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A B S T R A C T

A large amount of data consisting of 148 countries for the years 1970 to 2010 is analysed in the context of the
health–income relationship. The literature suggests that the biased income–health effect obtained with macro
data can be a result of the aggregation of individual concave income functions on average health. This
aggregation problem is analysed in detail, and a bias-correcting method is proposed to overcome it. The results
with new model alternatives show that they correct the income effects on average health in the right direction;
that is, they produce smaller parameter estimates than biased models. Augmenting the results with the quantile
regression approach, which is sensitive to health differences between countries, indicates that the poorest
countries’ income gradient is still much larger than that of rich countries. However, the median life expectancy
effect of the log of GDP per capita across the countries decreased during the sample decennials. The results for
income inequality measured with the Gini coefficient indicate that the effects of inequality on health are still
significant in the poorest countries but non-significant among rich countries after the year 2000. We argue that
the proposed bias-correcting method retains the interest in macro health modelling and offers new model
alternatives in other contexts.

1. Introduction

Aggregation from microunits to macroentities is a lasting problem
in economics. The literature reports many different forms of biases that
macro or aggregative relationships will generate when compared with
the underlying micro-level presentations. Typically these aggregation
problems are case dependent, and in some cases conditions can be
derived to preserve the structural micro model at the macro level (see
e.g. Denton and Mountain, 2011; Monteforte, 2007; Pesaran, 2003).
However, for the vast majority of cases, the conditions are very
demanding or unknown, and quite often even a simple micro relation
estimated with macro data has different parameter values from the
micro data results. This is especially true for non-linear micro relations
estimated with aggregate data, such as mean values. The major reason
for these problems is that micro-model estimations with mean values
are used instead of aggregating non-linear microrelationships. For
example, if the micro theory states that relationship y α β x= + ln is
valid and we have data from two micro units y x y x{( , ), ( , )}1 1 2 2 , then
y α β x= + ln is not the same as y α β x x= + ( ln + ln ),1

2 1
1
2 2 and the

OLS estimate from y α β x= + ln for β is biased.
Interestingly, the log function with health status as a function of

income is found to be highly important in the health economics
literature. Besides the involved aggregation problem when estimating
the function with aggregative data, it surprisingly produces a spurious
negative correlation between health status and spread of income
distribution. Thus, when we regress different countries’ index of health
status on their GDP per capita level, for example, we obtain the result
that larger income dispersion decreases health status. Evidently, this
result is relevant to any other field in economics that uses a similar type
of concave functions. Especially, any empirical research that connects
aggregate measurements non-linearly based on micro-level arguments
should be beware of the distributional effects that non-linearity exposes.

Partly in response to this aggregation problem in health–income
relationship analysis, a vast literature exists that is shared by public
health researchers, sociologists, and economists on health, incomes,
and income inequality (Cutler et al., 2006; Deaton, 2006, 2003, 2002a,
2001; Judge et al., 1998; Kawachi and Kennedy, 1999; Leigh et al.,
2009; Lynch et al., 2004; Marmot, 2002; Mullahy et al., 2004;
Subramanian and Kawachi, 2004; Wagstaff and van Doorslaer,
2000). The main outcome of this perhaps disparate literature is that
the income level matters for health, especially for poor people, and the
focus of research must be on the individual-data level. New and more
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sophisticated approaches are still used to analyse the connections
between health, incomes, and inequalities with the addition of different
health outcomes and many covariates and auxiliary variables (e.g. Kim
et al., 2008; Mackenbach, 2012; Zheng, 2012).

We do not dwell on this new literature. Instead, we try to under-
stand what the earlier literature offers on the methodological level and
to provide some pathways to follow, especially when still working with
aggregate data (Section 2). In particular, we show that the aggregation
bias in earlier aggregate models can be reduced when attention is paid
to the evident errors-in-variables problem in these models. Section 3
proceeds with the data presentation and three model alternatives to
test the average health status dependency on the log of GDP per capita
and the GINI index across nearly 150 countries in the years 1970 to
2010. The main estimation results are given in Section 4. We show that
there exists – contrary to biased results – a U-shaped evolution
between the life expectancy and the log of GDP per capita during the
years 1970–2010 obtained with our new bias-correcting methods. In
addition the proposed method provides results that are comparable
with micro-level results. The conclusions are presented in Section 5.

2. Aggregation bias of the lnGDPc variable in the health–
income model

2.1. Health status as a function of income

Much of the so-called income gradient literature on health has
focused on the individual-level relationship between income (Yi) and
health HS( )i , which has a concave form:

HS f Y f f= ( ) with ′ > 0 and ″ < 0.i i (1)

The functional form in (1) is the absolute income hypothesis (AIH),
which implies that

a) The health and the (absolute) level of income are positively
correlated, and

b) The positive slope of the relationship deceases with income.

