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A B S T R A C T

As taxi service is supervised by certain electronic equipment (e.g., global positioning system (GPS)
equipment) and network technique (e.g., cab reservation through Uber in USA or DIDI in China), taxi
business is a typical electronic commerce mode. For a long time, taxi service is facing a typical challenge,
that is, passengers may be detoured and overcharged by some unethical taxi drivers, especially when
traveling in unfamiliar cities. As a result, it is important to detect taxi drivers’ misbehavior through taxi’s
GPS big data analysis in a real-time manner for enhancing the quality of taxi services. In view of this
challenge, an online anomalous trajectory detection method, named OnATrade (pronounced “on a trade,”
which means activities in a taxi trade on the fly), is investigated in this paper for improving taxi service
using GPS big data. The method mainly consists of two steps: route recommendation and online
detection. In the first step, route candidates are generated by using a route recommendation algorithm. In
the second step, an online anomalous trajectory detection approach is presented to find taxis that have
driving anomalies. Experiments evaluate the validity of our method on large-scale, real-world taxi GPS
trajectories. Finally, several value-added applications benefiting from big data analysis over taxi’s GPS
data sets are discussed for potential commercial applications.
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1. Introduction

In the past, decision-making in businesses is often challenged
by incomplete, insufficient, and time-lapsed data. However, with
the current exponential growth of electronic data available to
businesses, more number of data sets often challenges an
enterprise or company’s competition in data processing. Busi-
nesses now have huge data to use effectively. For example, up until
2003, only 5 exabyte (1000 � 1000 � 1000 GB) of data were
available, whereas as of 2010 the same amount of data can be
created within 2 days [1]. Currently, analyzing the capacity of big
data is becoming a key basis of competition, which underpins new
waves of productivity growth, innovation, and consumer surplus in
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business arena [2]. Since 2012, big data has become a research
focus in academic, industry, and government agencies for gaining
competitive advantage. Typically, in January 2012, big data is a key
theme of the World Economic Forum, and is highlighted in a report
titled “Big Data, Big Impact: New Possibilities for International
Development” [3].

As taxi service is supervised by certain electronic equipment
(e.g., global positioning system (GPS) equipment) and network
technique (e.g., cab reservation through Uber in USA or DIDI in
China), taxi business is a typical electronic commerce mode.
According to 2014 statistics, there are nearly 70,000 taxies running
every day in Beijing, and about 55,000 in Shanghai. Therefore, taxi
services play a substantially important role in our daily life due to
its door-to-door convenience. The GPS record of taxis make up a
big data set. Mobile computing technology over GPS big data from
GPS-equipped taxis makes it possible to obtain potential knowl-
edge in understanding the behavior of urban commerce, the rule of
social activities, and road network dynamics [4–9]. Moreover,
various value-added applications, such as transportation
rajectory monitoring to improve taxi service using GPS big data, Inf.
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management, city planning, and personalized services [10–13],
could benefit from big data analysis over taxi’s GPS data sets.

For a long time, taxi service is facing a typical challenge, that is,
passengers may be detoured and overcharged by some unethical
taxi drivers, especially when traveling in unfamiliar cities. And the
worst part is that a passenger may not be aware of a fraud when it
is ongoing. As a result, it is important to detect taxi drivers’
misbehavior through taxi’s GPS big data analysis in a real-time
manner for enhancing the quality of taxi services. For example, in
San Francisco, a visitor who is not familiar with the city may want
to travel from the University of California to the Asian Art Museum
by taxi (Fig. 1). The taxi driver knows the shortest route from the
University of California to the Asian Art Museum, while the visitor
does not know this information. In this situation, selecting a
reasonable route depends on the taxi driver, and the passenger has
no choice other than to stay in the taxi. Unfortunately, when a
greedy taxi driver wants to commit taxi fraud during his service,
the innocent passenger is not aware of this unreasonable behavior.
Even if the visitor discovers the fraud later and then files a
complaint, it is difficult for the transportation bureau to obtain
solid evidence for disclosing the fraud. Therefore, the transporta-
tion bureau faces additional management problems, especially in
managing the taxi monitoring system. Technically, it is extremely
difficult for the transportation bureau to obtain efficient fine-
grained taxi supervision with the increasing number of taxis. A
cunning and experienced taxi driver knows that it often costs the
transportation bureau a substantial number of human resources to
track complaints.

Preventing fraud before it is committed and finding evidence to
prove fraud after it is committed are critical challenges, if we take
into consideration the large number of taxis and the amount of GPS
big data produced by the taxis.

With this observation, if there is a real-time and online piloting
service in the taxi, it could guarantee the quality of service (QoS) of
the taxi and the greedy taxi driver will be prevented from
committing fraud. For example, if a taxi is equipped with a tablet
that could display the reasonable routes in a visible way from the
University of California to the Asian Art Museum, then when the
driver turns in the wrong direction as indicated by the red arrow,
the service system would warn the driver in time. At the same time,
the warning information would be shared with the transportation
bureau online. As a result, the online and real-time trajectory
anomaly detection of taxis would play an important role in the
social behavior analysis of a driver.
Fig. 1. A Motivat
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Traditional anomaly detection methods include the classical
distance-based method [14–17], density-based method [18,19],
distribution-based method [20], and deviation-based method [21].
These traditional methods are designed on the basis of spatial
relational tuples to detect anomalies. In recent years, machine
learning and data mining technology have been used to solve
anomaly detection problems [22–24]. These methods mainly focus
on discovering anomalies that have occurred. When considering
the motivated example, we have determined that these methods
are not suitable for online detection.

In view of these challenges, we propose an online anomalous
trajectory detection method, named OnATrade (pronounced “on a
trade,” which means activities in a taxi trade on the fly), in this
paper for improving taxi service using GPS big data. The method
mainly consists of two steps, that is, route recommendation and
online detection. In the first step, a set of route candidates from a
start point to a destination point (i.e., the origin position and the
destination position as demonstrated in Fig. 1) are discovered from
a large number of historical trajectories. In the second step, online
detection is conducted in real time by comparing the current
ongoing trajectory with the route candidates. In addition, the
driving activity of taxi drivers is monitored in a real-time way. Once
anomalous driving behavior is detected, feedback is released to the
passenger, the driver, and the transportation bureau. Finally, the
abnormal driving behaviors would be prevented in real time.

