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ASYMMETRIC BENDING OF CIRCULAR SANDWICH PLATE
INCLUDING TRANSVERSE SHEAR IN FACINGS
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Department of Mathematics, University of Roorkee, Roorkee 247667

(Received 16 November 1981)

An approximate formulstion is presented for the bending of an isotropic
circular sandwich plate under transverse load, taking into account shear forces
in the core and facings. The equations are derived by using the principle of
minimum potential energy and are solved in Fourier Bessel series for the case
when the outer edge is clamped.

INTRODUCTION

In the past few decades, the analysis of sandwich structures has been the topic
of intensive investigation. To achieve lightness with strength, sandwich structures
are being utilized in the construction of missiles and space crafts. A review of the
work upto 1965, was done by Habip (1965), Plantemma (1966). and Allen (1968).
Kao (1965, 1969) has derived the system of equations for asymmetric bending of
a circular sandwich plate considering facings as membranes for linearly varying and
eccentric loads. Stickney and Abdulhadi (1968), have presented small deflection theory
for the analysis of orthotropic circular sandwich plates by extremizing the comple-
mentary strain energy. In all the above investigations the circular sandwich plates
are analyzed by considering facings as membranes, in which transverse shear of the
facings is being neglected.

In the present investigation, the asymmetric bending of a loaded isotropic
circular sandwich plate of constant thickness is considered. The transverse shear is
taken into account both for core and facings. The equations of equilibrium are
derived by using the principal of minimum potential energy and are solved in terms
of Fourier Bessel series for a load distributed over a sector either uniformly or linearly
varying and a point loading.

FORMULATION OF THE PROBLEM

We consider a circular sandwich plate of thickness 24 and radius g. The thick-
ness of the core and each of the two facings are taken 24, and 4,, so that h = hy + hs
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(Fig. 1). The plate is referred to cylindrical coordinates r, 6 and z by taking the axis
of the plate as the line r = 0, the middle plane as z = 0 and z axis in the downward
direction. The two interfaces and bottom and top surfaces are taken z = L+ by, + &
respectively. The two facings are taken of the same material, but different from that
of the core. Therefore, the various quantities for the core, the upper facing, and the
lower facing will be distinguished by the subscripts 1, 2 and 3 respectively.
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F1G. 1. Cross-section of plate.

Since we are considering asymmetric bending of the circular plate, the dis-
placement in 6 direction is taken into account. Therefore, the displacements in the
core and facings are approximated as

Uy (r) 9’ Z) = Zqu (r’ 6)9 Uz (r, 05 Z) = - /11411 (r’ e) + (Z + hl) ‘l’)z (T, 6)

us (r, 0, 2) = gy (r, 0) + (z — hy) g2 (r, 6); i (r, 0, 2) = zg, (r, 8) (D)

va(rs 6, 2) = — e (r, 0) + (2 + hy) 92 (r, 8); va (1, 6, 2) = hyp (r, 6)

+(z — hy) oa(r, B);

wi(r, 0,2) =w(r, 6)

where i = 1, 2 and 3.

In the above expressions u, vi and wq are the displacements in the directions r, 0
and 7 respectively, w the transverse deflection of the plate is assumed to be constant
for eaclr cross-section (r = constant), {,, ¢, and ¢, s are rotations in r-z and

0-z plane due to bending of the normal to the middle plane of the core and facings
respectively.