The AIH implies that the proportional relationship between income
and good health is the same at all income levels, which infers that the
absolute increase in health for each dollar of income is much larger at
the bottom of the income distribution than at the top (Deaton, 2002a,
p. 4). The logarithm function is a concave function, and it has been
shown to have some good statistical properties in this context (Jones
and Wildman, 2008). This means that the regression model augmented
with other health-affecting covariates and controls Xi, like

d XHS α β Y ε= + ln + ′ +i i i i (2)

is a promising starting point for health–income gradient analysis.
The problem here is that the AIH is not a robust hypothesis at the

aggregate level. This is because the aggregation is distribution free only
when the relationship between health and income is linear. Thus,
regressing the average health on the average income non-linearly and
on income distribution measures produces results that are artificial,
since all the higher moments – not only mean income – exist for any
non-linear function of a (random) variable.

2.2. Aggregate approach

Consequently, individual-level model results do not necessary hold
for aggregate data-level models, which are widely used, for example, in
the social policy literature. Now the regression models appear as
follows:

d XHS α β Y ε= + ln + ′ + ,k k k k (3)

where k can refer to different regions, income classes, or social groups.
Similar AIH distributional effects are now valid as above if we refer to

the average income differences between the k units in the sample.
However, this agenda is not fully warranted, since the model in Eq. (3)
is still prone to the aggregation problem.

If we take the starting point that health is an individual-level
phenomenon, we should derive Eq. (3) in an appropriate way, starting
from the individual level; that is, Eq. (3) is not aggregated correctly if
Eq. (2) is the true model for individual behaviour in unit k. This can be
shown in the following way. Assume that for all individuals in k, the
following income gradient model is valid (excluding the additional
terms in Eq. (3) for simplicity):

HS α β Y ε i n= + ln + , = 1, .2, ... , .i k i k i k k, , , (4)

The k-level aggregate equation is obtained by adding this equation
over nk income receivers in aggregation unit k:

⎛
⎝⎜

⎞
⎠⎟∑ ∑HS

n
HS α β

n
Y ε≡ 1 = + 1 ln + .k

k i

n
i k

k i

n
i k k=1 , =1 ,

k k

(5)

This aggregation does not include any biases, since the aggregation
is made over the individual-level income gradient functions; that is,

f Y∑ ( )
n i

n
i k

1
=1 ,

k
k , where f Y Y( ) = lni k i k, , .

The aggregation in Eq. (5) provides the mean of log incomes, or the
log of geometric mean income, Y Y= exp( ∑ ln )G N i

N
i

1
=1 . Thus, the correct

form of Eq. 3 under the assumption that model parameters α βandk k
are equal across k different units is

d X not d XHS α β Y ε HS α β Y ε= + ln + ′ + , = + ln + ′ + ,k G k k k k k k k, (6)

where Y Y= ∑k n i
n

i
1

=1k
k . Consequently, using the wrong presentation for

individual behaviour at the aggregate level in Eq. (3) biases the income
gradient estimates.

The genesis of the aggregation problem in Eq. (3) can be seen when
we take the second-order Taylor approximation around the mean
income for the concave income gradient function (Eq. (1)):

HS f Y f Y Y Y f Y Y Y R= ( ) + ′( )( − ) + ″( )( − ) + .i i i n
1
2

2
(7)

If E Y μ Y VAR Y σ[ ] = = and [ ] =i Y i Y
2, then the second-order approx-

imation for the expected (population) health level is

E HS f Y f Y E Y Y f Y E Y Y

f Y f Y σ

[ ] ≈ ( ) + ′( ) [( − )] + ″( ) [( − ) ]

≈ ( ) + ″( ) .

i i i

Y

1
2

2

1
2

2
(8)

Thus, the sample estimate for the expected health level – the sample
mean HS – is related negatively to income dispersion because of
f Y′′( ) < 0. Therefore, the larger is the spread of income in the economy,
the lower is the average health level for the given mean income.

This transfer or “concavity-induced income inequality” effect
(Deaton and Muellbauer, 1980; Stoker, 1993) is also called a statistical
artefact of aggregation (Gravelle, 1998). The finding that there is a
negative partial correlation between the average health and a measure
of spread of income may therefore not be evidence that individual
health is adversely affected by income inequality. It is simply the result
of the curvilinear relationship between income and health level
operating at the individual level (Gravelle et al., 2002, p. 579; Lynch
et al., 2004, p. 61). Note that the result in Eq. (8) is still more
complicated when we observe that income distributions are typically
not symmetric but skewed; that is, E Y Y[( − )] ≠ 0i MED . To add a
positive comment about the aggregate model, Eq. (3) entails that it
reflects in an average sense the relationship between health and
incomes at the aggregative level, but its individual-level implications
are biased and even spurious.

The transfer result in Eq. (8) is most alarming for the income
inequality hypothesis (IIH). It states that

a) Individual health is affected by income inequality, and
b) Greater income inequality produces worse health among the

population.
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Part a is the outcome of our individualistic approach to health, and
part b asserts that the greater income inequality has an effect on the
health status distribution; that is, the mean health level.

We see clearly that the AIH and IIH are closely related to each other
at the aggregative level as long as health is a concave function of
income at the individual level; consequently, the second moment of
income (dispersion) reduces the expected health. The curvilinear
relation between income and health at the individual level is a sufficient
condition to produce health differences between populations with the
same average income but different distributions of income (Deaton,
2002b).