The major contributions of our method are summarized as
follows.

� We develop a real-time taxi trajectory monitoring method to
detect online anomalous driving behavior online to prevent
irregular or illegal driving behaviors in real time.

� The statistical data of the irregular or illegal driving behaviors are
helpful for educating or training taxi drivers by the transporta-
tion bureau based on different profiles.

The remainder of this paper is organized as follows. Preliminary
knowledge and problem definition are presented in Section 2. A
real-time taxi trajectory monitoring method, named OnATrade, is
investigated in Section 3. In Section 4, experiments are designed to
evaluate the efficiency of our method. Section 5 discusses the
extended commercial application. Related works and comparison
analysis are presented in Section 6. Finally, the conclusion and our
future work are presented in Section 7.
ed Example.

trajectory monitoring to improve taxi service using GPS big data, Inf.
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2. Preliminary knowledge

2.1. Road network modeling

The large numbers of GPS sensors that are located on a taxi
generate a substantial amount of GPS raw data. A record of GPS raw
data contains a large amount of profile information for the current
taxi state, such as taxi identification, longitude, latitude, speed,
timestamp, and the flag marking whether this taxi is occupied.
Although GPS raw data have the location data of a taxi, improper
working state of GPS devices often results in a deviation in taxi GPS
locations. Moreover, abnormal GPS transmission may produce
irregular taxi trajectories. Therefore, GPS raw data should be
filtered when modeling the road network and the spatial
environment where the taxi trajectory exists. For modeling the
road network and the spatial environment, there are mainly two
popular approaches, that is, grid decomposition and digital map
modeling [25].

Grid decomposition is a naive and common method. Techni-
cally, in this method, equal-sized grids are generated to divide the
city into small regions by using a user-defined parameter Q. GPS
points of trajectories could be mapped into these cell grids. After
grid decomposition, trajectories of taxis could be described as a
sequence of grids. In practice, some issues often influence its
effective use. For example, if the grid size is not suitable, a sparse
grid cannot model a taxi trajectory in a precise way. Digital map
modeling could represent regular taxi moving patterns, thanks to
its spatial modeling method based on moving objects and basic
road information. This modeling method describes the road
network of the city in an efficient and explicit way.

In this paper, digital map modeling is introduced for road
network modeling. Concretely, the road network modeling method
is unfolded on an open source digital map, that is, OpenStreetMap
(OSM). OSM is a collaborative project to create a free editable map
of the world [26,27]. OSM data are collected through manual
surveys, GPS devices, aerial photography, and other free sources
from large number of registered users. This crowd-sourced data are
available under the Open Database License. In terms of data format,
OSM uses a topological data structure, including four core
elements: nodes, ways, relations, and tags. Nodes are points that
represent a geographic position and are stored as coordinates
(pairs of a latitude and a longitude). Ways are a series of ordered
nodes that represent a polyline, or possibly a polygon if they form a
closed loop. Important usages of ways describe linear features such
as roads and areas. Relations are ordered lists of nodes, ways, and
relations that are used for representing the relationship of existing

nodes and ways. Tags are key-value pairs ( key; value
ED
). And

metadata (such as their type, name, and physical properties)
regarding the map objects is stored through these tags. Based on
this basic information of a target city, a road network could be
modeled according to specific rules.

Given the OSM data of a target city, we could obtain all the core
elements of the city. Let Nodei 2 N, and Wayi 2 be the node and
the way of the city (1 � i � numnode, 1 � j � numway), respectively.
According to the tags of ways, roads could be filtered by specific

key-value pairs, such as highway; motorway
ED
, highway; trunk

ED
,

highway; primary
ED
. There are two important concepts in the road

network modeling process defined as follows.

Definition 1. A segment (seg) is a basic unit for each way
generated by its consecutive and ordered nodes. The length of a
seg is a short Euclidean distance denoted as jjsegA;Bjj ¼
Please cite this article in press as: Z. Zhou, et al., A method for real-time t
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dist NodeA; NodeBð Þ and its direction is from NodeA to NodeB.

dist NodeA; NodeBð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
latA � latBð Þ2 þ lngA � lngBð Þ22

q

where latA and latB denote the latitude of NodeA and NodeB;, lngA
and lngB denote the longitude of NodeA and NodeB.

Therefore, Wayj could be described as Wayj ¼
seg1;2; seg2;3; . . . ; segm�1;m

� �
if Wayj has consecutive nodes,

Node1Node2 . . . Nodem. Then, the city has a segment set denoted
as . Let denote the set of nodes that are intersections of roads in
the city. Owing to the similar moving behavior of cars between two
intersections, we enhance the road network model by section.

Definition 2. A section (sec) is a series of segs (maybe one seg)
generated by nodes that are intersections of roads, and its
direction could be inferred from its segs’ direction. Given a
sequential nodes
Node1 . . . Nodei . . . Nodej . . . Nodemð1 � i < j � mÞ, where
Nodei 2 , Nodej 2 , then,

seci;j ¼ segi;iþ1; . . . ; segj�1;j

n o

where we denote segk;kþ1 2 seci;j i � k � jð Þ. jjseci;jjj stands for the

distance of seci;j and jjseci;jjj ¼
Xj�1

m¼i
jjsegm;mþ1jj.

Let C be the set of all the sections of the city. Define function
belongTo: ! C which could map known seg to a certain sec. For a
better understanding, Fig. 2 presents the road network model of
San Francisco in the area around 37�45059.7600N to 37�46028.200N
and 122�24035.6400W to 122�2501.200W. As shown in Fig. 2, red
points stand for normal nodes and blue points stand for the
intersections of streets. A road may be divided into several parts by
some intersections. For example, Way1 is supposed to have
consecutive nodes as NodeANodeB . . . NodeH , where NodeA and
NodeH are intersections. Thus, Way1 could be represented as
Way1 ¼ segA;B; segB;C ; . . . ; segG;H

� �
, and secA;H ¼

segA;B; segB;C ; . . . ; segG;H
� �

in which secA;H ¼ belongTo segE;F
� �

.

