
Contents lists available at ScienceDirect

Economic Modelling

journal homepage: www.elsevier.com/locate/econmod

Forecasting the realized range-based volatility using dynamic model
averaging approach

Jing Liua, Yu Weia, Feng Maa,⁎, M.I.M. Wahabb

a School of Economics & Management, Southwest Jiaotong University, Chengdu, Sichuan, PR China610031
b Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada5MB 2K3

A R T I C L E I N F O

Jel Classification:
C22
C52
C55

Keywords:
Volatility forecasting
Realized range-based volatility
Dynamic model averaging
Combined models

A B S T R A C T

In this study, we forecast the realized range-based volatility (RRV) using the heterogeneous autoregressive
realized range-based volatility (HAR-RRV) model and its various extensions, which are called HAR-RRV-type
models. We first consider the time-varying property of those models’ parameters using the dynamic model
averaging (DMA) approach and evaluate the forecasting performance of three types: individual HAR-RRV-type
models, combined models with constant weights, and combined models with time-varying weights. Our out-of-
sample empirical results show that combined models with time-varying weights can not only generate more
accurate forecasts, but also beat individual models and combined models with constant weights.

1. Introduction

The volatility of financial asset and commodity price representing
their price uncertainty has a huge strategic importance in risk manage-
ment, derivative pricing, and portfolio selection. For example, crude oil
is traded in the global market and its price uncertainty has significant
effect on economic growth and financial market all around the world
(see, e.g., Hamilton, 1983; Kilian, 2006; Aloui and Jammazi, 2009;
Kilian and Park, 2009). Therefore, modelling and forecasting volatility
of asset price are crucial to financial market participants and policy
makers.

A large number of studies focus on modelling and forecasting
volatility of financial and commodity markets using low-frequency data
(e.g., Agnolucci, 2009; Cheong, 2009; Wei et al., 2010; Mohammadi
and Su, 2010; Nomikos and Andriosopoulos, 2012; Charles and Darné,
2014; Efimova and Serletis, 2014; Lean and Smyth, 2015). As high-
frequency data carries more information, it can help make better
decisions. With the increasing availability of high-frequency data,
research on measuring and modelling the volatility based on high-
frequency data becomes popular.

For measuring volatility of high-frequency data, Andersen and
Bollerslev (1998) propose the realized volatility (RV), which is defined
as the sum of non-overlapping squared returns within a fixed time
interval. Corsi (2009) proposes a simple heterogeneous autoregressive
model of realized volatility (HAR-RV) model. This model is popularly

employed in forecasting volatility and shows its outstanding perfor-
mance in capturing "stylized facts" in financial market, such as long
memory and multi-scale behavior of volatility (Andersen et al., 2007;
Corsi et al., 2010; Bekaert and Hoerova, 2014; Duong and Swanson,
2015; Bollerslev et al., 2016). Following Corsi (2009), some extensions
of HAR-RV model are developed (Andersen et al., 2007; Huang et al.,
2016). For example, HAR-RV-J model is proposed by adding the jump
component in volatility and HAR-RV-CJ model is developed to
investigate the contribution of jumps by decomposing realized volatility
into continuous sample path and significant jump components
(Andersen et al., 2007). These extensions are mainly based on different
decompositions of realized volatility. Moreover, by introducing lever-
age terms related to negative returns, McAleer and Medeiros (2008)
extend HAR-RV model to the leverage HAR-RV (LHAR-RV) model.
Recently, some empirical studies show overnight information has a
significant impact on volatility and thus can improve the predictability
of HAR-type models (e.g., Taylor, 2007; Todorova and Souček, 2014).
Overall, HAR-type models perform better than GARCH-class models in
capturing the volatility dynamics and are more widely used in high-
frequency data (see, e.g., Andersen et al., 2003; Hansen and Lunde,
2005; Koopman et al., 2005; Wei et al., 2010; Çelik and Ergin, 2014;
Ma et al., 2015).

Nevertheless, Bandi and Russell (2008) point out that RV could not
identify the daily integrated variance of the frictionless equilibrium
price in the presence of market microstructure noise. Thus, Martin and
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Dick (2007) introduce another measure called the realized range-based
volatility (RRV), which is calculated by the difference between the
largest and lowest prices that are observed during a certain period. The
measurement precision of RRV is proved to be up to five times greater
than the RV. Since the extremes are obtained from the entire price
process, RRV carries more information and also relatively less con-
taminated by noise than realized volatility at fixed intervals. RRV has
already been applied in financial assets and it successfully captures the
long-term memory behavior in volatility (e.g., Tseng et al., 2009). Some
models, such as HAR-RRV and HAR-RRV-RBV-ONI model, are
constructed based on RRV and show good out-of-sample forecasting
performances (Tseng et al., 2012). Since RRV is much more efficient
and sufficient in volatility modelling and forecasting, we choose RRV to
measure the volatility of financial assets.

Although, many individual models, such as GARCH-class models
and HAR-type models, have been presented, it has also been well
documented that the predictability of an individual model is very
unstable and changing over time (e.g., Stock and Watson, 2004).
Hence, some studiesdiscuss how to combine a set of forecasts to
produce superior composite forecasts (Liu and Maheu, 2008; Santos
and Ziegelmann, 2014). The existing literature shows that a combined
model performs better than an individual model.

In addition, asset volatility is affected by many uncertain factors,
such as economic cycles, political policies, and extreme events, which
will lead to frequent structural breaks in the statistical property of
volatility (e.g., Granger and Hyung, 2004; Liu and Maheu, 2008). To
deal with structural breaks over time in a single model, Raftery et al.
(2010) propose the dynamic model averaging (DMA) approach, which
allows the model vary with the variables over time. Consequently, DMA
is widely implemented to forecast inflation, gold price, oil price, and
combine the forecasts (Koop and Korobilis, 2012; Aye et al., 2015;
Naser, 2016; Wang et al., 2016). DMA approach combines the
generated models dynamically by using two forgetting factors to
approximately estimate both the model parameters and model switch-
ing probabilities, i.e., DMA successfully avoids arbitrary choices made
by the model users. However, there is no study of realized range-based
volatility dynamics which are described in a time-varying parameter
framework such as dynamic model averaging. In order to fill this gap,
we first incorporate DMA approach into RRV framework for forecast-
ing volatility of crude oil futures and the S & P 500 index.

The validity of forecasting models is usually evaluated by various
methods including loss functions, mean mixed statistics (MME),
superior predictive ability (SPA) test, and advanced model confidence
set (MCS) test (Brailsford and Faff, 1996; Hansen, 2005; Hansen et al.,
2011). Among them, the MCS test has several attractive advantages.
MCS test does not require a benchmark and allows for the possibility of
more than one “best” models. Thus, we apply MCS as a main criterion
for model evaluation.

To the best of authors’ knowledge, this study is the first attempt to
incorporate DMA approach into RRV framework. Thus, both the time-
varying property of high-frequency volatility and time-varying weights
of different models are considered over time. In order to forecast the
realized range-based volatility of financial assets, we construct five
individual HAR-RRV-type models (HAR-RRV, HAR-RRV-J, HAR-
RRV-CJ, LHAR-RRV-CJ, and HAR-RRV-ONI), their combinations
with constant weights, and their combinations with time-varying
weights by applying the DMA approach. Finally, we assess their
predictive abilities by using error statistics, MME test, and MCS test.

The contributions of this research are threefold. First, we model the
time-varying volatility and compare the models’ forecasting ability in
the framework of RRV, since the RRV carries more information than
RV. We also provide the performance of the models for forecasting
RRV across crude oil futures and the S & P 500 index. Second,
individual HAR-RRV-type models are unstable over time. However,
there is no study on incorporating time-varying combined models with
the framework of RRV. Hence, we employ several combined models

with constant weights and combined models time-varying weights
obtained from DMA to capture the dynamics of volatilities. Third, our
empirical study evaluates three types of models (individual HAR-RRV-
type models, combined models with constant weights, and combined
models with time-varying weights) in forecasting volatility based on
error statistics, mean mixed statistics (MME), and MCS test for 5-min,
10-min, and 15-min high-frequency data. Our empirical studies show
that DMA approach performs the best. Especially, DMA shows its
strength for forecasting RRV based on 5-min frequency data of oil
futures.

