models. Furthermore, a model confidence set (MCS) test is used to statistically evaluate the
forecasting efficiency of different models. The empirical results reveal that DMA generally outperforms other
models, such as Bayesian model averaging (BMA), information-theoretic model averaging (ITMA) and equal-
weighted averaging (EW), in both recursive and rolling forecasting modes. In addition, in recent years it is found
that the Google search index, instead of fundamental macroeconomic or monetary indicators, has developed
greater predictive power for house price in China.

1. Introduction

House prices are important indicators of the real estate market's
health and stability. Forecasting the changes in house prices can help in
gaining a clear understanding of the real estate market. For this reason,
house investors, real estate developers and government regulators
always pay great attention to the trends in house prices. Forecasting
house prices accurately can not only help the government to regulate
the real estate market more effectively, but it can also help real estate
developers to make their investment decisions properly. House in-
vestors’ decisions also depend largely on predictions of future house
prices. The more accurate the predictions of future house prices, the
more rational the buyers can be in allocating their current and future
consumptions.

A number of scholars have conducted extensive research in
predicting house prices. For example, DiPasquale and Wheaton
(1994) explore the dynamic mechanism of house prices in the United
States during the 1980s. These authors apply several macroeconomic
variables for the first time to forecast house prices, and they find that
these macroeconomic variables can improve the accuracy of house
price forecasts. Brown et al. (1997) use the time-varying parameter
(TVP) model to forecast quarterly changes in house prices in the U.K.
from 1968 to 1992. They show that the TVP model performs better
than several traditional constant parameter regression models, e.g., the

error correction mechanism, the vector autoregressive and the auto-
regressive time series regression models. Crawford and Fratantoni
(2003) forecast quarterly house prices in five U.S. states from 1979 to
2001 by using the ARIMA, GARCH and transition matrix methods.
Their study reveals that according to the in-sample goodness-of-fit test,
the transition matrix model performs better than other models, as it
allows the variable parameters to change over time. However, for out-
of-sample forecasting, the traditional ARIMA model is superior to the
others. Hadavandi et al. (2011) investigate the annual changes in house
prices in 20 regions of Iran since 2001 by using a fixed effects model
with panel data. They find that the forecast accuracy of the panel data
model is better than that of the ordinary OLS regression. Rapach and
Strauss (2009) study the quarterly house prices of the top 20 major
cities in the U.S. from 1995 to 2006, and then compare the differences
in predictions produced by auto-regression (AR) models and ARDL
models that incorporate information from numerous economic vari-
ables. Rapach and Strauss find that the AR models often provide
relatively accurate house price forecasts in a number of interior states.
However, all of the forecasting models tend to perform poorly for a
group of primarily coastal states that have experienced especially
strong growth in house prices. Ghysels et al. (2013) classify the recent
literature on house price forecasting, and summarize the defects and
problems of traditional forecasting models.

However, those traditional house price forecasting models face at
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least one or two main problems as follows: first, it has been documen-
ted in the recent literature that the effects of the determinants
(predictors) on house prices change over time (Ghysels et al., 2013).
Lots of factors such as macroeconomic cycles or policy adjustments on
real estate industry may lead to the structural break in the relationship
between fundamentals and house price dynamics. Furthermore, the
influence of each determinant on house prices may not be identical
during different periods of time and (or) under different market
conditions (Rapach and Strauss, 2009; Ghysels et al., 2013; Nneji
et al., 2013; Plakandaras et al., 2015). Second, it is found that one
specific model with a fixed set of predictors might not perform well
consistently over time. To handle this issue, a model selection
procedure may be carried out at each point in time, but with a huge
computational task. For example, if there are n predictors in hand, that
is, 2nmodels are needed to be assessed at each point in time and a total
number of models to be assessed over the evaluation period of T is 2nT.
If both n and T are large, this task seems unachievable. Thus the model
averaging method such as forecast combination is adopted to improve
the forecasting accuracy. When considering different sets of predictors
as separate models, model averaging is simply a weighted average of all
possible combinations of predictors. However, the weights assigned by
either simple forecast combination or Bayesian model averaging (BMA)
to combine different models are constant over time, which is not
flexible enough to capture the time-variation of the contribution from
each model (Próchniak and Witkowski, 2013; Man, 2015). Recently,
Kapetanios et al. (2008) propose a new model combination method,
named as information-theoretic model averaging (ITMA). This method
adopts Akaike information criterion (AIC) of each individual model in
previous observations to update the model probability by the ordinary
BMA. The ITMA method is found to be a powerful alternative to
Bayesian averaging schemes (Piegorsch et al., 2013).

To address the problems mentioned above, Raftery et al. (2010)
propose a novel method known as dynamic model averaging (DMA). It
is found that this approach works quite well in macroeconomic
forecasting (see, e.g., Koop and Korobilis, 2011, 2012). There are
several obvious advantages of the DMA approach. It allows both the
sets of predictors (forecasting models) and the coefficients of predictors
to change over time. Furthermore, DMA method combines models in a
dynamic way using two forgetting factors to approximate the evolution
of model parameters and model switching probabilities, respectively.
These two forgetting factors make the heavy computational task of
model selection procedure manageable.