2.2. Trajectory modeling

The sequential records of GPS raw data produced by a taxi’s GPS
device could be depicted as an important taxi operation status. A
GPS trace of a taxi consists of a consecutive GPS points extracted
from GPS raw data. Therefore, a taxi’s moving trajectory could be
generated by connecting all these GPS points. As the driving
anomaly frequently occurs in taxis that are occupied by
passengers, we mainly focus on the taxi trajectories that are
generated by occupied taxis in this paper. Formally, we define the
concept of GPS points as follows.
Fig. 2. Road Network Modeling.

rajectory monitoring to improve taxi service using GPS big data, Inf.
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Definition 3. A GPS point (p) is triple denoted as

lat; lng; timestamp
ED
, which stands for the latitude, longitude,

and GPS generation time of p. Especially, the origin and
destination of a taxi trajectory, that is, the start place and the
destination place, are denoted as Start � P and Desti � P,
respectively. A pair of Start � P and Desti � P would be
abbreviated with SP and DP in this paper.

Let P be the set of all the GPS points generated by taxis in the
city.

Definition 4. A taxi trajectory trð Þ is an ordered series of GPS
points that are generated by an occupied taxi from S to D.

tr ¼ p1 ! . . . ! pi ! . . . ! pnf g

where p1 is S and pn is D. And pi 2 tr; pi 2 P 1 � i � nð Þ.
Because the taxi is on the street or the road, every GPS point

produced by taxis could be assigned to a certain section. Because
the section maybe a polyline, the GPS point should be assigned to a
segment to reduce the complexity of the calculation. As shown in
Fig. 3, the black lines stand for the road, the blue points stand for
nodes of intersections, the red point stands for normal node, and
the green points stand for taxi GPS points with driving direction.
The aim of assigning a GPS point is to find a segment which has the
nearest distance with it. For the sake of simplicity, we show a
simple example. As for a GPS point pi in the assigning process,
segments around pi within a certain range are taken into
consideration. The distances of pi to segA;B and to segB;C are l and
l0. As l < l0, we assign pi to segA;B. In the same way, pj is assigned to
segB;c. We define function assign: P ! that stands for assigning a
specific GPS point p to a segment seg in the city, which is denoted as
pseg. Therefore, pisegA;B and pjsegB;C . As a result of segA;B 2 secA;C
and segB;C 2 secA;C , both pi and pj could be represented as pisecA;C
and pjsecA;C .

After assigning GPS points to segments, we could transform the
taxi trajectory to an abstract trajectory, which is easy for online
anomaly score calculation in the following sections.

Definition 5. An abstract trajectory atrð Þ is a series of sections
that are generated by the following process. Given
tr ¼ p1 ! . . . ! pi ! . . . ! pnf g 1 � i � nð Þ, a set of ordered
sections could be produced by the assigning process of these
GPS points.

atr ¼ sec1 ! . . . ! seci ! . . . ! secmf g

where v ¼ sec : sec ¼ belongTo assign pið Þð Þ ^ pi 2 trf g; secj 2 v,
which could be expressed by pisecj in an easy way
1 � i � n; 1 � j � mð Þ. In addition, the direction of each secj could
be inferred through the moving direction of pi in tr. The distance of

atr is jjatrjj ¼
Xm

i¼1

dist secið Þ and m could be represented as jatrj to

indicate the number of secs in atr.
In real life, the GPS points reported by taxis often have a low-

sampling-rate problem [28]. This problem brings the uncertainty
Fig. 3. Trajectory Modeling.
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of the secs traversed by a taxi and possibly generates gaps among
secs in atr. Therefore, an augmenting process is proposed to solve
this problem. The augmenting process is motivated by the
assumption in which taxi drivers go through those gaps with
the shortest paths, so we augment atr with the secs that are
traversed with shortest distance among gaps using the shortest
path algorithm. As shown in Fig. 4(a), the yellow points indicate
the GPS points of a taxi trip that starts from S and ends at D. In
Fig. 4(b), the discontinuous blue lines stand for the secs to which
GPS points are assigned. In Fig. 4(c), a complete atr is generated in
which the red lines represent the gap secs fixed through the
augmenting process.

By assigning the GPS points to sections, we could transform the
trajectory into section series instead of consecutive points.
Henceforth, we will handle with both tr andatr in the rest of
our paper.

3. A real-time taxi trajectory monitoring method

With the above preliminary knowledge, OnATrade is presented
in this section. The application logic of our method is demonstrated
in Fig. 5. Fig. 6 specifies the method for OnATrade in detail. As
specified in Fig. 6, the method consists of two phases. The focus of
the first phase is on data preparation offline. The result of data
preprocessing is helpful for online anomalous trajectory detection,
which is investigated in the second phase. The second phase aims
to develop the algorithms related to route recommendation and
online detection based on the previous modeled road network and
trajectories. These algorithms put our OnATrade method into
practice by providing real-time anomalous trajectory detection
and online taxi anomalous behavior analysis. To facilitate further
discussion, several related symbols are listed in Table 1.

3.1. Data preparation

Given the large number of trajectory GPS points, a large number
of valid taxi SD pairs could be obtained and could represent
popular places in people’s daily life. Therefore, these historical
trajectories could provide a strong evidence for predicting taxi
routes that have the same SD information. Before the online phase,
we should generate GPS grid distribution for our target city. We
split the city by deploying grid decomposition. Then, GPS points
are scattered in those equal-sized grid cells that have unique
identifier gid. This scattering process could be described by
function mapping pð Þ where p indicates a GPS point and returns its
corresponding gid. We only focus on those SD points that directly
indicate the pick-ups and drop-offs. As depicted in Fig. 7 (Indexing
Table Generation), we allocate every historical atr with gid and
mark its SD information. Therefore, we obtain a structured mapped
indexing table Tindex that contains three columns containing grid-
cell gid, the atr identifier, and the SD type. Hence, we define
function query gidO; gidDð Þ, which could easily obtain a collection of
atrs from Tindex when certain SD grid-cell information is given.