The rest of this paper is organized as follows. Section 2 briefly
describes the specifications of the volatility measure and five individual
models based on RRV. Section 3 presents the high-frequency data.
Section 4 discusses the in-sample evaluations and out-of-sample
forecasting results. Section 5 concludes the paper.

2. Methodology

The volatility measure and forecasting methodology are introduced
in this section. Section 2.1 describes the measure of realized range-
based volatility (RRV). Based on RRV, HAR-RRV model and its
extensions are specified in Section 2.2. Section 2.3 presents the
combined models and Section 2.4 discusses applying DMA approach
as a combined model with time-varying parameter in RRV framework.

2.1. Realized range-based volatility measure

Using the extreme value method of intra-day return by the high-low
range, Martin and Dick (2007) provide a more efficient measure called
the realized range-based volatility (RRV), which uses the high-low
range instead of the squared return. In their study, RRV significantly
improves over RV due to the price range of intraday carrying more
information than the closing prices. In order to deal with microstruc-
ture issues, we can use a bias-correction procedure to account for the
effects of microstructure frictions based upon scaling the realized range
with the average level of the daily range. The RRV has been proved to
have a lower mean-squared error than RV by simulation experiments
(Martin and Dick, 2007). Their result shows RRV is robust to
microstructure noise.

Initially, assuming that the oil futures price, pt, follows a geometric
Brownian motion, considering the equidistant partition

t t t0= < <…< =1M0 1 , where t i M= /i ,t t s t≤ , ≤i i−1 , and M∆=1/ , the intraday
range at sampling times ti−1 and t i M( = 1,2, …, )i is

s p p=sup{ − }.p i t s,∆ (1)

The estimator RRV for the interval [0, 1] can be expressed as:
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, , λr m, is the rth moment of the range of Brownian
motion over a unit interval. When △→0, realized range-based
volatility (RRV) and the realized range-based bi-power variation
(RBV) are specified as below (Christensen and Podolskij, 2006;
Christensen and Podolskij, 2007):
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From the Eqs. (3) and (4), we have,
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where ∫ σ s ds( )
t

0
2 represents continuous path component and
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k s∑ ( )s t0< ≤
2 represents the jump component. Therefore, to ensure that

estimates of all daily jump variation are non-negative, the jump
component Jt is given by,

J RRV RBV= max( − ,0).t t m t m, , (6)

Furthermore, the “significant” jump can be tested using this
modified ratio-statistic,
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where m=1/∆, t is the length of the sample period, and vm is determined
from λ m1, , λ m2, , λ m3, , and λ m4, , and that are computed by a Brownian
motion with 1,000,000 replications (Christensen and Podolskij, 2006;
Christensen and Podolskij, 2012). Therefore, the “significant” jumps
are identified by the realizations of Zt m, in excess of some critical value,
say Φα,

CJ I Z Φ RRV RBV≡ ( > )⋅[ − ],t m t m α t m t m, , , , (8)

where I(⋅) is an indication function.

2.2. Modelling realized range-based volatility

Based on realized range-based volatility (e.g., Andersen et al., 2007;
Corsi, 2009), we have the specification of HAR-RRV,

RRV c β RRV β RRVW β RRVM ε= + + + + ,t d t w t m t t+1 +1 (9)

where c is the constant and εt+1 refers to error term. HAR-RRV has
three explanatory variables: lagged daily realized range-based volatility
(RRVt), lagged weekly realized range-based volatility (RRVWt) and
lagged monthly realized range-based volatility RRVM( ).t The weekly
indicator RRVWt is the average daily RRV from dayt − 4 to day t . The
monthly indicator RRVMt is the average daily RRV from day t − 21 to
day t .

Tseng et al. (2012) states that overnight return improves forecast-
ing RRV. Accordingly, we use HAR-RRV-ONI model with overnight
return indicating overnight information to forecast RRV. Based on Eq.
(9), by considering overnight information, HAR-RRV-ONI model is
constructed by adding overnight return, ONIt, as a new explanatory
variable. HAR-RRV-ONI model can be expressed as:

RRV c β RRV β RRVW β RRVM β ONI ε= + + + + + ,t d t w t m t ONI t t+1 +1 (10)

where the overnight return ONIt is the return between the closing price
and opening price.

HAR-RRV-J model is extended by adding the jump component, Jt,
to HAR-RRV model and thus we have the specification of HAR-RRV-J
as follows:

RRV c β RRV β RRVW β RRVM β J ε= + + + + + ,t d t w t m t j t t+1 +1 (11)

where the jump component is referred to J max RRV RBV= ( − ,0)t t t ,
RBV μ r ||r= ∑ | |t j

M
t j t j1

−2
=2 , −1 , , and μ π E |Z|= 2/ = ( )1 . Based on Andersen

et al. (2007), we can extend HAR-RRV model to HAR-RRV-CJ model
incorporating continuous sample path and jump components, and it
can be written as:

RRV c β CRRV β CRRVW β CRRVM β CJ β CJW
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where CRRVt α, , CRRVWt α, and CRRVMt α, are the daily, weekly, and
monthly averages of continuous sample path, respectively, and simi-
larly CJt α, ,CJWt α, , CJMt α, , refer to the daily, weekly, and monthly jump
components.

Let I(⋅) be the indicator function, and thus these components can be
calculated as follows:

CRRV I Z RRV I Z BPV= ( ≤ Φ )⋅ + ( > Φ )⋅ ,t α t α t t α t, (13)

CRRVW I Z RRVW I Z BPVW= ( ≤ Φ )⋅ + ( > Φ )⋅ ,t α t α t t α t, (14)

CRRVM I Z RRVM I Z BPVM= ( ≤ Φ )⋅ + ( > Φ )⋅ ,t α t α t t α t, (15)

CJ I Z RRV BPV= ( > Φ )⋅( − ).t α t α t t, (16)

Accordingly, the weekly jump component is calculated as
CJW I Z RRVW BPVW= ( > Φ )⋅[ − ]t α t α t t, , and the monthly jump component
is calculated as CJM I Z RRVM BPVM= ( > Φ )⋅[ − ]t α t α t t, .

Besides aforementioned models, by considering leverage terms
related to negative returns (McAleer and Medeiros, 2008), we can
construct the model LHAR-RRV-CJ and specify it as:
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where r rI r= ( <0)d t t t,
− is the negative part of the daily log return,I(⋅) is the

indicator function, and
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In our empirical study, to forecast oil futures volatility, aforemen-
tioned five individual models, such as HAR-RRV, HAR-RRV-ONI,
HAR-RRV-J, HAR-RRV-CJ, and LHAR-RRV-CJ, are employed.

2.3. Combined models

Although some individual models have relatively good predictabil-
ity, their forecasting abilities are changeable over time. Hence,
combining several models into a single model is effective in forecasting.
There are several classes of combined models: the mean combination,
discounted MSFE forecasts, shrinkage forecasts, and ‘most recently
best’ methods (Stock and Watson, 2004).

The mean combination takes the equal-weighted average of the
forecasts generated by different individual models. It has two exten-
sions: the median and the trimmed mean. The median combination
uses the median of volatility forecasts while the trimmed mean is
calculated with 5% symmetric trimming. For example, the simple mean
combination equation can be written as:

σ σ σ σ

σ σ

= 1
5

[ + +

+ + ],

t t t t

t t

+1,combine
2

+1,HAR−RRV
2

+1,HAR−RRV−J
2

+1,HAR−RRV−CJ
2

+1,HAR−RRV−ONI
2

+1,LHAR−RRV−CJ
2

(20)

where σt+1,combine
2 denotes 1-step ahead combination forecast at time t

+1, and the five terms within the brackets represent the forecasts from
the models HAR-RRV, HAR-RRV-J, HAR-RRV-CJ, HAR-RRV-ONI,
and LHAR-RRV-CJ, respectively.

