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a b s t r a c t

The structural evolution of alloys is affected by the elastic energy associated to eigen-stress fields.
However, efficient calculations of the elastic energy in evolving geometries are actually a great challenge
in promising atomistic simulation techniques such as Kinetic Monte Carlo (KMC) methods. In this paper,
we report two complementary algorithms to calculate the eigen-stress field by linear superposition (a.k.a.
LSA, Lineal Superposition Algorithm) and the elastic energy modification in atomistic interdiffusion of
alloys (the AtomExchange Elastic Energy Evaluation (AE4) Algorithm). LSA is shown to be appropriated for
fast incremental stress calculation in highly nanostructuredmaterials, whereas AE4 provides the required
input for KMC and, additionally, it can be used to evaluate the accuracy of the eigen-stress field calculated
by LSA. Consequently, they are suitable to be used on-the-fly with KMC. Both algorithms are massively
parallel by their definition and thus well-suited for their parallelization on modern Graphics Processing
Units (GPUs). Our computational studies confirm that we can obtain significant improvements compared
to conventional Finite Element Methods, and the utilization of GPUs opens up new possibilities for the
development of these methods in atomistic simulation of materials.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Eigen-stress fields are generated by the matching conditions of
different constituents inmaterial systems [1,2]. In particular, inho-
mogeneous crystal alloys with composition-dependent lattice pa-
rameter are subjected to intrinsic eigen-stress fields,which depend
on the spatial composition distribution. This distribution could be
rather complex in some cases, such as spinodal decomposedmetal
alloys [3] or alloy-based nanostructured semiconductors [4].

Predictive simulation of the time-evolution of material nanos-
tructure is critical in certain scenarios such as structural steels
in nuclear plants [5] or state-of-the-art integrated circuits during
front-end processing [6]. Such evolution is affected by the elas-
tic energy associated to eigen-stress fields [7,8]. However, efficient
calculations of the elastic energy in evolving geometries are actu-
ally a great challenge for promising simulation techniques such as
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Kinetic Monte Carlo (KMC) methods [9,10]. In most cases, numer-
ical solutions to this problem have been proposed by using Finite
ElementMethods (FEM) [11,12]. Nevertheless, the use of both KMC
methods and on-the-fly FEM calculations is nowadays computa-
tionally prohibitive. Indeed, FEM represents an approach for the
solution of a weak form and, hence, anymodification of the system
configuration implies the whole resolution of the resulting new al-
gebraic system of equations [13]. Consequently, the process would
be too time-consuming for estimating the ‘‘instantaneous’’ eigen-
stress field in evolving systems.

Eigen-stress fields may be also approximated in the context of
the linear elastic theory within the small strain limit [14]. Within
this framework, the final configuration coincides with the refer-
ence configuration (small displacement hypothesis) and the strain
is linear with stress [14]. Therefore, superposition can be applied.
In this work, we propose an algorithm based on the superposition
of the eigen-stress fields associated to elementary contributions.
Within the same context, the elastic energy modifications associ-
ated to atom-scale changes can be also estimated from stress field
modifications. Our proposal offers several advantages compared to
previous approaches [7,11,12,15,16]:
1. It allows incremental calculation of the stress field taking into

account only local modifications of the alloy structure. This
means higher computational efficiency.
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2. The balance between accuracy and efficiency can be tuned by
choosing the truncation radius for superposition.

3. It is massively parallel by its definition and, therefore, an addi-
tional performance gain can be obtained by using parallel pro-
cessors.

These advantages together offer a great opportunity to have a
very efficient algorithm to calculate the elastic energy modifica-
tions related to atomistic diffusion events,which are an input to the
KMC algorithm for every attempt of interdiffusion event (i.e. after
every few Monte Carlo steps).

The paper is structured as follows. After this introduction,
Section 2 describes the underlying linear superposition model
and the method to calculate the energy modifications associated
with the eigen-stress. Based on this model, Section 3 shows the
corresponding algorithms and their parallelization on modern
processors, whereas Section 4 shows the performance and quality
evaluation of our algorithm. Finally,we outline the conclusions and
some directions for future work.

2. Model

Let us consider an A1−XBX binary alloy with orthotropic crystal
structure, where X is the molar fraction of B atoms, which
is a dimensionless measure of alloy composition. Assuming a
linear dependence of lattice parameter a with alloy composition
(Vegard’s law), the lattice parameter can be expressed as:

a(X) = a(0) + (a(1) − a(0))X, (1)

where a(0) and a(1) are the lattice parameters of the pure
constituents of the alloy. The maximum lattice mismatch in
the alloy is ϵmax = (a(1) − a(0))/a(0.5). The spatial composition
dependence is accounted dividing the simulation domain into a
nanometer-sized uniform cubic mesh. We denote by n = (nx,
ny, nz) the vector index of each mesh element, with nx, ny, nz
being integer numbers.Within an atomistic framework, eachmesh
element has an integer number of alloy atoms, Nat ≃ CatΩ , where
Cat is the atom density of the alloy and Ω is the volume of each
mesh element. Likewise, it verifies Nat = NA + NB, with X =

NB/Nat , where NA and NB are, respectively, the integer number of A
and B atoms in each mesh element. If moderated lattice mismatch
(|ϵmax| ≪ 1) and low defect concentration are assumed, Nat can
be approximated to be constant in all mesh elements. Usual mesh
spacing for atomistic simulations are within the nanometer scale
and Nat is typically ranging from few tens to several hundreds.