3.2. Route recommendation

A baseline for route recommendation should be a shortest and
feasible path. In practice, there may be more than one shortest path
and a feasible path. For two paths that have a same length, they
may cover different routes in practice. For example, for a rectangle,
there are two paths between two vertexes connected by a diagonal.
The two paths cover different sides of the rectangle, even though
the two paths have the same length. In a city’s road network, there
are many similar situations for a trip from one place to another. As
a result, for the SD pair, there may be two or more paths that have
trajectory monitoring to improve taxi service using GPS big data, Inf.
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nearly same length but cover different routes caused by taxi
drivers’ different preferences. In our method, the path selected by
most of the taxi drivers in the past is treated as a reasonable one in
our method. The top 1 path recommended by our method could be
treated as an optimal path.

To recommend some feasible path for taxi drivers, popular
route patterns could be learned from historical trajectories in the
online phase. In our method, for an onward trip between two
places, a history of the taxi trajectory, which has the same start
place and destination place with the coming trip, could be
recruited as a referred trip for route recommendation. A path
associated with a definite trip between two places is treated as
reasonable if it is selected by most of the taxi drivers in the past.
Here, we will investigate the first step, that is, online route
recommendation of our method OnATrade.
Please cite this article in press as: Z. Zhou, et al., A method for real-time t
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3.2.1. Filtering trajectory process
When a passenger enters a taxi, S is automatically located at the

current position of a taxi trip and D is confirmed through an
intelligent taxi-equipped tablet by a passenger. After the current
SD information is obtained, these two positions are mapped into
grid cells instantly by function mapping shown in line 2 in
Algorithm 1. The process of filtering trajectories is performed by
retrieving Tindex efficiently through function query with parameters
obtained from the previous step. The filtered atr collection is the
basis of route recommendation and is given as
Sf ilter ¼ atr1; . . . ; atrnf g.

3.2.2. Popular route generation
Filtered trajectories could give valid evidence on the driving

behavior of taxi drivers between preconfirmed SD information.
rajectory monitoring to improve taxi service using GPS big data, Inf.
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Table 1
Notational and symbolic conventions.

Symbol Description

Pcur Current GPS local of an ongoing taxi
trcur Ongoing taxi trajectory
atrcur Abstract taxi trajectory generated by trcur
Rec atrs generated by route recommendation process
u Anomaly score of atr
w Enhanced anomaly score of atr
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Hence, the task of route recommendation is to find those routes
that most drivers prefer to go through with given SD pairs. Let Rec
be the set of recommended routes and let k denote the number of
recommended routes. Given S and D, the output of this process is
Rec ¼ atr1; . . . ; atrkf g in which atri 1 � i � kð Þ is a complete abstract
trajectory from S to D and guides driving activity. Because
abnormal taxi trajectories are always few and different from other
trajectories, they are simple and easy to implement to find many
similar trajectories. This constitutes the basis of popular route
generation.

Here, we denote each abstract trajectory atr as a word and the
section sec in atr as a letter. In the process of popular route
generation, we compute trajectory similarity by applying the
longest common subsequence (LCS) algorithm [29]. The LCS
algorithm could find the longest common sec sequence of two
compared atrs. For example, if
atr1 ¼ sec1 ! sec2 ! sec3 ! sec5 ! sec7 ! sec8 ! sec9 ! sec10f g,
atr2 ¼ sec1 ! sec2 ! sec3 ! sec4 ! sec5 ! sec7 ! sec9f g, the lon-
gest common sec sequence of atr1 and atr2 is
sec1 ! sec2 ! sec3 ! sec5 ! sec7 ! sec9. Therefore,
Please cite this article in press as: Z. Zhou, et al., A method for real-time 
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LCS atr1; atr2ð Þ ¼ 6. We define the similarity of two atrs according
to Eq. (1). Hence, sim atr1; atr2ð Þ ¼ 6=7.

sim atra; atrbð Þ ¼ LCS atra; atrbð Þ
min jatraj; jatrbjð Þ ð1Þ

The main steps of popular route generation are shown from line
5 to 21 in Algorithm 1. After Sf ilter is obtained, the size of Sf ilter has an
important effect on the quality of route recommendation. When
the number of historical trajectories reaches a certain value, a
reasonable and practical route recommendation will take effect. In
our method, we set the trajectory number threshold lnum. If the
number of Sf ilter is greater than lnum, popular route generation is
performed to produce recommended routes. Otherwise, route
recommendation is performed by deploying k-shortest path (KSP)
algorithm, a classic graph algorithm in computer science. In this
paper, we use KSP algorithms proposed in Refs. [30,31] and these
algorithms have been successfully applied in many applications.
However, if the distances of the recommended routes in Rec are
greater than our predefined threshold ldist , reasonable and shorter
routes will be filtered by this distance threshold (line 23, 24 in
Algorithm 1).

The principal idea for popular route generation is to cluster
similar atrs in Sf ilter and select the top k common routes from these
clusters. For every atr in Sf ilter , it is easy to gain the most similar
abstract trajectory in the set of candidate routes Scdd through
predefined similarity threshold as shown in line 9 in Algorithm 1.
Nevertheless, if we do not find a similar atr in Scdd, we add this atr
to Scdd as a new candidate route. After the clustering process, we
sort these clusters in Scdd in a descending order and choose the top
k to generate recommended routes.

It is intuitive to deploy the KSP algorithm because taxi drivers
usually choose the shortest distance path or the smallest time cost
path to obtain maximum interest. We do not consider special
cases, such as the passenger wants to pick up their friends or the
passenger’s other requirements. Therefore, when there are not
plenty of historical trajectories between certain SD, we choose the
KSP algorithm to produce recommended routes.

