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To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading
and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a
Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using
Newton’s third law. Serial bottlenecks are eliminated with no additional memory usage. The method
is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon
Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC
method under different thread affinities on the MIC architecture. In the SIMD execution, we explain
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M(J)/lecular Dynamics the performance influence in the PSC method, considering the “if-clause” of the cutoff radius check. The
OpenMP experiment results show that our PSC method is relatively more efficient compared to some traditional
SIMD methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar
MIC version.
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1. Introduction

The use of atomistic simulations to understand the microstruc-
ture of materials has a long history [1]. With respect to the radia-
tion effect of steel, neutron radiation is capable of displacing atoms
from their lattice sites, causing point defects [2]. The migration and
clustering of point defects leads to microstructure evolution under
service conditions. Molecular Dynamics (MD) simulation, a com-
mon numerical technique, simulates the simultaneous motion of
atoms (molecules) under their mutual interactions [3]. It plays a
significant role in the investigation of radiation effects because it
provides a methodology for accurate microscopic modeling at the
molecular scale. The investigation of the radiation effect of steel by
means of MD simulations typically requires simulation times that
are nanoseconds or longer, and thus a great deal of CPU time is nec-
essary [4]. Therefore, the efficiency of MD packages is of great sig-
nificance. In a typical application, more than 90% [5] of the runtime
of MD simulations is consumed by calculating interaction forces.
In this paper, we define the force computation component as the

* Corresponding author.
E-mail address: lijianjiang@ustb.edu.cn (J. Li).

http://dx.doi.org/10.1016/j.cpc.2016.07.010
0010-4655/© 2016 Elsevier B.V. All rights reserved.

calculation kernel. The optimization work of the kernel improves
statistical convergence [6] and makes it possible to study events
that occur on a longer timescale.

Multi-threading accelerates programs. Single-Instruction-
Multiple-Data (SIMD) execution is an effective way to increase
peak performance. To reach exascale performance, computing
nodes are supplied with accelerators such as GPUs and, re-
cently, many-integrated-cores (MIC) coprocessors. All [7-9] of
these methods have been exploited to speed-up MD simulations.
Liu et al. [10] proposed a multi-step computation method to op-
timize long-range force computations in MD simulations. This
method divides atoms into groups and then partitions the real-
space Ewald summation into steps based on these groups. Inspired
by Liu’s [10,11] strategy, we put forward a PSC (Partition-and-
Separate-Calculation) method. This method avoids write conflicts
among threads when multi-threading is used to optimize short-
range force computations. S.J. Pennycook et al. [12,13] explored
SIMD for MD simulations on Xeon Phi coprocessors. We also uti-
lize our PSC method on Xeon Phi coprocessors and make related
improvements to achieve higher SIMD performance.

The main contributions of our work are as follows:

e We design a PSC method to optimize the force calculation
kernel of large-scale MD simulations in a hybrid MPI-OpenMP
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scheme. Our method eliminates write conflicts caused by
using Newton'’s third law in a simple and efficient way. Our
method merely requires several implicit barriers. Therefore,
unlike in the case of certain traditional solving strategies,
synchronization costs, lock contentions, repeated computations
and extra memory usage are lessened.

e We utilize the PSC method on Intel Xeon Phi coprocessors. We
analyze the effect of thread affinity on PSC performance. In
both native and offload models, we observed performance gains
using up to 240 threads.

e We propose a modified pre-searching neighbors strategy to
increase the meet ratio of the cut-off radius “if clause” in
SIMD implementation. Using AVX and AVX2 to process double
precision variables, we achieve a speedup that is approximately
three times greater than that of the scalar version.

e We analyze and compare the performance of the original
program with our accelerated version using Intel Vtune [14].
The experiment results show that our optimized version
executes much faster than the original one. This means that in
the same environment platform and limited time, our version
is able to simulate a longer physical process.

The rest of this paper is organized as follows. Section 2 presents
related work and background knowledge. Section 3 details the
specific multi-threading and vectorization optimization work.
Section 4 provides the results and evaluations of the experiments.
Section 5 concludes the paper.

2. Related work and background

We review related work, including multi-threading, SIMD, and
coprocessor optimizations of MD simulations in this section. The
Embedded Atom Method (EAM) potential is introduced briefly
because it is used as an example to explain our optimization
strategies. Because our experiments are based on Crystal MD, we
also provide information about Crystal MD.

