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a b s t r a c t

GPU not only is used in the field of graphic technology but also has been widely used in areas needing
a large number of numerical calculations. In the energy industry, because of low carbon, high energy
density, high duration and other characteristics, the development of nuclear energy cannot easily be
replaced by other energy sources. Management of core fuel is one of the major areas of concern in a
nuclear power plant, and it is directly related to the economic benefits and cost of nuclear power. The
large-scale reactor core expansion equation is large and complicated, so the calculation of the diffusion
equation is crucial in the core fuel management process. In this paper, we use CUDA programming
technology on a GPU cluster to run the LU-SGS parallel iterative calculation against the background of the
diffusion equation of the reactor. We divide one-dimensional and two-dimensional mesh into a plurality
of domains, with each domain evenly distributed on the GPU blocks. A parallel collision scheme is put
forward that defines the virtual boundary of the grid exchange information and data transmission by
non-stop collision. Compared with the serial program, the experiment shows that GPU greatly improves
the efficiency of program execution and verifies that GPU is playing a much more important role in the
field of numerical calculations.

© 2016 Published by Elsevier B.V.
1. Introduction

In recent years, compute unified device architecture (CUDA)
has been widely used in a number of important areas, includ-
ing medical imaging, computational fluid dynamics, environmen-
tal science and material science. In the energy industry because
nuclear energy has a low carbon content, high energy density, high
sustainability and other characteristics, nuclear energy develop-
ment trends in environmental science and materials science can-
not be replaced by others. The thorium-based molten salt reactor
nuclear power system (TMSR) [1,2], one of the first strategic pilot
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projects in the Chinese Academy of Sciences, provides an efficient
data storage service and a high performance computing service
for nuclear reactors. Chinese Academy of Sciences Liren Shen and
Feifei Wang [3] built the TMSR system on a GPU cluster, and using
the Linpack test, verified that the TMSR platform has strong float-
ing point computing power. They ran a three-dimensional neutron
reactor diffusion equation in the experimental environment that
has a GPU cluster that, compared with a test on the CPU, decreased
the computing time by nearly 4.5 times.

The Lower-Upper Symmetric Gauss–Seidel (LU-SGS) [4,5]
iterator method discussed in this paper is widely utilized due
to its advantages of mesh topology and is the most popular
method used in air dynamics. Complicated physical phenomena
such as shock boundary layer interference and high temperature
flow are major concerns of hypersonic vehicles. To solve these
problems, we need to combine computational fluid dynamics,
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computational structural dynamics, computational heat transfer
and other fields [6]. Focusing on these issues, some scholars use the
Mentor’SST equation [7] turbulence model, Roe format, AUSM+-
up format [8] and LU-SGS method to compile the hypersonic
CFD calculation program. Based on GPU architecture and CUDA
programming to solve the data parallel implicit CFD [9] greatly
improved the calculation speed of the implicit solution.

The LU-SGS iterative method has been widely used in many
fields. The Science and Technology department of Sheriff Univer-
sity proposed a new parallel Seidel Gauss method [10] for the so-
lution of partial differential equations using the finite difference
method. Experimental results of the iterator method show that
the iteration number of convergence criteria for any number of
sub-domains is not much different than that of the original Sei-
del Gauss method. Combined with the theory of reactor diffusion
equation parallel research and based on the idea of collision ex-
change, we propose an implicit LU-SGS iterative parallelization al-
gorithm, carrying out multi-dimensional iterative experiments. By
analyzing the results of the LU-SGS iterator method on a GPU clus-
ter, research is conducted on the overhead and benefits of using
GPUs that include data transmission overhead, CUDA context ini-
tialization overhead and load core computing cost; research on the
effects of complexmemory hierarchy and thread level structure on
the efficiency of running programs.

The techniques discussed in this paper are all based on the
rapid development of GPU architecture. GPU technology from the
era of fixed-function graphics pipelines to the separate rendering
architecture era, and then to unified graphics and computing
processors has been rapid. In particular, the era of unified
rendering is a milestone in the development of GPU. It replaces
the traditional vertex and pixel rendering pipeline separation
structurewith unified rendering hardware and provides the ability
to calculate the geometry. Guangping Tang and his colleagues
from the school of Computer Science in New York University also
put forward parallel running of the tridiagonal matrix equation
in a multi-core GPU architecture system [11]. Tang proposes an
optimized parallel algorithm that combines the cyclic reduction
method andpartitionmethod to improve the efficiency of the three
diagonal linear equations. Experimental results show that the
cyclic reduction method and the partition method are improved
by 13.2% and 19.2%, respectively.