Based on the preliminaries mentioned in the previous
sections, we could easily construct a digraph <I, C> where
and C are the set of intersections and sections of the city,
respectively. There are mainly three steps in our recommendation
process. First, according to preconfirmed OD and current taxi
driving direction, NodeO and NodeD (NodeO; NodeD 2 ), which are
intersections filtered by the nearest Euclidean distance with O and
D. KSP actually operates with NodeO and NodeD to generate k
shortest paths. Second, as every sec has its own highway class and
different highway classes have various travel costs, we evaluate
each sec through the aspect of distance cost and time cost. In
distance cost evaluation, sec is weighted by its highway class
denoted as wsec and the cost of every recommended atri 1 � i � kð Þ
is calculated according to Eq. (2):

DisCostatri ¼
X

sec2atri
wsecjjsecjj ð2Þ

where jjsecjj stands for the length of sec in atri 1 � i � kð Þ. And in
time cost evaluation, the cost of each sec is estimated by the
average speed denoted as vsec, which is collected by transportation
bureau. Thus, in our KSP algorithm, the cost of every atri 1 � i � kð Þ
is calculated based on Eq. (3):

Algorithm 1. Route recommendation.

TimeCostatri ¼
X

sec2atri
jjsecjj
vsec

ð3Þ
trajectory monitoring to improve taxi service using GPS big data, Inf.
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where jjsecjj stands for the length of sec in atri 1 � i � kð Þ. The final
operations are to rank atris by DisCostatri or TimeCostatri and to
generate Rec.

Although route recommendation could generate k routes
according to preconfirmed SD pair, the performance of this route
recommendation method might be improved because more
external variables could be considered in addition to the distance
cost and the time cost. For example, the real-time road condition is
important for a taxi driver’s driving activity because it affects the
dynamics of the entire road network. Every taxi driver has his own
way of taking passengers to the destination on an appropriate
route. Especially, the passenger may have some natural require-
ments including picking up friends at a specific location or just
following some car. Hence, enhanced route recommendation
improvements could be developed based on the basic route
recommendation algorithm. Three different aspects could be
added to the enhanced route recommendation, including real-time
road condition estimation, a personalized behavior analysis of taxi
Please cite this article in press as: Z. Zhou, et al., A method for real-time t
Manage. (2016), http://dx.doi.org/10.1016/j.im.2016.04.004
drivers, and a customized passenger’s requirements. Nevertheless,
the focus of this paper is on the online detection process, which is
described in the following subsection. The enhanced route
recommendation method will be discussed in our future research
work.

3.3. Online detection

A route collection Rec for taxi drivers is generated through the
route recommendation process according to the given SD pair.
Therefore, it is easy to perform online detection on the basis of
these recommended routes.

3.3.1. Basic online detection
In the process of online detection, the routes in Rec are a

guideline for the following driving activity. The detailed process of
online detection is presented in Algorithm 2. From a fine-grained
perspective, the taxi’s current moving direction should be in
rajectory monitoring to improve taxi service using GPS big data, Inf.
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accordance with the direction of most of atrs in Rec. To accomplish
the online anomalous trajectory detection, we first transform the
current driving location pcur to seccur due to pcurseccur (line 4). Then,
atrcur is constructed by seccur to be a complete section sequence by
using the augmenting process (lines 5 and 6). We maintain an
anomaly score to evaluate the abnormal degree of the ongoing taxi
trajectory on the basis of Eq. (1). Presently, we could compute the
ongoing taxi’s anomaly score u as shown in line 7.

Although the basic online detection method has high accuracy,
it is sensitive to data noise. To improve the robustness of this basic
method, an enhanced anomaly score w, which evolves with travel
time, is calculated in real time. Meanwhile, this score indicates the
trend of the driver’s overall driving activity during a taxi trip.

Algorithm 2. Online detection.

3.3.2. Enhanced anomaly score
As the ongoing trajectory is moving over time, the historical

moving behavior may influence the accuracy of current anomaly
detection. Therefore, we enhance our anomaly score by adding the
current taxi trip’s historical anomaly scores in an evolving way.
According to the anomaly score u, we could judge whether the
ongoing taxi trajectory is anomalous in a direct way. From the point
of view of the entire taxi trip, we maintain an enhanced anomaly
score w combined with a historical score. This enhanced anomaly
score is used to provide an efficient and accurate online decision-
making basis for the transportation bureau and to rank anomalous
trajectories once they are finished in a more comprehensive
perspective. As the ongoing trajectory moves over time, historical
anomaly scores have less influence than the current anomaly score.
Table 2
Experiment Context.

Client HANA Cluste

Hardware Lenovo ThinkpadT430 machine with Intel i5-3210 M
2.50 GHz processor, 4 GB RAM and 250 GB Hard Disk.

Master (1 no
Cache, 6core
RPM SATA H
Slave (1 node
6cores, 2 CPU
Hard Drive.m

Software Windows 7 Professional 64bit OS and HANA Studio. SUSE Enterp

Please cite this article in press as: Z. Zhou, et al., A method for real-time 
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Hence, we have a weight coefficient t to balance historical and
current values. Suppose the time gap between any two neighbor-
ing GPS entries (the timestamp when taxi GPS points are received)
is equal to Dt, and trcur starts at initial time t0, the anomaly score of
trcur at t0 is ’t0 ¼ ut0 , and the anomaly score at time t1 is
’t1 ¼ 1 � tð Þut1 þ t’t0 . Therefore, at any time tk, the anomaly score
of trcur could be given as:

’tk ¼ 1 � tð Þutk þ t’tk�1
ð4Þ

In another way, Eq. (4) could be expanded as:

’tk
¼ t0 1 � tð Þutk þ t1’tk�1

þ . . .

þ tk�10¼Þþmalyscoreof trtimetecommcess 1 � tð Þutk þ tk’t0 ð5Þ
As a result, Eq. (5) could be presented simply as Eq. (6):

’tk
¼ 1 � tð Þ

Xk

i¼0
tk�iuti þ tkþ1ut0 ð6Þ

Intuitively, w is higher when the ongoing taxi trajectory is away
from atrs in Rec. Therefore, the enhanced anomaly score w is an
efficient indicator for the online detection process, and detailed
analysis is conducted in a fine-grained view. Through online
anomaly scores, the transportation bureau could easily analyze the
motion pattern of an online anomalous taxi. Moreover, an
additional social behavior analysis of online taxis is generated
through online data to improve the efficiency of management for
taxi companies.