The non-zero strain components are found to be
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€ = Z%,r; € = — N1 (1,r — ‘+’)2’r) + zdo, ;
€p3 == h] ('\b],r - q)%r) + Z‘L%r N
4 h '
€5, == ‘r‘( Ple + ¥ ) ) €g2 = — —r—l (% =y + Pryp —P2yp )

+f(03+‘?2,a\’y

I

€3 = ”—(¢1'_¢2+<P1’0_CP2’0\+ ;(¢z+q’2’9):

r

1, 1 i
5r01=z<; Yo T rr — ;‘(Pl)’

€rgs =~ — % { Gie — Yze + 7 (@rr — @2i) — (o — @2)}
+ —i— (Y200 + 7920 — 1) ;

€rg3 = ":‘_i { by, — Y2, 6 - 7 (‘Pw -~ Qayr) — (CP\ - @2) }
= (dmg F ronr = o)

€rey = Uy - Wyr ) €rzz 7 €ry3 Uy 4 Wy ;

€gzy = Q1+ ’ Wy 5 €gzy = €g23 = @2 ™ Wig 5

— e — e —d
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(2

where a comma ( , ) followed by a suffix denotes differentiation with respect to that

variable.
The stress strain relations are

ari = Ai (&, 1 Vi €ge) ; 0, = i (€gi ;- Vi €))  Orai = py €z 5

pe = Eif2(L 4 v)] ;5 d = Eif(1 — 3);

where E¢ and v; are the Young’s modulii and Poisson’s ratios respectively.

EqQuATIONS OF EQUILIBRIUM

(3)

The strain energy of an isotropic sandwich plate in a polar coordinate system,

neglecting the direct transverse strains e.; may be written as

3 a zw?,

=1 0

V = z X j j (O'ri € + Ggi €g; + Orzs €3 —fr— Cgsi €gri + Orgi een) rdzdedr
' (4

where the limits of integration, x¢ to y; (i = 1, 2, 3), stand for — hito h,, — hto
—M, hy to h respectively. Substituting the expressions for the strain components (2)
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into (4) and then performing the first integration, the strain energy of the plate may be
expressed in the form

[ ¢

V= ] j [FPGyyr + Padiye + Pasys + rPaday + Psbe,g+Pabe+Pagie + rPaguyr
0 0
4 Pso, + Psgaye + rPs@aur + Piogz -+ rQiwyr + Qaw,e] dbdr ; (%)

where
P, =M, —N;; Po = My, — Ns; Ps = Mor + rQn1 — Nz,
Pi= Mu+ M+ N Ps = M2 + Moz + N3y Ps = My + M
+r(Qrs -+ Qrs) + N2y Pr== My — Na; Po =1rQa1 - Na — My ;
Py = Moz + Mys + Nz ; Pyg = r (Qez + Qg3) — 2M,p2 — N3 Or = Or,
+ O+ Or3; Qp = Qs + Qos + Qpas Ny = Iy (Nys — Ni3);
Ne == h; (Nys — Nezg) ; Ns = /i (Nrg2 — Nirea).
The stress-resultants are given by

Yy

(Nes, Noi, My, My, Mroi- Ori, Qa‘) = E (ars, 083, 2014, Z0gis ZOrey,
ks Crzi, ks O'Gzi) dz (6)
where limits of integration x:, yi are same as for eqn.(4). Since the bending of

facings and core is considered separately, we have taken the averaging shear constant
ks = 1in our analysis.

The change in potential energy of the system due to applied surface load p (r, 6)
is
a 2w
U= ——s S p(r, ) wrdodr. (7
9 0
For a system that is in equilibrium, the first variation of the total potential
energy (T = U + V) vanishes for any arbitrary set of variations of the dependent
variables, w, {1, 2, ¢, and ¢, compatible with the prescribed boundary conditions,
ie.,
T =30 + 3V = 0. ...(8)

Carrying out the first variation and integrating by parts those integrals containing
derivatives of dependent variables, w, 1, {2, 91 and g», we get

5.

1
l:—f (Pi + r Py + Pa,y — P3) 3 + lr (P4 + r P,y + Ps,, — Ps) 8¢,

Qg____,:

(equation continued on p. 1541.)