To overcome the problem of aggregation, we must turn to the
individual-data model, which also entails some variables like the GINI
coefficient to measure the income inequality effects on health.
However, when individual data on health and incomes are not
available, we need an aggregate model alternative that has a consistent
aggregation solution; that is, it preserves the micro-economic presen-
tation. In the following we propose a method that has some merits
when we are bound to aggregate data and provides results that are not
sensitive to aggregation biases.

2.3. Correcting for aggregation bias

The evident non-linear aggregation problem over individuals
(Stoker, 1993) can be avoided by using Yln G k, as a mean income
variable. Thus, Eq. (6) preserves the individual-level interpretation.
However, we seldom know the geometric mean of incomes
Y Y= exp( ∑ ln )G

N i
N

i
1

=1 . To calculate it, we need individual-level obser-
vations, and if we have them we should conduct individual-level
regressions, not problematic aggregate-level regressions. Thus, the
problem is basically that we are provided with only aggregate-level
information, like HS Yandk k, and are not able to obtain the correct
aggregation form for the income gradient hypothesis. To overcome this
problem, the following approximation method can be used. Jensen's
inequality implies for concave functions that

⎛
⎝⎜

⎞
⎠⎟∑ ∑f X f X θ( ) = − .

i

N
i i

N
i=1 =1 (9)

Applying this idea to the logarithm function in the context of the
aggregate mean income gives

⎛
⎝⎜

⎞
⎠⎟∑ ∑

N
Y Y θ θ Y Y1 ln( ) = ln( − ) ⇒ = − exp ln .

i

N
i N i

N
i=1

1
=1 (10)

As we do not known the mean of log incomes – the log geometric
mean Y Yln = ∑ lnG N i

N
i

1
=1 – and cannot solve for θ, we use the following

practical second-best solution.1

The second-order Taylor approximation around Y for Y θln( − )
has the following form2:

Y θ Y θ
Y

θ
Y

ln( − ) ≈ ln − − .1
2

2

2 (11)

For large values ofY , we can omit the second-order term. This gives
the result

Y θ Y θ
Y

ln( − ) ≈ ln − .
(12)

Applying the first-order result to our basic region- or group-level
health model like Eq. (6) gives

⎛
⎝⎜

⎞
⎠⎟HS α β Y θ

Y
μ α β Y βθ

Y
μ= + ln − + = + ln − + .k k

k

k
k k

k

k
k

(13)

The model presents two options. First, if we make a heroic
parametric assumption that θ θ=k for all income units k, we have

HS α β Y γ
Y

μ γ βθ= + ln − 1 + where = .k k
k

k (14)

This means that the parameter θ (if needed) is identifiable from the
OLS estimate for γ .

Next we propose also a two-stage estimation procedure to estimate
β consistently by using approximation result Y θ Y θ Yln( − ) ≈ ln − / .
Now we first regress Yln k on θ Y/k k and use estimate θk to correct for
aggregation bias, i.e. we calculate Y Y θ Yln * = ln − /k k k k and estimate
model

HS α β Y μ= + ln * + .k k k (15)

This procedure corresponds to the errors-in-variable problem (see
Appendix A1) that is an alternative formulation of aggregation bias
found in model HS α β Y μ= + ln +k k k.

Finally, if take the random-coefficient model (RCM) approach,
which assumes θ θ ν= +k k , where for example ν N σ∼ (0, )k θ

2 , the model
has the form

HS α β Y γ
Y

μ γ βθ= + ln − 1 + where = .k k k
k

k k k
(16)

The classical RCM approach needs a panel data setting, but in the
modern RCM context (mixed or hierarchical models), we can use also
cross-sectional data, where θk is the classifying parameter for different
regions or income groups.

The last question is whether we should also include in models 14–
16 the GINI coefficient to measure income inequality and test for the
income inequality hypothesis (IIH). Adding GINI coefficients to models
can be defended with the arguments that GINIk is based on person-level
information and models 14 and 15 are approximations of a model that
preserves the individual-level approach; that is, the spurious “con-
cavity-induced income inequality” effect is less evident in these
aggregation bias-corrected models.

3. Data and test models

3.1. Data

Annual data from 148 countries (both developed and developing)
covering 41 years (1970–2010) were collected from different sources.
Data for life expectancy at birth as a measurement of the average
population health were collected from the World Development
Indicators (World Bank, 2014a).

Gross domestic product per capita data were PPP converted into
GDP per capita (Laspeyres) at 2005 constant prices. They were
collected from the Penn World Table 7.1 (Heston et al., 2012). The
World Bank IBRD-IDA (2014b) database and the UN database (2014)
were consulted for Georgia, Qatar and Latvia. Gapminder.org (2014)
was accessed for data on Armenia, Azerbaijan, Belarus, Bosnia
Herzegovina, Estonia, Lithuania, Kazakhstan, Slovenia, Turkmenistan
and Ukraine.