In this context, the minimum composition variation in an
element will be given by:

δX =
1
Nat

, (2)

and, thus, the elementary eigen-expansion ratio, related to a com-
position change of δX will be:

δϵ =
ϵmax

Nat
. (3)

Let us consider now the tensor stress field δ ¯̄σ(n) generated by an
elementary eigen-expansion δϵ in the reference mesh-element lo-
cated at (0, 0, 0)over an infinite (andotherwise unstressed andho-
mogeneous) domain. We will refer to δ ¯̄σ(n) as elementary stress
field. An analytic solution for δ ¯̄σ(n) could be found if the expanded
element would have spherical geometry and the material would
be isotropic. However, no analytic solution is available in our case,
where the expanded mesh element is cubic (instead of spherical)
and thematerial is orthotropic (instead of isotropic). Alternatively,
a numerical estimation of δ ¯̄σ(n) can be obtained using FEM. No-
tice that themagnitude of the components of the elementary stress
Fig. 1. Schematics of the contribution to the stress ¯̄σ in a mesh element n, induced
by an elementary composition variation δX atmesh element l. The shadowed region
symbolizes the orthotropic stress-field δ ¯̄σ related to this δX . The local contribution
on element n depends on the relative position vector k = n − l.

tensor δ ¯̄σ(n) are inversely proportional to the mesh element vol-
ume Ω . Hence, the product Ωδ ¯̄σ(n) is independent on the mesh
spacing and it could be estimated ‘‘once and forever’’ for each ma-
terial.

Consequently, for a non-uniform X(n) alloy composition, the
total eigen-stress field ¯̄σ(n) may be expressed, considering elastic
linear superposition, as (see Fig. 1):

¯̄σ(n) =


l

X(l) − ⟨X⟩

δX
δ ¯̄σ(n − l). (4)

Eq. (4) accounts for the contribution ofmesh element l on the stress
field at themesh elementn. In this sense,n−l represents the vector
index of each element relative to the location of the elementary
expansion (Fig. 1). Denoting ⟨X⟩ the average alloy composition
of the system, the magnitude of the eigen-stress field due to
element l is proportional to the difference X(l) − ⟨X⟩. Under the
above mentioned assumptions (and in absence of applied external
forces), a mesh element with alloy composition equal to ⟨X⟩ does
not contribute to the stress field. Sincewe consider a bulkmaterial,
periodic boundary conditions are appropriate and, hence, cyclic
values are adopted for the vector n − l in terms of the considered
domain.

If the faraway elementary contributions could be neglected, the
sum in Eq. (4)may be truncated to small values of ||n − l||, with || ||

being a norm of the integer vector. For convenience, the relative
vector index k = n − l can be adopted (see Fig. 1) and, then,
Eq. (4) can be rewritten as:

¯̄σ(n) =


k

||k||≤kmax

X(n − k) − ⟨X⟩

δX
δ ¯̄σ(k). (5)

For simplicity, the norm we use is ||k|| = max{|kx| ,
ky , |kz |}.

Therefore, the condition ||k|| ≤ kmax corresponds to a cube with
(2kmax+1)3 mesh elements. Notice that, in previous equations, the
elementary stress tensor δ ¯̄σ(k) represents an input of the model
and it can be extracted from the previously calculated Ωδ ¯̄σ(k).

Crystal alloy evolution is known to be driven by mobile
native defects [17]. Assuming low defect concentration, alloy
interdiffusion and precipitation have been modeled as a sequence
of defect-driven exchanges of pairs of A–B atoms of neighboring
mesh elements [18,19]. A great computational advantage of the
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model here proposed, with regard to every strategy supported on
the Finite Elements technique, resides in the incremental updating
of the total stress-field ( ¯̄σ). In fact, after an exchange between an A
atom in cell p and a B atom in cell q the resulting stress field, ¯̄σ final,
may be quickly recalculated from the initial one, ¯̄σ init , as:

¯̄σ final(n) = ¯̄σ init(n) + δ ¯̄σ(n − p) − δ ¯̄σ(n − q) (6)

with δ ¯̄σ(k) is truncated to ||k|| ≤ kmax. This strategy allows on-
the-fly updating of the total stress field after every atom exchange
event in a reasonably short computational time.