Motivated by the work of Raftery et al. (2010) and Koop and
Korobilis (2012), a study by Bork and Møller (2015) is the first
application using the dynamic model averaging (DMA) and dynamic
model selection (DMS) methods in forecasting house price. Their study
investigates the predictability of quarterly house price data in 50 U.S.
states from 1976 to 2012. Unlike the traditional constant parameter or
TVP forecasting models, the DMA and DMS methods allow changes
over time in both the forecasting models and their coefficients. Bork
and Møller (2015) also find that the forecasting precision of the DMA
model is about 30% better than that of the traditional time series
methods such as the AR and OLS regression models. More recently,
Akinsomi et al. (2016) use DMA to forecast the growth rates of U.S. real
estate investment trusts (REITs) from January 1991 to December
2014. They find that compared to the traditional predictors, the
sentiment and uncertainty indicators can better predict changes in
REITs. DMA can also outperform other models such as Bayesian model
averaging (BMA) and AR, as DMA produces smaller forecasting errors.
Their results suggest that economy-wide indicators, monetary policy
instruments and sentiment indicators are among the most powerful
predictors of REIT returns. However, it is very interesting to note that
besides those fundamental macroeconomic and monetary policy in-
dicators, with the recent dramatic development of Internet information
and big-data technology, there is growing evidence that Internet online
search indexes can be useful in predicting some future economic

variables, social population features and even outbreaks of epidemic
diseases. However, to the best of our knowledge, there is no direct
research focusing on the relationship between Internet search indexes
and changes in house prices. A relevant paper by Das et al. (2015)
examines the association between online apartment rental searches
and several fundamental real estate market variables. These research-
ers find that consumers’ online Google search indexes are significantly
associated with vacancy rates, rental rates and U.S. REIT returns.

It is also important to note that in most of the previous house price
forecasting studies, different models are evaluated simply by a single
loss function, e.g., the mean squared forecast error (MSFE) or mean
absolute forecast error (MAFE). However, when a particular loss
function value is smaller for model A than it is for model B, we cannot
arbitrarily conclude that the forecasting performance of model A is
superior to that of model B. Such a conclusion cannot be made on the
basis of a single loss function or a single data sample.

Recent work has focused on a testing framework that can determine
whether one particular model outperforms another (Diebold and
Mariano, 1995; West, 1996; White, 2000). Hansen et al. (2011)
propose a new statistical test for forecast errors, namely the model
confidence set (MCS) test. The MCS test has several attractive
advantages over conventional tests such as the super predictive ability
test of Hansen (2005) or the reality check test by White (2000). First,
the MCS test does not require a benchmark model to be specified,
which is very useful in applications without an obvious benchmark.
Second, the MCS test acknowledges the influence of measurement or
calculation errors in a data sample by using a bootstrap sampling
technique. Third, the MCS procedure allows for the possibility of more
than one “best” model.

Since 2007, the real estate market in large and medium-sized
Chinese cities has entered a stage of high-speed growth in which house
prices have risen sharply. For example, the national average of house
prices has increased by 7.6% per year, and some developed cities have
even seen sustained double-digit growth in prices. The overheated real
estate industry with its high house prices not only traps the economic
capital of property-owning entities, but it also brings the disadvantages
of excessive dependence on land finance for government income and
other economic or social problems. In 2013, the government began to
introduce control measures to prevent house prices from rising too
quickly, but these measures appear to have little effect. The “China City
Life Quality Report 2013” issued by the Experimental Research
Institute of Chinese Economy, indicated that more than 40% of
China's urban residents felt the city house prices were unacceptably
high. Thus accurate forecasting of house price in China is of great
importance for policy makers and different market participants.

As discussed above, this paper contributes to the literature in four
ways. First, we forecast house price in major Chinese cities using
dynamic model averaging (DMA) for the first time, and compare its
performance with that of Bayesian model averaging (BMA), informa-
tion-theoretic model averaging (ITMA) and other commonly-used
forecasting models. Second, unlike the method used by Bork and
Møller (2015) and Akinsomi et al. (2016), this investigation applies
both recursive forecasting and rolling-window prediction in the DMA
forecast to enhance the robustness of empirical performance for
different models. Although the recursive method is usually used in
DMA forecasting and the forgetting factor approach is able to play a
role in discarding early observations and giving more weights to the
most recent ones, it cannot handle the problem of possible structural
break in house price dynamics. Third, this paper is the first to use a
Google online search index as an additional predictor, along with
several fundamental macroeconomic and real estate market indicators,
to forecast house price changes in major Chinese cities. Fourth, instead
of depending on one single loss function criterion, this paper applies a
newly developed model comparison technique, the MCS test, which is
proposed by Hansen et al. (2011) to assess the forecasting performance
of different models using a number of criteria and test statistics.
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The structure of the rest of the paper is as follows. Section 2
provides the methodology of DMA forecasting. Section 3 describes our
data sample and lists the summary statistics of the data. Section 4
provides the empirical results for different forecasting models, and
Section 5 presents the conclusions.

2. Methodology of DMA (DMS) and model evaluation

2.1. DMA and DMS

Most traditional time-series forecasting models, such as multi-
variable regression or AR (auto-regression), are constant coefficient
(CC) models. Despite their advantages of providing simple and easy
estimation, their drawbacks are also obvious. To be specific, the
regressor coefficients are fixed, and are not allowed to change over
time. Hence, the time-varying parameter (TVP) model has emerged to
overcome the flaws of CC models. The TVP method allows the
parameters of explanatory variables to change over time, incorporating
the naturally time-varying relationship between dependent and inde-
pendent variables. As noted by Primiceri (2005) and Koop et al. (2009),
the ordinary TVP model can be presented as follows:

y x β ε= ′ + ,t t t t−1 (1)

β β η= + ,t t t−1 (2)

where yt is the dependent variable to be forecasted. In our paper, yt is
the log monthly rate of house price growth in each selected major city
in China at time t. xt−1 is a 1×m vector of predictors. βt is an m×1
vector of coefficients, and the innovation items are distributed as
ε i i d N V η i i d N W~ . . . (0, ), ~ . . . (0, )t t t t . This kind of TVP model can be
estimated by the Kalman filter method.