2.1. Related work on optimizing MD simulations

2.1.1. Multi-threading for MD simulations

MD force calculation typically employs the nature symmetry of
pair forces, (i.e., fj = —fj;) by computing the forces of a pair of
atoms only once and then adding f; and —f;; to atom i and atom
j separately [4]. Although applying Newton'’s third law reduces
the force calculation task by half, it will probably create write
conflicts among threads. Different pair interactions may involve
some common atoms (in Fig. 1), which possibly results in a write
conflict in memory (i.e., force array) if Newton’s third law is
adopted.

Some solutions have been put forward to eliminate the write
conflict caused by adapting Newton'’s third law. Among them, the
simplest way is to abandon using Newton’s third law. However,
this method duplicates the force calculation [15,16]. The second
solution is to make use of critical sections [4]: modifications of
force arrays must be achieved in a critical section. The critical
section in this method brings about a severe synchronization cost,
and the bottleneck worsens with the increasing number of CPU
cores. The third solution is creating thread private work areas to
store partial forces. The private data are reduced later. However,
the memory cost of private work areas is extraordinarily expensive
when a large number of threads are used. To reduce the memory
cost of private work areas, M. Kunaseth et al. [17] proposed
data-privatization thread scheduling algorithms using nucleation-
growth allocation. However, the extra memory usage still cannot
be ignored.

thread 0 thread 1

pmon neighbor k

cutoff radius

Fig. 1. The write conflict among threads caused by the application of Newton’s
third law.

Hu et al. [11] proposed a Spatial Decomposition Coloring (SDC)
method. This method splits the spatial domain into subdomains
and colors the subdomains with a set of different colors. A
similar method is used to compute Ewald summation on multi-
core platforms [10]. The SDC method is scalable but may
cause load imbalances. Load imbalances are caused not only by
Spatial Decomposition but also by the task allocation mechanism.
The mechanism directly splits the domain and then assigns
subdomains to each thread. In most instances, the number of
subdomains cannot be divided by the number of threads, so a load
imbalance among threads results. Another disadvantage of the task
allocation mechanism is that the task load cannot adjust according
to the number of threads. If the number of threads is too high, for
example, more than 200 threads in MIC, the subdomain number
may not be enough.

Our method is inspired by the SDC method [10,11], so it has
the same advantages as the SDC method. We made modifications
to the task allocation mechanism in SDC and implemented our
method in a hybrid MPI-OpenMP schema. Our task allocation
mechanism partitions each MPI execution area into equal sized
slabs according to the thread number. Our method has a balanced
load, and the amount of thread tasks in our method can adjust
according to the thread number.

2.1.2. Intel Xeon Phi acceleration for MD simulations

The Xeon Phi [18] coprocessor is typically composed of about
60 cores clocked at 1 GHz or more. The Intel Xeon Phi supports
three usage models [19] for interfacing the coprocessor. In the
native model, programs are able to execute exclusively on the
device; in the offload model, programs can transfer compute-
intensive work to the device via compiler directives; and in the
symmetric model, programs can treat the Xeon Phi as a standalone
message-passing interface (MPI) node. In CoMD [15], the offload
model is applied to target the force computation kernel. W. Michael
Brown et al. [20] made modifications to the LAMMPS package
to enable concurrent calculations on CPUs and coprocessors.
The recently released GROMACS has supported the Intel Xeon
Phi coprocessor in the native/symmetric model. It provides a
16-way [21] neighbor list for enabling 512-bit vector registers
(KNC/KNL) as well as optimizations for native computations.
Amber Molecular Dynamics [6] has observed a 2.83x speedup
using the MIC coprocessor over the original host only version.

2.1.3. SIMD for MD simulations

Much effort has been devoted to achieving better performance
in MD using SIMD technology. Gromacs [22-24] provided some
SIMD acceleration options on the most compute-expensive parts.
S.J. Pennycook et al. [12,13] explored SIMD utilization on Sandia’s
MiniMD benchmark using three SIMD widths (128-, 256- and
512-bit). Studies on improving [25] vectorization by loop-blocking
techniques and vectorization pragmas have been conducted by the
ExMatEx team [26].



