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A B S T R A C T

This paper explores a portfolio selection model of multiple risky assets with regime switching. There are n + 1
risky assets in the financial market available to the mean-variance investors. The feasibility issue is solved by
constructing an equivalent condition. We derive the analytical expressions of the efficient frontier and efficient
feedback portfolio via three systems of ordinary differential equations that admit unique solutions. The mutual
fund theorem is also proved. Several numerical examples are provided to demonstrate how the efficient frontier
is affected by the market regime movement and the investor's time horizon.

1. Introduction

Portfolio selection is concerned with the allocation of the investor's
assets amongst different types of financial securities so as to optimize
the total return of the portfolio. Along with a desirable investment
return, however, investors are also seeking to control the future
uncertainties of their portfolio. Thus, a measure needs to be defined
as a quantifiable indicator of the portfolio risk. Markowitz (1952) firstly
gave an accurate definition of investment risk by applying the
mathematical terminology of “variance” in the probability theory.
Considering the trade-off between the mean and variance of a portfolio,
an optimal investment strategy was achieved, known as “efficient
portfolio”. In a single period setting, nevertheless, Markowitz's mean-
variance model failed to capture the dynamic process of portfolio
selection facing investors in the real world. A number of literatures
have been devoted to the extension of the original single period model
to the multi-period case. For more details, the reader is referred to
Pliska (1997) and Li and Ng (2000).

Since continuous-time finance theory was pioneered by Robert C.
Merton in the 1970s, financial modelling in continuous-time setting
has been thriving and employed to deal with a range of theoretical and
practical problems. The continuous-time mean-variance portfolio
selection model was originally formulated and solved by Zhou and Li
(2000), which obtained both the efficient portfolio and efficient frontier
in closed form by applying the stochastic linear-quadratic (LQ) control
theory. Thereafter, their model has been extensively studied by
numerous literatures. Lim and Zhou (2002) considered a complete
market with bounded random coefficients in a general framework and

obtained the efficient frontier by solving two backward stochastic
differential equations. Chiu and Wong (2011) applied their technique
to solve a mean-variance portfolio selection problem with cointegrated
risky assets. The constant elasticity of variance (CEV) model was
employed to characterize the evolution of a risky asset price in Shen
et al. (2014). No bankruptcy constraint was explored in Bielecki et al.
(2005) by using the martingale approach. Besides, a few papers also
took market frictions into account. Li et al. (2002) imposed shorting
prohibition on the trading of stocks while borrowing from the bank
account was still permitted. Fu et al. (2010) supposed a spread between
the interest rates for lending and borrowing. Furthermore, asset-
liability management was studied under the mean-variance framework.
Chiu and Li (2006) considered a dynamic liability process driven by a
geometric Brownian motion. Xie et al. (2008) modelled an uncontrol-
lable liability with a drifted Brownian motion. Leippold et al. (2011)
introduced endogenous liabilities and obtained efficient portfolio and
efficient frontier in a multi-period setting. Their model was paralleled
to a continuous-time asset-liability management problem by Yao et al.
(2013). Both the CEV process and geometric Brownian motions were
used by Zhang and Chen (2016) to model the multiple asset processes
and exogenous liability respectively in a complete market.

To better capture the random environment of the financial market,
regime-switching models have been applied to some of the key financial
parameters, such as interest rate, equity risk premium and stock
volatility. The basic idea is that these financial parameters are supposed
to move along with the underlying market state. For example, investors
would anticipate a higher appreciation rate and a lower volatility when
the stock market is believed to be bullish. In the previous literatures,
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the market regime is usually characterized by a Markov chain the value
of which switches within a finite state space. Numerous models have
been developed to solve some of the fundamental financial problems,
such as asset pricing. See Buffington and Elliott (2002); Guo (2001)
and Elliott et al. (2005). Analytical solutions were derived for a general
investment-consumption model with regime switching in Sotomayor
and Cadenillas (2009). The associated value function was solved
explicitly with different types of consumption utility functions. A
regime-switching model was originally formulated to solve the mean-
variance portfolio selection problem by Zhou and Yin (2003). They
obtained the explicit expressions of the efficient portfolio and efficient
frontier via the solutions of two systems of linear ordinary differential
equations (ODEs). Chen et al. (2008) extended their work by introdu-
cing a Markov-modulated geometric Brownian motion to model the
insurance company's uncontrollable liability process. Similarly, the
investor's exogenous liability was assumed to be a Markov-modulated
Brownian motion in Xie (2009).