In the TVP model as defined by Eqs. (1) and (2), it is assumed that
the predictors in xt−1 are fixed throughout all of the time points, which
may lead to a substantial loss of forecasting precision and problems of
over-parameterization. However, DMA and DMS improve the TVP
model by allowing the predictor sets (forecasting models) and their
coefficients to both change over time. Therefore, following the novel
work of Raftery et al. (2010) and Koop and Korobilis (2012), this paper
uses DMA and DMS methodologies to forecast house price growth in
major Chinese cities. The DMA (DMS) method is illustrated as follows:
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x′t−1, the total number of possible combinations of these predictors
(possible forecasting models) will be K=2m. DMA and DMS can then
incorporate the uncertainty factors from these K models’ in a dynamic
way:
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t
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equation Lt=K indicates that model K is selected at time t, and
Y y y= { , ... , }t

t
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1 −1 . DMA obtains the forecasting result at any point in
time by taking the average of all the K models according to their
historical forecasting performances, denoted by π t t k( | −1, ). DMS then
chooses the model with the best historical performance, i.e., with the
highest probability π t t k( | −1, *).

Raftery et al. (2010) propose a simple estimation of DMA. This
estimation simplifies calculation without loss of forecasting accuracy by
using the Kalman filter method. The initial assumptions of this
estimation are that βt
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where Eq. (8) is simplified with W λ Σ= ( − 1)t
k

t t
k( ) −1
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( ) by using the

forgetting factor.
Another forgetting factor is used in the second assumption, in

which α is used in Eqs. (5) and (6). If we use a transition matrix of
probability, we must consider K = 2m model combinations with m
predictors at each time point. Once m is larger than 5, it is not
practicable to operate the Markov switching in the K×K matrix. Thus,
using the forgetting factor α is a practical way to reduce calculation
time and error. In this way, the probability in the forecasting model is
determined as follows:
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where f y Y( | )t
t

ℓ
−1 denotes the predictive density of model ℓ. The Eqs.

(7)–(12) consist of all the steps of the Kalman filter prediction and the
updating process. Raftery et al. (2010) indicates that if λ=α=1, then
DMA can be treated as BMA (Bayesian model averaging) without any
forgetting.

Furthermore, Raftery et al. (2010) and Koop and Korobilis (2012)
use a constant forgetting factor of λ=α=0.99 in each period. However,
in Eqs. (7)–(12), the value of a forgetting factor determines how rapidly
the forecasting models and parameters evolve. We can see that it is
suitable to permit the models’ probabilities to change more quickly in
some time periods than in others, and to permit the models’ para-
meters to adjust according to their longer historical performance more
than according to their most recent behavior. However, if we set the
same constant forgetting factors at all time points, there is a major loss
of predictive accuracy. Thus, it is necessary to allow DMA to choose its
own proper forgetting factors to minimize the forecasting errors at each
time point. Following Bork and Møller (2015), we first apply the
dynamic forgetting factor αt as

∑ f y Y
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,
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where αt takes a finite number of values. We run a Kalman filter
progress for each αt value. Then, a value of αt is selected that produces
the K models with the highest probability in each period. As it is
adopted by Koop and Korobilis (2012), αt can only take the five values
in the interval of α ∈ {0.95, ... ,0.99}t . Second, the typical value of λ is
determined by the most recent forecasting errors (Fortescue et al.,
1981). However, we set a time-varying λt

k( ) by taking into account the
performance of the model k during the whole forecasting period. This
time-varying λt can reduce the noise of unexpected big forecasting
errors in some periods. We first calculate Ψ quantiles of squared
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forecasting errors as ε ε ε= { , ... , }k
t

k k t
−1

,1
2

, −1
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period. Then, we denote its quantiles as q ε ψ Ψ( ), = 1, ... ,ψ k
t−1 . Next, if

εk t,
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t−1 ] as in the previous

period, then λ λ=t
k

t
k( )
−1
( ) . Otherwise, λt

k( ) increases or declines with the
current forecasting errors. Finally, in accordance with Koop and
Korobilis (2012), we limit the values of λt

k( ) with the same interval of
αt to reduce the computational burden.

2.2. Model evaluation

To evaluate the forecasting performances of different models,
various criteria may be used. To get more robust conclusions on the
accuracy of these models, we use two loss functions as our evaluation
criteria. These loss functions are the MSFE (mean squared forecast
error) and the MAFE (mean absolute forecast error), which are defined
as follows:

∑M y yMSFE = ( − ) ,
t

M

t t
−1

=1

2

(14)

∑M y yMAFE = − ,
t

M

t t
−1

=1 (15)

where yt is the true house price growth rate, and yt is the set of forecasts
for the house price growth rate made by different forecasting models.
M is the number of forecasts.

However, the abovementioned loss functions do not provide any
information on whether the differences of forecasting losses among
models are statistically significant. Therefore, to choose the superior
models, we use an advanced statistical test, namely the MCS test as
proposed by Hansen et al. (2011). The MCS method has several
attractive advantages over conventional tests such as those recom-
mended by Diebold and Mariano (1995), West (1996), White (2000) or
Hansen and Lunde (2005). First, the MCS test does not require a
benchmark model to be specified, which is very useful in applications
without an obvious benchmark. Second, the MCS test acknowledges the
likelihood of outliers in the data, which may cause extreme bias of loss
functions. Third, the MCS test allows for the possibility of more than
one “best” model. The MCS test is processed as follows.