4. Experiment and evaluation on in-memory database

4.1. Experiment data sets and experiment context

To evaluate the efficiency and effectiveness of OnATrade, both
real-world data and synthetic data are used in the experiments.
This real-world data set [32] contains >10 million records of taxi
cabs’ mobility traces in San Francisco, USA, which is provided by
Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias
Grossglauser. It contains GPS coordinates from approximately
500 taxis that were collected over 30 days from May to June of
2008 in the San Francisco Bay Area. Based on the moving behavior
of taxi drivers, synthetic data are added to enhance our online
analysis of our method.

Technically, our experiments are conducted in a HANA cluster
environment. The services recruited in our experiment are
distributed in the cluster. Because we make full use of in-memory
database, our method can be processed efficiently in a short
response time. Specific hardware and software configurations are
listed in Table 2.

4.2. Experiment data sets and experiment context

Two groups of experiments are conducted to measure the
rationality of route recommendation and the efficiency of online
detection for OnATrade. In the first group, we start by analyzing the
r

de): HP Z800 Workstation Intel(R) Multi-Core X5690 Xeon(R), 3.47 GHz/12 M.
s, 2 CPUs, 128 GB (8 � 8 GB + 4 �16 GB) DDR3 1066 MHz ECC Reg RAM, 2 TB 7.2 K
ard Drive.
): HP Z800 Workstation Intel(R) Multi-Core X5690 Xeon(R), 3.47 GHz/12 M. Cache,
s,128 GB (8 � 8 GB + 4 �16 GB) DDR3 1066 MHz ECC Reg RAM, 2 TB 7.2 K RPM SATA

rise Linux Server 11 SP3 and SAP HANA Platform SP07.
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quantitative distribution of the origin and destination of taxi
trajectories in real-world data set. Then, the route coverage ratio
and the time-consuming route recommendation are presented in a
detailed description. In the second group, we explore the efficiency
and additional analysis of online detection for OnATrade with
ample historical and synthetic taxi trajectories. In the experiment,
we set up route recommendation with k equal to three, five, and
seven, respectively. The wsec, vsec of each sec is an empirical value
according to its way type. The number filter threshold lnum, the
distance threshold ldis, and the similarity threshold lsim are equal
to 500, 0.6173, and 0.8742, respectively, based on the experiment
context. Moreover, the weight coefficient t is set to be 0.43729
according to experimental analysis.

4.2.1. Route recommendation analysis
For a better experiment description, we first build heatmaps to

present the quantitative distribution of taxi SD pairs. Then, hot SD
pairs are selected as the origins and the destinations of typical GPS
traces in our experiment. As per the heatmaps shown in Fig. 8,
most of the passengers enter and exit taxis in the main urban area.
Therefore, five representative SD pairs are chosen as the
experimental origins and destinations, and the number of
historical trajectories filtered by these SD pairs is listed in Table 3.
Moreover, Fig. 10 shows the visualization of the trajectories based
on SD1 and its corresponding route recommendation results when
k equals three, five, and seven, respectively. In Fig. 10, the green
point and the red point denote the center of S and D, respectively.
The blue lines with the arrow represent the driving direction, and
historical taxi trajectories’ SD pairs are in the circle whose center is
SDn 1 � n � 5ð Þ and whose radius is 500 m. Moreover, the routes in
Table 3
Representative SD-pair Information.

#trajectories S GPS location D GPS location

SD1 1505 37:78605
�
N; 122:41104

�
W 37:80599

�
N; 122:41859

�
W

SD2 845 37:76077
�
N; 122:43507

�
W 37:78734

�
N; 122:41327

�
W

SD3 728 37:79324
�
N; 122:39769

�
W 37:77967

�
N; 122:41435

�
W

SD4 1007 37:80287
�
N; 122:43773

�
W 37:79551

�
N; 122:39958

�
W

SD5 895 37:80034
�
N; 122:43956

�
W 37:78927

�
N; 122:41555

�
W

Please cite this article in press as: Z. Zhou, et al., A method for real-time t
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the recommendation result may have overlapped secs. Based on
these ample trajectories and route recommendation results, the
route coverage ratio is calculated to verify the rationality of the
route recommendation results according to the following equa-
tion.

rc ¼ jCrecj
jCcddj

ð7Þ

where Ccdd ¼ fsecjsec 2 atr ^ atr 2 Scddg and
Crec ¼ fsecjsec 2 atr ^ atr 2 Recg. Scdd is the set of candidate atrs
generated by the popular route generation process in route
recommendation (Algorithm 1) with certain SD pair, and Rec is
generated based on Scdd with a specific k value. jCrecj and jCcddj are
the number of secs in Crec and Ccdd, respectively.

As depicted in Fig. 9, the route coverage ratio of route
recommendation increases as k increases. With the consideration
of “time consuming” in the route recommendation process shown
in Fig. 11, the higher the k value, the greater will be the time cost of
Fig. 9. Route Coverage Ratio of Route Recommendation.

rajectory monitoring to improve taxi service using GPS big data, Inf.
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Fig. 10. Visualization of Taxi Trajectories Based on SD1 Pair and its Route Recommendation Result with Different k Values Equal to Three, Five, and Seven (Left to
Right).

Fig. 11. Time Consuming of Route Recommendation.

Fig. 12. Running Example of Online Detection with SD1 Pair and its Route
Recommendation Result with k equals five.

Fig. 13. Anomaly Scores in Online Detection Process with SD1 Pair and its
Parameter k equals five.
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route recommendations. Therefore, combined with the above
aspects, we could obtain a rational route recommendation result
with 5 � k � 7 in a better performance.

4.2.2. Online detection analysis
In this part, ample historical and synthetic taxi trajectories have

been tested with the online detection process. As an example, we
select SD1 to show the detailed detection process. As depicted in
Fig. 12, the green and red points are S and D, respectively. The blue
lines indicate all of the routes in Rec based on the predefined SD
with k ¼ 5. The red line is the actual ongoing trajectory atrcur and
the taxi’s GPS points are yellow. Moreover, the red lines with an
arrow show the ongoing taxi driving direction. This case is
conducted without the feedback of passengers temporarily. The
threshold of enhanced anomaly score ’anomaly is set to 0.13127
which is an experimental value according to large amount of online
detection trials.

