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a b s t r a c t

The plane wave method is most widely used for solving the Kohn–Sham equations in first-principles
materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions’
fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of
the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to
accomplish the trade-off between the communication overhead and load balancing of the plane waves.
It is shown by qualitative analysis and numerical results that our approach could scale the plane wave
first-principles calculations up to more nodes.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the context of Density Functional Theory (DFT), solving the
Kohn–Sham equation is themost time-consuming part of the first-
principles materials science computations [1–3]. The plane wave
method, which is a widely used numerical approach [4], could lead
to a large-scale dense algebraic eigenvalue problem. This problem
is usually solved by iterative diagonalization methods such as
Davidson’s [5], RMM-DIIS [3], LOBPCG [6], Chebyshev polynomial
filtering subspace iteration [7], etc. The elementary operation
of the iteration methods is the matrix–vector multiplication.
Since the large-scale dense matrix is not suitable for explicit
assembly, we realize the matrix–vector multiplication by applying
the Hamiltonian operator on trial wave functions. The local term of
the effective potential is one part of the Hamiltonian operator. In
order to compute its action in a lower time complexity, we perform
3-dim FFT twice on one trial wave function in each matrix–vector
multiplication.

There are three features to make the trial wave function’s
FFT one of the most demanding algorithms to scale on a parallel
machine. The first is themoderate sized FFT grid rather than a large
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one. The ratio of computation to communication of the parallel
3-dim FFT is of order logN where N , the single dimension of the
FFT grid, is usually O(102) in most first-principles calculations
of bulk materials. The second is the accumulated communication
overhead led by many execution times corresponding to a
number of wave functions. Thousands of FFTs may be executed
at each step of iterative diagonalization. The third is the all-to-all
communication required by the data transposes. This could limit
the parallel scaling due to the large number of small messages in
the network resulting in competition as well as latency issues.

It has already been recognized that making fewer and larger
messages can speed up parallel trial wave functions’ FFTs. The
hybrid OpenMP/MPI implementation [8,9] can lead to fewer and
larger messages compared to a pure MPI version. And a blocked
version [9] performs a number of trial wave functions’ FFTs at the
same time to aggregate the message sizes and reduce the latency
problem.

In first-principles calculations, we should consider not only
the parallel scaling of trial wave functions’ FFTs, but also the
load balancing of intensive computations on the plane waves that
expand the wave functions. The workload of these computations
are inhomogeneously distributed on a standard 3-dim FFT grid.
Thus a greedy algorithm is usually used to optimize the load
balancing. However, this algorithm results in global all-to-all
communications across all the processors, thus the latency
overhead would grow in proportion to the number of processors
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and might contribute substantially to the total simulation time.
Haynes et al. [10] present a partitioning approach for the 3-dim
FFT grid that minimizes the latency cost. Their method depends
critically on the Danielson–Lanczos Lemma [11] and requires
a particular data distribution, which limits the possibilities to
improve the load balancing of the plane waves.

In this paper, we propose a new partitioning method for
the 3-dim FFT grid, with which we need independent local all-
to-all communications for each data transpose rather than one
global all-to-all communication. With this communication pattern
preserved, we develop the method to improve the load balancing
by adjusting the data distribution among working processors. By
numerical examples, we show that although its load balancing is
not as perfect as that of the greedy algorithm, the new approach
can bemore favorable for parallel scaling by making the fewer and
largermessages. Hence,we are allowed to accomplish the trade-off
between the load balancing of the planewaves and communication
overhead in the trial wave functions’ FFTs. And such a trade-
off could scale the plane wave first-principles calculations up to
more nodes. With the proposed partitioning method, we design a
compact parallel 3-dim FFT to reduce the amount of calculations
and passing messages without loss of accuracy.

The rest of this paper is organized as follows. In Section 2,
we explain the elemental role of trial wave functions’ FFTs in
the plane wave method. In Section 3, we introduce the greedy
algorithm for load balancing of the plane waves and analyze the
resulting communication cost. In Section 4, we describe the new
partitioning algorithms and implementations. In Section 5, we
show the numerical results. The last section gives concluding
remarks.

2. The role of trial wave functions’ FFT

In this section, we explain the elemental role of trial wave
functions’ FFTs in solving the Kohn–Sham equation using a plane
wave basis set.