Consider a set,M0, that contains a finite number of objects, indexed
by m=1, …, m0. The objects are evaluated over the sample t=1, …, n in
terms of a loss function i, and we denote the loss that is associated with
object u in period t as Lu,t. We define the relative performance
variables duv,t≡Lu,t–Lv,t for all u, v∈M0. The set of superior objects
is then defined by

M u M E d for all v M* ≡ { ∈ : ( ) ≤ 0 ∈ },i uv t0 , , 0 (16)

where E(di,uv,t) is the mathematical expectation of duv,t under a
specific loss function i, such as MSFE or MAFE. The MCS test is done
through a sequence of significance tests in which objects that are found
significantly inferior to other elements of M0 are eliminated. The null
hypotheses that are being tested take the form of

H E d for all u v M M: ( ) = 0 , ∈ ⊂ .M i uv t0, . , 0 (17)

The MCS procedure is based on an equivalence test, δM, and an
elimination rule, eM. The equivalence test, δM, is used to test the
hypothesis H0 for any M⊂M0, and eM identifies the object of M that is
to be removed from M in the event that H0 is rejected. After repeating
these two tests, we obtain the set, M *

α1− , which consists of the set of
“surviving” objects (those that have survived all tests without being
eliminated), and which are referred to as the MCS (model confidence
set). In Hansen et al. (2011), the significance level α is set to 0.1. This
significance level means that if the p-value is larger than 0.1, then the
corresponding model is a “surviving” model, implying that its fore-
casting performance is relatively good.

The range statistic (TR) and the semi-quadratic statistic (TSQ),

which are suggested by Hansen et al. (2011), are commonly used in
model evaluation. These variables are defined as follows:

T
d

d
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d
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where d d= ∑i uv n t
n

i uv t,
1

=1 , , . If the p-value of TR and TSQis larger than
0.1, we conclude that the null hypothesis (Eq. (17)) cannot be rejected.
The asymptotic distributions of the test statistics TR and TSQ are non-
standard, because they depend on nuisance parameters (under both the
null and the alternative conditions). However, these conditions pose no
obstacle, as the distributions of these statistics are easily estimated by
using bootstrap methods that implicitly solve the nuisance parameter
problem. In addition to TR and TSQ, we use four more test statistics,
i.e., Tmax, TQ, TF and TD to obtain more robust conclusions for model
comparison. More details on these test statistics are discussed in
Hansen et al. (2011).

3. Data and descriptive statistics

We collect the monthly new commodity house price indices of 30
provincial capitals and municipalities in China between January 2007
and December 2015. These data are available from the website of the
National Bureau of Statistics of China (http://data.stats.gov.cn/index.
htm). The growth rates of house prices for each of these 30 cities are
calculated as

y price price i= 100 × [ln( )− ln( )] = 1, ... ,30,i t i t i t, . . −1 (19)

where pricei,t denotes the new commodity house price indices,
adjusted by CPI for city i at time t. Furthermore, following Hamilton
and Schwab (1985), Case and Shiller (1990), Malpezzi (1999), Rapach
and Strauss (2009) and Bork and Møller (2015), the fundamental
economic and monetary predictors for house price growth rates are
chosen for two categories: the national level and city level.

As discussed above, there is growing evidence that Internet online
search indexes can be useful in predicting some future economic
variables. Thus, in addition to the economic and social predictors
commonly used in house price forecasting, we adopt a new predictor –
the Google online search index. This index is based on searching for the
items “city name + house price” in China. All of the variables involved
are listed and explained in Table 1.

In our analysis, the annual or quarterly data, i.e., the log growth

Table 1
Dependent and independent variables of the forecasting model.

Variable names Definitions (percentage) Level Frequency

y log growth rate of real house price City Monthly
cpi log growth rate of consumer price index City Monthly
gdp log growth rate of gross domestic

product
City Monthly

hinvest log growth rate of investment in real
estate market

City Monthly

income log growth rate of real disposable income
per capita

City Quarterly

unemploy log growth rate of unemployment City Annually
search log growth rate of Google online search

index
City Monthly

housestarts log growth rate of newly built house
areas

Nation Monthly

consum log growth rate of total retail sales of
consumer goods

Nation Monthly

indusgr log growth rate of industrial production
growth

Nation Monthly

interspr the spread between 10-year and 3-month
Treasury rates

Nation Monthly

loanr the 30-year mortgage rate Nation Monthly
prosper log growth rate of the national real estate

prosperity index
Nation Monthly
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rate of unemployment and log growth rate of real disposable income
per capita, are converted into monthly data by a linear interpolation
algorithm. Taking Beijing as an example, we present the descriptive
statistics of all these variables in Table 2.

Beijing, the capital of China, is very famous for its high levels and
rates of growth in house prices. Table 2 shows that the average monthly
growth rate for house prices in Beijing is about 0.59%, as compared to
the average growth rate for all of the selected 30 major cities in China,
which is about 0.36%. During the sample period, the highest average
house price growth rate is recorded at about 0.66% in the city of
Haikou, the capital of Hainan province. The lowest rate is observed at
about 0.18% in the city of Hohhot, the capital of Inner Mongolia
autonomous region. Table 2 also shows that the volatility for these
predictors is quite different for Beijing. For example, the standard
deviation for the growth rate in total retail sales of consumer goods is
about 7.65%, whereas this figure for the growth rate on the Google
online search index is just 0.27%. Furthermore the ADF unit root tests
suggest that all of the time series are stationary, indicating that we may
model them through econometrics analysis without further transfor-
mation.

4. Empirical analysis

4.1. Prediction accuracy test

In the extant literature on house price forecasting, recursive
forecasting techniques are commonly applied in which all of the
historical data before the forecasting time point are assumed to form
a new forecast (for example, see Bork and Møller, 2015 and Akinsomi
et al., 2016). However, in most time series forecasting studies, rolling-
window forecasting is recognized as a more accurate methodology than
recursive methods, due to the possibility of structural breaks in time
series. Thus, we use both recursive and rolling time-window forecasts
of house prices to draw the most robust conclusions on performance.
Within the recursive forecasting mode, we can obtain the forecasting
results for almost the whole data sample period, i.e., March 2007 to
December 2015. However, with the rolling-window forecasting mode,
we fix the in-sample length as six years, and the out-of-sample data are
chosen from the last three years of the whole sample (or for 2013–
2015). In other words, we investigate two different forecasting modes
and evaluation samples, which implies that our empirical results are
quite robust and reliable.