The shrinkage forecasts have two methods to obtain the weights.
One is averaging the weights of OLS estimator and the other is equal
weighting. Following Stock and Watson (2004), the shrinkage forecasts
can be written as:

ω λβ λ n= + (1− )(1/ ),it it (21)

where βit represents the ith coefficient estimated from OLS regression
of forecasts series generated from individual models.
λ max κ n t h T n= {0,1 − [ /( − − − )]}0 , where n is the number of individual
forecasts, T0 is the starting period which individual out-of-sample
forecasts are computed from. h represents the number of steps ahead
forecasting. κ is a given constant which is used to control the amount of
shrinkage towards equal weighting. The shrinkage forecasts are
evaluated for κ = 0.25, 0.5, and 1. The weight κ could be estimated
using empirical Bayes methods and larger value of κ indicates faster
shrinkage.
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In the empirical study, we apply three mean combination forecasts
(equal-weighted average, the median, and the trimmed mean) that are
denoted as M1, M2 and M3, and three shrinkage forecasts given κ =
0.25, 0.5, 1 that are denoted M4, M5 and M6, respectively.

2.4. Dynamic model averaging approach

The individual HAR-RRV-type models are presented in Section 2.2
and combined models presented in Section 2.3 are regression models
with constant weights. However, in a volatile market, asset prices are
unstable over time, so that the most appropriate model at different
points is not easy to be determined. This problem can be overcome by
Bayesian model averaging (BMA) and Bayesian model selection (BMS)
procedures (Cremers, 2002; Koop and Potter, 2004; Wright, 2008).
Raftery et al. (2012) argue that BMA sets fixed weight for each model
and is still restricted to static problems. BMS selects the model by
maximizing the likelihood probability of forecasting at the next period.
Although the combined models with constant weights can perform
better than the individual models, they still cannot capture the
changing weights of individual models over time. Thus, how time-
varying combined models is applied in RRV framework has to be
addressed. Raftery et al. (2010) propose dynamic model averaging
(DMA) and dynamic model selection (DMS) approach, which allows
the models and their coefficients to change over time. Due to the
flexibility of DMA, this study first considers incorporating DMA into
RRV framework to combine the forecasting models. The discussion of
DMA approach can be found in Appendix A.

3. Data

Since 5-min high-frequency data has been proved to be a rule-of-
thumb and it is the best trade-off between market microstructure noise
and measurement accuracy (e.g., Andersen and Bollerslev, 1998; Corsi
et al., 2010; Sévi, 2014; Liu et al., 2015), in this study, we use 5-min
high-frequency data of the Light Sweet Crude Oil (WTI) futures
contract with a maturity of one month from the NYMEX. Since the
most traded commodity futures and most of oil-based derivatives
throughout the world are priced with respect to the WTI contract.
Our data are collected from the Tick DATA, covering the period from
January 2, 2007 to May 9, 2014. Totally 1851 daily observations are
obtained after removing days with a shortened trading session or too
few transactions1. For robustness, we also examine stock market by
using representative the S & P 500 index2.

Our sample data of oil futures is divided into two subgroups: a) in-
sample data used to estimate the models, covering the first 1000
trading days (from January 2, 2007 to December16, 2010); and b) out-
of-sample data used for model evaluation, covering the rest 850 trading
days (from December17, 2010 to May 9, 2014). The estimation period
is then rolled forward by dropping the most distant day and adding the
new day. Thus, the in-sample data remains at a fixed length and the
forecasts do not overlap3. Besides, our sample data of the S & P 500
index is from January 4, 2000 to April 29, 2016. This data is for the
trading time of each business day between 9:30:00 and 16:00:00. After
removing days with shortened trading sessions or too few transactions,
high-frequency data for 4012 business days are obtained, and the last
992 days are used for the model evaluation.

Table 1 presents the descriptive statistics of several volatility series

based on oil futures price and the S & P 500 index. All realized
measures and jumps variations series are significantly skewed and
leptokurtic at the 1% level, suggesting that their distributions have fat-
tail and are more peaked than Gaussian distribution. The Jarque-Bera
statistic (Jarque and Bera, 1987) further demonstrates that the null
hypothesis of normality is rejected at the 1% significance level. The
above results indicate that all of series we have discussed are not
normally distributed. The Ljung-Box statistic Q(5) (Ljung and Box,
1978) for serial correlation shows that the null hypotheses of no
autocorrelation up to the 5th order are rejected for most of series, which
suggest that there exist series correlation in the realized measures and
jumps variations series.

4. Empirical results

This section first introduces the forecasting methodology of out-of-
sample rolling method and the model confidence set (MCS) test, and
then presents in-sample forecasts of individual HAR-RRV-type models
and out-of-sample forecasts, which include the individual HAR-RRV-
type models, combined models with constant weights, BMA/BMS, and
DMA/DMS.

4.1. Forecasting methodology and forecasts evaluation

In this section, we briefly introduce the forecasting methodology of
out-of-sample rolling method and forecasts evaluation methods. Since
the forecasting models are proven to be sensitive the error statistic used
to assess the accuracy of the forecasts. For robustness, the models are
assessed not only by error statistics but also assessed by mean mixed
statistics (MME) and the model confidence set (MCS) proposed by
Hansen et al. (2011).

Forecasting models are usually evaluated by various loss functions.
However, these loss functions cannot provide any information on
whether the differences of forecasting losses among models are
significant. Hansen (2005) proposes a superior predictive ability
(SPA) test and solves the problem of comparing multiple forecasts.
SPA method is better than the aforementioned loss functions to
evaluate the forecasts, but it requires providing a benchmark model.
Subsequently, Hansen et al. (2011) propose a much more advanced
method, called advanced model confidence set (MCS) test. The MCS
test has several attractive advantages over both conventional tests and
SPA method. First, the MCS test does not need to specify a benchmark
which is very useful in applications without an obvious benchmark.
Secondly, the MCS procedure allows for the possibility of more than
one “best” model. If p-values of both statistic tests are larger than 0.1,
the corresponding model is called “surviving” model. It means that
those “surviving” models have better performance than the models
removed by MCS test (Hansen et al., 2011). Because of those
advantages, MCS test is widely used to compare forecasting perfor-
mance, and hence we will apply MCS as the criteria for model
comparison. In addition, the specification of mean mixed statistics
(MME) and the results of error statistics are provided in Appendix B.

To quantitatively evaluate the forecasting accuracy of the models,
some of the popular loss functions can be calculated as:

∑HMSE M σ RRV= (1− / ) ,
t

M

t t
−1

=1

2 2

(22)

∑HMAE M σ RRV= | 1− / |,
t

M

t t
−1

=1

2

(23)

where σt
2 refers to the volatility forecasts generated by different

individual models and their combinations and M denotes the number
of forecasting data points (M = 850). RRVt is the proxy for actual
market volatility in out-of-sample period.

The MCS method has obvious advantages mentioned over conven-

1 The trading hours of crude oil futures are from 6:00 PM until 5:15 PM, Sunday
through Friday with a 45-minute break each day between 5:15 PM (current trade date)
and 6:00 PM (next trade date), New York Time.

2 The empirical results of 10- and 15- min high-frequency data can also be provided
according to the requests.

3 More details and discussions about the optimization of estimation window can be
seen in Rossi and Inoue (2012). In a robustness check, we have tested estimation window
for 900, 1000, and 1100 days. The results of these different windows are consistent.
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tional tests such as the superior predictability and the “Reality check”
(Hansen and Lunde, 2005; White, 2000). MCS test is used to select a
subset of models with significant predictability from a set of models. In
our empirical study, we use two popular statistic tests of MCS: the
range statistic (TR) and semi-quadratic statistic (TSQ). If p-values of both
of statistic tests are larger than γ, the corresponding models are
“surviving” models, which means that those “surviving” models achieve
better performance than models which have been removed by MCS test
in forecasting.

4.2. In-sample analysis

Table 2 exhibits the in-sample estimates of the HAR-RRV-type
models using oil futures and the S & P 500 index. For oil futures, the
estimation parameters of weekly and monthly RRV of individual
models are significant at the 5% level. For the S & P 500 index, all
the parameters of daily, weekly and monthly RRV except one are
significant at the 5% level. That suggests a strong persistence in RRV
dynamics. In addition, the coefficient of the weekly parameter is larger
than that of the monthly and daily parameters in each model based on

Table 1
Descriptive statistics of each volatility series.