As shown in Fig. 13, the first five GPS points are obviously
normal. As the taxi driver drives along one of the atrs in Rec, both u
and w are zero, which indicates that the driver’s moving behavior is
normal. However, at the sixth GPS entry shown in Fig. 12, the taxi
driver is deviating from all of the atrs in Rec. As a consequence,
both u and w increase and u exceeds w while w only has a
comparable and slighter raise.

As the taxi continues moving over time, u and w become larger
and w always changes more mildly than u, which implies that the
enhanced anomaly score w is more robust than anomaly score u.
Until w approximates to threshold ’anomaly, this ongoing trajectory
Please cite this article in press as: Z. Zhou, et al., A method for real-time 
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will be reported as anomalous and this anomaly will also draw the
attention of transportation bureau for further observation. In
Fig. 13, from the eighth GPS entry of an ongoing trajectory, w is
always above ’anomaly, which means that the ongoing trajectory is
anomalous from the eighth GPS point. The red dashed line in Fig.12
trajectory monitoring to improve taxi service using GPS big data, Inf.
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indicates that the anomalous ongoing trajectory is under the close
watch of transportation bureau and its taxi company as it reaches
the online detection anomaly threshold. As a result, this taxi driver
will be under the full control of relevant departments. Suppose
there is no feedback from the passenger. Thus, this trajectory will
be reported to the transportation bureau and enhanced anomaly
scores will continue to be generated to provide evidence of moving
behavior. Moreover, at the 15th GPS entry in Fig. 12, this ongoing
trajectory is back to one atr in Rec while u and w decrease at the
same time. The decreasing trend of u and w implies that the taxi
driver drives back to normal routes.

Based on the large number of experimental trials, we could find
that it is more inconspicuous for long routes to detect taxi frauds
timely but that short route is sensitive for detouring. Taking an
insight into the definition of u and w, it is easy to notice that the LCS
of an ongoing trajectory for a long route has less effect and is less
sensitive due to its long distance.

Combined with passengers’ feedback, Fig. 14 shows the receiver
operating characteristic (ROC) curves of each SD data set. An ROC
curve is an integrated indicator that reflects the continuous
variables of a true positive rate (detect anomalous trajectories
successfully) and a false positive rate (normal trajectory detect as
anomalous). The greater the area under the curve, the higher the
detection accuracy. On the ROC curve, the coordinates of the point
closest to the upper left of figure have a higher threshold for the
true positive rate and the lower false positive rate. For all data sets,
it is simple to find that OnATrade can achieve a high detection rate.

As mentioned above, our method could efficiently detect
anomalous trajectories while the trajectories are ongoing, and the
feedback from passengers could be easily confirmed to improve
the interaction of entire taxi trip.

5. Application analysis

With the data persistence of online detection data, we obtain a
more comprehensive understanding of taxis’ society behavior. This
analysis has wide commercial application value as discussed in the
following profiles.

5.1. Case 1: real-time public traffic supervision over taxis

With the real-time supervision of taxis running all over a city,
the transportation bureau could obtain efficient management
over a large number of taxis and could protect passengers from
taxi frauds. For a driver, if he or she has a green hand, the method
presented in this paper is a real-time route pilot in practice. With
Fig. 14. The ROC Curves of OnATrade.
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the help of the real-time route pilot, his or her driving ability
could improve over time. If the driver is apt to trying fraud, the
method presented in this paper could stop the fraud in time
before the passenger is hurt. The times for a driver’s abnormal
behavior show the tendency for fraud or driving ability, which
directly disclose the QoS of a taxi. If the times of a driver’s
abnormal behavior reach a certain number, warnings or
persuasions can be delivered to the person so that his or her
service can be improved.

5.2. Case 2: QoS improvement of taxi service

In taxi companies, the analysis of taxi driver behavior based on
our online detection method could provide an efficient evaluation
of the driver’s performance. The officers in taxi companies could
perform reasonable rating activities to achieve effective manage-
ment. Moreover, our online detection method could help taxi
companies build a good service environment with fine, self-
disciplined taxi drivers. In addition, it is helpful for taxi companies
to obtain better management from a fine-grained perspective. In
traditional management, there are a few efficient methods that
deploy the measures mentioned above. If a passenger complains
about taxi fraud, he or she has no choice but to call the taxi
company. However, the process for evidence collection may be
long. Compared with the previous traditional management, our
online and real-time detection method could improve the QoS of
taxi companies.

5.3. Case 3: embedded advertisement accompanied with route
navigation

The method presented in this paper has wide commercial value
for advertisements. The key issue in advertisements is exposing its
content to its target consumer for more exposure and more value.
For example, route recommendation could be sponsored by several
advertisers in an embedded way, for example, embedded audio,
embedded video, or embedded text. Furthermore, the method
presented in this paper could provide a novel way for advertise-
ment release. Concretely, the passenger is a potential consumer of
the advertisements along the candidate routes, in practice. If there
is more than one candidate route for a passenger reach to his or her
destination, it will cause different advertisers to sponsor different
paths for their advertisements.

6. Related work and comparison analysis

In this section, related works are briefly reviewed in mainly two
relevant aspects: trajectory pattern analysis and anomalous
trajectory detection. For trajectory pattern analysis, related
research works focus on mining GPS data for various types of
novel applications. Liu et al. [8] revealed cabdrivers’ operation
patterns by analyzing their continuous digital traces and they
categorized taxi drivers by their daily income, which demonstrates
the great potential to use the massive pervasive data sets and to
finally understand human behavior and high-level intelligence.
Yuan et al. [4] provided users with the fastest route by mining
smart driving directions from a large number of historical taxi GPS
trajectories. Wang et al. [9] proposed a framework of using a
nonparametric Bayesian model for unsupervised trajectory analy-
sis and semantic region modeling in surveillance settings by
treating trajectories as documents and positions as words. In Ref.
[5], Ziebart et al. presented PROCAB based on a taxi driver’s driving
experience in finding the best routes to a destination and in
guiding users with driving directions by using taxi GPS trajectories.
In Ref. [6], trajectory patterns were proposed as concise
rajectory monitoring to improve taxi service using GPS big data, Inf.
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descriptions of frequent behaviors in terms of both space and time.
Zheng et al. aimed to mine interesting locations and classical travel
sequences[A2] in a given geospatial region based on different
users’ GPS trajectories.