C. Hu et al. / Computer Physics Communications 211 (2017) 31-40

Domain Decomposition

MPI MPI
-
MPI MPI -
L
—d -
MPI MPI PI
MPI MPI wrl_—1MeL
—— _

Fig. 2. Hybrid MPI-OpenMP scheme. Inside each MPI, the PSC method is used.

2.2. Background

Although our work is exemplified by optimizing EAM potential
calculation, its capabilities are broadly applicable to other short-
range potential computations. The EAM potential was introduced
by Daw and Baskes [27] as a new means of studying ground-state
properties of metal systems. The total potential is characterized as
the addition of a many-body embedding energy term to a standard
pair potential interaction [28,27]. The total potential is given by
Eq. (1) [27].

n n
Ewor = Zei + ZF(Pi)
i i

where e is the pair potential. The term F is the embedding energy.
The local electron density term p is a superposition of contribu-
tions f from neighboring atoms [29]

1
&= Z @;(ry) and p; = Z fij(ry)
i#] i#]
where the term r; represents the distance between atom i and
atomj.

The implementation of our optimization work is based on
Crystal MD [30]. Crystal MD is an MD package designed for metal
with a BCC Structure. It puts forward a lattice neighbor list to
calculate atoms’ neighbor indexes according to their positions. It
is indispensable to note that the optimization methods we have
proposed in this paper can also apply to other MD simulations,
although the basis of our experiment is Crystal MD. If this PSC
method is not used for crystal structure material, load imbalances
among threads may occur.

(1)

(2)

3. Kernel optimization of MD simulations

3.1. Efficient multi-threading implementation

Our PSC method is implemented in a hybrid MPI-OpenMP
scheme. MPI processes executions in distributed memories, and
OpenMP threads executions in shared memories. The entire do-
main is decomposed into several subdomains, and each MPI is
responsible for a subdomain. As shown in Fig. 2, the PSC multi-
threading method is used inside every MPI execution. In the MPI
execution, the subdomain is partitioned into equally sized slabs ac-
cording to the number of threads in the parallel region. Afterward,
potential and corresponding forces are computed in two steps.

3.1.1. Principle of PSC method
The PSC method acts as follows:

(1) The OpenMP threads in parallel regions are set to M. The
simulation area is partitioned into 2M slabs. Figs. 3 and 4

33
PSC method is used in each MPI
e First step
Ve
- thread 0 thread 1
slab 0 slab 1 slab 2 slab 3
thread 0 thread 1
-~ - - Second step
First step
1
[ 1
vyt thread 0 thread 1
slab0 slab 1 slab 2 slab 3
X
thread 0 thread 1
L |
I
Second step
Fig. 3. Partition of the 2D simulation area into 2M slabs (M = 2). (For

interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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y

thread 0
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Fig. 4. Partition of the 3D simulation area into 2M slabs (M 2). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

thread 1

illustrate examples in which M is 2 in 2-Dimension and 3-
Dimension situations. The simulation areas are partitioned into
4 slabs (slab 0 ~ slab3) correspondingly.

(2) The 2M slabs are then divided into two groups. Each slab is
separated from other slabs in the same group. Figs. 3 and 4
show that the 4 slabs are divided into a red group and a blue
group. Slabs 0 and 2 are in the red group and are separated from
each other. Slabs 1 and 3 are in the blue group.

(3) The interaction forces are calculated using M threads in two
steps. In the first step, all the threads deal with the red group.
Afterward, the same M threads continue to process the blue
group. In our examples, thread 0 and thread 1 are assigned to
compute slab 0 and 2 separately in the first step. Next, thread
0 and 1 turn to process slab 1 and slab 3.

To avoid the write conflict caused by using Newton'’s third law,
the distance between two slabs should be larger than the cutoff
radius. This is the limitation of the PSC method, which will be
discussed in detail in Section 3.1.3.
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Fig. 5. A flowchart of the PSC method.

The workflow of the PSC method is illustrated in Fig. 5. In step 0,
M threads process slabs (slab 0, slab 2...slab 2M — 2) that belong
to the first group concurrently. In step 1, the M threads continue
to deal with slabs (slab 1, slab 3...slab 2M — 1) that belong to the
second group. We use the OpenMP [31] model to implement this
method.