In the pseudopotential (norm-conserving [12] or ultrasoft [13]
pseudopotential) setting or the projector augmented wave (PAW)
[14,15] approach, the pseudo wave function Ψ̃i satisfies the
Kohn–Sham equation which looks like

−
1
2
∆ + Vloc + Vnl


Ψ̃i = ϵiSΨ̃i, (1)

where −
1
2∆ is the kinetic energy operator, Vloc the local potential,

Vnl the nonlocal term, and S the overlapping operator. In the
case of the norm-conserving pseudopotential, S could simply be
interpreted as the identity operator. In this manuscript, we refer to
the pseudo wave function simply as the wave function.

We use always the periodic boundary condition and expand the
wave function in plane waves:

Ψ̃nk(r) =


G

Ψ̃nk(G) e−ı(k+G)·r, (2)

where the k’s are vectors sampling the first Brillouin zone, n is an
index of the energy level with given k, and G’s are the reciprocal
lattice vectors. The expansion (2) only includes the plane waves
satisfying

|k + G| <

2Ecut ≡ Gcut. (3)

In the plane wave method, the Hamiltonian matrix is not as-
sembled explicitly. Instead, iterative diagonalization techniques
are employed together with the implicit matrix–vector multipli-
cation that is realized as the action of the Hamiltonian operator on
the trialwave functions. It is noticed that the local potential is diag-
onal in the real space. In order to obtain efficiently the action of the
Fig. 1. A two dimensional sketch of thewrap-around errors in the reciprocal space.
The wave function |Ψ ⟩ is sampled within a sphere with radius Gcut (the innermost
circle 1). The charge density ρ and the local potential Vloc are defined inside a
sphere with radius 2Gcut (circle 2). We would require a sphere with radius 3Gcut to
accurately estimate the operation of the local potential on the trial wave function.
If we apply a smaller FFT grid with only 2Gcut , the artificial wrap-around error
between 2Gcut and 3Gcut would occur and be folded back into circle 2 due to the
periodicity. Hence, it is sufficient to approximate the wave functions correctly in
circle 1.

local potential on the trial wave function, we should first transform
Ψ̃nk(G) to the real space representation Ψ̃nk(r) by one FFT, multi-
ply it with the local potential term, and then transform the product
back to the reciprocal space. Consequently, two 3-dim FFTs are re-
quired by each action on a trial wave function.

3. The load balancing issue and the greedy algorithm

3.1. The load balancing issue

Asmentioned in the previous section, the planewaves are trun-
cated at cut-off radius Gcut. Since charge density ρ is the sum of
squares of the wave functions, the corresponding cut-off radius for
the charge density is 2Gcut. The cut-off radius of the local potential
Vloc can be regarded the same as that of ρ, because Vloc is a func-
tional of ρ. Thus, the cut-off radius of VlocΨ̃nk is 3Gcut. As illustrated
in Fig. 1, it is sufficient to take the FFT grid with only 2Gcut in order
to prevent the wave functions from the wrap-around error.

On one hand, the operation of the local potential on trial
wave functions are computed with 3-dim FFTs on the standard
grid determined by 2Gcut. On the other hand, we carry out some
intensive computations, the time complexities of which are in
proportion to the number of plane waves within the cut-off radius
Gcut, including the assembly of the matrix on the subspace, the
orthogonalization of wave functions, and the actions of other
parts of the Hamiltonian operator. And the workload of these
calculations are not homogeneously distributed on the FFT grid.
Therefore, one should consider not only the parallel scaling of
FFTs, but also the load balancing issue of the intensive plane wave
computations.

3.2. The greedy algorithm

One 3-dim FFT consists of three successive sets of 1-dim FFTs
along the x, y and z directions. For each set of 1-dim FFTs, the
data layout should guarantee that each processor holds complete
columns of data along the FFT direction. Therefore, there are three
data layouts of the 1-dim FFTs along the x, y and z directions. We
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Fig. 2. A two dimensional illustration of the greedy algorithm for building the reciprocal space layout.
call them the reciprocal space, intermediate and real space layouts,
respectively.

