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a b s t r a c t

With the increasing data size in materials science, existing programming models no longer satisfy the
application requirements. MapReduce is a programming model that enables the easy development of
scalable parallel applications to process big data on cloud computing systems. However, this model does
not directly support the processing of multiple related data, and the processing performance does not
reflect the advantages of cloud computing. To enhance the capability of workflow applications inmaterial
data processing, we defined a programming model for material cloud applications that supports multiple
different Map and Reduce functions running concurrently based on hybrid share-memory BSP called
MaMR. An optimized data sharing strategy to supply the shared data to the different Map and Reduce
stages was also designed. We added a new merge phase to MapReduce that can efficiently merge data
from themap and reduce modules. Experiments showed that the model and framework present effective
performance improvements compared to previous work.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a large number of known and hypothetical
materials have been studied, such as batteries, catalysts, and the
stable structures of solid materials, so the amount of calculated
data increases exponentially with time [1]. Thus, big data presents
a huge challenge to the computing disciplines.

To improve computing speed, a large number of computing
tasks in materials science must be moved from traditional High-
Performance Computing (HPC) to High-Throughput Computing
(HTC) and Many-Task Computing (MTC) platforms based on big
data, such as thewidely used cloud computing systems [2] and grid
computing [3].

As is known, cloud computing, which should provide different
layers of service to users, is constituted by large-scale distributed
computers and various resources such as CPUs and storage. Mean-
while, different types of services are also offered, such as soft-
ware [4]. In cloud computing systems, multiple virtual machines
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(VMs) are run on a single physical computer, for a homogeneous
result [5].

It is more convenient to develop and deploy applications
through the cloud computing platform, Therefore, in this paper,
we adopt this approach to process large amounts of material
data.We use cloud computing’s powerful computation and storage
capacity to effectively solve the problem of large-scale material
data in the process of analytical calculations. To fit the material
high-performance computing needs of materials science, different
models have been proposed to maximize the performance.
Meanwhile, to provide greater flexibility and higher parallel
efficiency, the challenges to the programming model should be
faced [6]. The MapReduce programming model has been widely
used in large-scale and data-intensive applications, such as Google
and Amazon [7,8]. The other most successful programming model
is Microsoft’s Dryad [9]. Yahoo also has similar infrastructures.
Hadoop is an open-source implementation of MapReduce, and it
has already been applied to various fields because of the reliability
and scalability of the parallel programming framework in the
MapReduce model [10]. In Hadoop andMapReduce, the input data
are split into chunks of size 64M, and each task is allocated to a VM.
Therefore, we can take the computation nodes as the local modes.

However, traditional programming models cannot adapt to
material data calculations, and Hadoop’s frequent reading and
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writing become the bottleneck of the cloud system. First, in a cloud
computing system, many computing jobs are running in a single
physical computer because the data nodes in Hadoop are deployed
in virtual machines. How to avoid I/O resource competition and
reduce I/O overhead is a big problem in the programming models
for cloud computing.

Second, the MapReduce model can handle multiple applica-
tions, but a large amount of data is repeatedly read and written.
Another application might not be able to handle the original data
effectively. Thus, the problembecomes evenworsewhen the above
two problems must be faced in material cloud computing applica-
tions.

Finally, the MapReduce framework does not directly support
iterative data analysis applications. Instead, we must complete
iterative programs by manually issuing multiple MapReduce
jobs [11].

In a cloud computing system, resources are used based on
payment. Therefore, it is important to develop a newprogramming
model to support multiple iterative tasks. However, because the
data are split into several chunks, we must first improve the
parallelization in Hadoop. Meanwhile, we must develop a realistic
model to adapt to material high performance computing.

Thus, research on related programming model issues has
been regarded as one of the most important research areas for
MapReduce [6,12,13]. The Bulk Synchronous Parallel (BSP) is
used for parallel bridges in programming language, and the BSP
model has been widely used in different research fields [12].
However, this programming model does not solve the problems of
a heterogeneous distributed system [11]. More importantly, there
are no improvements for the BSPmodel for use in cloud computing
systems because cloud computing systemswithmany virtual CPUs
provide users with virtual machines to use.