The exchange probability of an A–B atom pair depends on the
total energy modification of the system and, thus, the dynamics of
the system is driven by the energy changes associated to structural
modifications. A contribution to these energy changes is given by
the elastic energy, whereas another contribution is coming from
the chemical mixing energy [20]. For a cubic material, the local
elastic energy density (per unit volume) at every mesh element is
given by [14]:

U( ¯̄σ) =
1
2Y


i

σ 2
i −

ν

Y


i


j

j>i

σiσj +
1
G


i

τ 2
i (7)

where Y is the Young’smodulus, ν is the Poisson’s ratio andG is the
shear modulus. For convenience, we have denoted the cartesian
components {σxx, σyy, σzz, σyz, σxz, σxy} of the total stress tensor
( ¯̄σ) as {σ1, σ2, σ3, τ1, τ2, τ3}, where σi (with i = 1, 2, 3) refers to
the diagonal stress components whereas τi (with i = 1, 2, 3) refers
to the shear components.

The total variation of the elastic energy of the system due to the
exchange of an A-type atom from cell p with a B-type atom from
cell q is given by:

∆E(Ap 
 Bq)

= Ω

n


U( ¯̄σ(n) + δ ¯̄σ(n − p) − δ ¯̄σ(n − q)) − U( ¯̄σ(n))


. (8)

Taking into consideration the incremental approach established in
Eq. (6), it can be shown that Eq. (8) can be approximated by:

∆E(Ap 
 Bq) = δE(p) − δE(q) (9)

with

δE(p) =


k

||k||≤kmax


1
Y


i

σi(p + k)Ωδσi(k)

−
ν

Y


i


j

j≠i

σi(p + k)Ωδσj(k)

+
2
G


i

τi(p + k)Ωδτi(k)


(10)

where second-order terms of δσi and δτi have been neglected, and
the same values for Y , ν, and G have been assumed in all mesh
elements.

As shown in Eq. (10), the elementary energy variation δE(p) is
related to the interaction between the normal (diagonal) and shear
components of the preexisting eigen-stress tensor field ( ¯̄σ) and the
corresponding ones of the elementary stress field (δ ¯̄σ), associated
to an elementary expansion. In this sense, and in an analogous
way to the stress variation defined in Eq. (6), δE(p) accounts for
the energy modifications related to all the elements affected by
the expansion of element p. Consistently to Eq. (5), a truncation
distance of kmax has been considered. Interestingly, according to
Eq. (10), δE(p) can be seen as a scalar potential for alloy
interdiffusion.
Finally, in the context of alloy dynamic evolution, δE(p) may
be used as the physically-relevant magnitude to quantify the
agreement between the stress field solution obtained by different
numerical methods. In the present case, we will compare the
results of the linear superposition strategy, proposed in this work,
to those obtained by classical FEM, used as a reference. Moreover,
as it has beenpointed out above, this energymodification is a scalar
(whereas the eigen-stress field is a tensor) and, thus, it allows a
straightforward quantification of such agreement.

3. Code design and parallelization techniques

In this section, we present two algorithms based on the models
described above, which are aimed to calculate the eigen-stress
field (Linear Superposition Algorithm, LSA) and the elastic energy
modification in atomistic interdiffusion of alloys (Atom Exchange
Elastic Energy Evaluation algorithm, AE4). Although, in our case,
both algorithms work together to model alloy interdiffusion, they
can be also used independently to solve other kind of problems.
Firstly, we introduce the sequential baselines before we discuss
our parallelization strategy based on data-parallelism to leverage
horsepower of both Graphics Processing Units (GPUs) and chip
multiprocessors (CMPs).

3.1. Sequential baselines

Algorithm 1 The Sequential version of our application that
contains both LSA and AE4 algorithms. This application is
developed to model alloy interdiffusion.

δσ̄ = Load Elementary_Diagonal_Stress
(elementary_stress_tensor.csv);
δτ̄ = Load Elementary_Tangential_Stress
(elementary_stress_tensor.csv);
X = Load Concentration_Distribution(concentration.csv);
LSA();
AE4();
printResults();

Algorithm 2 Linear Superposition Algorithm (LSA) to calculate the
eigen-stress field.

σ̄ = 0 τ̄ = 0
#pragma omp parallel for collapse (3);
for nx = 0 to Nx do

for ny = 0 to Ny do
for nz = 0 to Nz do

for kx = −kmax to kmax do
for ky = −kmax to kmax do

for kz = −kmax to kmax do
n = (nx, ny, nz); k = (kx, ky, kz)
l = n − k
l = circularChecking(l)
fact =

X(l)−⟨X⟩

δX
kcircular = circularChecking(k)
σ̄ (n)+ = fact ∗ δσ̄ (kcircular)
τ̄ (n)+ = fact ∗ δτ̄ (kcircular)

end for
end for

end for
end for

end for
end for
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(a) Shorter anneal. (b) Longer anneal.