In this paper, we follow the work of Yao et al. (2014) as the first
attempt to address a financial market without risk free assets. This
hypothesis could reflect the stochastic nature of the interest rate over a
long time horizon. Moreover, Markowitz (1952) proposed the mean-
variance principle with the purpose of addressing the diversification
problem of various stocks. The efficient frontier and global minimum
variance were derived with the absence of risk free assets. Along this
line, Yao et al. (2014) formulated a dynamic portfolio selection
problem of only risky assets as a direct extension of Markowitz's single
period model. In their paper, a different conclusion has been drawn
regarding the efficient frontiers. In contrast with the static case, the
capital market line in the continuous time model is strictly above the
efficient frontier of a hyperbolic shape that corresponds to the case of
only risky assets. This is due to the fact that investors continuously
adjust its allocation to risk free assets to maintain an optimal strategy.

Our paper extends Yao et al. (2014) by considering a regime-
switching financial market where all relevant parameters are driven by
a continuous time Markov chain. We employ the Lagrange multiplier
and “completion of square” technique in the LQ stochastic control
theory. This commonly used approach is well applied because the
investor's wealth process, although in a more general form, is still
governed by a linear stochastic differential equation (SDE). By solving
three systems of linear ODEs, we derive the efficient frontier and
efficient feedback portfolio in closed form. Unsurprisingly, the efficient
frontier is no longer a straight line, and the global minimum variance is
strictly greater than zero, since there is no risk-free portfolio, that is,
the investor cannot construct a dynamic portfolio so as to achieve a
pre-specified investment return with zero variance at the terminal time.

The remaining part of the paper is outlined as follows. Section 2
formulates a continuous time mean-variance portfolio selection model
of only risky assets under regime switching. One equivalent condition is
proved for the problem feasibility, and the Lagrange multiplier is
introduced in Section 3. In Section 4, the unconstrained dual problem
is analytically solved via three systems of linear ODEs. Section 5
derives the efficient feedback portfolio, efficient frontier, global mini-
mum variance and mutual fund theorem. Several numerical examples
are provided to illustrate our results in Section 6. Section 7 gives a brief
conclusion.

2. Problem formulation

Throughout the paper, let Ω( , , P) be a complete probability space,
on which are defined an m-dimensional standard Brownian motion
W t W t W t( )≔( ( ), …, ( ))′m1 and a continuous time stationary Markov chain
α t( ) with a finite state space l= {1, 2, …, } and a generator matrix
Q q= ( )ij l l× . Let { }t t≥0 be the filtration generated by W(t) and α t( )
augmented by the null sets contained in . We assume the indepen-
dence of W(t) and α t( ) to ensure that W(t) is a standard Brownian

motion with respect to { }t t≥0. All the vectors are supposed to be
column vectors. The transpose of any matrix A is denoted by A′. The

norm · is defined as A a= ∑ ∑i
m

j
n

ij=1 =1
2 , where A a= ( )ij m n× .

We consider a financial market composed of n + 1 risky assets price
processes of which, denoted by S (·)i , i n= 0, 1, 2, …, , are characterized
by the following Markov-modulated geometric Brownian motions

dS t S t b t α t dt σ t α t dW t

S S

( ) = ( ) ( , ( )) + ∑ ( , ( )) ( ) ,

(0) = ,

i i i j
m

ij j

i i

=1

0

⎧
⎨⎪

⎩⎪

⎡
⎣⎢

⎤
⎦⎥

where b t k( , )i and σ t k σ t k σ t k( , )≔( ( , ), …, ( , ))′i i im1 , k l= 1, 2, …, , are the
appreciation rate and volatility vector of the ith risky asset respectively,
corresponding to the market regime k.

Suppose that an agent, with an initial wealth x0, is investing in the
n + 1 assets and adjusting his portfolio weights continuously within a
finite time horizon T > 0. Both long and short positions are permitted
without any transaction cost. The agent's wealth process x(·) would
evolve as a linear SDE

dx t b t α t x t B t α t u t dt

x t σ t α t u t σ t α t dW t
x x α i

( ) = [ ( , ( )) ( ) + ( , ( ))′ ( )]

+ [ ( ) ( , ( ))′ + ( )′ ( , ( ))] ( ),
(0) = , (0) = ,

0

0

0 0

⎧
⎨⎪

⎩⎪⎪ (2.1)

where i0 is the initial market mode and u u u(·)≔( (·), …, (·))′n1 is defined
as the agent's portfolio vector, the kth element of which represents the
market value of the kth risky asset held by the agent. The remaining
part x t u t( ) − ∑ ( )k

n
k=1 is allocated to the 0th asset. Both B t α t( , ( )) and

σ t α t( , ( )) are defined as below

B t α t b t α t b t α t b t α t b t α t σ t α t

σ t α t σ t α t σ t α t σ t α t

( , ( ))≔[ ( , ( )) − ( , ( )), …, ( , ( )) − ( , ( ))]′, ( , ( ))

≔[ ( , ( )) − ( , ( )), …, ( , ( )) − ( , ( ))]′.
n

n

1 0 0

1 0 0

Note that σ t α t( , ( )) is a matrix of order n m× .