3.1.2. Implement the PSC method using OpenMP

Three loops are required in the classical computation of EAM
potential and force. First, a loop is used to compute @ (pair
potential) and obtain p (electron density) from r (distance between
atoms) using an interpolation function. Afterward, the second
loop is used to obtain F (embedding energy) and its derivative.
F (embedding energy) must then be communicated, as the force
computation requires terms from adjacent simulation areas [27].
Finally, a loop computes the embedding energy contribution to
the force and adds the result to the two-body force [26]. The
approach in this case is to utilize the existing MPI framework
and then further decompose the workload of each MPI task
using OpenMP [32,31,33] multi-threading. Fig. 6 shows the partial
pseudo of the PSC method using OpenMP.

3.1.3. Limitation of PSC method

To avoid write conflicts caused by using Newton'’s third law, the
distance d, as shown in Fig. 7 in the 2-Dimension case, is supposed
to be larger than the cutoff radius. Therefore, different threads are
guaranteed not to write the same neighbor atom in the force array
simultaneously.

Because our PSC method is designed for large-scale MD
simulations, this restriction is overcome in most situations. A check
is still supported in our program: if the distance d is greater
than the cutoff radius, the PSC method is applied; otherwise, a
traditional method is provided. Because only half of the neighbors
are calculated, the distance d does not need to be larger than the
2 x cutoff radius.

3.2. Utilizing PSC on Xeon Phi

The Intel Xeon Phi is an x86-based many-core coproces-
sor based on Intel's Many Integrated Core (MIC) architecture
[34-36]. Xeon Phi [18] is designed for massively parallel work-
loads, which offers a highly theoretical computational perfor-
mance and memory bandwidth. These attributes of Xeon Phi [37]
make it a commendable option for exascale computing.

3.2.1. Utilize PSC on Xeon Phi using a native model

The Intel Xeon Phi has a full-service Linux OS and possesses its
own network interface, so it can act as an independent device. Pro-
grams can be solely executed on coprocessors without involving
the host CPUs. The native model is a fast way to make existing pro-
grams execute with minimal code changes. In the native model,
the MPI processes reside only inside the coprocessors. The applica-
tion [18], MPI libraries, and other necessary libraries must be up-
loaded to the coprocessors.

To utilize the PSC method on the Xeon Phi coprocessor in
the native model, it is not necessary to make modifications
on the host version code. It is simply necessary to invoke the
offload compiler with the “-mmic” flag. In addition, we copy the
executable file, input file, and required libraries to the coprocessor.
Then, the native executable file is ready to run directly on the MIC
coprocessor. What calls for special attention is that when programs
run on coprocessors, as many as 200 threads or more are typically
used. Thus, the simulation scale should be large enough to meet
the requirement mentioned in 3.1.3.

To illustrate the principle in a simple way, we only partition the
simulation area from the z dimension. If the area is cut from three
dimensions (x, y, and z), more steps and groups are needed, but
the principle is the same as partitions from only the z dimension.
Fig. 8 represents a partition of the simulation area from the y and
z dimension, in which four colors and 4 steps are used.
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//set the thread number in parallel region to M

//i is the slab index

1. thread number = M ;

2. divide the simulation area into 2M slabs;

3.

4. /*In step 0, M threads process the red slabs in parallel; In step 1, process blue slabs*/
S. #pragma omp parallel private(step)

6. For step from 0 to 2 by 1

7. #pragma omp for

8. For i from step to 2M by 2

9. compute distance r using M threads;

10. compute p from r using interpolation function in slab i using M threads;
11. End for

12.

13. communicate p using 1 thread;

14.

15. #pragma omp for

16. For i from step to 2M by 2

17. compute F and its derivative using interpolation function in slab i using M threads;
18. End for

19.

20. communicate the derivation of F using 1 thread;

21.

22. #pragma omp for

23. For i from step to 2M by 2

24. compute the ® in slabi;

25. calculate force using ® andF in slab i using M thread;

26. End for

27. End for

Fig. 6. Partial pseudo of the PSC method using OpenMP model.

cutoff radius \
[PEENY

cutoff radius
o« >

Fig. 7. If the distance d between two slabs (belonging to the same group) is greater than the cutoff radius, no common neighbor atoms will be operated simultaneously

among different threads.

Fig. 8. Partition of the simulation area from the y and z dimensions [38].