In the following tests, the one-month ahead house price growth rate
is predicted by different models using recursive and rolling-window
forecasting modes. The models used in this horse race are as follows:

1) EW: equal-weighted averaging of K OLS models, i.e., the equal-
weighted DMA model with recursive mode;

2) AR1: first-order autoregression model on house price growth rate
with recursive mode;

3) DMA: dynamic model averaging with recursive mode;
4) DMS: dynamic model selection with recursive mode;
5) BMA: DMA prediction with recursive mode, and λ α= = 1;
6) BMS: DMS prediction with recursive mode, and λ α= = 1;
7) ITMA: information-theoretic model averaging with recursive

mode;
8) EW_ROLL: EW with rolling-window forecasting mode. The roll-

ing window is fixed as six years, and the years 2013 to 2015 are
taken as the out-of-sample period;

9) AR1_ROLL: AR1 with rolling-window forecasting mode;
10) DMA_ROLL: DMA with rolling-window forecasting mode;
11) DMS_ROLL: DMS with rolling-window forecasting mode;
12) BMA_ROLL: BMA with rolling-window forecasting mode;
13) BMS_ROLL: BMS with rolling-window forecasting mode;
14) ITMA_ROLL: ITMA with rolling-window forecasting mode.

To be clear, Fig. 1 presents the recursive forecasting results of only
four models for Beijing. It is shown that the real house price growth
rate for Beijing (Y) is quite volatile throughout the 2007–2015 period.
In general, however, all of the four forecasting models follow the trends
of house price changes in Beijing with small discrepancies. Thus, to
quantitatively compare the forecasting accuracy of different models, it
is preferable to use more statistical methods.

To save space, Table 3 reports only the mean square forecast error

Table 2
Descriptive statistics of dependent and independent variables for Beijing.

Variables Obs. Mean Min. Max. Std. dev. ADF

y 108 0.5904 −1.3085 4.4017 0.9112 −3.1322**

cpi 108 0.0007 −2.0359 1.4444 0.6382 −3.4312**

gdp 108 1.3288 −8.7314 9.1207 5.0321 −4.2590***

hinvest 108 0.0498 −1.7430 3.4207 0.6672 −7.3825***

income 108 0.7671 −3.7218 5.9096 2.6295 −3.9609***

unemploy 108 −0.3255 −1.9650 0.4204 0.6564 −3.0503*

search 108 −0.0367 −0.8109 0.5679 0.2676 −10.9497***

housestarts 108 0.0001 −1.8508 1.2242 0.6445 −9.7524***

consum 108 0.1162 −17.9901 14.2284 7.6478 −12.6419***

indusgr 108 −0.6819 −58.2169 65.7429 15.2903 −11.2713***

interspr 108 −1.0833 −97 98 27.3466 −9.4779***

loanr 108 0.0045 −16.2519 6.8053 2.2852 −7.0455***

prosper 108 −0.0636 −2.052 2.4083 0.7472 −4.2769***

Note: ADF means the statistics from the augmented Dickey-Fuller unit root tests. The
asterisks *, ** and *** denote rejections of null hypothesis at the 10%, 5% and 1%
significance levels, respectively.
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Fig. 1. Recursive forecasting results from different models for Beijing.

Table 3
Summary for MSFE for all 30 selected major cities in China.

Model Mean Std. dev. Min. Max. Obs.

Panel A: Recursive mode
EW 0.7788 0.9098 0.1950 5.0063 106
AR1 0.5222 0.6079 0.1198 3.4995 106
DMA 0.2759 0.2258 0.0529 1.0528 106
DMS 0.3410 0.2621 0.0890 1.2842 106
BMA 0.6112 0.8638 0.1281 4.9402 106
BMS 0.2833 0.2200 0.0576 1.0084 106
ITMA 0.3365 0.2099 0.0707 0.8854 106

Panel B: Rolling mode
EW_ROLL 0.7772 0.9029 0.1964 4.9776 36
AR1_ROLL 0.5301 0.6435 0.1126 3.6833 36
DMA_ROLL 0.2739 0.2244 0.0558 1.0527 36
DMS_ROLL 0.3448 0.2583 0.0928 1.2793 36
BMA_ROLL 0.5867 0.2539 0.1170 1.1630 36
BMS_ROLL 0.5817 0.2467 0.1296 1.2134 36
ITMA_ROLL 0.3367 0.2097 0.0710 0.8849 36
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(MSFE) as defined in Eq. (14) for all of the forecasting models. This
table shows the summary of the forecasting errors for all 30 selected
major cities in China.

Table 3 shows that with regard to recursive forecasting, first, the
average MSFE for DMA is 0.2759, which is the smallest result among
the six forecasting models. In addition, the forecasting deviation of
DMA is 0.2258, which is also quite tiny compared to that of the other
six models. This result indicates the forecasting robustness of DMA for
the different city samples. Third, the second-best-performing model is
BMS, with an average MSFE of 0.2833 and the second smallest
forecasting deviation of 0.2200. This result implies that in some cases,
the traditional Bayesian forecasting model without the “forgetting
effect” (like the DMA model) can also be very useful. Fourth, although
ITMA does not get the best accurate forecasts, it obtains the smallest
forecasting deviation of 0.2099, implying that this method may get
robust forecasts for different city samples. Last, the EW and AR1
models are not able to give satisfactory forecasting results.

With regard to rolling-window forecasting, firstly the DMA pro-
duces not only the smallest average MSFE of 0.2739, but also the

second minimum forecasting deviation of 0.2244. This result indicates
that the DMA method not only improves forecasting accuracy sig-
nificantly, but it also achieves stable forecasting precision among
different samples. Secondly, however, the BMS model does not behave
as well as it does in the recursive mode, which implies this model's
instability in forecasting accuracy with different data samples. Thirdly,
ITMA again achieve the smallest forecasting deviation of 0.2097,
indicating its advantage of forecasting robustness across different city
samples. Finally, the traditional EW and AR1 models also perform
poorly with the rolling-window mode.