Remark 2.1. If σ t α t( , ( )) ≡ 00 , the 0th risky asset could be taken as a
risk free bank account which yields a predictable future return
regardless of the market randomness modelled by the Brownian
motion W (·). In this particular scenario, the agent's wealth process
would reduce to (2.6) in Zhou and Yin (2003).

Before we formulate the mean-variance portfolio optimization
problem, several assumptions need to be made for technical conve-
nience.

Assumption 2.1. b k(·, )i and σ k(·, )ij are Borel-measurable and
bounded functions of t for i n= 0, …, , j m= 1, …, , k l= 1, …, .

Assumption 2.2. σ t i( , ) satisfies the nondegeneracy condition, i.e.,
there exists δ > 0 such that Σ t i σ t i σ t i δI( , )≔ ( , ) ( , )′ ≥ , t T∀ ∈ [0, ],
i l= 1, …, , where I denotes the n-dimensional identity matrix.

Remark 2.2. The nondegeneracy condition in Assumption 2.2 could
be satisfied only if the rank of σ t i( , ) is n, which implies that the
dimension of W (·) must be at lease equal to the number of risky assets
in the financial market. However, the market completeness is
unnecessary, that is, m may be strictly greater than n.

Definition 2.1. A portfolio u(·) is said to be admissible if it is an

t-adapted locally integrable process, i.e., ∫ u t dt∥ ( )∥ < ∞
T

0
2 , a.s. and

the SDE (2.1) admits a unique strong solution x(·) satisfying the
square-integrable condition, i.e, E x tmax ( ) < ∞t T0≤ ≤

2 . Let U denote the
set of all admissible portfolios.

Remark 2.3. Due to its linear structure, the wealth process (2.1)
always has an explicit solution for any locally integrable process u(·). By
Definition 2.1, therefore, the essential difficulty is to show the
integrability of x tmax ( )t T0≤ ≤

2 when verifying the admissibility of a
portfolio process.

As a mean-variance investor, the agent's objective is to find an
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admissible portfolio u(·) such that the variance of the terminal wealth
Var x T( ( )) is minimized while the expected terminal wealth is fixed at
some acceptable level z. This mean-variance portfolio selection pro-
blem can be formulated as a constrained stochastic minimization
problem

J x i u Var x T
Ex T z u U

minimize ( , , (·))≔ ( ( ))
subjectto ( ) = , (·) ∈ .

0 0⎧⎨⎩ (2.2)

For any given z, an optimal portfolio of (2.2) is called an efficient
portfolio and the pair Var x T z(min ( ( )), ) is said to be an efficient point.
As the agent revises his expectation of the terminal wealth level z
within R, a set of efficient points would be drawn as the efficient
frontier.

3. Feasibility

We start with the feasibility of the problem (2.2), that is, there
exists at least one admissible portfolio in U such that the expectation of
the agent's terminal wealth could reach the pre-specified level z.

Lemma 3.1. Consider the following system of linear ODEs

φ t i a t i φ t i q φ t j

φ T i i

˙( , ) = ( , ) ( , ) − ∑ ( , ),

( , ) = 1, ∈ .
j
l

ij=1⎪

⎪

⎧
⎨
⎩ (3.1)

If a t i( , ) is a bounded function, then (3.1) admits a unique strictly
positive solution. Moreover, there exists β > 0 such that φ t i β( , ) ≥ for
t T i∈ [0, ], ∈ .

Proof. See Appendix A.

Theorem 3.1. Problem (2.2) is feasible for every z R∈ if and only if

∫E B t α t dt∥ ( , ( ))∥ > 0.
T

0

2
(3.2)

Proof. We introduce a system of linear ODEs

ϕ t i b t i ϕ t i q ϕ t j

ϕ T i i

˙( , ) = − ( , ) ( , ) − ∑ ( , ),

( , ) = 1, ∈ .
j
l

ij0 =1⎪

⎪

⎧
⎨
⎩
According to Lemma 3.1, this system admits a unique strictly positive
solution. Given any u U(·) ∈ , we apply the oIt formula to ϕ t α t x t( , ( )) ( )
and have

dϕ t α t x t ϕ t α t B t α t u t dt dW t dM t( , ( )) ( ) = ( , ( )) ( , ( ))′ ( ) + {⋯} ( ) + ( ),

where M(·) is a zero mean local martingale with respect to { }t t≥0. For
simplicity, in the rest of the paper, M(·) is referred to as a suitable zero
mean local martingale. Here, we ignore the specific form of the
integrand with respect to “W (·)”, as shown in the bracket, since it
does not affect the final result. Let τ{ }n n≥1 be a localizing sequence and
then