Income inequality data were obtained from SWIID Version 4.0
from September 2013 (Solt, 2009). The “gini_market” data were taken,
which were the estimate of the Gini index of inequality in equivalized
(square root scale) household market (pre-tax, pre-transfer) income.
Here the Luxembourg Income Study data were used as the standard.
UNU WIDER (2014) data were also collected with reference to the unit
of analysis. The data were more often weighted with household than
personal weight. In connection to the area covered, data that covered
both urban and rural areas were obtained as available in the database.
When considering the quality rating, only high- (i.e. 1) and average-

1 If the individual incomes are log-normally distributed, we have the following exact
result:

Y Y σln = ln − ,G
1
2

2 where σ2 is the variance of log incomes.
2 f x f x f x x x f x x x( ) ≈ ( ) + ′( )( − ) + ′′( )( − )0 0 0

1
2 0 0 2, where x Y θ x Y= − and = .0
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quality (i.e. 2) rated observations were considered. Household income
data meant gross income. With reference to revision, the newest
observations were considered as far as possible. Data from the
Inequality Project hosted by the University of Texas (University of
Texas Inequality Project, 2014) complemented the data already men-
tioned.

3.2. Models and estimation strategy

The following 3 models with 148 countries in the years 1970–2010
(k=1,…,148, t=1,…,41, 6068 observations) were estimated:

Model A: LEkt=α1+β1lnGDPckt+γ1/GDPckt+δ1GINIkt+εkt,1
Model B: LEkt=α2+β2lnGDPckt+δ2GINIkt+εkt,2
Model C: LEkt=α3+β3lnGDPckt*+δ3GINIkt+εkt,3.

LE is the life expectancy at birth in years. GDPc is the GDP per
capita at 2005 constant prices. These values were then multiplied by
0.01 and the natural log was taken (lnGDPc). Income inequality was
measured by GINI coefficients. The εkts are the error terms of the
models.

The first equation (model A) is based on micro(economic) founda-
tions wherein a person's incomes and prevailing income distribution in
his/her social environment have effects on his/her health. The variable
1/GDPCkt is the correction term stemming from the inadequate
aggregation of the log of income effect on health at the micro level.
Model B is the reference model that includes the aggregation bias, and
the coefficient β2 is expected to be biased upward. The model lacks the
(micro)economic interpretation. Finally, model C corrects for the
aggregation bias via the estimation of the errors-in-variables bias (for
more details, see Appendix A1; Stock and Watson, 2011, pp. 361–364).
lnGDPckt* in model C is equal to

GDPc GDPc θ
GDPc

ln * = ln − ,kt kt
k

kt

with θk coming from OLS regressions GDPcln kt on GDPc1/ kt for each of
the sample countries separately with time series observations. Note
that in this two-step estimation strategy for model C we need to correct
the standard errors of coefficients in the second step estimation.

We consider first the following panel data models in estimating
models A–C.

Group means model: x βy a ε k N= + ′ + , = 1, ... ,k k k
Fixed-effects model: x βy a ε k N t T= + ′ + , = 1, ... , , = 1, ... ,kt k kt kt
Fixed-effects model with AR(1) errors: x βy a ε= + ′ + ,kt k kt kt with
ε ρε μ= + ,kt k t kt, −1 k N t T= 1, ... , , = 1, ... ,
Random-coefficient model (RCM): x βy a z γ ε= + ′ + + , withkt kt kt k kt1
γ γ μ k N t T= + , = 1, ... , , = 1, ... , .k k

The group means model is used here as it averages out the random
measurement errors and collects observed and latent group hetero-
geneity in the group means (see Greene (2013), Section 11.3.4). The
fixed-effects model is an obvious choice in this context. We estimate the
model in the robust form; that is, augmented with White and Newey–
West standard error corrections for group heterogeneity and auto-
correlation in models A and B. For model C we use the clustering
approach. Standard errors are calculated with clustering the errors at
the country level. The fixed-effects model with AR(1) errors allows
explicitly for error autocorrelation to be present in the model. Finally,
the random-coefficient model (RCM) is used only for model A, in which
we specify the aggregation correction to take place at the group level,
meaning that each country has a specific correction parameter γ βθ=k k,
where θ θ v= +k k (see above, Eq. (16)).

To have as many results as possible for the suggested aggregation
correction method, we also estimate models A–C for 41 yearly cross-

sections. This also gives a more detailed and transparent picture of how
the life expectancy–income relationship evolved during the sample
years. However, the cross-sectional OLS estimation gives only the
average effect results for each year. We also need some distribution
effects, as the countries in the sample show large discrepancies in life
expectancy. We could estimate models for example on a yearly basis for
different income level or health status country groups with separate
OLS regressions. However, this would give a vast amount of inefficient
OLS regression results. We can obtain better results more efficiently
with the quantile regression approach, which has been quite popular
in recent years (see e.g. Huang et al., 2007). It estimates the conditional
quantile functions instead of the mean conditional function as OLS
regression does.