Data Variables Mean St.dev. Skewness Kurtosis Jarque-Bera Q(5)

Crude oil futures RRV 3.005 4.262 3.941*** 19.335*** 33225.704*** 5453.734***

RRVW 2.892 4.155 3.940*** 19.034*** 32340.317*** 5428.804***

RRVM 2.772 3.921 3.842*** 18.006*** 29062.655*** 5428.804***

CRRV 2.726 3.906 3.988*** 20.329*** 36164.290*** 5408.288***

J 0.324 0.775 7.285*** 73.919*** 432583.731*** 455.498***

CJ 0.113 0.579 12.325*** 198.908*** 3046388.890*** 15.129***

The S & P 500 index RRV 0.808 1.784 13.319*** 319.558*** 17193465.119*** 7165.563***

RRVW 0.807 1.488 7.548*** 79.897*** 1105496.111*** 15744.426***

RRVM 0.805 1.317 5.978*** 5.978*** 45.382*** 19439.385***

CRRV 0.622 1.560 15.078*** 384.999*** 24936431.868*** 7199.179***

J 0.187 0.394 7.191*** 83.212*** 1192371.749*** 1868.838***

CJ 0.187 0.394 7.188*** 83.152*** 1190689.646*** 1848.769***

Notes: The null hypothesis are “Skewness = 0” and “Kurtosis= 3”. Kurtosis is the excess kurtosis. The Jarque-Bera statistic tests the null hypothesis of normality for the distribution of
the series. Q(n) is the Ljung-Box statistic for up to 5th order serial correlation.

*** denotes rejections of null hypothesis at the significance level of 1%. All of the realized measures and jumps variations series of Table 1 are multiply by 10000.

Table 2
In-sample parameter estimates of individual HAR-RRV-type models (α=0.05).

Data Coefficient HAR-RRV HAR-RRV-J HAR-RRV-CJ LHAR-RRV-CJ HAR-RRV-ONI

Oil c 0.0000 0.0000 0.0000 0.0000** 0.0000
futures (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
price βd 0.0232 0.1189** 0.1062** -0.0072 0.0121

(0.0278) (0.0349) (0.0365) (0.0273) (0.0279)
βw 0.6771** 0.6525** 0.7007** 0.5863** 0.6927**

(0.0522) (0.0522) (0.0659) (0.0538) (0.0522)
βm 0.2730** 0.2592** 0.1128 0.2650** 0.2696**

(0.0440) (0.0438) (0.0621) (0.0549) (0.0439)
β γ β/ /j d ONI -0.3517** -0.2106** 0.3870 -0.0008**

(0.0778) (0.0707) (0.2491) (0.0002)
β γ/jw w 0.3581** -0.0020**

(0.1643) (0.0003)
β γ/jm m 1.0960** -0.0021**

(0.2547) (0.0007)
F-test 2178.9611** 1656.5569** 1110.9901** 1165.4377** 1646.5159**

R2 0.7798 0.7822 0.7834 0.7812 0.7914

The S & P c 0.0000** 0.0000** 0.0000** 0.0000** 0.0000**

500 index (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
βd 0.1966** 0.2722** 0.2079** 0.0908** 0.1967**

(0.0191) (0.0211) (0.0228) (0.0186) (0.0188)
βw 0.5144** 0.5131** 0.7275** 0.4040** 0.5185**

(0.0323) (0.0321) (0.0394) (0.0307) (0.0318)
βm 0.1950** 0.1932** -0.0473 0.1716** 0.1919**

(0.0286) (0.0284) (0.0385) (0.0333) (0.0281)
β γ β/ /j d ONI -0.5156** -0.0890 -0.1665 -0.0095**

(0.0642) (0.0672) (0.1499) (0.0008)
β γ/jw w -0.8172** 0.0001

(0.1469) (0.0003)
β γ/jm m 1.9281** -0.0134**

(0.1849) (0.0007)
F-test 1486.8002 1148.9279 804.9915 932.4555 1186.5361

R2 0.5266 0.5342 0.5466 0.5827 0.5422

Notes: This table reports the estimates of Eqs. (17), (18), (19), (20), and (25). The numbers in parentheses are standard errors of the estimations.
** denotes rejections of null hypothesis at the 5% significance level.
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two data, implying that the mid-term investor has a greater impact on
future volatility than short- and long-term investors. Moreover, most of
the jump components in these models are negative and show a
significantly negative impact on future realized range-based volatility.
The fourth model LHAR-RRV-CJ combines heterogeneity into realized
ranged-based volatility, leverage, and jumps. From its estimation, we
can find that the coefficients of negative returns are significant and
there exists the leverage effect. This emphasizes that the leverage effect
is important for modelling and forecasting volatility.

The fifth individual model HAR-RRV-ONI is constructed by adding
the overnight information as an explanatory variable. The evidence
suggests that the overnight information has a significantly negative
impact on future volatility both for oil futures and the S & P 500 index.
Finally, the R-squared (R2) values for oil futures are above 77% while
the R-squared (R2) values for the S & P 500 index are above 52%,
indicating good fitness of these models to the volatility and better
fitness to the oil futures. Meanwhile RRV models with jumps and
overnight information obtain higher R2, implying better fitness of data
than that of the simple HAR-RRV model.

4.3. Out-of-sample evaluation

As stated in the literature, in-sample predictability is not constant
and changes over time while the out-of-sample performance of a model
has a greater future forecasting ability. Thus, out-of-sample predict-
ability is more accepted by both researchers and market participants.
The forecasting performance of individual models, individual models
and combined models M1-M6, individual models and BMA/DMA, and
all the models used in our empirical study including DMA approach,
are compared in group by MCS test in Tables 3–6.

Table 3 presents the results of our five basic HAR-RRV-type
models, which we have discussed in Section 2.2. Under the HMAE
and HMAE loss functions, we find that HAR-RRV-J and LHAR-RRV-
CJ are better than others for forecasting oil futures. HAR-RRV-CJ and
HAR-RRV-ONI are significantly better for forecasting the S & P 500
index. The empirical results indicate that the best forecasting model
depends on the financial market and the jump component can improve
the model’s forecasting accuracy.

However, there are some issues using individual models for
forecasting. First, individual models may be differently affected by
structural breaks over time. Second, they may also be subject to
misspecification bias of unknown form. Thirdly, underlying forecasts
may be based on different loss functions. By contrast, combining
forecasts with different degrees of adaptability can reduce the above
issues and outperform forecasts from individual models (Hendry and
Clements, 2004; Stock and Watson, 2004). In our empirical study, six
combined models with constant weights, labeled as M1-M6, are
employed. M1, M2, and M3 represent three simple combined models
(the mean, the median, and the trimmed mean) and M4, M5, and M6
denote three shrinkage forecasts given κ = 0.25, 0.5, and 1, respec-

tively.
Table 4 compares the five individual models to six combined

models with constant weights under HMSE and HMAE. For oil futures
price, LHAR-RRV-CJ and the three combined models of M1, M3, and
M6 are significantly better than others. And hence the models M1, M3,
and M6 are successful combinations. For the S & P 500 index, none of
the individual models are significant while the combined models, M1
and M3 outperform others. M1, which refers to the combined model
using equal-weighted average, shows the strong predictability across
markets. Also, this evidence is consistent with Graefe et al. (2014),
which states that simple average is expected to perform better. Overall,
the combined models perform better than individual models. The
combined model using equal-weighted average is robust across mar-
kets and recommended, because it not only outperforms but also it is
easy to describe, understand, and implement.

Table 5 presents the results for comparing the five individual
models with four specific models, namely BMA, BMS, DMA and
DMS, which can describe the models’ time-varying features. In this
study, DMA is first applied as the combined model with time-varying
weights to combine RRV forecasts generated from different models.
The time-varying weights for different individual HAR-RRV-type
models are computed by the process introduced in Section 2.4. There
is strong evidence that DMA approach (combined model with time-
varying weights) outperforms individual models in Table 5 both for oil
futures and the S & P 500 index. As there are rapid changes for several
times in our sample period, DMA method can be flexible to those
changes. In addition, DMA approach shows its advantage in capturing
the dynamic of models and parameters. Hence, using DMA as a
combined model can help generate more accurate forecasts than
individual models.