∫
Eϕ T τ α T τ x T τ

E ϕ t α t B t α t u t dt ϕ i x

( ∧ , ( ∧ )) ( ∧ )

= ( , ( )) ( , ( ))′ ( ) + (0, ) .

n n n
T τ

0

∧

0 0
n

(3.3)

We first prove the “if” part by constructing an admissible portfolio
satisfying the constraint Ex T z( ) = . Consider u t kϕ t α t B t α t( )≔ ( , ( )) ( , ( ))−1 ,
where k is some constant to be determined by z. From Lemma 3.1, u(·)
is a bounded process and thus an admissible portfolio. Hence, applying
the dominated convergence theorem to (3.3) gives

∫Ex T kE B t α t dt ϕ i x( ) = ∥ ( , ( ))∥ + (0, ) .
T

0

2
0 0

If the condition (3.2) holds, there exists a unique k such that Ex T z( ) = .
Conversely, we prove the “only if” part by contradiction. If the

condition (3.2) does not hold, (3.3) is reduced to

Ex T ϕ i x( ) = (0, ) .0 0

Apparently, the expected terminal wealth is independent of any
admissible portfolio chosen by the agent, and the problem (2.2) is
not feasible if z ϕ i x≠ (0, )0 0. This leads to a contradiction with the
proposition that “Problem (2.2) is feasible for every z R∈ ”.□

Under the condition (3.2), the mean-variance problem (2.2)
satisfies the following duality equation by Theorem 2.5.3 in Shi, 1990,

J x i u E x T z λ Ex T zmin ( , , (·)) = min { [ ( ) − ] − *[ ( ) − ]},
u U Ex T z u U(·)∈ , ( )=

0 0
(·)∈

2

where λ* is called a Lagrange multiplier, and solves the dual problem

E x T z λ Ex T zmax min { [ ( ) − ] − [ ( ) − ]}.
λ R u U∈ (·)∈

2

For convenience, we adopt λ2 * instead of λ* and rewrite the above
duality relation as

J x i u E x T z λ Ex T z

E x T z λ λ

E x T d d z

min ( , , (·)) = max min { [ ( ) − ] − 2 [ ( ) − ]}

= max min { [ ( ) − − ] − }

= max min { [ ( ) − ] − ( − ) }.

u U Ex T z λ R u U

λ R u U

d R u U

(·)∈ , ( )=
0 0

∈ (·)∈

2

∈ (·)∈

2 2

∈ (·)∈

2 2
(3.4)

The last equality is obtained by changing variable “d z λ= + ”.

4. Solution to the unconstrained problem

In this section, we proceed to investigate a linear-quadratic
stochastic minimization problem without any constraints as below

J x i u E x T d
u U

minimize ( , , (·))≔ [ ( ) − ]
subjectto (·) ∈ .

d
0 0

2

⎪

⎪⎧⎨⎩ (4.1)

We need to solve the problem (4.1) for every d R∈ . To do this, we
firstly introduce three systems of linear ODEs.

f t i ρ t i β t i γ t i f t i q f t j

f T i

˙ ( , ) = [ ( , ) + 2 ( , ) + ( , )] ( , ) − ∑ ( , ),
( , ) = 1,

j
l

ij=1
⎪

⎪⎧⎨
⎩ (4.2)

g t i ρ t i β t i g t i q g t j

g T i

˙( , ) = [ ( , ) + ( , )] ( , ) − ∑ ( , ),
( , ) = 1,

j
l

ij=1
⎪

⎪

⎧
⎨
⎩ (4.3)

h t i ρ t i q h t j

h T i

˙( , ) = ( , ) − ∑ ( , ),

( , ) = 1,

g t i
f t i j

l
ij

( , )
( , ) =1

2⎪

⎪

⎧
⎨
⎩ (4.4)

where ρ t i B t i Σ t i B t i( , ) = ( , )′ ( , ) ( , )−1 , β t i B t i Σ t i σ t i σ t i b t i( , ) = ( , )′ ( , ) ( , ) ( , ) − ( , )−1
0 0 and

γ t i σ t i σ t i Σ t i σ t i σ t i σ t i( , ) = ( , )′ ( , )′ ( , ) ( , ) ( , ) − ∥ ( , )∥0
−1

0 0
2, for t T∈ [0, ],

i l= 1, …, . For the system (4.4) to be well defined, it has to be shown
that f t i( , ) ≠ 0. In fact, we can obtain a even stronger result in the next
lemma.

Lemma 4.1. Under Assumption 2.1 and 2.2, the systems of ODEs
(4.2), (4.3) and (4.4) admit unique bounded solutions. In particular,
f t i( , ) > 0, g t i( , ) > 0 and h t i( , ) < 1 for any t T i∈ [0, ), ∈ .

Proof. See Appendix B.