Though sufficiently generic to performmany tasks, the MapRe-
duce framework is best at handling homogeneous datasets. How-
ever, there are some modified MapReduce models. HaLoop [14]
is a modified programming model of the Hadoop MapReduce
framework that is proposed to serve data mining, web ranking,
and graph analysis applications. HaLoop not only extends MapRe-
duce with programming support for iterative applications but also
dramatically improves the efficiency by making the task sched-
uler loop-aware and adding various caching mechanisms. Map-
Reduce-Merge [15] adds a Merge phase that can efficiently merge
data already partitioned and sorted (or hashed) by themap and re-
duce modules. In this paper, we focus on material data sharing on
the MapReduce stage and on improving the task scheduling per-
formance.

At the same time, some other research efforts addressed the
performance in data streaming environments. Such as Nova [16],
Pig Latin [17], S4 [18] can deals with continuous arrival of stream-
ing data.

To improve the capability of data streaming applications in
cloud computing systems, the programming model called Cloud-
Flow [19] is proposed. CloudFlow is built on top of MapReduce
and is highly suitable for handling shared data in cloud computing
systems. With this inspiration, we proposed a streaming data pro-
gramming model based on MapReduce for materials science high-
performance computing and data processing.

The above observation motivates the design of MaMR as
a new programming model for materials science applications,
which is designed for performance predictability and data sharing
to improve its availability while retaining the simplicity of
traditional MapReduce. We show that the MaMR model can
obtain good speedups on cloud computing systems; meanwhile,
it has good performance predictability. MaMR offers the following
advantages:

(1) We defined a programming model for materials science
cloud applications. This model includes multiple Map and Reduce

functions running concurrently. MaMR uses a hybrid shared-
memory BSPmodel to improve parallel efficiency, allowing full use
of the VMs in cloud computing systems.

(2) We designed an optimized data sharing strategy that sup-
plies the shared data to different Map and Reduce stages. Mean-
while, we further provide multi-copies of the output to reduce the
shuffle overhead.

(3) We add a new Merge phase to Map-Reduce that can effi-
ciently merge data already partitioned and sorted (or hashed) by
the Map and Reduce modules.

(4) We conduct a theoretical analysis of implementing the
MaMR framework, and the experimental results show that the
proposed model and framework can effectively improve the
performance compared to previous work.

The rest of the paper is organized as follows: Section 2 in-
troduces MapReduce and gives its design principles and features.
We describe the MaMR framework for materials science cloud ap-
plications in Section 3. Multi-copies of the output to the Reduce
stage are applied to enhance this programming model, which is
described in Section 4. In Section 5, we describe the addition of a
newmerge phase toMapReduce. The experimental results are pre-
sented in Section 6. Finally, we summarize our technical contribu-
tions and describe our plans for future work.

2. Mapreduce

The Hadoop Map-Reduce programming model and its underly-
ing Hadoop File System (HDFS) [20] are designed to support search
engines, as reflected in their parallel processing speed and conve-
nient features. According to [21], this model has also been heavily
applied within data-intensive applications such as machine learn-
ing.

A MapReduce program consists of two primitives, Map and
Reduce. The Map function is applied to an individual input record
from HDFS to compute a set of intermediate key/value pairs. For
each key, Reduce works on the list of all values with this key. The
conclusion is also written to the HDFS node. An overview is shown
in Fig. 1. In contrast to the traditional parallel processing model,
MapReduce has good flexibility and fault tolerance. The features
and principles are described below.

• A. High performance in data processing
The MapReduce model can effectively improve the efficiency
and achieve high parallelism along with high performance
simply by deploying a large number of VMs. More importantly,
the MapReduce model can provide a simple framework to
enable automatic data processing by users. A world-record
sorting experiment has shown that MapReduce can obtain high
performance when used on thousands of VMs [22].

• B. Simplified
In the MapReduce programming model, the Developers can
focus on task processing using the MapReduce interface,
without worrying about such issues as implementing memory
management, programming synchronization, and network
delay. We take only the map and reduce the interfaces to
complete our data processing.

• C. Distributed Sorting Framework: MapReduce is essentially a
2-phase parallel sorter similar to the one in NOW [23]. These
phases include a practitioner function that partitions mapper
outputs to reducer inputs, a sort-by-key function that sorts
reducer inputs based on keys, and a group-by-key function
that groups sorted key/value pairs with the same key into a
single key/value pair incorporating the shared key and all of the
values.
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Fig. 1. MapReduce overview.