ASYMMETRIC BENDING OF CIRCULAR SANDWICH PLATE 1541

+ ;“(P2+rP2"+P7yg ‘"PS)BCPl
+ L (Po - Pa o+ Pay — Puo) By
+ H om0+ 0 tre 0} o parar

ar
— j [PP3Y; + P 50s + rPidgy -+ rPsdos + rQ.wl’ do
L]

- I [P3¢, + Psdl, + P:dg, + Psdps + Qpdw] Tdr =0. ...(9)

4

In the above equations the vanishing of the coefficients corresponding to varia-
tion 3¢,, 8¢a, 3¢1, Spa and w under double integration gives the five equations of equi-
librium and the vanishing of the integrand in the single integrals gives the boundary

conditions.
With the help of (2), (3) and (6), the equations of equilibrium obtained in terms

of displacements are rendered dimensionless, to give

2H - - 2
~3~‘ (H\G1 + 3H.G2Gs) viy: + H2G.Gs ¥2 o + 3 M {H, /G, + 1)
+ 3HaGs (v2G2 + 1} —}lz— ;,Ra
1 - 2
+ H;Gs (vaGe + 1) R Pwre -+ 3 H, (H: + 3H,G3)
X A e £ HIG: L Taee — 2 Hi{H, (G, + 1)
R: Isgg 2 U3 R: Y209 3 1 1
1 — .
+ 3H.G; (G: + 1)} R: Pve H}G:(G: + 1)
1 - — -
X g 98 —2(¢ + wp) =0 ..(10)
o 2 e, 2 .1 — 1 -
H H:G2 93, + 3 H:GVE §e + 3 H, RT Y + HH, 47 Y1500
1 — 2
+ H\Hs (3:Gs + 1) R Pore t 3 Hi(nGa + 1)

1 = 1 - 2
x ?2,R9 - H]Hz (GZ + 1) RT P1s8 — T H:(GB + l)

Do — 2(%a + wy) = 0; (1)
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and

2
3
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H,( H, + 3H,Gs) V12 ;1 + H;Ga V?;z -+ %Hl (H,G, + 3H:G:Gs)

1 = 2 1
X v Pugee + H;GeGs R

— 2
R P2,90 -+ "§ H, {Hl (VlGl+1)

+ 3H,Gs (uGs + 1) ﬁl- Vuore -+ H'Gs (nGs + 1)

- 2

X & Bre+ 3 HAHU(G + 1) + 3H,G (Gs + D)

) —

1 — 1 -+ - 1 -
X g Vise +H22G3(G2+ 1) R Y2, — 2(‘?1“{“_R” w,e) = 0

...(12)
- 2 52 1 = 2 2 I -
H1H2Vx P+ ‘3 H2V1 @ + H1H262 E: P, T+ E Hng R; P2,
+ H\H; (VzG‘z -+ 1) “‘R? Y1,Rg T+ ":;T Hz (v:G» + 1) R Y2,Rg
1 - 2 2 N 1 -
+ H\H: (G, + 1) B U1y + 35 H: (G:+ 1) R Yme
— 1 —
—2(qg: + R W) =0 ...(13)
- 1 - 1 - - I =
(Hl + H2G3) ( WsRR + 7{ W,R + R—_)_ Wygg )+ H} ( Y1sR + ’E Wy
+1_‘+Hc(7+—1~’+i )
R ‘Pl,o> 2Us .w2sR R Yo R Pasg
R,®
+ PED (14
a: 1 4 1 )
2 - o % T
where vi = g T R @R -
R = r/a;Hx = h]/a;Hz =h2/a;
G, = Mlps 3 Ga = Xofpe ; Ga = palps ; r ...(15)
Oy = m$i/P ;e = py GafP;w = p, wiaP ;
91 = wme/P ;e = pee/P; J

and P is the average load per unit area
The boundary conditions found are such that one element of each following

pairs should vanish

(PI’ ‘/’1) 5 (Ps, ‘/’2) ’ (P2» cPl) s (P5» (P!) s (Qn W)'
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It is found convenient to introduce five auxiliary variables as follows :