Furthermore, given the above empirical results, we want to find the
best method among all the models. In this part, we evaluate the
forecasting performance of all models including individual HAR-RRV-
type models, combined models with constant weights, and other
combined models with time-varying weights by using the MCS test.
The empirical results of comparing all the models are reported in
Table 6. For oil futures market, DMA approach significantly outper-
forms both individual models and combined models, including M1
which is always used as the benchmark model in combined models. For
the S & P 500 index, four combined models DMA, DMS, M1 and M3
perform better than others. Among these four models, all the p-values
of DMA are significant under the two statistics. Therefore, combined
models show better forecast ability than individual models and DMA
approach is the best one among combined models.

For robustness check, we test DMA by using alternative forgetting
factor values with λ α= 0.99, = 0.94 in Appendix B Table B1. We test
all the models based on 10-min and 15-min high-frequency data and
present the overall comparison in Appendix B Tables B2 and B3. In
addition, we evaluate the models under different criteria such as error
statistics and mean mixed statistics (MME) that are shown in Appendix

Table 3
MCS results for comparing individual HAR-RRV-type models.

Model Crude future oil the S & P500

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

HAR-RRV 0.0000 0.0000 0.0000 0.0000 0.1745 0.1118 0.0173 0.0165
HAR-RRV-J 0.3638 0.3638 0.3663 0.3663 0.0000 0.0000 0.0000 0.0000
HAR-RRV-CJ 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
LHAR-RRV-CJ 1.0000 1.0000 1.0000 1.0000 0.0003 0.0000 0.0000 0.0000
HAR-RRV-ONI 0.0000 0.0000 0.0133 0.0021 0.3911 0.3911 0.3324 0.3324

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline, denote that the corresponding models are the best based
on MCS test.
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Table 4
MCS results for comparing HAR-RRV-type individual models with combined models.

Model Crude future oil The S & P 500 index

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

HAR-RRV 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HAR-RRV-J 0.2420 0.2560 0.4571 0.2420 0.0000 0.0000 0.0000 0.0000
HAR-RRV-CJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LHAR-RRV-CJ 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
HAR-RRV-ONI 0.0000 0.0000 0.4571 0.0000 0.0000 0.0000 0.0000 0.0000
M1 0.5932 0.6527 0.5022 0.5932 0.5429 0.5429 1.0000 1.0000
M2 0.0002 0.0030 0.4571 0.0002 0.0000 0.0000 0.0000 0.0000
M3 0.5932 0.6527 0.5022 0.5932 1.0000 1.0000 0.0933 0.0933
M4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M6 0.3347 0.4124 0.5022 0.3347 0.0000 0.0000 0.0000 0.0000

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline, denote that the corresponding models are the best based
on MCS test. M1-M6 represent the combined models: equal-weighted average, the median combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.

Table 5
MCS results for comparing HAR-RRV-type individual models with BMA/DMA.

Model Crude future oil the S & P500

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

BMA 0.0000 0.0000 0.0000 0.0000 0.1020 0.0000 0.0299 0.0000
BMS 0.0000 0.0000 0.0000 0.0000 0.1020 0.0019 0.0299 0.0141
DMA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMS 0.1695 0.1224 0.1237 0.0624 0.1020 0.0260 0.0299 0.0253
HAR-RRV 0.0090 0.0007 0.0000 0.0000 0.1020 0.0008 0.0299 0.0000
HAR-RRV-J 0.1423 0.0878 0.0085 0.0051 0.1020 0.0000 0.0299 0.0000
HAR-RRV-CJ 0.0090 0.0000 0.0000 0.0000 0.1020 0.0019 0.0299 0.0000
LHAR-RRV-CJ 0.1695 0.1224 0.1237 0.0624 0.1020 0.0000 0.0299 0.0000
HAR-RRV-ONI 0.0100 0.0061 0.0000 0.0001 0.1020 0.0019 0.0299 0.0000

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The numbers larger than 0.25 which are indicated in bold and underline demonstrates that the corresponding models are the best models in
MCS test. M1-M6 represent the combined models: equal-weighted average, the median combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.

Table 6
MCS results for comparing all the models.

Model Crude oil futures The S & P500 index

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

BMA 0.000 0.000 0.000 0.000 0.088 0.000 0.053 0.062
BMS 0.000 0.000 0.000 0.000 0.088 0.000 0.053 0.062
DMA 1.000 1.000 1.000 1.000 0.584 0.789 1.000 1.000
DMS 0.216 0.161 0.124 0.062 0.576 0.317 0.405 0.216
HAR-RRV 0.115 0.000 0.008 0.000 0.088 0.000 0.053 0.000
HAR-RRV-J 0.115 0.114 0.009 0.008 0.088 0.000 0.053 0.000
HAR-RRV-CJ 0.115 0.000 0.008 0.000 0.088 0.000 0.053 0.000
LHAR-RRV-CJ 0.216 0.161 0.124 0.062 0.088 0.000 0.053 0.000
HAR-RRV-ONI 0.115 0.000 0.008 0.000 0.088 0.000 0.053 0.000
M1 0.216 0.161 0.008 0.008 0.584 0.789 0.405 0.216
M2 0.115 0.004 0.008 0.000 0.088 0.000 0.053 0.000
M3 0.115 0.161 0.008 0.008 1.000 1.000 0.405 0.216
M4 0.000 0.000 0.000 0.000 0.576 0.000 0.053 0.000
M5 0.000 0.000 0.000 0.000 0.576 0.000 0.053 0.000
M6 0.115 0.139 0.008 0.008 0.576 0.000 0.053 0.000
GARCH(1,1) 0.000 0.000 0.000 0.000 0.088 0.000 0.053 0.000
EGARCH 0.000 0.000 0.000 0.000 0.088 0.000 0.053 0.000

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline, denote that the corresponding models are the best based
on MCS test. M1-M6 represent the combined models: equal-weighted average, the median combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.
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B Tables B4-B7. DMA is compared with alternative one by DM
statistics in Table B8. Finally, we investigate the forecasting perfor-
mance of DMA at several estimation window sizes and the results are
exhibited in Appendix B Tables B9 and B10. The above results are
consistent with the MCS test. Therefore, we conclude that the predict-
ability of DMA is robust to high-frequency data for forecasting RRV of
financial assets.

In summary, we can gain clear and strong conclusions based on oil
futures price and the S & P 500 index. First, combined models with
constant weights could beat individual models, which mean that the
combined methods can gain a higher prediction accuracy. Especially,
combined model with simple average is recommended. Second, the
DMA approach, used as the combined model with time-varying
weights, can not only generate more accurate forecasts, but also beat
individual models and combined models with constant weights. Thus,
DMA is successfully used as a combined method in RRV framework.
Applying DMA into RRV framework can significantly improve the
forecasting accuracy.

5. Conclusions

Since the realized range-based volatility (RRV) is proved to be a
better measurement than the realized volatility (RV), this study uses
RRV as the proxy for oil futures volatility. To investigate the time-
varying property of HAR-RRV models’ parameters, this paper applies
DMA approach as a combined model with time-varying weights into
RRV framework.

At first, this study constructs five individual HAR-RRV-type models
including HAR-RRV-ONI considering overnight information.
Moreover, based on the individual models, combined models with

constant weights and time-varying weights are constructed. Finally, the
performance of three types of the models is compared by various
methods including MCS test. Our findings demonstrate that the HAR-
RRV-type models can successfully capture the long-term memory
behavior of volatility in oil futures market. Combined models system-
atically perform better than individual models. In particular, using
DMA to combine the forecasts of HAR-RRV models can significantly
improve the forecasting accuracy. DMA approach can beat both
individual models and combined models with constant weights,
including the combined model with equal-weighted average, which is
usually used as the benchmark. The results highlight the significance of
using DMA as a combined model with time-varying weights. By
allowing both the models and their coefficients changing over time,
DMA approach shows several benefits to be incorporated into RRV
framework and opens a new path for forecasting technique in real time.
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Appendix A

Since DMA approach is the main model applied, more information is given in this section. The dynamic model averaging (DMA) and dynamic
model selection (DMS) approach, proposed by Raftery et al. (2010), allows both the factors and their coefficients changing over time.

Following Raftery et al. (2010), DMA can be specified as:
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predictors of model k including the intercept, and βt
k( ) refers to the time-varying coefficients of forecasts from individual models.