Fig. 2. 100 nm × 100 nm composition maps of a nominally Fe0.5Cr0.5 alloy after an anneal at 500 °C for two different evolution stages. Color scale correspond to molar Cr
fraction, with blue denoting Fe-rich regions and red indicating Cr-rich regions. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Algorithm 1 shows a Single Program Multiple Data (SPMD)
pseudocode for the validation of our approach. The elementary
stress field δ ¯̄σ is calculated offline using Finite Element Methods
(FEM) and it is loaded from the elementary_stress_tensor.csv file.
Diagonal (normal) components are stored in the δσ̄ 3D matrix
(with δσ̄ = (δσxx, δσyy, δσzz)) while the off-diagonal (tangential)
components are stored in the δτ̄ 3D matrix (with δτ̄ = (δτxy,
δτxz, δτyz)). The size of these matrices is N = (Nx,Ny,Nz), which
establishes the number of mesh elements in each direction. The al-
loy concentration distribution is loaded from the concentration.csv
file and stored in the X , which is also a 3D matrix. In the exam-
ples used for illustration (see Fig. 2), the concentration distribu-
tions correspond to the iron–chromium alloy (FeCr), and they have
been generated by the atomistic simulator MMonCa [19,21].

Algorithm 3 The Atom Exchange Elastic Energy Evaluation (AE4)
algorithm.

nz = 5
#pragma omp parallel for collapse (2);
for nx = 0 to Nx do

for ny = 0 to Ny do
S1 = 0; S2 = 0; S3 = 0
n = (nx, ny, nz)
for kx = −kmax to kmax do

for ky = −kmax to kmax do
for kz = −kmax to kmax do

k = (kx, ky, kz)
m = circularChecking(n + k)
kcircular = circularChecking(k)
S1+ =


i σi(m) Ωδσi(kcircular)

S2+ =


i


j
j≠i

σi(m) Ωδσj(kcircular)

S3+ =


i τi(m) Ωδτi(kcircular)
end for

end for
end for
δE[n]+ =

1
Y ∗ S1 −

µ

Y ∗ S2 +
2
G ∗ S3

end for
end for

Algorithm 2 shows the LSA kernel, which calculates the eigen-
stress field of the alloy by linear superposition (see Eq. (5)).
With this aim, it convolutes the concentration matrix X with
the elementary stress matrices (δσ̄ and δτ̄ ). The constants ⟨X⟩

and δX are previously described in Section 2. The convolution is
performed by iterating over (2kmax + 1)3 nearest neighbors, which
actually correspond to (2kmax + 1)3 points in a 3D stencil pattern
of computation [22,23]. The kmax matrix borders in each dimension
are also computed as periodic boundary conditions are applied
to the simulation domain. Thus, the circularChecking() function
returns valid matrix indexes by making use of such periodic
conditions. The diagonal components of the resulting stress field
are stored in the σ̄ matrix, whereas the tangential components are
stored in the τ̄ matrix.

Algorithm 3 shows the computation developed in the AE4

kernel. This calculates the spatial distribution of the elementary
energy variation δE (Eq. (10)), which acts as a potential for alloy
interdiffusion (see Eq. (9)). The eigen-stress field of the sample,
obtained by LSA (see Algorithm 2) and stored in σ̄ and τ̄ matrix,
is taken as an input. Alternatively, the eigen-stress field obtained
by FEM can be taken for comparison and validation tests. Besides,
the elementary stress field (δσ̄ and δτ̄ , already used in Algorithm
2), the mesh element volume (Ω), and the elastic constants of the
material (Y , ν and G) are used in the AE4 algorithm. For validation
and illustration purposes, δE is calculated in a 2D plane. Therefore,
the computation is based on a two-nested loop (nx, ny) that iterates
over a Nx × Ny 2D-matrix.

3.2. Parallelization strategies

Algorithms 2 and 3 are well-suited for data-based parallelism.
For instance, in Algorithm 2, the cells of σ̄ and τ̄ matrices are
written independently to each other. Hence, the most-external
loops (ni = 0 to ni = Ni, with i = x, y, z) can be fully parallelized
from a data point of view. This means O(n3) iterations that can be
potentially developed in parallel. δE matrix in Algorithm 3 is also
fully parallelized, having O(n2) iterations that can run in parallel
as well. It is also noteworthy that the number of floating-point
operations in most-internal loops of Algorithm 3 is higher than
in Algorithm 2, which implies heavier threads in an hypothetical
parallelization.

With that in mind, we have developed two different parallel
implementations. The former is developed using OpenMP for
latency-oriented architectures like traditional CPUs. OpenMP
development is based on #pragma statements that are captured by
the compiler, validated and translated to the appropriate function
calls to the OpenMP library and runtime system. We refer the
reader to [24,25] for insights about OpenMP programming model.
The parallelization process consists of dividing the application in
different ‘‘threads’’ that run in parallel on the target architecture.
Algorithms 2 and 3 show the directive #pragma omp parallel for to
parallelize the outer-for-loops that iterates over n dimension. The
collapse clause is also included to merge loop iterations, increasing
the total work units that will be partitioned across the available
threads. The inner loop is left unchanged to be vectorized in case
the compiler can do so. We set the -O3 compiler flag that will do
for us in case there is no data-dependencies. Moreover, we have
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set the KMP_AFFINITY to scatter to distribute the threads across
the processor, maximizing the usage of the cache storage space.