It is worth noting that rigorous statistical analysis is necessary to
get robust evaluation results for different forecasting models. In the
following procedures, we use an advanced statistical test, i.e., the MCS
test as proposed by Hansen et al. (2011), to choose the superior
models. As discussed above, the models with p-values larger than 0.1
can be treated as “survival models,” as larger p-values indicate better
forecasting accuracy. Tables 4–6 report the p-values for MCS tests
under different loss functions and test statistics for the cities of Beijing,
Haikou and Hohhot. The latter two cities have the highest and the

Table 4
Results of the MCS test for different forecasting models (Beijing).

Model MSFE MAFE

TR TSQ TMax TQ TF TD TR TSQ TMax TQ TF TD

Panel A: Recursive mode
EW 0.0057 0.0001 0.0065 0.0055 0.0003 0.0113 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AR1 0.0188 0.0078 0.0771 0.0135 0.0112 0.0247 0.0003 0.0004 0.0005 0.0000 0.0001 0.0003
DMA 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

DMS 0.2558* 0.3160* 0.2603* 0.2558* 0.3183* 0.2603* 0.0451 0.0451 0.0392 0.0435 0.0461 0.0392
BMA 0.0057 0.0000 0.0007 0.0020 0.0000 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMS 0.0188 0.0086 0.0587 0.0099 0.0112 0.0113 0.0003 0.0001 0.0020 0.0001 0.0001 0.0005
ITMA 0.0188 0.0000 0.0020 0.0099 0.0000 0.0113 0.0020 0.0016 0.0000 0.0000 0.0000 0.0003

Panel B: Rolling mode
EW_ROLL 0.0820 0.1275* 0.3471* 0.2149* 0.3085* 0.1655* 0.0343 0.0650 0.1267* 0.0997 0.1794* 0.0695
AR1_ROLL 0.4870* 0.5455* 0.5352* 0.3769* 0.4171* 0.5675* 0.2104* 0.3288* 0.2159* 0.3841* 0.4239* 0.2393*

DMA_ROLL 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

DMS_ROLL 0.4870* 0.5455* 0.5352* 0.3769* 0.4171* 0.5675* 0.2677* 0.3288* 0.2159* 0.3841* 0.4239* 0.2728*

BMA_ROLL 0.4870* 0.5455* 0.5352* 0.3769* 0.4171* 0.5675* 0.3507* 0.3507* 0.3579* 0.3841* 0.4239* 0.3579*

BMS_ROLL 0.0820 0.1096* 0.4858* 0.2149* 0.3085* 0.3303* 0.0343 0.0546 0.1772* 0.0997 0.1794* 0.1112*

ITMA_ROLL 0.0820 0.0438 0.0419 0.0329 0.0854 0.0230 0.0343 0.0120 0.0042 0.0014 0.0178 0.0068

Note: * indicates a p-value larger than 0.1, which means that the corresponding model survives the MCS test under a specific loss function and test statistic. The bold p-value 1.000
indicates a model that performs better than the other models.

Table 5
Results of the MCS test for different forecasting models (Haikou).

Model MSFE MAFE

TR TSQ TMax TQ TF TD TR TSQ TMax TQ TF TD

Panel A: Recursive mode
EW 0.0806 0.1075* 0.1171* 0.0049 0.0107 0.1014* 0.0016 0.0024 0.0072 0.0000 0.0000 0.0031
AR1 0.0986* 0.1202* 0.1171* 0.1363* 0.1633* 0.1114* 0.0265 0.0185 0.0175 0.0207 0.0319 0.0273
DMA 0.2840* 0.2840* 0.2839* 0.2922* 0.2946* 0.2839* 0.4289* 0.4289* 0.4372* 0.4302* 0.4320* 0.4372*

DMS 0.1454* 0.1464* 0.1171* 0.1604* 0.1683* 0.1208* 0.0814* 0.0936 0.1035* 0.1237* 0.1314* 0.0938*

BMA 0.1454* 0.1202* 0.1171* 0.1363* 0.1633* 0.1114* 0.0322 0.0185 0.0172 0.0207 0.0319 0.0229
BMS 0.1133* 0.1202* 0.1171* 0.1363* 0.1633* 0.1114* 0.0244 0.0153 0.0172 0.0207 0.0319 0.0202
ITMA 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

Panel B: Rolling mode
EW_ROLL 0.0004 0.0011 0.0001 0.0000 0.0005 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AR1_ROLL 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.7474* 0.6300* 0.6338* 0.6165* 0.6196* 0.6338*

DMA_ROLL 0.4983* 0.3772* 0.3871* 0.3649* 0.3711* 0.3932* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

DMS_ROLL 0.4983* 0.3202* 0.3711* 0.1688* 0.1928* 0.3932* 0.6814* 0.2730* 0.2540* 0.0620 0.1110* 0.3068*

BMA_ROLL 0.4983* 0.1565* 0.3711* 0.0234 0.0453 0.3932* 0.7474* 0.3893* 0.3921* 0.1125* 0.1353* 0.5814*

BMS_ROLL 0.4983* 0.1409* 0.2104* 0.0033 0.0207 0.3503* 0.2612* 0.1535* 0.1297* 0.0620 0.1110* 0.2591*

ITMA_ROLL 0.4983* 0.3202* 0.2104* 0.0036 0.0207 0.3932* 0.2612* 0.2209* 0.0677 0.0015 0.0134* 0.2591*

Note: * indicates a p-value larger than 0.1, which means that the corresponding model survives the MCS test under a specific loss function and test statistic. The bold p-value 1.000
indicates that the corresponding model performs better than the other models.
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lowest growth rates in house prices (respectively) during the data
sample period. Table 7 presents the results of the MCS test for the
selected 30 major cities.