In a single case, for given values of Ht and Qt, standard filtering results can be used to compute recursive estimation or forecasting. Kalman
filtering begins with the result:
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Kalman filtering proceeds using:
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Involving the forgetting factor λ ( λ0 ≤ ≤ 1) that refers to a gradual evolution of coefficients, Eq. (A4) can be replaced by:
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Thus, we have Q = (1− ) ∑ .t λ t |t
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By using the predictive distribution,
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the process of recursive forecasting can be completed.

In the case of multi-model, for model k,∑t|t
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k( ) , can be obtained from Eqs. (A5), (A7), and (A8). By changing the format of Eqs. (A2),
(A5) and (A6), the equations for a multi-model can be expressed as:
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The transition matrix is specified implicitly by using forgetting factors. The approximations involve two forgetting factors λ and α,
( α λ0 ≤ ≤ 1,0 ≤ ≤ 1). By using λ and α in the model prediction, Markov Chain Monte Carlo (MCMC) is no longer needed for drawing transitions
between different models. When a new observation is available, according to the derivation of Kalman filtering, the analogous result for DMA is:
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Again, following the approach of Raftery et al. (2012), by involving forgetting factor α ( α0 ≤ ≤ 1), which is used for the parameters in DMA
framework, Eq. (A14) can be written as:
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Thus, the updating equation can be given as:
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wherep RRV RRV( | )l t
t−1 is the predictive density for model l evaluated at RRVt . In the end, using πt|t−1,κ, recursive forecasting can be done by averaging

the forecasting result of each HAR-RRV-type model. Therefore, the model-average 1-step ahead forecasting of RRVt is given by:
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In our case, we set λ = 0.99 and α = 0.94. In the procedure of DMA, the probability of being model k is calculated and used to average the
forecasts generated from different models. For the 1-step ahead, DMA approach will allocate a larger weight to the HAR-RRV-type model that has a
better performance. As a special case, DMS approach selects the largest value for πt|t k−1, of the HAR-RRV-type model and simply uses it for 1-step
ahead forecasting. Note that, when α=0, all models are equally weighted; while for α = 1, there is no discounting. BMA is as a special case of DMA by
setting α λ= = 1.

Appendix B

For robustness, we evaluate DMA approach by using MCS test with alternative forgetting factor values and using different frequency data.
Besides MCS test, alternative evaluation methods such as error statistics and mean mixed statistics (MME), Diebold-Mariano (DM) test are used
and provided in this section.

We evaluate DMA by using alternative forgetting factor values with λ = 0. 99, α = 0. 94.
Based on 10- and 15-min high-frequency data, we also examine DMA’s performance. Tables B2 and B3 report the MCS tests for 10-min and 15-

min high-frequency data, respectively. Table B2 exhibits the results for 10-min data of oil futures and the S & P 500 index. UnderHMSE andHMAE,
the p-values of DMA are all significant across different assets and the p-value is the largest for six out of eight values. That is, DMA is still the best
model when using 10-min high-frequency data.

Table B3 shows that most of the models perform good based on the measure TR. While DMA approach can provide p-values larger than 0.25
across different assets under the two loss functions, they are not always the largest as shown for 5-min and 10-min data. That is because DMA
approach is more adaptive to changing data with structural breaks, and hence DMA is stronger in capturing the volatility dynamics. Since 5 minutes
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high-frequency data has been proved to be a rule-of-thumb and it is the best trade-off between market microstructure noise and measurement
accuracy (e.g., Andersen and Bollerslev, 1998; Corsi et al., 2010; Sévi, 2014; Liu et al., 2015). In our study, we mainly consider the models’
performance based on 5-min high-frequency data of crude oil futures and the S & P 500 index. In conclusion, DMA approach shows its strong
forecasting ability and it is also robust in forecasting RRV based on different high-frequency data.

The forecasting models are evaluated by using error statistics, mean mixed statistics (MME) besides MCS test in our revised version.
First, we calculate the magnitude of the forecast errors such as ME, MAE, RMSE, and MAPE. Their specifications are given blow:
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σ σME= 1 ( − )
n

N

T T
=1

2 2
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Table B1
MCS tests of out-of-sample forecasts (λ = 0. 99, α = 0. 94).

Model Crude future oil the S & P500

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

BMA 0.0000 0.0000 0.0000 0.0000 0.0860 0.0000 0.0181 0.0000
BMS 0.0000 0.0000 0.0000 0.0000 0.0860 0.0000 0.0181 0.0000
DMA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMS 0.2751 0.1976 0.0662 0.1874 0.0860 0.0013 0.0181 0.0000
HAR-RRV 0.1350 0.0002 0.0130 0.0000 0.0860 0.0000 0.0181 0.0000
HAR-RRV-J 0.1350 0.1388 0.0130 0.0331 0.0860 0.0000 0.0181 0.0000
HAR-RRV-CJ 0.1350 0.0000 0.0130 0.0000 0.0860 0.0000 0.0181 0.0000
LHAR-RRV-CJ 0.2751 0.1976 0.0662 0.0070 0.0860 0.0000 0.0181 0.0000
HAR-RRV-ONI 0.1350 0.0005 0.0130 0.0000 0.0860 0.0000 0.0181 0.0000
M1 0.1350 0.1976 0.0130 0.1874 0.0860 0.0013 0.0181 0.0000
M2 0.1350 0.0055 0.0130 0.0006 0.0860 0.0000 0.0181 0.0000
M3 0.2135 0.1976 0.0130 0.1874 0.0860 0.0027 0.0181 0.0000
M4 0.0000 0.0000 0.0000 0.0000 0.0860 0.0000 0.0181 0.0000
M5 0.0000 0.0000 0.0000 0.0000 0.0860 0.0000 0.0181 0.0000
M6 0.1350 0.1678 0.0130 0.1874 0.0860 0.0000 0.0181 0.0000
GARCH(1,1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EGARCH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline, denote that the corresponding models are the best based
on MCS test. M1-M6 represent the combined models: equal-weighted average, the median combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.

Table B2
MCS tests of out-of-sample forecasts for 10-min high-frequency data.

Model Crude oil futures the S & P500

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

BMA 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000
BMS 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000
DMA 1.0000 1.0000 1.0000 1.0000 0.4841 0.4841 1.0000 1.0000
DMS 0.7251 0.6546 0.1083 0.0371 0.4724 0.0731 0.0002 0.0000
HAR-RRV 0.5801 0.0005 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
HAR-RV-J 0.5801 0.0159 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
HAR-RV-CJ 0.5801 0.1222 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
LHAR-RRV-CJ 0.7251 0.6546 0.1083 0.0371 0.3234 0.0000 0.0000 0.0000
HAR-RRV-ONI 0.5801 0.0009 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
M1 0.7251 0.6546 0.0000 0.0000 0.3234 0.0731 0.0002 0.0000
M2 0.5801 0.0043 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
M3 0.5801 0.6546 0.0000 0.0000 0.4724 0.0731 0.0002 0.0000
M4 0.5801 0.1877 0.0002 0.0003 0.3234 0.0000 0.0000 0.0000
M5 0.5801 0.2486 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
M6 0.5801 0.3928 0.0000 0.0001 0.3234 0.0000 0.0000 0.0000
GARCH(1,1) 0.0000 0.0000 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000
EGARCH 0.0000 0.0000 0.0000 0.0000 0.3234 0.0000 0.0000 0.0000

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline, denote that the corresponding models are the best based
on MCS test. M1-M6 represent the combined models: equal-weighted average, the median combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.
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Table B4 shows the error statistics for oil futures price while Table B5 shows the error statistics for the S & P 500 index. From Table B4, DMA
approach provides the smallest errors under various error statistics. From Table B5, we can find that the smallest errors are provided by combined
models with constant parameter and DMA approach. Among them, DMA approach shows the smallest errors under ME and MAPE. Hence, DMA
approach provides more accurate forecasts for both oil futures and the S & P 500 index based on the magnitude of the forecast errors.

Second, to account for the potential asymmetry in the loss function, we apply an error statistic, which penalizes under-predictions more heavily.
It is called the mean mixed error, MME(U), and given as follows:
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Table B3
MCS tests of out-of-sample forecasts for 15-min high-frequency data.