Fig. 2. Architecture of the MaMR framework.

3. MaMR framework

In this paper, we have proposed an improved MapReduce
programming model. Fig. 2 illustrates the architecture of the
MaMR framework that can adapt to analysing large material data.
There are three layers, the application, MaMR framework, and file
system.

• A. Architecture
In the MaMR framework, the material application job is sorted
into a task queue. Themaster takes the highest task to schedule
from the queue. The BSP model is used to predict the VM
performance in a cloud computing system. The task schedulers
include multi-copy and merge stages. In the application layer,
the job is decomposed into a set of Map functions and Reduce
functions.
In this paper, we consider only the case ofmaterial analysis. The
task is divided into some uncorrelated independent subtasks
for scheduling, and these tasks will be assigned to m VMs to
perform. The cloud computing system is modelled by a set of
m VMs, where n is the number of material computing tasks,
(m < n). For given T (n) = {t1, t2, . . . , tn} n ∈ N , define a
task set. Now, ti(i = 1, 2, . . . , n) is the No. i task in the set
T (n), ti = (t iid, t

i
mi, t

i
file, t

i
fee, t

i
deadline, t

i
memory, t

i
submit), where t iid is

the unique identificationnumber of ti; t imi is the size of ti, namely
the number of millions of instructions (MI); t ifile is the program
file size of ti; t ifile is the user′s desired fee for ti, which the user

pays based on the task′s QoS requirements; t ideadline is the user′s
desired deadline for ti; t ideadline is the memory requirement of ti;
and t isubmit is the submission time of ti.
The priority of a task reflects its importance, and in this paper,
we consider the fairness and efficiency for the computing users.
Wegive full consideration to the cost of execution anddeadlines
of tasks, and the task value density and the urgency of the
task execution are designed as constraints. Dynamic priority is
proposed to achieve high performance.
Then, as the first step, the value density of task (VDT) is defined
as follows:

TVDi =
t ifee
t imi

. (1)

Here, VDTi indicates the ratio of the user′s desired fee to the
task′s size.
Let t iwait be the waiting time of a task and t il eft the time
remaining. Then, the urgency of task execution time (UTET) is
as follows:

UTEi =
t iwait

1 + t ileft
. (2)

Obviously, with increasing waiting time, the remaining time
will decrease accordingly, while UTET will increase rapidly,
which will satisfy the time constraints of tasks and improve
the successful completion ratio of tasks completed before the
deadline, thus reflecting the dynamic characteristics of priority.
To establish the dynamic priority, we need to normalize VDTi
and UTETi. For this purpose, we have proposed the Z-score
method, based on the mean of the original data and standard
deviation, which is used in data normalization.

stik = (zik − zk)/δk. (3)

Now, we define some new parameters. Let stik be the normal-
ization result of the No. k priority factor of ti, Where δk is the
standard deviation of the No. k priority factor, calculated by

δk =


1
n

n
i=1(zik − zk), (k = 1, 2). We define stik as the ele-

ment in the n× 2 order matrix Z , denoted as Z =

TVD UTE


,

while zk is the average of the No. k column of matrix Z , which is
calculated by zk =

1
n

n
i=1 zik.

LetDP(ti) denote the dynamic priority of ti, as defined in Eq. (4):

DP(ti) = ω1 × sti1 + ω2 × sti2 (4)

where ω1, ω2 ∈ [0, 1] are the weighting factors and satisfy the
equation ω1 + ω2 = 1.
Fig. 2 shows the use of the distributed file system HDFS on top
of the local file system in Hadoop. In the MaMRmodel, the data
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are saved to the distributed file system in the VMs. MapReduce
processes the input data and reads/writes the data from/to the
HDFS.
In MaMR, we define multiple heterogeneous Map and Reduce
functions to analyse the material computing model. We formu-
late the representation as follows:

Map: (km, vm) → {(k′
m, v′

m)},m ∈ [1,M]

Reduce: {{(k′

(i,r), [v
′

(i,r)])}, . . . , {(k
′

(i,r), [v
′

(i,r)])}}(i, r), . . . , (j, r)
∈ [1,M], r ∈ [1, R].