G = Zw (Slm,R +

9

(3

Tim ) cos méb

o0
by = z (Szm,x+ %— Tem )COSmH

9

[~ 2]
== ( % Sim 4 Time ) sinmd » ..(16)
m=Q

S

l

|
™M
2|3

™ Sam + Tomor ) sin m8 '

w = z W cos m?d

m=yp J

where Sim, Sem, Tim, Tom and W, are functions of R alone.
We further take the load term as

[~
p(Ro) = 2 Pm (R) cos mé , (17
m=Q

Now operating eqn. (10) b 9 + 1) and egn (12) b 12 adding
and then introducing auxiliary variables from eqn. (16), we get

a; (V2 = 2) V2Sim + a2 ViSom — 2VW, = 0. ...(18)
Similarly from eqns. (11) and (13), we get

as V4Sim + as (V% — 2) V2Sem — 2V2W,, = 0. ...(19)
Introducing the auxiliary variables in eqn. (14), we get

HiV*Sim + asVSam + asVWm = — pm (R)/2. ...(20)

. 2 2 1
Operating eqn. (10) by 7;— %0 and eqn. (13) by ( 3R -+ I3

from former and then introducing auxiliary variables from eqn. (16), we get

) , subtracting latter

ar (V2 — 2) Tym + asV*Tem = 0. ..(21)
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Similarly from eqns. (11) and (13), we get

@ V' Tym —+ 10 (§2 = 2) Tom = 0 . (22)
where

e @ 1 4 m

Vi= 4RF T R IR R

a, = 2(HiG: + 3H\H:G:G3)/3 ; a2 = H?G:Gs ; as = H H:Gz; ar = ZngGz/?’;
as = HxG,Gs; as = H, + as; a7 = 2(H} + 3H,H,G3)/3 ; as = HGs ;

ay = H\H, ; a0 = 2H}[3: pp(R) = pm(R)/p.

SoLUTION OF EQUATIONS

The solutions of the eqns. (18) to (20) consists of two parts, the complementary
function and the particular integral. For complementary function, the eqns. (18) to
(20) are made homogeneous by putting their right hand side equal to zero and then an
equation in a single dependent variable is obtained by eliminating the other two, to
give

(bW + b)) V'Fn = O ..(23)

where F,, stands for any of the variables S,,,, St and Win.

A solution of the equation

V‘Fm =0 .(24)
will be a solution of eqn. (23).

Let us assume

Fm = RE. ..(25)

Substituting for Fn in eqn. (24), we get

(B —48+4—m)E - m) = 0.

This gives £ = £+ m, 2 + m. The values with negative m will be rejected
because of singularity at the origin R = 0. Hence R™ and R™*2 are solutions of eqn.
(23).

A solution of

(b,V* + by) Fn =0
or

R? %21%2 4+ R %%" -}-(ngR-’—mZ)Fm:O ..-(26)

will also be a solution of eqn. (23). Eqgn. (26) is Bessel’s equation with »n} = b,/b,,
whose solution will be

Fn = Jum (n3R). .27
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The other solution Y,, (n3R) is rejected because of singularity at the origin R = 0.
Hence the solution for S1,,, S.m and Wi can be taken as

Sim = (A1m + A RR” + Azm Jm (naR) ...(28)
Szm = (Bun + Baom Rz)Rm + Bam Jm (naR) ...(29)
VVm = (Clm + C‘Zm R‘l)Rm + C3m Jm (an) (30)

where A;m, Bim, C.m (i = 1, 2, 3) are integration constants.
Equations (28) to (30) are substituted in eqns. (18) and (19) and B:in and Cin are
obtained in terms of 4im (i = 1, 2, 3) as