The computer graphics processor (GPU) integrated geometric
transformation, lighting, cutting and rendering engine and other
functions, with at least 10 million polygon processing power [12]
greatly improves the speed of computer graphics processing, en-
hances the quality of the graphics, and promotes the development
of the field of computer graphics applications. GPU is not only used
in the research of graphic images, but it has beenwidely used in the
field of numerical computation because of its strong floating point
computing power. More and more scientists will process large nu-
merical calculations on the GPU that substantially reduce execu-
tion time and improve the efficiency of the program.

The rest of the paper is organized as follows. In Section 2,
two derivation methods of the LU-SGS iterative method are
discussed, the LU splitting method and the LU approximate
decompositionmethod, and the equivalence of the twomethods is
verified. Subsequently, the steps of the LU-SGS solution for a two-
dimensional grid are introduced. In Section 3, the combination of
the LU-SGS method and CUDA programming is proposed, and the
implementation process of the CUDA kernel function is analyzed.
In Section 4, actual experimental results are obtained, and the
impact of the LU-SGS method implementation cost and other
issues are discussed. Conclusions and future work are shown in
Section 5.
Fig. 1. Reactor fuel management program.

2. Reactor diffusion theory and derivation of LU-SGS iterative
method

2.1. Reactor diffusion equation

Reactor core fuel management [13] is one of the problems that
concerns nuclear power stations. Optimizing fuelmanagement can
lower nuclear energy cost, improve the economic efficiency of
nuclear power and provide a security guarantee for operation of
the reactor. Engineers can obtain the best management plan by
simulation analysis of several processes: initial loading, refueling,
reaching the equilibrium state. The management process is shown
in Fig. 1. Solution of the diffusion equation of the reactor occupies
an important position in the calculation of the overall design
of industrial reactors. Research on finite methods for solving
the diffusion equation of reactors has been conducted for years,
including the Mesh method [14], Nodal method [15], Green
function [16], finite difference method [17], the symmetric sip
methods [18] and so on. Solving this type of problem with the
finite difference method is easy, but it is difficult calculate two-
dimensional or three-dimensional neutron diffusion equations.

The reactor diffusion equation [19] is as follows:
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Boundary condition:

−Dj∇φj · n = Ajφj Aj =




t,j

Dj

0

φµ(r) is the neutron fluence rate in group µ;


µ′→µ is the
scattering cross section from group µ′ to group µ; ν is the number
of neutrons; Dµ is the diffusion coefficient of group µ;


t·µ is the

macro total cross section of group µ;
G

µ′=1 is the macroscopic
fission cross section of group µ′.

To be convenient for computing, turn the differential equation
into the different equation:

Aφ = S

A is an n-order and seven-angle matrix. For the large core,
n is generally huge, so we commonly use the Seidel iterative
method and the Successive Over Relaxation iteration method to
speed up the process of running the software. We consider using
the Collision iterative principle in the LU-SGS iterative method,
utilizing residue value ω and using an extrapolation method to
accelerate equation convergence. The smaller the residual value is,
the longer is the execution time and the higher is the accuracy.

2.2. Derivation of LU-SGS iterative method

There are two methods for the derivation of the LU-SGS
iterator method: the LU splitting method and the LU approximate
factorization method. The LU splitting method [20] does not
generate error in the process of splitting the matrix, but it
generates error in the process of applying the solution equation.
The LU approximate factorizationmethod is the opposite. D stands
for the diagonalmatrix, L stands for the lower-diagonalmatrix, and
U stands for the upper-diagonal matrix.

(1) LU splitting method

Forward scanning formula:

∆R∗
= D−1(RHS − L∆R∗) (1)

(D + L)∆R∗
= RHS. (2)

Backward scanning formula:

(D + U)∆R∗
= RHS − L∆R∗. (3)

Change the formula on either side of the equal signed (3):

D∆R∗
= RHS − L∆R∗

− U∆R∗ (4)

∆R∗
= D−1(RHS − L∆R∗

− U∆R∗)

= D−1(D∆R∗
− U∆R∗)

= ∆R∗
− D−1U∆R∗. (5)

(2) LU approximate factorization method

Approximate decompose method for the left side of the linear
equations:

(D + L + U) = D(I + D−1L + D−1U)

≈ D(I + D−1L)(I + D−1U)

= D−1(D + L)(D + U). (6)

The equations are transformed into:

D−1(D + L)(D + U)∆R∗
= RHS (7)

Forward scanning, also known as downward scanning. We as-
sume that ∆R∗

= D−1(D + U)∆R∗, so Eq. (7) transforms into
Fig. 2. Implicit two-dimensional LU-SGS matrix equations.