Theorem 4.1. The feedback control u* as below is an optimal
portfolio of the problem (4.1),

u t x i Σ t i x σ t i σ t i B t i d g t i
f t i

B t i*( , , ) = − ( , ) [ ( , ) ( , ) + ( , )] − ( , )
( , )

( , ) .−1
0

⎧⎨⎩
⎫⎬⎭

(4.5)

Furthermore, by adopting u*, we have
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J x i u J x i u f i x g i x d h i dmin ( , , (·)) = ( , , *) = (0, ) − 2 (0, ) + (0, )
u U

d d

(·)∈
0 0 0 0 0 0

2
0 0 0

2

Proof. If we adopt the feedback strategy u* in the agent's wealth
process (2.1), the associated x*(·) uniquely solves a linear SDE with
bounded coefficients. By Theorem 6.3 in Yong and Zhou (1999), we
obtain the integrability condition of E x tmax *( ) < ∞t T0≤ ≤

2 , which
implies the admissibility of u*.

Next, we prove the optimality of u* by “completion of square”.
Given any u U(·) ∈ , applying the oIt formula to f t α t x t( , ( )) ( )2,
g t α t x t( , ( )) ( ) and h t α t( , ( )) respectively yields

∑

∑

∑

df t α t x t x t f t α t q f t j

b t α t σ t α t f t α t dt

f t α t u t Σ t α t u t

x t B t α t σ t α t σ t α t u t dt

dW t dM t dg t α t x t

x t g t α t q g t j b t α t g t α t dt

g t α t B t α t u t dt dW t

dM t dh t α t h t α t q h t j dt

dM t

( , ( )) ( ) = ( ) ˙ ( , ( )) + ( , )

+ [2 ( , ( )) + ∥ ( , ( ))∥ ] ( , ( ))

+ ( , ( )){ ( )′ ( , ( )) ( )

+ 2 ( )[ ( , ( )) + ( , ( )) ( , ( ))]′ ( )}

+ {⋯} ( ) + ( ), ( , ( )) ( )

= ( ) ˙( , ( )) + ( , ) + ( , ( )) ( , ( ))

+ ( , ( )) ( , ( )) ( )′ + {⋯} ( )

+ ( ), ( , ( )) = ˙( , ( )) + ( , )

+ ( ).

j

l

α t j

j

l

α t j

j

l

α t j

2 2

=1
( )

0 0
2

0

=1
( ) 0

=1
( )

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Let y t f t α t x t g t α t x t d h t α t d( ) = ( , ( )) ( ) − 2 ( , ( )) ( ) + ( , ( ))2 2, and then

∑

∑

∑

dy t f t α t u t Σ t α t u t

x t B t α t σ t α t σ t α t u t dt

dg t α t B t α t u t dt x t f t α t

q f t j b t α t σ t α t f t α t dt

dx t g t α t q g t j b t α t g t α t dt

d h t α t q h t j dt dW t dM t

( ) = ( , ( )){ ( )′ ( , ( )) ( )

+ 2 ( )[ ( , ( )) + ( , ( )) ( , ( ))]′ ( )}

− 2 ( , ( )) ( , ( ))′ ( ) + ( ) ˙ ( , ( ))

+ ( , ) + [2 ( , ( )) + ∥ ( , ( ))∥ ] ( , ( ))

− 2 ( ) ˙( , ( )) + ( , ) + ( , ( )) ( , ( ))

+ ˙( , ( )) + ( , ) + {⋯} ( ) + ( ).

j

l

α t j

j

l

α t j

j

l

α t j

0

2

=1
( ) 0 0

2

=1
( ) 0

2

=1
( )

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

By the “completion of square” technique, we obtain

∫y T y dW t M t( ) − (0) ≥ {⋯} ( ) + ( ).
T

0

Let τ{ }n n≥1 be a localizing sequence, and thus

Ey T τ y f i x g i x d h i d( ∧ ) ≥ (0) = (0, ) − 2 (0, ) + (0, ) .n 0 0
2

0 0 0
2 (4.6)

Since E x tmax ( ) < ∞t T0≤ ≤
2 , applying the dominated convergence theo-

rem to (4.6) yields

J x i u f i x g i x d h i d( , , (·)) ≥ (0, ) − 2 (0, ) + (0, ) .d
0 0 0 0

2
0 0 0

2

In particular, if we adopt u*, “≥” becomes “=” in (4.6), and it can be
found that

J x i u f i x g i x d h i d( , , *) = (0, ) − 2 (0, ) + (0, ) . □d
0 0 0 0

2
0 0 0

2

Corollary 4.1. If f, g and h are the unique solutions of (4.2), (4.3) and

(4.4) respectively, then f i h i g i(0, ) (0, ) − (0, ) ≥ 00 0 0
2 .