Bim = 2(m + 1) (a:as — ara@z) Avw + a1 Aipilas W‘
Cim = 2(m + Dai{a: + as) Aamfas — a1 Aim {
B2m = — 4 A2m/a2 ; C2m = = a1A2m T “(31)
Ba,, = [{(a, — a3) nd + 2a1}/{{as — @) ny + 2a] Aim I’
Can = [awasnt — aas (n; + 2)}{(as — @) ni2 + asd] Aim )
For particular integral, we take
o0
Pm (R) = z Dy Jp (Kun R) ...(32)
n=y
and seek the solution for Si,., S, and W, in the form
o0
Slm == A;’m Jm (Kmn R)
ﬂ2=(l
o0
Som = Bim Jm (Kmn R) ...(33)
oo
Wm = ‘ C:, Jm (Kmn R)
where Knn (n = 0, 1, 2,...) are roots of J,, (Kmn) == O. ...(34a)

Dy, being the coefficients in the load function are known and hence substituting
eqns. (32) and (33) into eqns. (18) to (20) and solving for the constants 47, , B, and

C, in terms of D,, , we get
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Al = (ba K2 + 2 ) D0fD
B = (beK2o +2 ) DfD .-.(34b)
Ch = ( bs K:,,, — bs K,":,,, - 2) D:,/D

where D = K5, (K2, by — by) ; b1 = as (a,a0 — aza3),
by = 2 (ashe — Hybs — asby) ; bs = a4 — as; by = a; — asz
bs = (a3 — aya0)/2 ; be = a; + au.

To obtain the solutions for Ti» and Tom, we eliminate one of them from the
eqns. (21) and (22), to give

'+ b (= )Ty =0 ...(34¢)
where i = 1, 2 and &7 = — 4 gia,0/(@:ai0 — asas).
Equation (34) has two solutions based upon the solution of the Bessel’s equation
VTin = — n% Tim . ..-(35)
Therefore, we can take the solution of eqn. (34b) as
Tym = Aam Jm (Rny) + Aom I (Rny) 1 .(36)
Tom = Bim Ju (Rm) + Bom Jm (Rn) i

where 4+ n; and 4 », are the roots of the equation
nt o+ b (—nt—1) =0, D)

The solution Ym (Rn,) and ¥ (R,,) are rejected due to singularity at the origin R = 0.
The solution (36) substituted in eqn. (21) give

Bim ==—a7(2+n:) Am/(asnf)

...(38)
Bs = — ax (2+n§) Asm/( asnﬁ) ;

N —

Thus the solutions for ¢,, {s, ¢,, @: and w are given by

‘»7’.1 = i [{ mAim +(m + DAmR? }R’"‘l - naAamJ:,, (nsR)

m=0

o0

-3 K A2 T (KmaR) - m {AumJm(R1))

+ Asndm (Rn)YR | cos mt

(equation continued on p. 1547)
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Py = oi [{ mBim + (m + 2) BsmR? }R""_1 — naBst;" (nsR)

m=u

00
= Ko Bl Jp (KniR) + 1 { BomdnlR)

"o
+ Bonu(Ru) }[R ] cos mo

00
% = — z [m (Aym + A2mRHR™ + AsmJm ((nsR)

m=0

o0
+ Y A (KuiR) = {mds nd, (Rn))

n~i)

+ ng AsmJ,, (Rns)}] sin mo

[m (Bin + BamR*HR™-1 4+ By J.(naR)

V18

;2='_

']
>

m

w ’
+ z Bl Jm (KmnR) — {11, Bamd,(R1,)

7n-=0

+ 112 Bomd,(Rn)}] sin md

1
i
Mg

[(Clm + CﬂmRz) Rm + Came(naR)

==,

3

]
+ z C J (K mnR)] cOS mb.
nee -.-(39)

The above solutions involve only 5 arbitrary constants, 4, (i = 1, 2, 3, 4, 5)
since Bim and Cim are givn by eqns. (31), (33) and (38). These constants can be
evaluated by the five boundary conditions at the edge R = 1.
Boundary Conditions

For a clamped edge, the boundary conditions are

o =¢, =@ =¢=w=0at R=1. ..-(40)