The latter implementation is tailored to NVIDIA GPUs based on
the CUDA programming model [26]. CUDA programming model is
very well-suited for data-based parallelism [27] as it is based on
the execution of a very large set of lightweight threads that runs in
parallel on the different NVIDIA GPU multiprocessors. For insights
about CUDA programming model, we refer the reader to [26].
Algorithms 2 and 3 are parallelized on the GPU in two different
kernels (i.e. functions that are executed on the GPU). Iterations of
outer-loops are defined as threads, and they are equally distributed
into blocks. We also use on-chip shared memory to store all the
information shared by threads within the same block to increase
overall memory bandwidth.

4. Evaluation

This section analyzes the proposed algorithms. Firstly, the
hardware and software environment is described to provide fully
reproducible results. Performance results are given for single
precision numbers and a single iteration run. Nevertheless, these
results are obtained as the average of 100 iterations to avoid
possible runtime benefits like additional cache hits or operative
system overheads.

We focus on the computational features of our algorithms
and how it can be efficiently implemented on GPUs. In order to
guarantee the correctness of our algorithms, a quality comparison
between the results obtained by traditional FEM approaches and
our codes is provided. Additionally, we have tested LSA in a
simple particular configuration inwhich an analytic stress solution
can be found. FEM calculations have been performed using the
commercial-based software ANSYS [28].

4.1. Computational environment

During our computational experimentation, we have used the
following computing platforms:

• The C, OpenMP and CUDA codes are executed on a linux-based
workstation (Ubuntu 64 bit 14.04.4 LTS) with the following
characteristics. On the CPU side, it has an Intel Xeon E3-1220
processor running at 3.10GHz and endowedwith four cores and
16 GBytes of DDR3 memory. On the GPU side, it has two Nvidia
GPUs. One of them is a NVIDIA Tesla Kepler K40c with 2880
cores (15 Streaming Multiprocessors (SMs) and 192 Streaming
Processors (SPs)) running at boost clock of 0.74 GHz, giving a
raw processing power of up to 5068 GFLOPS. The other one is a
NVIDIA Fermi GeForce GTX 580 with up to 512 cores (16 SMs
and 32 SPs) running at boost clock of 1,5 GHz, giving a raw
processing of up to 1581 GFLOPS.

• The ANSYS computations are executed on a desktop-based
machine with an Intel Core I7-3630QM running at 2.4 GHzwith
12 GB of DDR3 memory and SSD technology. The operative
system is Windows 8.1 64 bits.

We use gcc 4.8.4 with the -O3 flag to compile our CPU imple-
mentations, and CUDA compilation tools release 6.5 on the GPU
side. FEM results are obtained with commercial ANSYS release 16.

4.2. Benchmarking

As pointed out in Section 2, the elementary energy variation
δE(n) defined in Eq. (10) can be used as a merit figure for the
validation of the eigen-stress fields computed by LSA, compared
to FEM. This gives a scalar map directly describing the stress-
related driving force for structural evolution. As a workbench for
the comparison, we use a spinodally decomposedmetal alloy. Such
material systems present a complex vein-like geometry with a
high variety of local stress configurations. In particular, we select
a simulated sample of a nominally Fe0.5Cr0.5 crystal alloy after
an anneal at 500 °C, which suffers spontaneous separation into
iron-rich and chromium-rich phases (known as α and α′ phases,
respectively).

The simulation samples have been prepared using theMMonCa
atomistic simulator [21], based on the Object Kinetic Monte Carlo
method (OKMC) [9], following the procedure described in [19]. The
input parameters of the OKMC simulations are also those listed
in Ref. [19]. A simulation box of 100 nm × 100 nm × 10 nm
with mesh spacing of 1 nm has been set for the simulations.
Thus, grid dimensions are N = (100, 100, 10). Assuming an atom
concentration of 8.7 × 1022 for the alloy, the number of atoms in
each 1 nm3 cell is Nat = 87 and, then, the elementary composition
variation is δX = 1.15 × 10−2.

Typical composition maps are shown in Fig. 2 for different
annealing stages, showing average spacial periodicity ⟨λ⟩ of≈7 nm
for the shorter anneal and ≈10 nm for the longer one (see Fig. 2).
As iron and chromium constituent materials have a certain lattice
mismatch (ϵmax ≈ 0.7%), an eigen-stress field will be associated
to the spatial composition changes in the structure. This eigen-
stress field has been estimated by using both LSA (see Eq. (5))
and FEM, using commercial software ANSYS [28]. Moreover,
the elementary δ ¯̄σ(k), used as the building-block for LSA, was
previously calculated off-line by ANSYS. Details about these
calculations are summarized below.