Proof. By Theorem 4.1, we obtain

f i x g i x d h i d J x i u(0, ) − 2 (0, ) + (0, ) = min ( , , (·)) ≥ 0.
u U

d
0 0

2
0 0 0

2

(·)∈
0 0

This inequality holds for any x0, d R∈ . Let x = g i
f i0
(0, )
(0, )

0
0
and d=1. We find

that

f i x g i x d h i d h i
g i
f i

(0, ) − 2 (0, ) + (0, ) = (0, ) −
(0, )
(0, )

≥ 0,0 0
2

0 0 0
2

0
0

2

0

which leads to f i h i g i(0, ) (0, ) − (0, ) ≥ 00 0 0
2 .□

5. Efficient portfolio and efficient frontier

This section obtains the efficient portfolio and efficient frontier of
the problem (2.2) by using the results derived in the preceding section.

Theorem 5.1 (efficient portfolio and efficient frontier). Suppose that
the condition (3.2) holds. Then, the mean-variance problem (2.2)
admits an efficient portfolio,

u t x i Σ t i x σ t i σ t i B t i λ z g t i
f t i

B t i*( , , ) = − ( , ) [ ( , ) ( , ) + ( , )] − ( * + ) ( , )
( , )

( , ) ,−1
0

⎧⎨⎩
⎫⎬⎭

(5.1)

where the Lagrange multiplier λ* = z g i h i x

h i

− (0, ) (0, )

(0, ) − 1
0

−1
0 0

−1
0

. Moreover, the

agent's efficient frontier is

Var x T
z g i h i x

h i
x f i h i

g i

min ( ( )) =
[ − (0, ) (0, ) ]

(0, ) − 1
+ [ (0, ) − (0, )

(0, )].

0
−1

0 0
2

−1
0

0
2

0
−1

0

2
0 (5.2)

Proof. According to the dual relation (3.4) and Theorem 4.1, the
following equation holds

J x i u F dmin ( , , (·)) = max ( ),
u U Ex T z d R(·)∈ , ( )=

0 0
∈ (5.3)

where F d f i x z h i d g i x z d( ) = (0, ) − + [ (0, ) − 1] − 2[ (0, ) − ]0 0
2 2

0
2

0 0 . By
Lemma 4.1, F(·), as a quadratic function, can be uniquely maximized
at d* = z g i x

h i
− (0, )
1 − (0, )

0 0
0

, and its maximum is

z g i h i x
h i

x f i h i g i
[ − (0, ) (0, ) ]

(0, ) − 1
+ [ (0, ) − (0, ) (0, )].0

−1
0 0

2

−1
0

0
2

0
−1

0
2

0

From (3.4), the Lagrange multiplier λ d z* = * − = z g i h i x

h i

− (0, ) (0, )

(0, ) − 1
0

−1
0 0

−1
0

.

Finally, the efficient portfolio (5.1) is derived from (4.5) by setting
d λ z= * + .□

Remark 5.1. When n=1, i.e., two risky assets are considered, the
vectors in 5.1 become scalar. u* is an affine function of the wealth

amount x with the slope of − +σ
σ

b b

σ

−0 1 0
2

⎛
⎝⎜

⎞
⎠⎟, and the intercept of

λ z( * + )b b g

σ f

( − )1 0
2 . Suppose that the appreciation rate of asset 1 is

greater than that of asset 0, and, reasonably, we may also assume
that σ σ> > 01 0 . Therefore, the investor's position for asset 1 would
move in the opposite direction with his wealth level x.

Theorem 5.2 (global minimum variance). The efficient frontier of
the problem (2.2) admits a global minimum variance

Var x f i h i g i= [ (0, ) − (0, ) (0, )] ≥ 0,min 0
2

0
−1

0
2

0

with the corresponding expected terminal wealth
z g i h i x= (0, ) (0, )min 0

−1
0 0. Furthermore, the efficient feedback portfolio

that achieves the global minimum variance is
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u t x i Σ t i x σ t i σ t i B t i z g t i
f t i

B t i* ( , , ) = − ( , ) [ ( , ) ( , ) + ( , )] − ( , )
( , )

( , ) .min
−1

0 min
⎧⎨⎩

⎫⎬⎭
(5.4)

Proof. The global minimum variance and its corresponding expected
terminal wealth are obtained immediately from the efficient frontier
(5.2). When z z= min, the Lagrange multiplier λ* = 0, and thus the
efficient feedback portfolio (5.4) follows from (5.1).□.