The greedy algorithm is used to build the reciprocal space
layout for the sake of load balancing. In the reciprocal space layout,
each processor holds complete columns along the x direction. The
workload of each complete column is estimated by the number
of plane waves within cut-off radius Gcut. As illustrated by Fig. 2,
these columns are sorted in the descending order of workload and
distributed among processors in a round robin fashion. In this way,
the reciprocal space layout is established and each processor holds
a set of complete columnswith approximately equal workload. For
the intermediate and real space layouts, the individual columns
could be directly distributed in a cyclic way since the workload of
each column is equal.

3.3. The communication pattern and overhead

When finishing the set of 1-dim FFTs along one direction, we
transpose the data from the current layout to the next one for the
successive set of 1-dim FFTs. The first transpose is between the
reciprocal space layout and intermediate layout, while the second
one is between the intermediate layout and real space layout.With
the reciprocal space layout established by the greedy algorithm,
the first transpose typically requires the all-to-all communication.
The second transpose may require no communications if each
processor holds complete planes (perpendicular to the x direction),
or limited local communications if each processor has a section of
a plane.

In general, the overhead of the all-to-all data communication
mainly consists of two parts: the data transmission and the
network latency. The transmission cost is proportional to the total
size of the data packets, and inversely proportional to the internode
bandwidth denoted by β . The latency cost is proportional to the
number of data transmissions initiated. We denote the latency
of one data transmission by α. It worth noting that α and β are
defined for the situation that a node is sending a data packet
to some other node and simultaneously receiving a packet from
another node.

Without loss of generality, we assume that the all-to-all
communications is implemented by the pairwise data exchanges.
Alternative implementations can be found in Ref. [16]. Thus the
all-to-all communication of p processors can be achieved in p − 1
phases. In each phase, each processor simultaneously sends a
data packet to one processor and receives a packet from another
(usually different) processor. Though the sizes of data packets are
not uniform (in an Alltoallv operation), the average size of one
packet can be estimated asµNFFT/p2, whereµ is the size of a single
element (typically 16 bytes for a double precision complex data
type), and NFFT is the number of degrees of freedom in the FFT grid.
Fig. 3. The illustration of a 3 × 2 grid of processors.

Hence, we estimate the total cost of one all-to-all communication
as

t1 = (p − 1)


α +
µNFFT

βp2


. (4)

For a fixedNFFT, the latency overhead grows linearlywith respect to
the number of processors, whichwould probably result in a limited
parallel scaling.

4. The new partitioning algorithm and its implementation

In this section, we present a new partitioning algorithm of the
3-dim FFT grid to avoid global all-to-all communications required
by the data transposes, so that the latency cost is alleviated at a cost
of small loss of load balancing.

4.1. The partitioning algorithm and its communication overhead

Weassume that the number of processors p can be factorized by
m × n, where the difference between m and n, i.e. |m − n|, should
be as small as possible. Then the p processors are grouped into m
rows by n columns (a 3 × 2 case is illustrated by Fig. 3). Take the
reciprocal space layout for example. We distribute the complete
columns of data along the x direction following two rules: first,
the data columns with the same y-index are distributed within
the same column group of processors; second, the data columns
with the same z-index are distributed within the same row group
of processors. The intermediate and the real space data layout can
be established in a similar way. The only restrictions are that the
intermediate layout shares the same data distribution with the
reciprocal space layout along the z direction and with the real
space layout along the x direction. In another word, each xy plane
in the intermediate layout is distributed among the same row of
processors as the xy plane in the reciprocal space layout with the
same z index, and each yz plane in the intermediate layout is
distributed among the same column of processors as the yz plane
in the real space layout with the same x index.

A direct implementation of the algorithm is to distribute the
data columns in a cyclic fashion. As an illustration, we show how
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Fig. 4. The resulting three layouts by using the new algorithm to partition the 3-dim FFT grid of 5 × 5 × 5 among 6 processors.
to use it to distribute a 3-dim FFT grid of size 5 × 5 × 5 among 6
processors. The 6 processors are grouped into 3 rows by 2 columns,
as shown by Fig. 3. The reciprocal space, intermediate and the real
space layouts established by our method are shown, from left to
right respectively, by Fig. 4.