Thread affinity [19,37,39] provides a general technique to im-
prove performance on MIC architectures. It restricts execution [19]
of certain threads (virtual execution units) to a subset of the
physical processing units in multiprocessor computers. OpenMP
[40,41] threads can be bound to physical processing units through
the affinity environment variable. Depending on the operating sys-
tems [42], application and topology of the machine, thread affinity
may have a dramatic effect on the application performance. The
thread affinities investigated in our work are compact, scatter, and
balanced. In the compact affinity mode, the maximum number of
threads (which is 4 in Xeon Phi) is assigned to a core before be-

ing assigned to another core. This mode keeps the thread grouped
tightly together, so it may benefit if there are exchanged data or
shared data among threads. However, this mode may cause a load
imbalance problem in some cases. In the scatter mode [42], threads
are evenly distributed among the entire system in a round-robin
way. Therefore, threads with the neighboring IDs [39] are not guar-
anteed to be physically adjacent. When there is no dependence
among threads (especially neighboring threads), this mode can
lead to good performance. In the balanced affinity mode, threads
are also evenly distributed. This mode [39] makes full use of all
available cores while keeping the thread-adjacent logical IDs phys-
ically close to each other. In most instances, the balanced mode can
achieve good results. If the thread affinity is not set, it will be spec-
ified to none by default.

3.2.2. Utilize PSC on Xeon Phi using offload model

The offload model [36] is the standard solution for combining
the capabilities of multi-core CPUs with highly parallel accelerators
such as Intel MIC into a single application. Although CPUs [36] offer
a small number of general purpose cores, accelerators have many
specialized execution units, which can attain high floating-point
performance. The offloading method is usually used to program
the Xeon Phi because the majority of current applications [36]
cannot fully utilize hundreds of hardware threads for all parts of
the software but instead need the host CPU’s massive single thread
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Fig. 9. Offload the EAM computation the kernel to mic.

performance. The vendor recommended offload solutions for the
Xeon Phi are Intel’s Language Extensions for Offload (LEO) [40]
and OpenMP 4.0 [43]. The non-shared memory model and virtual-
shared memory model are supported in the offload compiler. The
non-shared memory model is chosen in our implementation.

With the offload model [44], the highly parallel compute-
intensive part and related data are transferred from the host to
the coprocessor through the PCI Express. The offload can be ini-
tialed with pragmas and directives by the programmer. Excessive
data-transfer time across coprocessors and host can reduce pro-
gram scalability. Only when the offload computation time com-
pensates the offload overhead cost will an overall improvement
in performance be attained. The offload [36] cost includes the
data/code transfer between host and coprocessors, synchroniza-
tion and other forms of offload framework overhead.

Force calculation is the most compute-intensive part of
molecular dynamics simulation, so the force kernel is offloaded
to the coprocessor. The mechanism employed in this case was
to utilize the existing MPI framework and offload the force
computation to the coprocessor. Next, we decompose the task of
each offloading MPI using the PSC method. Three loops are needed
in EAM force computation, and there are MPI communications
after every loop. Thus, in each iteration [37] of the EAM force
computation kernel, data must be transferred between the host
and Xeon Phi in three offload events. W. Michael Brown et al. [20]
have offloaded the neighbor list build and short-range calculation
to MIC. Because the lattice neighbor list remains the same through
the entire simulation time in Crystal MD, offloading for the lattice
neighbor list in every iteration is unnecessary. The offload flow
chart is illustrated in Fig. 9.

The time involved in transferring data between the host and
coprocessor causes significant overhead. Although some data must

‘ Initialization ‘
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‘ Offload potential table to mic ‘

I

‘ Offload lattice neighbor index to mic
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b

» End

Fig. 10. Using nocopy to reduce time for transferring data to mic.

be updated every iteration, some data remain the same throughout
the entire simulation. An excessive amount of time spent on
transferring data from coprocessor to coprocessor slows down the
execution. Transferring static data before the iteration begins could
lead to certain improvements. After the initialization phase, we
launch one offload region for instantiation and memory allocation.
Potential tables and the lattice neighbor list are transferred to the
Xeon Phi in this offload region. Inside the iteration, the coprocessor
can utilize nocopy, alloc_if() and free_if() to reuse previously
transferred data. The workflow for less transfer time is given in
Fig. 10.

In this work, we use LEO directives to perform data alloca-
tion and offload computation on MIC. The program can be com-
piled [45] by any C++ compiler and can even be used on machines
without coprocessors.