Theorem 5.3 (mutual fund theorem). Let u (·)0 be an efficient
feedback portfolio associated with z z>0 min . Then a feedback
portfolio u(·) is efficient if and only if there exists γ ≥ 0 such that

u γu γ u(·) = (·) + (1 − ) (·).0 min (5.5)

Proof. We rewrite the efficient portfolio (5.1) as below

u t x i Σ t i x σ t i σ t i B t i

z g i x
h i

g t i
f t i

B t i

*( , , ) = − ( , ) [ ( , ) ( , ) + ( , )]

−
− (0, )

1 − (0, )
( , )
( , )

( , ) .

−1
0

0 0

0

⎧⎨⎩
⎫⎬⎭ (5.6)

If u(·) is a combination of u (·)0 and u (·)min given by (5.5), then we
could obtain by simple algebra

u t x i Σ t i x σ t i σ t i B t i

γz γ z g i x
h i

g t i
f t i

B t i

( , , ) = − ( , ) [ ( , ) ( , ) + ( , )]

−
+ (1 − ) − (0, )

1 − (0, )
( , )
( , )

( , ) .

−1
0

0 min 0 0

0

⎧⎨⎩
⎫⎬⎭

Clearly, u(·) is an efficient feedback portfolio associated with the
expected terminal wealth γz γ z+ (1 − )0 min.

Conversely, suppose that u(·) is an efficient portfolio corresponding
to z z≥ min. Let γ = z z

z z
−
−

min
0 min

, and then z γz γ z= + (1 − )0 min. (5.5) could be

easily verified by (5.6).□.

Remark 5.2. The results in Theorem 5.1 are consistent with Zhou and
Yin (2003). Compared to (5.2) in Zhou and Yin (2003), our efficient
portfolio (5.1) is complicated by another stochastic term “σ t i σ t i( , ) ( , )0 ”
that would disappear under their model setting. In addition, we represent
the efficient frontier in terms of three systems of linear ODEs, and avoid
the calculation of the parameter θ defined in (4.9) in Zhou and Yin (2003).

Remark 5.3. As an extension, this paper comes to similar conclusions
with Yao et al. (2014), including a hyperbola type of efficient frontier, the
existence of nonnegative global minimum variance and mutual fund
theorem. The difference is that three systems of ODEs need to be
addressed as a consequence of introducing Markov-modulated
parameters. Moreover, instead of the dynamic programming, we adopt
the maximum principle in the stochastic control theory because the model
in our formulation is essentially an LQ stochastic control problem.

6. Numerical examples

In this section, several examples are offered to illustrate how the efficient
frontier (5.2) is shaped by the relevant parameters. We focus on a financial
market with two risky assets driven by a standard two dimensional Brownian
motion. Market regimes switch between two states, denoted as regime 1
(bearish) and regime 2 (bullish), representing bad and good economy
respectively. We demonstrate the impact on the efficient frontier of the
following parameters: time horizon T, initial market regime i0 and transition
intensity q12. The relevant parameters would be valued as following:
b (1) = 0.050 , b (2) = 0.10 , σ (1) = (0.12, 0.15)′0 , σ (2) = (0.06, 0.1)′)0 ,
B(1) = 0.2, B(2) = 0.4, σ(1) = (0.15, 0.3)′, σ(2) = (0.2, 0.4)′,
q q= = 0.512 21 .

We rewrite the efficient frontier by dividing x0
2 on both sides of

(5.2) to obtain

Var x T
x

g i h i

h i
f i h i g imin ( ) =

[ − (0, ) (0, )]

(0, ) − 1
+ [ (0, ) − (0, ) (0, )]

.

z
x

0

0
−1

0
2

−1
0

0
−1

0
2

0
0

⎛
⎝⎜

⎞
⎠⎟

The proportion z
x0

could be regarded as the expected investment return

at the terminal time. The efficient frontier would be depicted as a
relation between the mean and standard deviation of the investment
return.

Example 6.1. We first study how the efficient frontier would shift as
the time horizon T varies. As illustrated in Fig. 1, the efficient frontier
would move upward regardless of the initial market regime if the
investor extends the time horizon from 0.5 to 1.5. Both the minimum
expected return zmin and global minimum variance are rising with the
former at a larger scale than the latter. In addition, the steepness of the
efficient frontier is improved, which implies that the investor would
achieve a pre-specified expected return with much less uncertainty.
More specifically, as seen from (a) and (b), the efficient frontier is
raised to a greater extent with the bullish entry mode, compared to the
bearish one.

Example 6.2. The numerical results are presented in Fig. 2 on the
impact of the initial market regime on the efficient frontier at two time
horizons. Intuitively, investors would anticipate a higher efficient
frontier when they enter a bullish financial market, as reflected in
Fig. 2. Moreover, the minimum expected return is improved whereas
the global minimum variance is mitigated as the initial market mode is
switched from “bearish” to “bullish”. By comparing (a), (b) and (c), the
size of the shift does not have a noticeable difference among different
time horizons.