For anomalous trajectory detection, the related works mainly
focus on anomalous trajectory detection, which has a high
correlation with our work. Bu et al. [33] proposed a framework
for monitoring anomalies over continuous trajectory streams.
Local clusters were built upon trajectory streams and efficient
pruning strategies were used to detect anomalies. In Ref. [34], an
evolving trajectory outlier detection method was proposed based
on an evolving outlying score with continuous computation in
view of evolving moving direction and the density of trajectories.
Therefore, this method, which takes advantage of a decay function,
could identify evolving outliers at a very early stage. In Ref. [35], a
partition-and-detect framework for trajectory outlier detection
was introduced that combines both distance and density
information. Ge et al. [12] developed a taxi driving fraud detection
system that integrates travel route evidence and driving distance
evidence based on Dempster-Shafer theory. Similarly, in Ref. [10]
an isolation-based anomalous trajectory method was presented,
which mainly exploits intrinsic properties of anomalous trajecto-
ries: few in number and different from the majority. Moreover,
taking advantage of the method presented in Ref. [10], Chen et al.
[11] extended their research work to online anomalous trajectory
detection. Li et al. [36] developed a temporal outlier detection
method that aims to detect anomalies in vehicle traffic data
through the aspect of road network traffic changes. Furthermore,
the learning-based approaches presented in Refs. [22–24] are
successfully applied in anomalous trajectory detection. In addition,
more outlier detection methods are general and are not specially
proposed for trajectory data. They are in different problem
scenarios with specific anomaly detection method. They range
from distance-based method [14–17], density-based method
[18,19], distribution-based method [20] to deviation-based meth-
od [21].

The methods presented in these related works pay little
attention to real-time service. For example, in Ref. [35], the classic
outlier detection method has a good performance in an offline
situation. However, for online taxi analysis, massive calculation
prevents it from detecting outlier in real-time and in a highly
efficient way. In Ref. [10], a taxi fraud detection system is
investigated and is used to detect anomalous trajectories for
offline taxi analysis. The work presented in Ref. [10] is also used in
this offline scenario. In Ref. [11], an online anomalous trajectory
detection method, named iBoat, is presented. In this method,
passengers have a few interactions during detection process.
Besides, the method presented in Refs. [22–24], data training is
needed, which is expensive to label and has a high time cost in data
preparation. In this situation, it is difficult to complete the online
and real-time abnormal trajectory monitoring. Distance-based
method [14–17], density-based method [18,19], distribution-based
method [20], and deviation-based method [21] also face the same
real-time and online detection problems mentioned above.

Compared with these methods mentioned above, OnATrade
paper is well suited for online monitoring and could provide
feedback in real time by focusing on online taxi analysis, which is
Table 4
Comparison result in time consumption.

P1 P2 P3 P4

OnATrade (Unit: ms) 17.86 19.98 18.71 19.66 

iBoat
(Unit: ms)

11105.9 11079.1 11074.7 11075.3 
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helpful for improving the QoS of a taxi service in a novel way.
Without loss of generality, a typical comparison analysis is
investigated, here, between our method and the method iBoat
presented in Ref. [11]. As demonstrated in Fig. 15, along a path
indicated by a pair of SiDi, there are 10 points, our method and the
method iBoat will be used to determine if they are covered by the
path or not. Time consumption is taken as the evaluation criterion.
As a result, both the two methods could achieve the goal. Table 4
indicates the time consumption point by point.

From Table 4, we could find that our method runs fast than iBoat
does. Actually, as indicated in Ref. [11], the data processing for
anomalous detection in their method is running in an offline way
for shorting the response time. Our method is running in a really
online way for satisfying the real-time requirement.

In theory, the time complexity of route recommendation, that
is, Algorithm 1, and online detection, that is, Algorithm 2, are
discussed in page 7 in detail. Specifically, the time complexity of
route recommendation in our method, that is, Algorithm 1, is O nð Þ,
suppose that there are n history taxi trajectories associated with a
concrete trip; the time complexity of online detection of our
P5 P6 P7 P8 P9 P10

18.50 19.87 19.24 19.03 19.45 18.92
11099.9 11124.5 11081.2 11084.1 11066.4 11089.0
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method, that is, Algorithm 2, is a O mð Þ suppose that there are m
GPS records associated with a concrete trip. For the classic graph
algorithm, that is, – shortest path KSP algorithm, as discussed in
Refs. [30,31], its time complexity is O e þ v � logv þ k � vð Þ, suppose
that there are e edges and v vertex in a city’s road network. As a
result, our method is suitable for online and real-time applications.
Besides, as the data processing in our method is enabled by a cloud
platform, our system is scalable in practice.

7. Conclusions and future work

As taxi service is supervised by certain electronic equipment
(e.g., GPS equipment) and network technique (e.g., cab reservation
through Uber in USA or DIDI in China), taxi business is a typical
electronic commerce mode. Mobile computing technology over
GPS big data from GPS-equipped taxis makes it possible to obtain
potential knowledge in understanding the behavior of urban
commerce, the rule of social activities and road network dynamics.
In this paper, we have proposed a real-time taxi trajectory
monitoring method to detect taxi anomalous driving activities
online and in real time. Technically, first the road network
modeling is investigated. Based on the road networking model, an
online anomalous trajectory detection method, named OnATrade,
has been presented to analyze the online driving behaviors of taxi
drivers. This method is validated based on a large data set for real-
world GPS traces. In the future, the method could be perfected for
demonstrating its advantage in social behavior analysis. Moreover,
more real-world applications will be developed to validate our
method, such as mobile APP supporting smart travel, real-time
path recommendation and navigation service in smart city
development, and so on. We believe that these value-added
applications could benefit from our big data analysis method over
taxi’s GPS data sets.
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