Model Crude oil futures S & P500

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

BMA 0.0000 0.0000 0.0000 0.0000 0.9267 0.0000 0.9333 0.0000
BMS 0.0000 0.0000 0.0000 0.0000 0.9267 0.0000 0.9333 0.0000
DMA 0.9213 0.7332 1.0000 1.0000 0.9267 0.6002 0.9333 0.8641
DMS 0.7132 0.1189 0.1739 0.1739 0.9267 0.0000 0.7633 0.0000
HAR-RRV 0.7132 0.0013 0.0018 0.0000 0.7457 0.0000 0.7633 0.0000
HAR-RRV-J 0.7132 0.0259 0.0381 0.0000 0.7457 0.0000 0.7633 0.0000
HAR-RRV-CJ 0.9213 0.4862 0.0381 0.0207 1.0000 1.0000 1.0000 0.0000
LHAR-RRV-CJ 0.7132 0.1189 0.0381 0.0244 0.7457 0.0000 0.7633 1.0000
HAR-RRV-ONI 0.7132 0.0031 0.0018 0.0000 0.9267 0.0000 0.9333 0.0000
M1 0.9213 0.1189 0.0381 0.0000 0.9267 0.0000 0.9333 0.0000
M2 0.7132 0.0158 0.0381 0.0000 0.7457 0.0000 0.7633 0.8641
M3 0.9213 0.1189 0.0018 0.0000 0.7457 0.0000 0.7633 0.0000
M4 0.9213 0.7332 0.0381 0.0244 0.7457 0.0000 0.7633 0.0000
M5 1.0000 1.0000 0.0390 0.0417 0.7457 0.0000 0.7633 0.0000
M6 0.9213 0.7332 0.0381 0.0244 0.7457 0.0000 0.7633 0.0000
GARCH(1,1) 0.7132 0.0000 0.0018 0.0000 0.7457 0.0000 0.7633 0.0000
EGARCH 0.7132 0.0000 0.0018 0.0000 0.7457 0.0000 0.7633 0.0000

Notes: The MCS p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger the number is, the
better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline, denote that the corresponding models are the best based
on MCS test. M1-M6 represent the combined models: equal-weighted average, the median combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.

Table B4
Error statistics from forecasting RRV (oil futures price).

Model ME MAE RMSE MAPE

BMA 0.301567 0.544212 0.828023 0.700737
BMS 0.303004 0.545442 0.828834 0.702462
DMA 0.022187 0.396352 0.755199 0.393964
DMS 0.024785 0.398829 0.760614 0.396799
HAR-RRV 0.065481 0.427995 0.803543 0.437009
HAR-RRV-J 0.056329 0.418860 0.795360 0.421087
HAR-RRV-CJ 0.075116 0.432209 0.797566 0.452651
LHAR-RRV-CJ 0.062061 0.417772 0.766604 0.411258
HAR-RRV-ONI 0.067523 0.425491 0.800764 0.435090
M1 0.065302 0.413863 0.783217 0.417234
M2 0.064687 0.421605 0.795667 0.429609
M3 0.065302 0.413863 0.783217 0.417234
M4 3.216902 3.243319 3.982148 3.688121
M5 2.166369 2.206025 2.748895 2.549713
M6 0.065302 0.413863 0.783217 0.417234
GARCH(1,1) −1.097548 1.097548 1.519214 0.999641
EGARCH −1.097502 1.097502 1.519155 0.999587

Notes: The numbers in the table are the values for four different error statistics across seventeen models. The smallest number for each error statistic is indicated in bold and underline.
ME is the mean error defined by Eq. B1; MAE is the mean absolute error defined by Eq. B2; RMSE is the root mean squared error defined by Eq. B3; MAPE is the mean absolute
percentage error defined by Eq. B4 (Brailsford and Faff, 1996).
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where O is the number of over-predictions and U is the number of under-predictions. Similarly, the above statistic can be redefined to weight over-
predictions more heavily and is given as follows:
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The mean mixed error results of crude oil futures are exhibited in Table B6, which shows that DMA provides the smallest value for both MME(O)
and MME(U) implying that DMA outperforms others. This is consistent with the conclusion from MCS tests. Table B7 shows MME results of the S
& P 500 index. DMA provides the smallest value under MME(O). When using MME(U) as a criterion for the S & P 500 index, the performance of
DMA is not good as for oil futures price. Generally, DMA approach shows a smaller tendency of under- or over-prediction.

Both DM test and MCS test are used to evaluate volatility models (Ahoniemi and Lanne, 2013). DM test, comparing models in pair, provides
another perspective besides MCS test, which was used in the previous version of our manuscript4. In DM test, the key hypothesis is that the two
models have equal predictive accuracy and it is directly tested by those forecast error loss differentials.

Table B8 reports the results of DM statistics for competing forecasts of DMA versus alternative one. It is obvious that the difference of MSE

Table B6
MME from forecasting RRV and results of under- and over-prediction (crude oil futures).

Model MME(U) MME(O) Under-
prediction

Over-
prediction

Binomial
Prob.

BMA 0.539543 0.677687 141 709 0.000000
BMS 0.540634 0.678751 141 709 0.000000
DMA 0.423014 0.515373 308 542 0.000000
DMS 0.425622 0.516587 307 543 0.000000
HAR-RRV 0.443420 0.547995 278 572 0.000000
HAR-RRV-J 0.437798 0.535730 287 563 0.000000
HAR-RRV-CJ 0.444173 0.557040 264 586 0.000000
LHAR-RRV-CJ 0.455479 0.517136 342 508 0.000000
HAR-RRV-ONI 0.440671 0.544324 277 573 0.000000
M1 0.431052 0.534961 276 574 0.000000
M2 0.437289 0.541954 278 572 0.000000
M3 0.431052 0.534961 276 574 0.000000
M4 3.236728 1.720459 5 845 0.000000
M5 2.196979 1.416192 7 843 0.000000
M6 0.431052 0.534961 276 574 0.000000
GARCH(1,1) 0.9763923 1.0975478 850 0 0.000000
EGARCH 0.9763693 1.0975017 850 0 0.000000

Notes: Calculated values in this table are provided for two error statistics across seventeen models based on the 850 out-of-sample forecasts of crude oil futures. MME(U) is a mean
mixed error which penalizes under-predictions more heavily and is defined by Eq. B5. MME(O) is a mean mixed error which penalizes over-predictions more heavily and is defined by
Eq. B6. These statistics are designed to capture potential asymmetry in the loss function. The number of under- and over-predictions are provided for each set of forecasts. The
associated binomial probability is based on the test that the number of under- and over-predictions are equal.

Table B5
Error statistics from forecasting RRV (the S & P 500 index).

Model ME MAE RMSE MAPE

BMA -0.000009 0.000021 0.000053 0.821686
BMS -0.000009 0.000021 0.000053 0.821686
DMA 0.000001 0.000018 0.000089 0.669722
DMS 0.000001 0.000018 0.000090 0.670615
HAR-RRV 0.000005 0.000017 0.000044 0.918692
HAR-RRV-J 0.000009 0.000019 0.000044 1.124103
HAR-RRV-CJ 0.000004 0.000016 0.000043 0.875261
LHAR-RRV-CJ 0.000000 0.000024 0.000044 1.212386
HAR-RRV-ONI 0.000005 0.000017 0.000043 0.896002
M1 0.000005 0.000014 0.000041 0.690905
M2 0.000006 0.000016 0.000043 0.890415
M3 0.000005 0.000014 0.000041 0.690905
M4 0.000006 0.000015 0.000042 0.798200
M5 0.000006 0.000015 0.000042 0.797520
M6 0.000006 0.000015 0.000042 0.796229
GARCH(1,1) 0.000049 0.000052 0.000073 3.238174
EGARCH 0.000054 0.000056 0.000079 3.063650

Notes: The numbers in the table are the values for four different error statistics across seventeen models. The smallest number for each error statistic is indicated in bold and underline.
ME is the mean error defined by Eq. B1; MAE is the mean absolute error defined by Eq. B2; RMSE is the root mean squared error defined by Eq. B3; MAPE is the mean absolute
percentage error defined by Eq. B4 (Brailsford and Faff, 1996).