In this model, there are M Map Functions and R Reduce Func-
tions to perform. The Reduce Functions are different from the
traditionalMapReduce programmingmodel in that they take as
input several key/value pairs frommultiple key–value pair out-
puts of theMap Functions.We define (i, r) or (j, r) as amapping
from a tuple to a number between 1 andM , where r represents
the index of the Reduce Function. The symbol pairs (i, r) and
(j, r) represent the first and last Map Function that feed the r th
Reduce Function.

• B. BSP model
We propose the BSP model to attain proper speedups on cloud
computing systems. The BSP model includes three interdepen-
dent components: the processor/memory pair, network point-
to-point communication, and the synchronization barrier.
Thus, in the BSP model, each step consists of a sequence of
super-steps divided into three ordered phases. We define three
parameters, p, g , and l, formeasurement. The number of proces-
sor/memory pairs is given by p; and g is defined as the network
throughput rate; and l is the global synchronization time. We
define the cost as follows:

T =

S
s=1

max
1≤i≤p

ωs
i +

S
s=1

max
1≤i≤p

hs
i × g + l × s (5)

where the computing time of processor i is given byωi; hi is the
data needed to be communicated and s is the total number of
super-steps.
However, we can see the original BSP Library, such as BSPlib. In
BSPlib, we only used a single CPU node in computing. Therefore
the model cannot be used directly in Hadoop because the vir-
tual machines run in a physical machine and are not provided
to users directly.
To improve the parallel efficiency, a hybrid of distributed-
memory BSP is used inMapReduce. Each computing node in the
VMs can work in parallel and communicate through a network
or IO system. Using the BSPmodel, the communication datawill
be significantly reduced.
In every VM, the shared-memory BSP model employs the bulk
of threads to accomplish task execution. Therefore, we use this
BSP memory model to pass messages, and the communication
messages are incorporated into a class BSPMP. A BulkTracker
mechanism is designed: we use the send() function to transmit
data and the bspRemove() function to remove messages, as im-
plied by the java socket.
In BulkTracker, we take a thread as a server socket. When com-
munication occurs, the thread begin to listen for channel com-
munication. If there are data transmissions, the socket creates
an Http connection and sends the data. When the data are re-
ceived, they are allowed into the queue and can be obtained by
the BulkTracker in the next super-step.
In the MaMR programming model, the data node can use a
shared-memory model to finish computing tasks. In each VM,
every thread uses the memory model to avoid the I/O competi-
tion. However, the synchronization phasewill use a hierarchical
approach, which will reduce the synchronization time. There-
fore, we can see that MaMR achieves good speed speedup and
scalability.

4. Multi-copy strategy

In this section, we execute a multi-copy strategy. For example,
we begin with a simple example of processing wood molecules,
which will be continued into the subsequent sections, to show
how the Map, Reduce, and Merge modules work together. There
are two datasets in this example: the wood molecules and the
wood structure. The woodmolecule’s key attribute is themolecule
id (mol-id), and the others are packed into a mol info value. The
wood structure’s key is the structure id (stru-id), and the others
are packed into a stru info value. One example query is to join these
two datasets and compute the numbers of molecules.

Before these two datasets are joined by a merger, a pair of
mappers and reducers first handle the datasets. We can see the
complete data flow in Fig. 3. On the left hand side, a mapper reads
the molecule and the numbers for each molecule. A reducer then
sums up these mol-numbers for every molecule and sorts them by
mol-id. On the right hand side, a mapper reads the wood structure
and structure numbers. A reducer then sorts this stru-id. Finally, a
merger matches the output records from the two reducers bymol-
id using the sort-merge algorithm, applying a department-based
approach.

When the two Map-Reduce tasks are finished, a merger task
places their intermediate outputs in BSP memory, and thus, we
will describe the details of the major merge components in the
subsequent sections.

In the Definition and Terms (1)–(10) below, we list the major
contributions of the multi-copy strategy we utilize, followed by
proving the correctness and uniqueness of the output key/value
pair.

(1) Let {Map} = {Map0, . . . ,MapM−1} be the set of M Map
functions.

(2) Let {Re} = {Re0, . . . , ReR−1} be the set of R Reduce functions.
(3) Let Out − in{Mapm, Rer} = 1 be the bipartite graph that

represents the dependency (or links) between (the output of)
the Map Functions and (the input of) the Reduce Functions.

(4) Relevant Map Functions for Map Function Mapm associated
with Reduce Function Rer .