By focusing only on the conditional mean function xE y[ | ], the OLS
regression gives an incomplete summary of the joint distribution of

xy{ , }i i i
N
=1. When the sample size is small, the OLS model errors are

heteroskedastic and non-normal-like in our yearly samples. Median
and quantile regression methods have advantages beyond this, provid-
ing a richer characterization of the data. Median regression is more
robust to outliers than OLS regression. Moreover, quantile estimators
can be consistent under a weaker stochastic assumption than possible
OLS estimation (Cameron and Trivedi, 2005, p. 85).

The linear quantile regression model can be defined as

x x β x βQ y ε y q q( | ) = ′ such that Prob[ ≤ − ′ ] = , 0 < < 1.q q q

q refers to different quantiles, like q = 0.1, 0.2, ... ,0.5, 0.6, ... ,0.9,
where q=0.5 gives the median regression (i.e. MAD or LAD
estimator). When xε| is normally distributed, xMED ε[ | ] is

x x x βE y MED yzero and [ | ] = [ | ] = ′ (Greene, 2013, p. 243; for more
details, see Koenker (2005), Koenker and Hallock (2001)).

4. Results

4.1. Panel model results

Before presenting the estimation results, we show in general terms
that the log of GDPc is a suitable transformation in this context. Fig. 1
shows on the left side the cross-plot between life expectancy (LE) and
GDPc and then on the right side that between LE and lnGDPc for all the
data points in the sample (6068 observations). We add to the figures
the marginal distributions, 95% correlation CIs, and non-parametric
curve fitting results. The left graph shows a clearly concave relationship
between life expectancy and GDPc.

After taking the ln – transformation of GDPc, the relationship turns
linear. Some data points, at an especially low life expectancy, do not fit
into this setting, but their role is non-significant. The left graph is very
important per se as it shows how unequal the yearly GDPc distributions
are. The same is true is for life expectancy. Note also the flat part of the
curve above 30,000 US dollars per year.

The panel model estimation results are collected in Table 1. The
estimated coefficient values for the variables lnGDPc and lnGDPc*
support our results concerning the aggregation bias in model B. For all
the panel data model estimations, the coefficients for lnGDPc and
lnGDPc* are smaller in models A and C than in model B. In the group
means and FE-AR(1) models, the coefficient differences are quite large,
indicating that the results in model B are clearly biased. Note that the
coefficient values are much smaller in the FE-AR(1) model estimations
than in the other models, because they are based on quasi-differenced
variable values depending on the size of the estimated AR(1) process.
The estimated values for the AR(1) coefficients were in the range of
0.90 to 0.95. The model alternative with country-specific error auto-
correlations gave similar results without altering the reported values in
Table 1. Homogeneity of the country-specific fixed effects
α α k( = forall )k was rejected for all the FE models. Similarly, the χ 2 test
rejected the non-randomness of the coefficients γk in the RC model.
With respect to the GINI variable, the results in Table 1 are poor. Only
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in the group means models is the coefficient value for GINI significant
in statistical terms with a non-positive sign implied by the income
inequality hypothesis (IIH).

4.2. Cross-sectional results

The insignificant income inequality results with the FE and RCM
panel models indicate that our panel model approach has been too
general by masking the country heterogeneity and time developments
in the life expectancy levels and their relations to income inequality.
Note that the health sectors in both developing and developed
countries experienced vast changes during the sample period of
1970–2010. We argue that yearly cross-sectional estimations track
these time-dependent changes in the model parameter estimates better
than the FE or RCM estimations do. Thus, to gain a more transparent
picture of aggregation bias with respect to model B, next we estimate
the models for each sample year separately. This will produce 41
different coefficient estimates for each year in the sample, proving how
lnGDPc and GINI affected LE during the sample period of 1970–2010.
Thus, for models A–C, the total number of observations in each case is
148. Standard errors of the coefficient estimates were estimated with
White's diagonal HCSE corrections.

The following graphs (Fig. 2, below) show the yearly based cross-
sectional regression coefficients from the estimated models (more

detailed estimation results can be provided upon request). The most
interesting result is the U-shaped evolution between the life expectancy
and the log of GDP per capita during the years 1970–2010 obtained
with our new bias-correcting methods.
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Fig. 1. Cross-plots of the LE, GDPc, and lnGDPc variables (years 1970–2010, 148 countries, 6068 observations).

Table 1
Panel data model estimates for models A–C. Number of observations: N=148, T=41
(1970–2010), N×T=6068.

Constanta lnGDPc 1/GDPc lnGDPc* GINI R2

Model A
Group Means 6.30* 4.65* −42.60* −0.33* 0.795
FE-Robust – 6.21* −1.60 −0.003 0.888
FE-AR(1) – 0.58* −1.18 0.001 0.480
RCM 44.34* 5.84* −114.88* 0.006 0.356
Model B
Group Means 53.85* 6.33* −0.31* 0.233
FE-Robust – 6.27* −0.003 0.889
FE-AR(1) – 0.65* 0.001 0.476
Model C
Group Means 46.98* 5.51* −0.31* 0.782
FE-Robust-Cb – 4.53* 0.06 0.712
FE-AR(1) – 0.29* 0.001 0.535

a The FE models do not have common intercepts as the models are estimated with
country-specific intercepts for all countries.