Tables 4 to 6 indicate that for house price forecasting in any
individual city, several models can survive the MCS test. Taking Beijing
as a first example, Table 4 shows that with the recursive mode, only
DMA model can survive under both the MSFE and MAFE criteria.
However, for the rolling mode, except ITMA, almost all of the other six
models can pass the MCS test and obtain acceptable forecasting
accuracy. The overall results demonstrate that DMA can achieve the
best forecasting performance.

When forecasting the house prices in Haikou (which has the highest
average rate of growth in house price), Panel A of Table 5 shows that
almost all of the seven models can survive under the MSFE criterion,
but only DMA, DMS and ITMA can pass the MCS test under the MAFE
criterion. In general, DMA, DMS and ITMA are survival models under
all criteria and test statistics, in which ITMA seems to perform better
than the others. Unlike in the situation of Beijing, Panel B of Table 5
indicates that when the rolling forecasting results are tested, it is the
AR1 model (and not DMA or ITMA) that performs best under MSFE.
When MAFE is considered, DMA again achieves the best forecasting
accuracy.

When we consider the city of Hohhot (which has the lowest house
price growth rate in China), Panel A of Table 6 shows that only DMA
can survive the MCS test under all criteria and test statistics in
recursive forecasting mode, and in some cases ITMA is acceptable
under the MSFE criterion. Panel B indicates that, except EW model,
almost all of the other six models can partly produce acceptable
accuracy in rolling forecasting.

In general, the three individual cities discussed here present no
consistent proof concerning which model is superior in forecasting
house prices. Thus, to get an overview of the performance of different
models, we pool the forecasting results for all of the selected 30 cities,
and again use MCS to test the overall forecasting accuracy of the
models. The empirical results shown in Table 7 are quite simple. With
regard to recursive forecasting, Panel A of Table 7 shows that only
DMA can survive the MCS test under all of the loss functions and test
statistics. All the MCS p-values of DMA equaling to one indicates that it
performs very well in forecasting house price in major Chinese cities.
While in the situation of rolling forecasting, the empirical results are a
bit more complicated. Among all the seven forecasting models, not only
DMA, but BMA and ITMA can survive the MCS tests. Under the

criterion of MSFE, DMA again obtain the best forecasting accuracy.
While ITMA is the superior model to the others with respect to MAFE
criterion.

However, it is worth noting that there are only 36 monthly rolling
forecasting observations in our empirical test, and there are 106
monthly recursive forecasting observations. Thus, with respect to
long-run performance, the testing results for recursive forecasting in
this empirical study are more reliable. In short, no matter what
forecasting modes or forecasting horizons are used, DMA performs
the best among all of the models considered here. In some cases, ITMA
proposed by Kapetanios et al. (2008) can also achieves quite satisfac-
tory forecasting accuracy.

4.2. Average number of predictors

Compared to traditional prediction models, an important advantage
of DMA is that it allows explanatory variables (predictors) to change
over time. This means that the numbers and types of explanatory
variables at different time points may change according to their past
forecasting performance. Koop and Korobilis (2012) point out that the
average (or expected) number of explanatory variables (predictors)
used by DMA at time t is

∑E size π size( ) = ,t
k

K

t t k k
=1

( | −1, ) ( )
(20)

where size k( ) is the number of explanatory variables in the kth model.
Fig. 2 presents the median of the E(sizet) for the 30 major cities in
China. The 1/4 and 3/4 quantiles of E(sizet) are also indicated in this
figure. Fig. 2 shows that as time passes, the average number of
explanatory variables decreases. At the beginning of 2007, about 8
predictors are used, but this number falls to about 5.5 by the end of
2015. Considering that a total of 12 alternative predictors are tested in
this paper, these results imply that DMA can effectively select good
predictors and eliminate bad predictors from the optional variables. As
time goes on, more forecasting performance information is collected by
DMA. Thus, the redundant predictors with poor forecasting accuracy
are eliminated, and good predictors are retained in the DMA process.
As fewer predictors are adopted over time, the calculation burden of
DMA is diminished, and the forecasting effectiveness is improved.

Table 6
Results of the MCS test for different forecasting models (Hohhot).

Model MSFE MAFE

TR TSQ TMax TQ TF TD TR TSQ TMax TQ TF TD

Panel A: Recursive mode
EW 0.0029 0.0008 0.0008 0.0003 0.0010 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AR1 0.0304 0.0163 0.0017 0.0023 0.0044 0.0096 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

DMS 0.0342 0.0294 0.0067 0.0051 0.0068 0.0199 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
BMA 0.0029 0.0002 0.0007 0.0001 0.0004 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMS 0.0029 0.0055 0.0017 0.0023 0.0044 0.0054 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ITMA 0.1678* 0.1678* 0.1708* 0.0905 0.0934 0.1708* 0.0662 0.0662 0.0745 0.0298 0.0320 0.0745

Panel B: Rolling mode
EW_ROLL 0.0165 0.0290 0.0050 0.0011 0.0153 0.0286 0.0028 0.0036 0.0012 0.0000 0.0014 0.0053
AR1_ROLL 0.1022* 0.1462* 0.0051 0.0144 0.0369 0.0382 0.1118* 0.1460 0.0030 0.0252 0.0500 0.0269
DMA_ROLL 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

DMS_ROLL 0.1022* 0.1462* 0.0420 0.0127 0.0369 0.0775 0.1118* 0.0909 0.0030 0.0200 0.0500 0.0269
BMA_ROLL 0.1413* 0.1462* 0.0553 0.0341 0.0412 0.0775 0.2976* 0.2405* 0.2023* 0.1763* 0.2004* 0.3248*