∀Mapi ∈ list{Mapm, Rer},Out − in{Mapm, Rer} : {Mapi}
= 1 ∧ Out − in{Mapm, Rer} : {Mapi} = 1
∀Mapi ∉ {Map} − {Mapi},Out − in{Mapm, Rer} = 0.

(5) All relevant Map Functions for Map Function

list(Mapm) : {Mapi}, ∃Rer ∈ SR,
Out − in(Mapm, Rer) = 1Out − in(Mapi, Rem) = 1.

(6) Irrelevant Map Functions for Map Function Mapm associated
with Reduce function Rer .

no − list(Mapm, Rer) : {Mapi}, {Map} − list(Mapm, Rer)
− Mapm.

(7) Irrelevant Map Functions for Map Functionm:

no − list(Mapm) : {Mapi}, {Map} − list(Mapm) − Mapm.

(8) Let (km, vm) be a key and value pair of the output of map
function Mapm.

(9) The shuffling space isM-dimension discrete space. The length
of dimension j is uj.

(10) f is the function that maps a key–value pair to a set of M
tuples.

f : (km, vm) → {(i1, . . . , iM)}, ij ∈ {0, 1, . . . , uj − 1}

uj is the number of Reduce units in dimension j of the shuffling
space. The set ofM-tuples is determined as follows:
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Fig. 3. Model example.

im = h(km)%um
ij = all of {0, 1, . . . , uj − 1} ifMapj ∈ list(Mapm, Rer)
ij = gj ifMapj ∈ list(Mapm, Rer).

g is another hash function that takes a dimension index and returns
a value in {0, 1, . . . , uj − 1}. We need to prove the following:
Suppose Mapm ∈ {Mapm}, ∀Rer ∈ {Rer}, list(Mapm, Rer) =

{Map0,Map1, . . . ,Mapm′}.
Then f (km, vm) ∩ f (k0, v0) ∩ f (k1, v1) ∩ · · · f (km; , vm;)∩ = 1.

Lemma 1. If list(Mapm, Rer) = {Map0,Map1, . . . ,Mapm′} then

list(Map0, Rer) = {Mapm,Map1, . . . ,Mapm′}

list(Map1, Rer) = {Mapm,Map1, . . . ,Mapm′},
...

list(Mapm′ , Rer) = {Mapm,Map1, . . . ,Mapm′}.

Proof. (1) For (kt , vt), by definition of the f function, it can be
shuffled to a Cell Set, denoted by

St = h(kt)%ut

{Sj} = {0, 1, . . . , uj − 1}
Sj = g(j)
ifMapj ∈ no − list{Mapt}
t ∈ {m, 0, 1, . . . , (m′)}.

As concluded above, (i1, . . . , iM−1) ∈ CS. Thus, the proof is
complete.

5. Map-Reduce-Merge

The Map-Reduce-Merge extension [15] supports various join
predicates, but it requires fundamental changes toMapReduce and
how it is used. It not only adds a newMerge phase but also requires
the user to write code that is explicitly aware of the distributed
nature of the implementation.

To describe how the MaMR programming model processes
wood molecule data relationships, PC-Hschema [24] and its No. 2
query [25] are used.

We take nested query as the inquire method, and at the end,
the material data must be ordered by different parallel computing
node. If the condition for the 5-way join can fit the data order, so
the nested query is only method to obtain the minimum supply
cost. There are 5-way join in Algorithm 1, because it is essentially
the same as the outer join, its logic can be processed during
executing the outer one. In MaMR model, we use four 2-way joins
for the overall 5-way join. The join tree of this execution plan is
shown in Fig. 4. We use the SQL query to implement the Reduce-
Merge framework. There are region and nation data in this stage,
the parallel join is not required in Map, but the Reduce and Merge
is must exist. In fact, share-memory can be read to the queue.

In theMaMR Reduce stage, there are five tables, p_ps, r_c, r_c_p,
M_ps_r_c_p, F_ps_r_c_p. Fig. 4 shows the region and nation joined
into n_r, and different n_r are joined by r_c_p.

In the join tree, part and partsupp are joined into a tem-
porary table called p_ps. In parallel, Table r_c is then joined with
the supplier into r_c_p. Later, p_ps and r_c_p are joined into
M_ps_r_c_p. Once these four 2-way joins are performed to develop
the overall 5-way join, F_ps_r_c_p is processed by twoMap-Reduce
tasks. The final Map-Reduce task is simply a sorter for the order by
clause.