4 For robustness check, several methods are applied for comparing the models’ performance. Besides MCS test, error statistics, mean mixed statistics, and DW test are also calculated
both for stock market and oil futures market.
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between DMA approach and other model is negative for both crude oil futures and the S & P 500 index using different high-frequency data. DMA
also shows its advantage under DM test. This result is consistent with that of MCS test.

In our first manuscript, we apply MCS test to compare all the models including DMA, since there are several advantages for MCS test. For
example, MCS test does not need to set benchmark model and allow for more than one best models. Overall, the conclusion of DM test is consistent
with that of MCS test. DMA approach outperforms other models.

Finally, we tested the data using three different estimation windows of 1000, 1100 and 1200 days for crude oil futures. We also tested estimation
windows of 4020 and 4120 days for the S & P 500 index. The results for the window size of 1000 days are given in our manuscript. Table B9 shows
the MCS tests using estimation window of 1100 and 1200 days for crude oil futures. From Table B9, we can find that DMA approach performs the
best under both HMSE and HMAE. Additionally, the combined models with shrinkage forecasts performs better than individual models. Table B10
shows the MCS tests using estimation window of 4020 and 4120 days for the S & P 500 index. It also shows that combined models relatively perform
better than individual models. Hence, DMA significantly outperforms the other models.

Overall, for different estimation window sizes, DMA shows its strong forecasting ability even across different financial assets. Thus, the result is
consistent and robust.

Notes: The results are based on crude oil futures using estimation window of 4020 and 4120 days based on the S & P 500 index. Notes: The MCS
p-values are computed according to the statistics TRand TSQ. The numbers in this table are the MCS p-values for the different forecasts. The larger
the number is, the better the corresponding model performs. The p-values, which are larger than 0.25 indicated in bold and under and underline,
denote that the corresponding models are the best based on MCS test. M1-M6 represent the combined models: equal-weighted average, the median
combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.

Table B8
DM test for competing forecasts of DMA versus alternative model.

Model comparison Crude oil futures The S & P 500 index

5-min 10-min 15-min 5-min 10-min 15-min

DMA vs BMA -.7078 -2.89e-06 -3.02e-06 -7.48e-07 -2.87e-06 -7.36e-06
DMA vs BMS -.7092 -2.89e-06 -3.02e-06 -7.48e-07 -2.87e-06 -7.36e-06
DMA vs DMS -.6007 -2.89e-06 -3.02e-06 -7.53e-07 -2.88e-06 -7.36e-06
DMA vs HAR-RRV -.6679 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs HAR-RRV-J -.6548 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs HAR-RRV-CJ -.6583 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs LHAR-RRV-CJ -.6099 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs HAR-RRV-ONI -.6634 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs M1 -.6356 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs M2 -.6553 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs M3 -.6356 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs M4 -15.88 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs M5 -7.579 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs M6 -.6356 -2.89e-06 -3.02e-06 -7.47e-07 -2.87e-06 -7.36e-06
DMA vs GARCH(1,1) -2.330 -2.92e-06 -3.05e-06 -7.51e-07 -2.87e-06 -7.36e-06
DMA vs EGARCH -2.330 -2.95e-06 -3.07e-06 -7.52e-07 -2.87e-06 -7.36e-06

Notes: The numbers in the table are the MSE difference in DM test. The models compared in pair are listed in the first column.

Table B7
MME from forecasting RRV and results of under- and over-prediction (the S & P 500 index).

Model MME(U) MME(O) Under-
prediction

Over-
prediction

Binomial
Prob.

BMA 0.002824 0.001050 705 287 0.000000
BMS 0.002824 0.001050 705 287 0.000000
DMA 0.001554 0.001755 444 548 0.332398
DMS 0.001555 0.001758 444 548 0.332398
HAR-RRV 0.000987 0.002636 261 731 0.000000
HAR-RRV-J 0.000792 0.003115 201 791 0.000000
HAR-RRV-CJ 0.001056 0.002504 276 716 0.000000
LHAR-RRV-CJ 0.002357 0.002026 566 426 0.051173
HAR-RRV-ONI 0.001045 0.002560 281 711 0.000000
M1 0.000865 0.002383 265 727 0.000000
M2 0.000921 0.002655 251 741 0.000000
M3 0.000865 0.002383 265 727 0.000000
M4 0.002357 0.002026 566 426 0.051173
M5 0.000757 0.002653 216 776 0.000000
M6 0.000757 0.002652 215 777 0.000000
GARCH(1,1) 0.000180 0.006675 24 968 0.000000
EGARCH 0.000141 0.006917 15 977 0.000000

Notes: Calculated values in this table are provided for two error statistics across seventeen models based on the 992 out-of-sample forecasts of the S & P 500 index. MME(U) is a mean
mixed error which penalizes under-predictions more heavily and is defined by Eq. B5. MME(O) is a mean mixed error which penalizes over-predictions more heavily and is defined by
Eq. B6. These statistics are designed to capture potential asymmetry in the loss function. The number of under- and over-predictions are provided for each set of forecasts. The
associated binomial probability is based on the test that the number of under- and over-predictions are equal.
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See Tables B1,B6 and B7.
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MCS tests of out-of-sample forecasts using different window size (The S & P500 index).

Model Estimation window of 4020 days Estimation window of 4120 days
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TR TSQ TR TSQ TR TSQ TR TSQ
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DMS 0.5759 0.3166 0.4048 0.2164 0.0860 0.0013 0.0181 0.0000
HAR-RRV 0.0882 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
HAR-RRV-J 0.0882 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
HAR-RRV-CJ 0.0882 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
LHAR-RRV-CJ 0.0882 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
HAR-RRV-ONI 0.0882 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
M1 0.5843 0.7887 0.4048 0.2164 0.0860 0.0013 0.0181 0.0000
M2 0.0882 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
M3 1.0000 1.0000 0.4048 0.2164 0.0860 0.0027 0.0181 0.0000
M4 0.5759 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
M5 0.5759 0.0000 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
M6 0.5759 0.0001 0.0533 0.0000 0.0860 0.0000 0.0181 0.0000
GARCH(1,1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EGARCH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B9
MCS tests of out-of-sample forecasts using different window size (Crude oil futures).

Model Estimation window of 1100 days Estimation window of 1200 days

HMSE HMAE HMSE HMAE

TR TSQ TR TSQ TR TSQ TR TSQ

BMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BMS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DMA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMS 0.4891 0.4666 0.5041 0.4215 0.2751 0.1976 0.0662 0.2751
HAR-RRV 0.2005 0.0002 0.0238 0.0000 0.1350 0.0002 0.0130 0.1350
HAR-RRV-J 0.4890 0.1384 0.5041 0.0284 0.1350 0.1388 0.0130 0.1350
HAR-RRV-CJ 0.2005 0.0000 0.0238 0.0000 0.1350 0.0000 0.0130 0.1350
LHAR-RRV-CJ 0.4890 0.2141 0.5041 0.0995 0.2751 0.1976 0.0662 0.2751
HAR-RRV-ONI 0.2005 0.0006 0.5041 0.0001 0.1350 0.0005 0.0130 0.1350
M1 0.4890 0.0515 0.5041 0.0001 0.1350 0.1976 0.0130 0.1350
M2 0.2005 0.0052 0.0238 0.0000 0.1350 0.0055 0.0130 0.1350
M3 0.2005 0.0284 0.0238 0.0000 0.2135 0.1976 0.0130 0.2135
M4 0.4890 0.4666 0.5041 0.4215 0.0000 0.0000 0.0000 0.0000
M5 0.4891 0.4666 0.5041 0.4215 0.0000 0.0000 0.0000 0.0000
M6 0.4891 0.4666 0.5041 0.4215 0.1350 0.1678 0.0130 0.1350
GARCH(1,1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EGARCH 0.0000 0.0000 0.0238 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: The results are based on crude oil futures using estimation window of 1100 and 1200 days. The MCS p-values are computed according to the statistics TR and TSQ. The numbers
in this table are the MCS p-values for the different forecasts. The larger the number is, the better the corresponding model performs. The p-values, which are larger than 0.25 indicated in
bold and under and underline, denote that the corresponding models are the best based on MCS test. M1-M6 represent the combined models: equal-weighted average, the median
combination, the trimmed mean, and the shrinkage forecasts for κ = 0.25, 0.5, and 1.
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