BMS_ROLL 0.1022* 0.0534 0.0051 0.0005 0.0412 0.0382 0.1118* 0.0254 0.0026 0.0001 0.0024 0.0161
ITMA_ROLL 0.1413* 0.1462* 0.0143 0.0144 0.0369 0.0382 0.2976* 0.2405* 0.2023* 0.1763* 0.2004* 0.3248*

Note: * indicates a p-value larger than 0.1, which means that the corresponding model survives the MCS test under a specific loss function and test statistic. The bold p-value 1.000
indicates that the corresponding model performs better than the other models.
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4.3. Inclusion probability of predictors in DMA forecasting

The probability of inclusion for a predictor (e.g., the growth rate of
CPI, GDP or Google search index) refers to the sum of probabilities
(π t t k( | −1, )) that a given predictor will be included among the set of viable
predictors in the forecasting model k (k=1, 2,…, K) of DMA at time t. In
other words, the higher the probability of inclusion for a predictor, the
more forecasting weight is assigned to that variable, and the higher
forecasting power that predictor has. To illustrate this approach clearly,
Fig. 3 shows the probabilities for five typical predictors in DMA
forecasting.

As Fig. 3 indicates, all of the five predictors considered here present
volatile forecasting probabilities over the whole data sample period. At
the beginning of the forecasting sample (in 2007), investment in the
real estate market (hinvest) shows higher forecasting power than the
other predictors. The forecasting power of hinvest also increases over
time, as other predictors show decreasing probabilities. During the
middle part of the sample period (from 2008 to 2014), the CPI is
obviously superior to other predictors, and unemployment performs
also quite well most of the time. However, there is clear evidence that
from 2009 to 2014, the forecasting power of the Google search index
(search) increases significantly. In stark contrast, GDP, unemployment,

hinvest and CPI gradually lose their forecasting power. At the end of
sample period (from year 2014 to 2015), the Google search index
overtakes the others to become the best predictor. In addition, the
forecasting probability of the Google search index continually rises, and
the probabilities of other predictors fall remarkably.

According to economic theory, economic variables such as GDP,
CPI or investment should have more ability to explain changes in house
prices. However, we find that the explanatory ability of these tradi-
tional macroeconomic predictors has decreased gradually in recent
years, and the Google search index is gaining ever more forecasting
power. There are two possible reasons for this trend. First, in 2008 the
U.S. subprime mortgage crisis swept through the global economy, and
the effects of this event are still being felt. Also since 2008, the Chinese
government and central bank have implemented many credit policies
to stimulate or reduce supply and demand in the real estate market.
Thus, house prices have fluctuated more due to uncertainty over the
government's policies than in response to macroeconomic indicators.
Second, according to a report by the China Internet Network
Information Center (CNNIC), the number of Chinese Internet users
increased from 111 million in 2005 to 688 million in 2015, and 71.5%
of these people are accessing the Internet with mobile devices. Due to
uncertainty over the trends in China's economic development and real
estate market policy, more and more house seekers are using the

Table 7
Results of the MCS test for different forecasting models (summary of 30 major cities in China).

Model MSFE MAFE

TR TSQ TMax TQ TF TD TR TSQ TMax TQ TF TD

Panel A: Recursive mode
EW 0.0010 0.0025 0.0024 0.0000 0.0000 0.0031 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AR1 0.0100 0.0063 0.0065 0.0001 0.0001 0.0159 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

DMS 0.0151 0.0083 0.0065 0.0003 0.0003 0.0212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMA 0.0100 0.0063 0.0065 0.0001 0.0000 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMS 0.0100 0.0063 0.0065 0.0001 0.0000 0.0146 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ITMA 0.0768 0.0768 0.0737 0.0748 0.0749 0.0737 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel B: Rolling mode
EW_ROLL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AR1_ROLL 0.0004 0.0026 0.0012 0.0003 0.0003 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA_ROLL 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.4395* 0.5140* 0.4201* 0.5247* 0.5252* 0.3765*

DMS_ROLL 0.0109 0.0510 0.0388 0.0244 0.0250 0.0608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMA_ROLL 0.4928* 0.4368* 0.3472* 0.4437* 0.3523* 0.4178* 0.4395* 0.5140* 0.4183* 0.5247* 0.5252* 0.3724*

BMS_ROLL 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ITMA_ROLL 0.4928* 0.4368* 0.3326* 0.4437* 0.4443* 0.4178* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

Note: * indicates a p-value larger than 0.1, which means that the corresponding model survives the MCS test under a specific loss function and test statistic. The bold p-value 1.000
indicates that the corresponding model performs better than other models.
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Fig. 2. Average number of predictors used in DMA recursive forecasting for 30 major
cities in China.
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Internet to find information for their purchase decisions. Therefore,
changes in the search indexes on house prices contain more informa-
tion about the real demand from house purchasers, and thus a search
index may have more ability to explain house price changes in China.

5. Conclusions

This paper adopts the dynamic model averaging (DMA) method to
predict the growth rate in house prices for 30 major cities in China.
Unlike previous empirical studies, our paper uses both recursive and
rolling forecasting modes in DMA. We also apply a rigorous statistical
method, namely the model confidence set (MCS) test, to compare the
forecasting performance of DMA with that of other models. Last, we
use the Google search index as an additional predictor beyond the
traditional economic variables to forecast changes in Chinese house
prices.

The main empirical results show that compared with the traditional
time series models and other model averaging approaches, DMA is
more flexible and effective, as it allows both the models and the
coefficients to change over time. Under the criteria of MSFE, MAFE
and many different test statistics, the MCS test indicates that DMA
achieves significantly higher forecasting accuracy than other models in
both the recursive and rolling forecasting modes. However, no single
predictor is found to have absolute superiority over others. The best
predictors for Chinese house prices vary greatly over time. Also, the
Google search index for house prices has surpassed the forecasting
ability of traditional macroeconomic variables in recent years.
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