In Fig. 4, we replace the joinwith a differentMap, and theMerge
stage is simpler than a MapReduce model. The example shown in
Fig. 4 includes 4 mappers, 6 reducers, and 4 mergers.

Algorithm 1 Map-Reduce-Merge:

1 Partition Selector PS;
2 Left Processor LP;
3 Right Processor RP;
4 Merger merger;
5 Iterator Manager IM;
6 int merger Number;
7 int left Reducer Numbers;
8 int right Reduce Numbers;
9 select and filter left and right reducer outputs for this merger

10 PS.select(merger Number, left Reducer Numbers, right Reduce Numbers);
11 Configurable Iterator left = initiated parameter
12 Reduce outputs by left Reducer Numbers∗/
13 Configurable Iterator right = initiated parameter
14 Reduce outputs by right Reducer Numbers∗/
15 while(material parameter=true)
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Fig. 4. Join tree for TPC-H Query.

16 pair<Map,Reduce>=Order(Map(left), Map(right));
17 if (first.array[Map] && second.array[Map])
18 break
19 end if
20 if ( first .array[Map])
21 LP.process(left value, left Map);
22 end if
23 if (second.array[Map])
24 RP .process(right value, right Map);
25 end if
26 if (more. array[Map] && more. array[Map])
27 merger. (left value, left Map,right value, right Map)
28 end if
29 pair<Map ,Reduce> =Order(Map(left), Map(right));
30 if (Numbers.first)
31 left++;
32 end if
33 if (Numbers.second)
34 right++;
35 end if
36 end while

6. Experiment

We set up Hadoop on four I450-G10 tower-style servers made
by Sugon (InterXeon E5-2670 8-core CPU 2.2 GHZ 8 GB RAM). To
make full use of these servers, we virtualize them into 16 VMs
(hosts) using XenServer6.2. The hosts are the slaves of the cluster,
while a PC (HP Compaq dx 2308) is the master of the cluster.
It is built up on the base of Cenos6.4 final (kernel 2.6.32) using
Hadoop 2.3, and the total capacity of HDFS is 3.34 T.We use Timber
Data, data for specimens of 30 varieties of timber, for the air-dried
density modulus.

• A. performance predictability of MaMRMaMR has the advantage
of performance predictability. We take advantage of the
communication efficiency between different data nodes, and
the synchronization latency is ignored.We can thus easily know
the cost of the application. We design a novel benchmarking
program.
We evaluate the cost of the MaMR computing time and
theoretical time. The matrix multiply data are set by Timber
Data. This experiment tests the shared-memory model and the
BSP model, using 2 nodes, 4 nodes, and 8 nodes to evaluate the
computing time.
Fig. 5 shows the results, in which the MaMR model does
not lead to accurate predictions of the execution time. The

discrepancy is determined to occur for the following reasons.
First, on the MapReduce model, the parallel parameters are
average values, but in the MaMR model, the parameters are
different at every step. Second, while there is communication
between different data nodes in the IPC socket, the material
data application testing does not consider the connection or
disconnection time. Therefore, the communication is lower
than the theoretical value. Finally, the shared-memory model
requires a complex scheduling system, while MapReduce has a
prior scheduling algorithm, allowing the BSP model to achieve
good performance.

• B. Speedup and scalability of MaMR
We also evaluate the speedup and scalability of MaMR.We first
fix the size of the data set, applying all data nodes. We compare
MaMR with Hadoop MapReduce and MPI. Fig. 6(a) shows that
MaMR has a higher speedup than the MapReduce and MPI
programming models because MaMR takes advantage of the
BSP model and the flexible Map and Reduce stages. Fig. 6(b)
shows that theMaMRmodel is substantially superior, especially
as the data sets increase in size.