In general, the first data transpose (between reciprocal
space and intermediate layouts) requires m local all-to-all
communications which can be carried out independently within
row groups of n processors. Similarly, the second transpose
(between intermediate and real space layouts) requires n local
all-to-all communications which can be carried out independently
within column groups of m processors. As shown by Fig. 4, the
first data transpose requires local all-to-all communicationswithin
row groups of two processors, and the second data transpose
requires local all-to-all communications within column groups of
three processors. When m and n are roughly equal to

√
p, the

communication overhead can be estimated as

t2 = (
√
p − 1)


α +

µNFFT

βp
√
p


. (5)

Compared with the estimated cost (4) of the global all-to-all
communication, the growth rate of the latency cost with respect
to the number of processors is decreased from p to

√
p.

It should be clarified that both (4) and (5) are used to quali-
tatively illustrate how the communication overhead is decreased
rather than to give an quantitative interpretation of actual running
time. Compared with a global all-to-all communication, the new
local all-to-all communicationsmake fewer (p(

√
p−1) v.s. p(p−1))

and larger (µNFFT/(p
√
p) v.s.µNFFT/p2) messages, which alleviates

the competition as well as latency issues in the network. So the
proposed partitioning algorithm offers the prospect of scaling the
plane wave first-principles calculations up to more nodes.

4.2. The load balancing

The local all-to-all communications can be kept if the aforemen-
tioned partitioning restrictions are satisfied, i.e. the intermediate
layout shares the same data distribution with the reciprocal space
layout along the z direction, and the same data distribution with
the real space layout along the x direction. So we are allowed to
improve the reciprocal space layout considering the load balanc-
ing issue.

Here,we just present one tuning approach: firstly, theworkload
of each xz-plane and xy-plane are estimated by the number of
planewaves in the sphere of radiusGcut. Secondly, the xz-planes are
sorted in the descending order with respect to the workload, and
then the reordered xz-planes are distributed to the column groups
of processors in a round robin fashion. Finally, the xy-planes are
sorted in the descending order with respect to the workload, and
then the reordered xy-planes are distributed to the row groups of
processors in a round robin fashion.
4.3. The compact 3-dim FFT

Aswehave discussed in Section 3.1, the standard 3-dim FFT grid
is determined by the cut-off radius 2Gcut, while the wave functions
are represented by plane waves within the sphere of radius Gcut
(Fig. 5(a)). Thus, one can pick up the complete x-data columns
that intersect with the sphere to perform 1-dim FFTs along the x
direction, because all other x-data columns contain only vanishing
values. All the selected columns constitute a cylinder, as shown
in Fig. 5(b). After the x direction FFTs, only this cylinder contains
non-zero data. Then one can select the complete y-data columns
that intersect with the cylinder to perform the y direction 1-dim
FFTs, and the resulting non-zero-data region is a cuboid, as shown
in Fig. 5(c). The last set of 1-dim FFTs along the z direction is
performed on thewhole cube shown as in Fig. 5(d). Such a compact
3-dim FFT can also reduce the amount of passing messages and
calculations compared to the standard 3-dim FFT implementation
that performs 1-dim FFTs on all x and y data columns in the cube.

If only the Γ -point is used for the k-point sampling, we
can implement a real mode where the reciprocal space and
intermediate layouts can be cut by half since we take into account
that Ψ̃n(G) = Ψ̃ ∗

n (−G).

5. Numerical results

We implement the parallel compact 3-dim FFT for the trial
wave functions in the in-house plane wave code package CESSP
developed on the infrastructure JASMIN [17]. Our implementation
is a pure MPI version including the greedy algorithm, the
new algorithm with and without load balancing. With these
partitioning algorithms, the parallel scaling of solving Kohn–Sham
equation (1) with the PAW approach is tested on a domestic
parallel machine. Each node of the machine consists of 2 Intel
Xeon E5540 CPUs (8 cores) and the nodes are connected by the
infiniband with double data rate (DDR).

The testing systems are face-centered cubic (FCC) supercells
consisting of 108 and 500 aluminum (Al) atoms, and is sampled
with only the Γ -point. The self-consistent field iteration runs 7
cycles, and in each cycle the RMM-DIIS algorithm [15] is employed
to solve the lowest 217 and 1001 eigenstates for the two systems,
without the parallelization over bands. In this process, 8246 and
38038 FFTs of the trial wave functions are executed one by one
for the 108 atoms and 500 atoms systems, respectively. The sizes
of the 3-dim FFT grid are 48 × 48 × 48 and 80 × 80 × 80, and
the numbers of plane waves in the cut-off radius Gcut are 7602 and
35160 for the 108 atoms and 500 atoms systems, respectively.