b Standard errors calculated with clustering errors at the country level.
* 5% significant level.
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Fig. 2. Yearly coefficient values of the lnGDPc variable in models A–C (1970–2010) with
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Model B, the biased reference approach, does not show this type of
behaviour. The result indicates that model B is misspecified and
harmed by the errors-in-variables problem. The relationship between
the log of GDP per capita and the average health status, like life
expectancy, is more complex between countries than model B implies.
The extent to which the results are only an outcome of our bias-
correction procedures or something else is an open question. However,
the evident large negative correlation between the variables lnGDPc
and 1/GDPc may induce some multi-collinearity into the analysis. The
correlations are in the range of −0.818 to −0.886. These are not the
levels causing refutation of the results with model A. Note that model C
is not sensitive to multi-collinearity and it produces results that are
closer to model A than model B.

The estimates’ values for coefficients with lnGDPc and lnGDPc*
decrease from the beginning of the sample period until the mid-1990s.
They have the minimum values in the years 1994–1996, and after this
period they start to rise again. This cannot be due to any business cycle-
dependent phenomenon, since the observed U-shape is too smooth in
shorter time periods. Thus, we argue that, across the sample of 148
countries, the average income effects on average health almost halved
in the years 1970–1995 but afterwards started to increase again.

The effects of income inequality on life expectancy are less
conflicting between the models (see Fig. 3, below). The negative
inequality effect on health became less prominent during the sample
years. Irrespective of the model, in 1970 it was −0.4 and at the end of
the sample period, 2010, it was −0.1 or 0 (with model C), meaning that
the IIH effect measured with the GINI coefficient has lost its negative
impact on life expectancy. This robust result is highly interesting, since
it is similar to individual-data findings in developed countries. Income
inequality, despite increasing globally after 1990, lost its impact on
health after 2000. However, note that this is a mean regression result
across the sample countries. It does not necessarily apply to all
countries at different income levels. This means that we have to look
at countries with different average health levels.

4.3. Quantile regression results

In general quantile regression methods provide a convenient
approach to show how a regression model gives different response
results of regressors when we concentrate on different parts of the
model error term distribution. We estimated models A–C with quantile
methods for data values of samples from different decades (i.e. for the
1970s, 1980s, 1990s, and 2000s). We report only the values for model
A for the variables lnGDPc and GINI. Appendix A2 gives details of the
decennial OLS and quantile regressions for model A. Note that the OLS
residuals from the models are non-normal, in some cases having large
negative tails (see Appendix A2). The results for models B and C are
comparable and can be provided upon request (Fig. 4).

We observe that, for the countries with the lowest level of life
expectancy (the poorest countries), specifically quantiles less than 0.3,
the income gradient is still much higher than that for the countries with
high life expectancy (quantiles more than 0.7), independently of the
period used. However, the “income effect quantile curve” has shifted
downwards, especially for the middle quantiles 0.3–0.7, from the level
of the 1970s. We take this as evidence of

i) A decreasing median effect of the log of average income across the
countries on life expectancy during the years 1970–2010, and

ii) In the poorest countries, the income health effects are still vastly
more prominent than those in rich countries.

Fig. 5 presents the results for the income inequality variable with
GINI coefficients. The inequality effects are still much larger in the poor
countries than in the rich countries. The “inequality effect quantile

curve” has shifted upwards, especially for the non-poor countries, and
the upper 95% CI obtains the 0-line in the 2000s for the rich countries.

Thus, we argue that

i) Income inequality has a smaller median effect on life expectancy
across the countries in present times than earlier, and

ii) In the poorest countries, the income inequality health effects are
still significant both in statistical and in health terms.

4.4. Related results in literature

The obtained results raise an interesting question: How they relate
to the results found in literature? Before any comparison can be made
we have to exclude all model specification that do not use the correct
absolute income hypothesis (AIH) specification, i.e. health is a concave
function of income. In their literature review Wagstaff and von
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Fig. 3. Yearly coefficient values of the income inequality (GINI) variable in models A–C
(1970–2010) with 95% CIs.
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Doorslaer (2000) notice that quite few studies - especially in public
health literature - use the correct functional form (see also Wildman
et al. (2003), Deaton (2003)). Note that our results being aggregation
consistent, i.e. maintaining the micro relation, we could compare our
results both to individual and aggregation level results. However
individual level studies focus typically on observed dichotomous health
level variable (i.e. 0/1=death/alive or sick/well) or on ordinal sub-
jective health valuations, and the models are estimated with discrete
choice methods. The coefficient values on log of income in these studies
are not fully comparable with community or country based OLS models
where continuous health measures like average life expectancy are
regressed on log of mean income.