3.3. Improved SIMD exploitation

As discussed in Section 3.1.2, the EAM potential and force com-
putation requires three loops. In consideration of the constrained
space and the similarity of the three loops, we choose the p (elec-
tron density) calculation loop to introduce our optimization strate-
gies.

3.3.1. Cutoff radius “if clause”

There is a cutoff distance check (indicated on line 7 in Fig. 10)
to estimate if the distance r is shorter than the cutoff radius
in the short-range potential computation. As to the neighbors
whose distances between atom i are larger than the cutoff radius,
their contributions of electron density p should be ignored, not
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1. forall atoms i do

2. for all neighbors j do

3. delx = xi - pos[j]+[0];

4. dely = yi - pos[j]+[1];

5. delz = zi - pos[j]+[2];

6. rsq = (delx * delx) + (dely * dely) + (delz *delz);
7. if (rsq <= Rc) then //Re=curoff*cutoff
8. r=sqrt(rsq);

9. p= Interpolate(r);

10. rho i+=p;

11. rho[j]-=p;

12. end if

13.  end for

14.  end for

Fig. 11. Computing electron density p using distance r.

vice versa. S.J. Pennycook et al. [12,46] addressed this issue by
setting the adding value of neighbors that fail in the cutoff to
zero via blending/masking. The resembling technique is used in
Gromacs [22,23].

Nevertheless, these solutions bring about redundant calcula-
tion: both neighbors that satisfy and fail the cutoff check execute
lines 8-11 in Fig. 11. The amount of redundant calculation depends
on the proportion of neighbors that fail in the cut-off check. Pen-
nycook et al. [12] used a neighbor list in miniMD and Gromacs [23]
used Verlet pair-lists to control the ratio of failing atoms in the cut-
off check. Therefore, the efficiency loss is tied to the updating fre-
quency of the neighbor list. The more accurate the neighbor list is,
the greater the amount of time spent on updating the neighbor list.

3.3.2. Modified pre-searching neighbor method

We reference the lattice neighbor list in Crystal MD [30], which
finds neighbors according to their positions. Modifications have
been made to the neighbor searching method to achieve a higher
meet ratio of the cutoff radius check. Fig. 12 illustrates the principle
of the lattice neighbor list: to find the neighbors of atoms i (colored
red), a red rectangle whose width is N (calculated using Eq. (3))
times the lattice constant is used. In Eq. (3), ceil is used to return an
integer that is greater than or equal to the value of the expression
within the parentheses. The yellow atoms in this rectangle are
considered neighbors of atom i. In most cases, this algorithm makes
about 30% of the neighbors meet the cutoff radius check, which
leads to a significant performance loss when SIMD is used.

N = ceil (cutoff radius/lattice constant). (3)

The modifications of the lattice neighbor list are detailed as
follows: pre-calculate the lattice position distance between atom
i and the yellow atoms; if the distance is shorter than variable
R (calculated using Eq. (4)), the yellow atoms are determined as
a neighbor of atom i; otherwise, the yellow atoms are removed
from the lattice neighbor list. In our application background, atoms
generally do not derivate from their lattice position more than
twice the lattice constant. Here, we use Eq. (4) to determine
variable R, and variable R can be adjusted according to other actual
applications. The pre-searching work only needs to be carried out
once during the entire simulation process, so time consumption
in this work can be ignored. After the modified pre-searching
neighbor strategy is used, up to approximately 70% of neighbors
can meet the cutoff check. For MD packages that use a neighbor list,
to achieve the same meet ratio, a large amount of time is necessary
to update the neighbor list.

R = cutoff + 2 * (lattice constant). (4)
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Fig. 12. Neighbor searching method in Crystal MD. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

The simulation variables, such as positions and forces, are
double-precision in Crystal MD. We use 256-bit SIMD [46-49] for
vectorization implementation, so we process four [13] neighbors
simultaneously. The left part in Fig. 13 [12] illustrates the AVX
and AVX2 implementation outline for p computation. 256-SIMD
is used to process four neighbors simultaneously. The right part is
a 512-SIMD implementation outline in which eight neighbors are
operated at the same time.

4. Experiments results and analysis

Three test cases were used in our experiments: the small
simulation case (549,250 atoms), the middle simulation case
(1,024,000 atoms), and the large simulation case (8,192,000
atoms).