In all tests, we launch 8 pure MPI processes per node and
count the number of data transposes, the total wall time as well as
communication time of the trial wave functions’ FFTs. The results
are summarized in Tables 1 and 2. In the greedy algorithm, no data
transposes are required between the intermediate and real space
layouts since the intermediate layout holds the complete yz-planes
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Fig. 5. The illustration of a compact 3-dim FFT. (a): The aqua region presents the sphere of cut-off radius Gcut . (b)–(d): The aqua regions present union of all data columns
selected to perform the x, y and z 1-dim FFTs, respectively.
Table 1
Comparison on the parallel scaling of three partitioning algorithms for the 108 aluminum atoms system. From left to right: The greedy
algorithm, the new algorithm (without load balancing) and the new algorithm with load balancing.
Table 2
Comparison on the parallel scaling of three partitioning algorithms for the 500 aluminum atoms system. From left to right: The greedy
algorithm, the new algorithm (without load balancing) and the new algorithm with load balancing.
on each processor. So the greedy algorithm needs half number of
data transposes as the new algorithm. Nevertheless, as shown by
Tables 1 and 2,with an increasing number of processors, the greedy
algorithm leads to a rapid growth in the communication cost,
which finally takes a substantial part of the total computational
cost, while the new algorithm (with orwithout load balancing) can
effectively suppress the growth in the communication cost. When
the number of processors is less than 24, the greedy algorithm is
preferable, while when the number of processors is more than 24,
the new algorithm could provide better overall performance.
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Table 3
Comparison on the load balancing of three partitioning algorithms for the 108 aluminum atoms system. From left to right: The greedy
algorithm, the new algorithm (without load balancing) and the new algorithm with load balancing.
Table 4
Comparison on the load balancing of three partitioning algorithms for the 500 aluminum atoms system. From left to right: The greedy
algorithm, the new algorithm (without load balancing) and the new algorithm with load balancing.
In Tables 3 and 4, we represent the load balancing in the
simulations by comparing the maximum and minimum numbers
of plane waves distributed on a single processor. It is obvious
that the load balancing of the greedy algorithm is almost perfect.
The load balancing strategy for the new partitioning algorithm
(Section 4.2) effectively reduces the gap between the maximum
and minimum numbers of plane waves on the processors.
Although not as perfect as the greedy algorithm, it is acceptable
for practical simulations. The benefit from the improved load
balancing is not significant for the 108 atoms system. For the 500
atoms system, the load balancing saves up to 19 s in the total wall
time. What we present in Tables 1–4 is an example of the trade-
off between the load balancing and the communication cost: the
greedy algorithm has the best load balancing but could lead to very
limited parallel scaling; the new algorithm achieve much better
scaling at a moderate loss of load balancing.

It should be noted that our code provide three levels of
parallelization: the FFT grids, bands and k-points. In practical
simulations, all three levels will be used if possible. In the
presented numerical examples, in contrast, we only switched on
parallelization over FFT grids, because the focus of the manuscript
is to develop a new parallel FFT strategy, and we intend to
eliminate the influence on the performance from other levels of
parallelization.

6. Conclusion

We propose a new partitioning algorithm for the 3-dim FFT
grid used in the planewave first-principles calculations. Compared
with the greedy algorithm biased toward the load balancing of the
plane wave computations, our approach primarily suppresses the
growth in communication overhead with respect to an increasing
number of processors by realizing local all-to-all communications
during data transposes. Then we adjust the data distribution
to improve the load balancing with the communication pattern
preserved. It has been shown by numerical results that a much
lower communication overhead on a relatively large number of
processors is achieved at a moderate loss of load balancing. Using
the new algorithm, we could scale the plane wave codes up to
more nodes than the greedy algorithm. If better performance
were wanted, we would combine our approach with other
techniques such as the hybrid OpenMP/MPI implementation or
simultaneously performing a large number of FFTs.
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