Regarding FEM, the infinitesimal strain tensor is considered,
since for the above described problem the expected displacement
gradient is sufficiently less than the unity [29]. In particular, the
governing equations of the problem in hand corresponding to the
linear elastic problem [29,14], where strains are in geometric com-
patibility with the displacements, stresses and strains are related
via a cubic orthotropic relationship of the considered materials,
and the stress tensor verifies the equations of motion, all under
the appropriate boundary conditions. The resulting displacement-
based boundary value problem may be posed as a weak form
whose numerical solution is approximated by the Finite Element
Method [13]. To this respect, the simulation domain was dis-
cretized into hexahedral finite elements of 1 nm edge. A high or-
der volumetric finite element, with quadratic displacement behav-
ior, has been considered in order to take into account the ‘‘bowing
effect’’ of the edges in each cubic mesh element during the eigen-
expansion. In this sense, the 3D finite element SOLID186 of the AN-
SYS library [30], a twenty-node brick element with control nodes
located at the corners and at the edgesmidsize, represents the sim-
plest approach to the modeling of such effect and it has been cho-
sen for our FEM calculations. Moreover, in consonance with the
characteristics of themodel presented at Section 2, cyclic (periodic)
displacement conditions have been applied over the boundaries of
the considered domain. The values of elastic parameters for iron
(Y = 2.11 · 1011 N/m2, ν = 0.29, and G = 1.7 · 1011 N/m2)
have been assumed for the alloy. In this context, the solution of the
abovementionedweak form is numerically approximated through
the resolution of a linear system of equations [13,31] using the Di-
rect Sparse Solver [32]. The obtained solution provides the nodal
degree-of-freedom displacement values. Stresses and strains are
derived from the primary solution in displacements. The global
stiffness matrix of such system is symmetric and it has been ob-
tained by uniform reduced integration of each element [31,32].

4.3. Qualitative evaluation

The eigen-stress fields corresponding to the two FeCr alloy
samples of Fig. 2 have been estimated both using FEM and using
LSA with kmax = 4. In order to compare the results of the two
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(a) Shorter anneal—FEM. (b) Longer anneal—FEM.

(c) Shorter anneal—LSA. (d) Longer anneal—LSA.

Fig. 3. Comparison of the interdiffusion potential maps δE(n) calculated from the eigen-stress fields given by FEM (top panels) and those given by LSA with kmax = 4
(bottom panels) for the two FeCr samples of Fig. 2 (left: shorter anneal, right: longer anneal). Map dimensions are 100 nm × 100 nm and the color scale corresponds to
energy in meV units (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
methods, the corresponding interdiffusion potential maps δE(n)

have been calculated using (10) and displayed in Fig. 3. An overall
qualitative agreement between LSA and the reference FEMmethod
is observed for both samples.

A quantitative comparison can be also performed as a function
of the truncation distance of LSA. To do that, we choose to use two
cubic samples corresponding to the same anneals than those of
Fig. 2 butwith 40nm×40nm×40nmdimensions andwe vary kmax
from 0 to 10, going from lower to higher accuracy, but also from
higher to lower computation efficiency. The agreement to FEM has
been quantified with the relative quadratic error, calculated as:

error =
1

√
N


n

(δELSA(n) − δEFEM(n))2

max(δEFEM(n)) − min(δEFEM(n))
, (11)

where N is the number of addends in the summation, δELSA are
the values calculated by LSA, δEFEM are the values calculated by
FEM, and the range of δEFEM has been used for normalization. The
results are shown in Fig. 4. It can be observed that, for every kmax,
the error is lower for the sample with lower average spatial period
⟨λ⟩. As expected, the error is found to depend on the ratio between
the edge of the considered cube, (2kmax + 1)L, and the ⟨λ⟩ of the
sample, with L being the edge of the mesh elements (L = 1 nm
in our examples). In both samples, the error falls below 5% for
(2kmax+1)L

⟨λ⟩
> 1

2 , and below 2% for (2kmax+1)L
⟨λ⟩

> 1. In particular, in the
cases of Fig. 3 the errors are quantified to be 1.3% for the shorter
anneal sample (⟨λ⟩ ≈ 7 nm) and 2.5% for the longer anneal one
(⟨λ⟩ ≈ 10 nm).

It isworthy to notice that the lower the spacial period, the lower
the required kmax to achieve a given accuracy and, thus, the higher
the computation efficiency. Hence, the method proposed here is
specially suitable for highly nanostructured systems. Conversely,
Fig. 4. Mean quadratic error of LSA with respect to FEM as a function of kmax for
the two samples of Figs. 2 and 3. The samples are denoted by their approximated
average periodicity (⟨λ⟩ = 7 nm for the shorter anneal sample, and 10 nm for the
longer anneal sample).

for large ⟨λ⟩ the efficiency of our approach for reasonable accura-
cies becomes low. In that case, either a scaling of meshing spacing
or the use of other methods should be considered.