4.1. Experiment result and analysis of multi-threading optimization

In these experiments, we use the Red Hat 4.8.2-16 operating
system and Intel(R) Xeon(R) CPU E7-8890 v3. Given that the EAM
calculation kernel is the most compute-intensive part and is where
we make the optimizations, the execution time in the experiment
results indicates the EAM computation time.

The comparisons of the speedup of the PSC, RC, and CS methods
are presented in Fig. 14. The RC in Fig. 14 refers to the redundant
computation method used in LAMMPS (set the Newton command
to off [50] in the input file, i.e., Newton's 3rd law is turned to off for
pairwise interactions). The CS is the critical section method used
in LAMMPS. It is clear that our PSC method has the best speedup
compared with the other two methods over the three test cases.

Fig. 14 indicates that the CS method experiences bad speedup
when the thread number is 16 and 20. The critical method reduces
the global properties serially using a “critical” directive, so that
only one thread at a time can access the global variables [50]. Thus,
the speedups of the critical method are worse than those of our
PSC method with an increasing number of threads. The redundant
computation method (RC) exhibits better speedup than the CS
method. Although the speedup is good, the execution time of the
RC method is the longest of all the methods. Because the RC method
duplicates the computation, it executes slower when simulating
the same number of atoms.

Fig. 15 shows that our PSC method achieves a nearly linear
speedup, which proves its satisfying scalability. In addition, the
performance of our PSC method is improved with an increasing
number of threads and atoms. The good performance of the
PSC version benefits from several factors. First, as mentioned in
Section 3.1, we partition the simulation area into equal sized slabs,
which guarantees load balancing among multiple OpenMP threads.
Second, as critical sections are not used in our PSC method, there
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Fig. 15. Speedup of the PSC method.

are no severe serial bottlenecks. The only cost of the PSC method
is several implicit barriers in every simulation time step. To avoid
conflicts between two groups, the second group must be processed
after the first one is completely finished.

To test the performance of the PSC method on a very large
scale, we used a 4 billion-simulation case (4,000,000,000 atoms).
The execution time for 200 cores is taken as the speedup basis.
The PSC method shows a perfect speedup from 200 cores to 800
cores. The number of cores in the x-coordinate in Fig. 16 equals the
MPI number * OpenMP number in each MPL In our experiment
machine, there are 10 cores in a processor. When the OpenMP
number is set to 20, the 20 threads are not in the same processor.
As a consequence, the performance when the thread number is 20
is slightly worse than the performance when the thread number is
10.
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Fig. 16. Speedup of the PSC method simulating 4,000,000,000 atoms.
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Fig. 17. Speedup of the PSC method in a larger scale.

To avoid write conflicts among threads, the private work
area (PWA) method replicates the entire write-shared array and
allocates a private copy to each OpenMP thread. The extra memory
usage for the PWA method scales as @ (np) [17], in which n is the
number of simulation atoms and p is the number of threads. We
made an estimate on the redundant memory allocation of the PWA
method in CrystalMD. There are three write-share data structures
in EAM computation: force f(3 * double), electron density term
p(1 x double), and the derivative of embedding energy df (1 *
double). Fig. 17 estimates the memory usage of the PWA method
in the large test case (8,192,000 atoms). The memory usages of
the PSC method were obtained from experiments using the large
test case. It is obvious that the memory usage of the PSC method
remains almost the same among different numbers of threads, and
it is much less than the PWA method.
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4.2. Experiment result and analysis of PSC on Xeon Phi

The hardware and software platform for the MIC experiment is
detailed as follows:

The host is an Intel Xeon CPU E5-2670 @2.60 GHz, and the
0S is Linux 2.6.32. The Intel Xeon Phi coprocessor is 7120P. The
coprocessor has 8 GB DRAM (GDDRS5), 61 cores each at 1.09 GHz
and 4-way hardware multi-threading. The coprocessor is equipped
with u0S 2.6.38.8 and mpss3.2.3. The Xeon Phi thread number and
MPI task division are varied in the experiment. In the experiment
with n MPIs, each MPI takes charge of 1/n of the simulation
material. The middle test case (1,024,000 atoms) is used in this
section.