The study by Babones (2008) comes closest to our approach. He
uses similar model and his data is from years 1970 and 1995 with 134
countries. He reports standardized coefficient estimates for log of GDP
per capita on life expectancy at birth to be between 0.580 and 0.827 for
both years and for different sample configurations. He uses crude
aggregation bias correction method based on the lognormal distribu-
tion and concludes that “…the ecological correlation between income
and health is an overestimate of the individual correlation between
income and health.” (p. 1622). The estimated income inequality effects
on life expectancy measured with GINI-coefficient are between –0.412
and –0.163. Note Ellison (2002) gives similar results for 120 countries
in year 1991 after experimenting with different income levels and
functional forms. More recently Biggs et al. (2010) report the log of
GDP per capita effects on life expectancy at birth to be 6.04. When they
control for decreasing inequality and poverty the estimates are larger.
They use fixed effects panel model for 22 Latin American countries in
years 1960–2007.

Although the micro-based methods and results are not directly
comparable with macro outcomes some results with valid correspon-
dence can be found. Mackenbach et al. (2005) study with the LOESS-
function the shape of the relationship between household equivalent
income and self-assessed health in seven European countries during
1990s. They report that the relationship is generally curvilinear and
characterized by less improvement in self-assessed health per unit of
rising income. This result can be observed in all sample countries. A
$10.000 additional household equivalent income is associated with an
increase of 0.09–0.29 points of self-assessed health. Olsen and Dahl
(2007) uses European Social Survey (ESS) data from year 2003 with 21
countries to model continuously survey health responses (self-assessed
health with five categories) on many individual socio-economic vari-
ables and some macro variables. They use hierarchical linear model
and report that log of GDP per capita is the indicator that is most
strongly associated with better health after controlling for individual-
level characteristics. The income effects for women and men were
0.618 and 0.478 in full sample and for labour force they were 0.067 and
0.493. They conclude that results are in line with previous findings
(Castilla, 2004; Beckfield, 2004; Fritzell and Lundberg, 2005). Note
that income inequality health effects – if present in these studies –
were either non-significant or very small.

5. Discussion and conclusions

A large amount of data consisting of 148 countries in the years
1970–2010 was analysed in the context of the health–income relation-
ship. The current literature emphasizes individual data, deriving results
for health and incomes. However, the aggregative approach is still
active, because country-level data on GDP per capita, income inequal-
ity, and average health status are still widening and gaining a longer
time span. Both at the individual and at the aggregative data level,
some results indicate that the absolute income effect (AIH) on health is
still strong but the inequality effect (IIH) is disappearing from
developed countries.

The literature also suggests that part of the inequality effect
obtained with macro data is a result of a concave mean income

function on average health. We showed that this estimation strategy
is seriously biased because of incorrect aggregation, which we analysed
in detail. A method based on the first-order Taylor approximation is
suggested to overcome this aggregation-induced errors-in-variables
bias. Two bias-correcting model alternatives are provided that correct
for aggregation bias and still preserve the individual-level interpreta-
tion of estimated income effects on average health.

The results show that bias-correcting models produce quite differ-
ent results for the log GDP per capita effects on life expectancy across
the sample countries in the years 1970–2010 from the biased non-
corrected reference model. Especially in the period from 1985 to 2005,
the biased model with yearly cross-sections gives income effect
estimates that are too large compared with the bias-corrected ones.
However, the income inequality effects estimated with the GINI
coefficients are not affected by the model alternatives. Across the
models the inequality effects on life expectancy are still negative and
are not significant in statistical terms after the late 1990s.

To achieve more transparent income and inequality effects on life
expectancy distribution across the sample countries, the bias-correct-
ing model was also estimated with the quantile regression approach,
which is sensitive to the life expectancy data distribution. It produces
income regression effects at different quantiles of the life expectancy
model error distribution.

The coefficients for the log of GDP per capita were significant
throughout the four decades in both OLS and quantile regressions. In
the decade of 1970–1979, when lnGDPc increased by 1%, life
expectancy increased on average by 0.061 years in the OLS regressions
and 0.051 years in the median LAD regressions. We know that the
income gradient is higher for poorer countries than for richer ones.
However, the coefficient values of lnGDPc fall over the years for all the
countries. In the last decade (2000–2010), the respective lnGDPc
values were 0.047 and 0.044 in OLS and median LAD, respectively. The
results with quantile regression other than the median for four
different decennials in the sample show that the poorest countries’
income gradient is still much higher than that of the rich countries.

When comparing the OLS and quantile regression results for the
period 1970–1979 with the bias-correcting model, the significant
coefficient estimates for the GINI variable are very similar (−0.351
for OLS and −0.312 for median LAD). In the 1980s the effects of
income inequality on life expectancy decreased marginally in absolute
values. All the coefficients were, however, significant for both the
regression types. Between 1990 and 1999 the income inequality effects
on life expectancy were −0.154 with OLS and −0.062 with median
LAD. In the 1990s the GINI coefficient with median LAD was less than
that with OLS. One reason for this was that the changes in income
inequality amongst the poorest countries still affected life expectancy
more than the same changes did in the richer countries. In the last
decade (2000–2010), when examining the GINI for the 148 countries,
one can identify a similar diminishing inequality effect, and the richer
countries were comparatively less affected by the changes in the GINI
than the poorer ones. Note that the full-sample panel data model
estimates for income distribution effects were insignificant.