The goodness of LSA may be also evaluated for an orthotropic
configuration in which the elastic problem has analytic solution
[14]. The selected configuration is a biaxially strained alloy super-
lattice, with periodic one-dimensional composition dependence
X(z). The composition profile has been chosen to be X(z) = ⟨X⟩ +

∆X · sin(2πz/λ). In this case, the stress field is given by σxx(z) =

σyy(z) = σ0 · sin(2πz/λ), with σ0 = Yϵmax∆X/(1 − ν), and
σzz = σxy = σxz = σyz = 0. This theoretical solution has been
compared to the numerical results obtained by both FEM and LSA.
For typical values of λ = 8 nm, ⟨X⟩ = 0.5, and ∆X = 0.3, a rel-
ative quadratic error of 2.6% with respect to the analytic solution
is obtained for FEM, whereas relative quadratic errors of 4.7% and
3.0% are obtained for LSAwith kmax = 4 and kmax = 8, respectively.
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Table 1
Execution time (in seconds) of the Linear Superposition Algorithm (LSA) for a 100× 100× 10 mesh. The kmax parameter is varied to increase the granularity for each thread.

kmax C OPENMP Speed-up CUDA Speed-up
(1) (2) (2) vs. (1) (3) (3) vs. (1)

kmax = 1 1.30 0.66 2.0× 2.6 × 10−4 5016×
kmax = 2 1.48 0.59 2.5× 1.2 × 10−3 1230×
kmax = 3 1.85 0.66 2.8× 3.1 × 10−3 593×
kmax = 4 2.53 0.88 3.0× 6.9 × 10−3 369×
kmax = 5 3.67 1.23 3.1× 1.2 × 10−2 297×
kmax = 6 5.14 1.66 3.1× 2.0 × 10−2 253×
kmax = 7 7.24 2.34 3.1× 3.4 × 10−2 214×
kmax = 8 9.97 3.22 3.1× 4.5 × 10−2 220×
kmax = 9 13.39 4.32 3.1× 6.3 × 10−2 211×
kmax = 10 17.53 5.66 3.1× 8.7 × 10−2 202×
Table 2
Execution time (in seconds) of the Atom Exchange Elastic Energy Evaluation (AE4) algorithm for a 100 × 100 map. We vary the kmax parameter to increase the granularity
for each thread.

kmax C OPENMP Speed-up CUDA Speed-up
(1) (2) (2) vs. (1) (3) (3) vs. (1)

kmax = 1 3.8 × 10−3 2.1 × 10−3 1.8× 7.0 × 10−5 55×
kmax = 2 1.9 × 10−2 9.1 × 10−3 2.1× 2.8 × 10−4 68×
kmax = 3 5.6 × 10−2 2.6 × 10−2 2.2× 7.4 × 10−4 76×
kmax = 4 0.13 6.0 × 10−2 2.2× 1.7 × 10−3 78×
kmax = 5 0.21 0.10 2.2× 3.2 × 10−3 65×
kmax = 6 0.42 0.19 2.2× 5.3 × 10−3 79×
kmax = 7 0.65 0.29 2.2× 8.2 × 10−3 79×
kmax = 8 0.93 0.42 2.2× 1.2 × 10−2 77×
kmax = 9 1.31 0.59 2.2× 1.7 × 10−2 77×
kmax = 10 1.75 0.80 2.2× 2.3 × 10−2 76×
Relative quadratic errors of LSA with respect to FEMwith values of
7.2% and 1.9% are obtained for kmax = 4 and kmax = 8, respec-
tively. The slower convergence of LSA in this case, compared to the
examples of Figs. 3 and 4, can be related to the fact that the struc-
turemodulation here is only one-dimensional (with infinite period
in the plane) whereas in the previous examples the structures are
three-dimensionally modulated.

4.4. Performance evaluation

This section shows a performance evaluation for both LSA and
AE4 algorithms on different hardware architectures (see Tables 1
and 2). As shown in Eq. (6), δ ¯̄σ(k) is truncated to ||k|| ≤

kmax. Therefore, kmax determines the computational cost of our
algorithms, and it may limit their scalability.With that inmind, we
vary this input parameter to analyze its influence on the system.

Column (1) of Table 1 shows the average execution times of a
single core C version of the LSA algorithm running on our server
machine for the examples of Fig. 3 with a 100 × 100 × 10 mesh
anddifferent values of kmax. These execution times are proportional
to (2kmax + 1)3 plus a constant. (2kmax + 1)3 is the number of
iterations of the inner-most loops (i.e. nearest neighbors for each
cell) in Algorithms 2 and 3.

Regarding FEM, the execution times to solve each example of
Fig. 3 using ANSYS is 2020 s in the windows machine specified in
Section 4.1. Thus, the LSA approach for kmax = 4, which provide
similar quality results than ANSYS, as previously discussed in
Section 4.3, is almost three orders of magnitude faster than FEM
resolution with ANSYS.