4.2.1. Native model experiment

The application is compiled using mpiicpc - mmic and
executed using mpiexechydra - n 1/2/4. The results pre-
sented in Fig. 18 give the absolute performance (i.e., (atoms *
time steps)/execution time) for different coprocessor thread counts
and host MPI in native mode. A higher number is better.

Fig. 19 illustrates the Atom-steps/s for different thread affinity
and coprocessor thread counts in native mode. There are 61
cores on the coprocessor, and one core is responsible for OS
processes. Although each core can support four hard-threads,
resource contention in the core may delay the speedup [51].
Despite the resource contention, the best performance is achieved
when the Xeon Phi thread number is 240. Multi-threading gains
more than the synchronization and contention cost [45,51].

The balanced and scatter mode make the load perfectly
balanced among threads, so the application in these two modes
performs well. There is no data sharing among iterations of loops
in the PSC method. Therefore, the compact affinity mode, which
binds the consecutive threads close together, does not gain good
performance. The MD application [42] has some parallel regions
that did not utilize all the available OpenMP threads, so it is
desirable to avoid binding multiple threads to the same core while
leaving other cores unused. A thread normally runs [42] faster on
a core where it is not competing for resources with other threads.
Thus, when KMP_AFFINITY = none the performance is better than
compact.
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Fig. 20. Atom-step/s for different coprocessor thread counts and host MPI.
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Fig. 21. Absolute performances of the original version and AVX version.

4.2.2. Offload model experiment

In this experiment, we use MPI at the cluster level, coupled with
OpenMP and the offload model at the node level. Fig. 20 shows the
absolute performance for different coprocessor thread counts and
the host MPL

Fig. 20 illustrates that the absolute performance is higher with
an increasing Xeon Phi thread number. Moreover, the absolute
performance reaches a peak when the thread number is the
maximum 240. This experiment proves that the PSC method is also
efficient using many threads.

4.3. Experiment result and analysis of improved SIMD implementa-
tion

Intel(R) Xeon(R) CPU E7-8890 v3 and Red Hat 4.8.2-16
operating system are used here. The simulation parameters were
fixed as follows: the cutoff radius is 5.6, lattice constant is 2.855,
and time steps is 30. We use absolute performance (i.e., (atoms *
time steps)/execution time) to compare the AVX and original
versions. Because our optimization concentrates on the force
calculation kernel, we only observe the execution time of EAM
force calculation for both SIMD and the original versions.

Table 1 shows the execution time and speedups. Fig. 21
compares the absolute performances of our SIMD and original
versions with different atom numbers. Fig. 21 also reveals that the
Atom-Step/s of the scalar version remain almost the same across
various problem sizes. Our optimized SIMD code is consistently
about 3 times faster than the scalar version over different
simulation scales.

5. Conclusions

We provide multi-threading and vectorization optimization
of the MD force calculation kernel. Our optimization strategies
accelerate the original MD version. Thus, in the same experimental
platform and limited time, a longer physical process can be
simulated using our optimized version.

We put forward a PSC method to avoid write conflicts when
short-range force is calculated on shared-memory multi-core
platforms. Our PSC method brings about neither extra memory
usage, redundant computation, nor severe serial bottlenecks with
increasing threads. Using both native and offload models, we
utilize the PSC method on the MIC coprocessor.In the offload
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Table 1
Execution time and speedup.
Thousands of atoms 54 182 250 432 1024 2000
Original execution time (s) 239 783 11.06 1856 45978 90.48
SIMD execution time (s) 0.83 257 426 6.61 17.48 33.53
Speedup 288 305 260 281 263 2.70

version, we offload the force calculation part to the coprocessor.
We use nocopy and appropriate alloc_if as well as free_if() to
reduce transfer time. Our experiment results demonstrate that the
PSC method is scalable and efficient using up to 240 threads.

The cut-off radius “if clause” in short-range force calculation
has a great influence on the MD package performance. We modify
the lattice neighbor list in Crystal MD by adding a pre-searching
procedure. The modified strategy leads to about 70% of atoms
meeting the cutoff check, which decreases numerous redundant
calculations. The optimized vectorization version is about 3 times
faster than the scalar one.

Future research directions include auto tuning and data
partitioning. Although EAM potential was used as an example, our
optimization strategies are widely applicable for other short-range
potentials. Both our multi-threading and vectorization optimizing
methods are effective and straightforward to implement.
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