Example 6.3. The final example demonstrates how and to what extent
the efficient frontier might be affected by the transition intensity q12
representing the likelihood of the market switching from bearish to
bullish. The time horizon T is taken as 1, and the transition intensity
q21 is 0.5. As shown in Fig. 3, the efficient frontier increases as q12
changes from 0.2 to 0.8, which is reasonable since a greater value of q12
would yield a higher expected return for the investor's portfolio. The
distinction between (a) and (b) reveals that the magnitude of the shift
greatly depends on the timing when investors enter the market. If the
investor chooses to enter a bullish market, the transition intensity q12
exerts little influence on the efficient frontier.

7. Conclusion

This paper studies a continuous time mean-variance portfolio
selection problem when the financial market consists of only risky
assets whose price processes are modelled by Markov-modulated
geometric Brownian motions. By introducing the Lagrange multiplier,
the efficient frontier and efficient portfolio are expressed in closed form
via three systems of ordinary differential equations. The global mini-
mum variance is obtained, and the mutual fund theorem is proved by
the fact that the efficient feedback portfolio is an affine function of the
expected wealth level at the terminal time T. A few extensions can be
made in our future research. The asset liability management problem
could be investigated by taking into account the investor's endogenous
or exogenous liability process. Additionally, to reflect limitations in the
real market, constraints, such as prohibitions of short-selling the risky
assets, may be imposed.
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Fig. 1. The impact of the time horizon T.

Fig. 2. The impact of the initial market regime.
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Appendix A

Proof of Lemma 3.1. The existence and uniqueness of solutions are evident since (3.1) is a system of linear ODEs with uniformly bounded
coefficients. Next, we show that its solution is strictly positive. In fact, we rewrite (3.1) as

∫ ∑∫ ∫φ t i e e q φ s j ds( , ) = + ( , ) ,a s i q ds

t

T a u i q du

j i
ij

− ( , )− − ( , )−

≠

t

T
ii t

s
ii

where t T i∈ [0, ], ∈ . Since φ is equal to 1 and left continuous at time T, there exists some δ > 0 such that φ t i( , ) > 0 for any t T δ T∈ [ − , ] and
i ∈ . We define the set of roots for φ t( ) = 0 as below

A t T δ i s t φ t i≔{ ∈ [0, − ]: ∃ ∈ . . ( , ) = 0}.

The positivity of φ could be verified by contradiction. Suppose that φ is nonpositive at some t T∈ [0, ] and i ∈ . Then, A must be a bounded
nonempty set, and φ t( ) > 0 for t t A> *≔sup . Furthermore, there exists i* ∈ such that φ t i( *, *) = 0. On the other hand, we have

∫ ∑∫ ∫φ t i e e q φ s j ds( *, *) = + ( , ) > 0.a s i q ds

t

T a u i q du

j i
i j

− ( , *)−

*

− ( , *)−

≠ *
*t

T
i i t

s
i i* * * * * *

This is contradictory to φ t i( *, *) = 0. Since φ is a continuous function of t on the closed set T[0, ], its minimummust be positive. Then, β could be
taken as φ t imin ( , )T[0, ], .□

Appendix B

Proof of Lemma 4.1. The existence and uniqueness of solutions are clear due to the bounded coefficients in (4.2), (4.3) and (4.4). By taking
a t i ρ t i β t i γ t i( , ) = ( , ) + 2 ( , ) + ( , ) or ρ t i β t i( , ) + ( , ) in Lemma 3.1, we conclude that both f and g are strictly positive.

The remaining task is to show that h < 1. We consider h h≔1 −∼
, and it is equivalent to prove that h∼ is strictly positive. Note that h∼ uniquely

solves the following system of ODEs

h t i ρ t i q h t j

h T i i

˙( , ) = − ( , ) − ∑ ( , ),

( , ) = 0, ∈ .

∼ ∼

∼

g t i
f t i j

l
ij

( , )
( , ) =1

2⎧
⎨⎪
⎩⎪

We rewrite these ODEs in the integral form

∫ ∑∫h t i e ρ s i g s i
f s i

q h s j ds( , ) = ( , ) ( , )
( , )

+ ( , ) .∼ ∼
t

T q du

j i
ij

2

≠

t

s
ii

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(B.1)

Since h T( ) = 0∼
, h∼ is left continuous at T, and ρ t i( , ) > 0g t i

f t i
( , )
( , )

2
, there exists δ > 0 such that ρ t i q h t j( , ) + ∑ ( , ) > 0∼g t i

f t i j i ij
( , )
( , ) ≠

2
for t T δ T i∈ [ − , ], ∈ .

From (B.1), we conclude that h T δ( − ) > 0∼
. By treating T δ− as the terminal time, we can apply the same technique as in Lemma 3.1 to prove the

positivity of h∼.□

Fig. 3. The impact of the transition intensity q12.
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