• C. Effectiveness of MaMR
In Fig. 7, we present two benchmark applications that use
timber data as input data. Fig. 7((a) (b)) shows the different
input data sizes for the timber material benchmark. The
execution time shown, which is small tomoderate, includes the
shared data copy time for MaMR.
Importantly, in both applications, the execution time results
demonstrate a clear advantage of MaMR over MapReduce. In
the one-job case, regardless of how large the cloud computing
system is, we can see the advantage of MaMR because MaMR
can utilize more parallel jobs for execution. We can also see the
performance difference in the data nodes.
Fig. 7(a) shows the job performance of the traditional MapRe-
duce, from 1 to 3. MaMR has a lower execution time, taking 500
s to run three concurrent jobs, while MapReduce, conversely,
requires 800 s. Similar results also apply to the same configura-
tion in Fig. 7(b). MR requires 6000 s for the three jobs on four
VMs at moderate data size, while MaMR takes 1500 s instead.
We can see that as the amount of data increases, the perfor-
mance advantages of MaMR becomemore obvious. This benefit
is better illustrated for larger input data sizes. In Fig. 7(a) and
(b), the execution time ofMR for the three-job case is very close
across different cloud computing system sizes.

• D. Performance of MaMR
The coarse histograms (1–100 buckets) show that the max-
reducer-input data can be analysed in relation to the timber
data, which was not the case for finer-grained histograms. In
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Fig. 7. Execution time (seconds) of MaMR running on timer data benchmark.

this simulation, the size of the buckets reflects the output data
nodes. Fig. 8 shows that the max-reducer execution time is
substantially reduced compared to that for MapReduce. We
can see that the high reduce stage with varying histogram
granularity is higher than the rest. Based on the different
job execution times, at least 30 reducers were used in the
simulation. We can see that the MaMR model achieved its goal
of balancing input timber data.
Fig. 9 shows that the max-reducer-input steps for the MaMR
programming model conform to the application of the timber
data. In this simulation, we take 1 bucket data point to
correspond to a different Reduce stage. It is clear that
despite the high Reduce stage, MaMR is better balanced than
MapReduce with more coarse-grained histograms. Fig. 9 shows
that the input-size-dominated joins of the MapReduce job
completion time track the max-reducer-input trend almost
perfectly.
Fig. 10 shows that MaMR does not include a pre-processing
stage. In the simulation, we take the average run times of 10

executions and record the results. The run time of the job
was less than 15.12%. The MapReduce job performance is no
worse than that ofMaMR, but based on finding the approximate
quintiles and then counting the number of records per quintile
range, MaMR does have the best Reduce stage time.

• E. Output-size of MaMR
Fig. 11 shows that the max-reducer-output steps for the
MaMR programming model are consistent with the timber
data application. Because of the high Reduce and Merge stage,
the MaMR model achieves almost perfect output balancing
compared to theMapReducemodel. Because, in the timber data
sets, we use a random size data to evaluate the performance,
the Map-Reduce-Merge framework from the MaMR model can
handle more imbalance for high Reduce stages than in the
previous experiment.
Because the number of output tuples in a region is difficult
to estimate, the high Reduce stage must use the Map-Reduce-
Merge framework to handle this problem in the MaMR
programming model. A low Reduce stage, as in the traditional
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MapReduce, cannot do this because a tuple can only be assigned
to the appropriate histogram bucket, not any random bucket.
We can see from Fig. 12 thatwith increasing number of buckets,
the conclusion takes exactly the same form as in Fig. 11.
Fig. 13 shows that the job output imbalance for the MaMR
programming model has the clear advantage. Additionally,
because the join is output-size dominated, theminimizingmax-
reducer-output size is not considered. The maximum standard
deviation between the job completion times was 3.56%. The
input duplication rates for histogramswith 1, 10, 100, 1000, and
5951 buckets are 7.5, 4.2, 1.5, 1.0, and 1.1, respectively.
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7. Conclusions and futurework

In this paper, we have defined a programming model for
material cloud applications that supports multiple different Map
and Reduce functions running in parallel. MaMR uses a hybrid
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shared-memory BSPmodel that canmake full use of the data nodes
in a cloud computing system. We have designed an optimized
data-sharing strategy using the BSP model to support the shared
data for Map and Reduce. Meanwhile, we further provide multi-
copies of the output to reduce the shuffle overhead. We add a
new Merge phase to Map-Reduce that can efficiently merge data
already partitioned and sorted (or hashed) by the map and reduce
modules.

In futurework, wewill explore this newmethod to improve the
parallel efficiency. Currently, more large cloud computing systems
should be used to test and verify theMaMRmodel. The advantages
of the programming model should be further amplified by more
material data.
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