These give

00
MmAim + (M + 2) Asm — nadamdlns) — 2 Kun A%y T (Kon)
n=0
(equation continued on p.1548)
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+ m{damdu(ny) + AsmIm(ng)} = 0
0
mBim + (m + 2) Bay — naBamJ (ns) — z Kun By, Jo(Ken)

n=0
+m {B4,,.J,,.(n]) -+ Bﬁme(ns)} =0
m(Aim + Am) + Asndm(nz) — niAamd, (n,) — ”2A5me("2) =0

m (B‘m + Bzm) + Bame(na) - n1B3mJ,‘n(n]> - n2B5me(n2) =0
Cim + Cam + CamJu(ns) = 0. .41

Evaluation of the Coefficients D,

Multiplying by R J#(K,:.R) in eqn. (32) and integrating from 0 to 1, we get

1 1
| REwRM (BunR)dR = DI, [ R T (KnR) dR

0
or

1

[ RPuRIn KD dR = 4 D, { T (Ko) |

U

2

(since other integrals vanish due to orthogonality conditions).

Therefore
2 1
Dy = — = ) . ) ..(42
{J'/"(Kmn)}g OS R pm(R)Jm(Km R) dR ( )
//
-~

F16G. 2. Loaded sector of plate.
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(i) Uniformly distributed load over a sector—If we consider a load uniformly
distributed over a sector bounded by radii vectors 6 = — «/2 tos = «/2 and the
circular areas R = R, to R = R: (R, < Ru), (Fig. 2), then

Load area = o ( R — R} )[2 = 25 R
where 5 = R: — Riand R = (Ri + R,)/2.
Since the total load is kept constant, therefore

p(R,6) = n P/« Rb) (R<R<R:; — ¢/2<6<2/2)

= 0 elsewhere. ...(43)
Therefore
27 or 7
Pm(R) = p jp(R, 8) cos moé ds = —;—[ S P (R, 8) cos mé do
L] 0
L /2
+Xp(R,6) cos mb do ]= -2—5 ~1~P cos mé de
_| T «Rb
o /2 ]
or
pm(R) = pu(R)/P = 2 in (m=/2) Ri<R<R,. ...(44)
m=Rb

Substituting in cqn. {42) for p.(R), we get
1

. 2
Dm - {—Jlm—(‘k;n»’z‘ J R]),,,(R)Jm(KmnR) dR

0

R, R2

[J R jm(R)w(KmaR) dR [ R pn(R) (K mnR) dR

1

I
{Ja( Kmn)}*

1

+ j R pm(R)m(KmnR) dR ]

Ry

or
Ry

4 Sin (m «/2)

=y m\dxmn . By 45
maRb {J,(Kmn)}? RI RIn KnnR) AR “3)
1

Dy, =

(The first and last integrals vanish, because p,, = 0 for their ranges of integration.)
(ii) Linearly varying load over a sector—If we consider such a load over a sector as
in (i), then
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p(R,® =po(l —vR) (R<RSR,; — #/2<0< %/2)

= 0 elsewhere. ...(46)

Therefore

pm(R) = 2po (1 — v R) sin (m a/2){(= m P). ...(47)
Since the total load is kept constant, therefore

R! o2

p(l — YR)Rdo dR = =P

Rl —x /2
or

polP = 6nf[ ab { 6k — 2+ ( R+ R+ Riks )] .(48)

Substituting in eqn. (42) for p.(R), we get

R
24 sin_(m «/2) j (1 ~ ~R) RIn(KmiR) dR.
R

Dm = S5 %% 27 (R T R T RiRw)

1
...(49)
{The other integrals vanish as in (i)]
(iif) Point loading—If we make b —- 0 and « — 0, then the load gets concentrated at

a point on r-axis at a distance d (say) from the centre of the plate, then D% from
(45) is given by

2Jm (Kund)

Do = =Ry

...(50)
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