In general terms we argue that our bias-correcting approach to the
health–income relationship with panel FE and RCM, cross-section
OLS, and quantile regressions is a promising modelling alternative that
has shown its merits in this context. It corrects the (absolute) income
effects in the right direction, and the results for income inequality do
not conflict with the results found in the current literature based on
micro data. The method retains the interest in macro data modelling
and offers new model alternatives in other contexts. Future work with
the method will show its full potential.
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Appendix A1. Errors in the variable problem in model HS α β Y ε= + ln +k k k

The basic theory of measurement error and errors-in-variables bias in the OLS model has the following structure. The correct model with
variable x measured without errors is

y α βx ε= + + .

However, if the true x is unknown and we observe a poorly measured signal of it, say x*, we have x x μ* = + , where μ is the random
measurement error. It can be shown that the bias in the OLS estimation for β is (see Stock and Watson (2011), pp. 361–363)

β β β COV x μ μ
VAR x

− = − [ + , ]
[ *]

,OLS (A1)

where β is the true value. Now we apply this approach to the generic model

HS α β Y ε= + ln + ,k k k

where x Y x Y* = ln and = ln −k k
θ
Yk
. This gives for x x μ* = + that μ =k

θ
Yk
.

Note that, as μ =k
θ
Yk

is not independent of Yln k , the bias is

⎡
⎣⎢

⎤
⎦⎥

β β β
COV Y

VAR Y
− = −

ln ,

[ ln ]
.OLS

k
θ
Y

k

k

(A2)

Because of the result
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and since we know that
⎡
⎣⎢

⎤
⎦⎥COV Yln , < 0k Y

1
k

, the bias now takes the form

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

β β β
θ COV Y

VAR Y
− = −

ln ,

[ ln ]
> 0.OLS

k Y

k

1
k

(A3)

The results state that the OLS estimate for βOLS in the model HS α β Y ε= + ln +k OLS k k is biased upwards and the size of the bias is

βθ COV Y VAR Y[ [ ln , ]/ [ ln ]k Y k
1
k

.

Now, if we use the augmented regression model A,

HS α β lnGDPc γ
GDPc

ε= + + + ,k A k
k

k

then the OLS estimate for βA in this model is smaller than that in the measurement error model; that is, β β<A OLS, because in the model the term

=γ
GDPc

β θ
GDPc
−

k
A

k
corrects for the measurement error because lnGDPc andk GDPc

1
k
are correlated.

An alternative approach to correct for bias is to use directly the approximation

∑ Y Y θ
Y

ln ≈ ln −
N i

N
i k

k

k

1
=1k

k

by regressing Yln k on
Y
1
k
. Thus, we regress on the time series observation of each country k

GDPc d θ
GDPc

ηln = + 1 +k t k k
k t

k t,
,

,
(A4)

to obtain country-specific OLS estimates θk and use these to obtain the transformed values

GDPc GDPc θ
GDPc

ln * = ln − .k t k t
k

k t
, ,

, (A5)

In practice all this means that we should estimate equations

HS α β lnGDPc
γ

GDPc
δ GINI ε= + + + + ,k k

k
k k1 1

1
1

(A)

HS α β GDPc δ GINI ε= + ln + + ,k k k k2 2 2 (B)

HS α β GDPc δ GINI ε= + ln * + +k k k k3 3 3 (C)

and compare OLS estimates β1 and β3 with β2 to evaluate the estimate bias in model B.
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Appendix A2. OLS and quantile (median) regression results for model A in the four sample decennials

OLS 1970–1979 1980–1989 1990–1989 2000–2010
Variable Coefficient

(p-value)
Coefficient
(p-value)

Coefficient
(p-value)

Coefficient
(p-value)

Constant 53.121
(0.000)

54.922
(0.000)

60.334
(0.000)

57.475
(0.000)

lnGDPc 6.145
(0.835)

5.137
(0.000)

4.024
(0.000)

4.766
(0.000)

1/GDP 1.126
(0.000)

−26.399
(0.000)

−63.760
(0.000)

−45.665
(0.000)

GINI −0.351
(0.000)

−0.214
(0.000)

−0.154
(0.000)

−0.147
(0.000)

R2 0.692 0.734 0.764 0.715
Normality1) 43.66* 145.56* 925.12* 1027.84*
Number of obs. 1480 1480 1480 1628

1) Bera–Jarque test for residual normality: χ (2)2 test with the 5% critical value of 5.91.

MEDIAN 1970–1979 1980–1989 1990–1989 2000–2010
Variable Coefficient

(p-value)
Coefficient
(p-value)

Coefficient
(p-value)

Coefficient
(p-value)

Constant 57.510
(0.000)

55.492
(0.000)

57.574
(0.000)

55.629
(0.000)

lnGDPc 5.0546
(0.000)

4.848
(0.000)

3.956
(0.000)

4.383
(0.000)

1/GDP −28.638
(0.000)

−38.359
(0.000)

−67.800
(0.000)

−57.102
(0.000)

GINI −0.312
(0.000)

−0.187
(0.000)

−0.069
(0.001)

−0.043
(0.020)

Pseudo R2 0.449 0.526 0.553 0.524
Number of obs. 1480 1480 1480 1628
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