Furthermore, additional computation speed-up factor of LSA
can be obtained by incremental use of the algorithm and by a
parallel implementation of the code. As mentioned in Section 2,
a great computational advantage of LSA for on-the-fly use in
atomistic simulations is the ability for incremental calculation of
the stress-field. According to Eq. (6), the resulting stress field after
an atom exchange between two cells can be recalculated from
the initial one with only 2 steps (instead of 100 × 100 × 10)
of the outer loop of Algorithm 2. This poses a 5 × 104 speed-up
factor with respect to the values of column (1) of Table 1, bringing
the computation times into the scale of tens of microseconds and
entering into the requirements to be usedwithinOKMC simulators.

The other acceleration strategy is parallelization. Columns
(2) and (3) of Table 1 show the impact of parallelization on
the execution time for our LSA algorithm. Execution times of a
multicore OpenMP version, column (2), and of a CUDA version that
leverage a Kepler-based Nvidia GPU, column (3), are compared
to the already mentioned single core C version. OpenMP version
uses up to four threads in the same multicore system, providing a
2–3× speed-up factor. As previously commented, the LSA code is
massively parallel by its definition. Thus, data parallelismapproach
developed on the GPU offers performance gains of up to 5016×
speed-up factor compared to the C version for kmax = 1 and in the
order of 200× for large values of kmax. The execution time of our
CUDA version is found to be proportional to (2kmax + 1)3 and, in
contrast to C and OpenMP versions, no extra term independent on
kmax is obtained in the fitting. This fact accounts for the variation of
the speed-up factor with kmax.

TheGPU implementation of the LSA kernel dealswith 3Dmatrix
(i.e. 100 × 100 × 10), which means a very large number of CUDA
thread blocks. Actually, our empirically demonstrated best CUDA
configuration for this kernel is 256 threads per block. Thus, this
offers up to 391 CUDA threads blocks to be scheduled in SMs that
is large enough to fulfill all GPU resources as there is not any other
hardware limitation, such as register or shared memory usage.
Whenever the kmax configuration parameter is increased the thread
granularity also increases and those threads become coarser-grain
threads, which is not very well-suited for the GPU computation
model as it prefers throughput oriented computation.

Table 2 shows the execution time for our AE4 kernel for a
100 × 100 map. Like in the previous example, three different
implementations are under study (C, OpenMP and CUDA) that use
a single, multicore and GPU systems, respectively, on our server
machine. In this case, FEM calculations are not a reference for
kernel performance, although they give an alternative input to the
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AE4 algorithm that may be used in the validation process of LSA
algorithm. The evaluation of the elastic energy variation associated
to an atom exchange in OKMC simulations requires 2 calculations
of δ(n) (instead of the 100 × 100 of the whole map) and, thus,
computation times would be scaled by 2 × 10−4.

The execution times of the three AE4 versions are found to
be approximately proportional to (2kmax + 1)3. Consequently,
parallelization-related speed-up factors are hardly dependent on
kmax. A 2× factor is obtained with OpenMP, whereas a factor about
70× is achieved by the CUDA version. This kernel deals with 2D
matrix (100 × 100) and thus the number of CUDA thread blocks is
only 40 in this case. These 40 blocks can be directly mapped to the
Stream Multiprocessors (SMs) at once and, therefore, there is no
block scheduling latency. This fact makes that thread granularity
is not such a critical factor like in LSA kernel.

5. Conclusions and future works

Predictive simulation of alloys structural evolution, involved
in critical scenarios such as structural steel members in nuclear
plants, can benefit from the great advances in the field of high per-
formance computing in order to overcome computational barriers.
Nowadays, the use of KMC methods supported on FEM calcula-
tions represents a highly time-consuming process. Alternatively,
this work proposes two different algorithms (LSA and AE4) to cal-
culate the eigen-stress field and the elastic energy modification in
atomistic interdiffusion of alloys. In particular, the main contribu-
tions of this paper include the following:

1. LSA allows fast calculation eigen-stress field of complex geom-
etry sample. It also offers incremental on-the fly updating of the
total stress-field after every atom exchange event in KMC sim-
ulations in a reasonably short computational time.

2. AE4 provides a critical input for KMC. Additionally, it can pro-
vide a scalar merit figure in order to evaluate the accuracy of
the approximate stress field calculations.

3. Algorithms here proposed are massively parallel by their def-
inition and, therefore, we develop a data-parallel approach to
leverage Graphics Processing Units (GPUs).

Predictive simulation of alloy structural evolution on GPUs is
still at a relatively early stage and, in this sense, this work provides
a relatively simple parallelization. But, with many other types
of optimization still to be explored, this field seems to offer a
promising and potentially fruitful area of research.

On the physical framework, the present model may be devel-
oped through the implementation of another types of boundary
conditions for the considered domain. On the hardware side, it is
expected to get even higher accelerations on GPUs whenever the
problem size keeps growing and larger device memory space is
available. Moreover, wemay anticipate that the benefits of our ap-
proach would also increase when parallelizing kmax most-internal
loop since it would provide fine-grain parallelism, and also when
using future GPU generations endowed with thousands of cores,
and eventually grouped into GPU clusters to lift performance into
unprecedented gains, where parallelism is called to play a decisive
role.
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