Fig. 3. 4 × 4 two-dimensional structure grid.

(D + L)∆R∗
= RHS. In the calculation of the actual flow field, each

cell can be expressed by the equations above. By combining all the
grid and linear equations, we get linear equations of flow field in
the current grid, as shown in Fig. 2.

The following formula can be obtained from Fig. 2:

D∆R∗
+ Ai−1∆

∗

i−1 + Bj−1∆R∗

j−1 + Ck−1∆R∗

k−1 = RHS (8)

∆R∗
= D−1(RHS − Ai−1∆R∗

i−1 − Bj−1∆R∗

j−1 − Ck−1∆R∗

k−1) (9)

= D−1(RHS − L∆R∗). (10)

Formula (11) given in Box I is the same as LU splitting method
formula (2), so it is proved that the two splitting methods are
equivalent to forward scanning. In the same way, backward
scanning is proved equivalent.

2.3. LU-SGS 4 × 4 two-dimensional grid

We use a two-dimensional structure grid as an example to
elaborate the iteration of the LU-SGS method in more detail; each
block of mesh starts from 0, as shown in Fig. 3. Combine each grid
cell with matrix linear equations, and then linear equations (11)
can be obtained.

Taking D as the dividing point, we divide the linear equations
into upper triangle and lower triangle and scan upward and down-
ward, respectively. As a result of upward scanning, in Fig. 3, we find
that the interface of the 0th grid is the 1st and the 4th sub-grid,
corresponding to D0R0 +U1R1 +U4R4 = RHS. Downward scanning
is similar. Solving in turns, we can obtain data information for all
sub-grids of a 4 × 4 two-dimensional structured grid.

3. Parallel LU-SGS iterator method

CUDA is a new type of GPGPU architecture [21] introduced
by NVIDIA Corporation. It is a program for writing in display
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(1

Box I.
equipment for execution based on the C language. Users do
not need to learn complex vertex shader language, display chip
instructions or special hardware structure.

CUDA architecture can be divided into two parts: the HOST and
the DEVICE [22]. The HOST part refers to code executed on the CPU,
and the DEVICE part refers to the program executed on the display
chip, which called a kernel function. The smallest unit of execution
of GPU in CUDA is a thread, and multiple threads can form a block;
threads in a block can access the same shared memory, as shown
in Fig. 7, where each SM shares the same piece of 64 × 1K shared
memory. The number of threads within each block is limited;
multiple blocks can form a grid, but because different blocks are
unable to access the same piece of shared memory, it is difficult
to communicate between different blocks. Each thread has its own
register and local memory; in addition, all threads can share the
same global memory, constant memory and texture memory.

Take a one-dimensional LU-SGS iterativemethod as an example
to simulate the execution process of the parallel algorithm. We
use to denote a given number, to denote the new value
of virtual boundary data after collision, to denote the one-
dimensional sub-grid and K to denote the number of iterations.
One LU-SGS iteration consists of a right iteration and a left
iteration, and the experimental domain will be divided into n sub-
domains, as shown in Fig. 4.

For two-dimensional problems,we use two-dimensional blocks
to greatly reduce the difficulty of writing code.We use two dimen-
sional texture memory to simulate heat conduction. Compared to
the global and constant memory, texture memory has the follow-
ing advantages: cache containing, not bound by access patterns,
addressing calculation of delay hidden better, can be broadcast to
more than one independent variable in a single operation, etc. We
test the two-dimensional LU-SGS program in texturememory, and
then, we will compare performance of multiple groups of global
memory and texture memory experimental results.

Each block processes one parallel task. A K40 graphics card
for each multi-stream processor (SM) [23] has 192 stream
processors (SP). However, blocks cannot communicate like the
interprocess communication ofMPI [24,25]. Therefore, we propose
a new iterative scheme, as shown in Fig. 5, and we introduce
synchronization primitives. We use to denote the iterated
sub-grid and to denote the virtual boundary. The number of
iterations ismanually set for the experiment. This iterative process
is proposedbecause blocks cannot communicate andbecause it can
reduce synchronization overhead.

Fig. 6 represents the schematic diagram of upward and
downward scanning, respectively. Assume that data transfer
Table 1
Results of one-dimensional LU-SGS method.

No. Array size Parallel GPU time Serial CPU time Speedup

1 2048 26.743 175.084 6.547
2 4096 146.396 1379.64 9.424
3 8192 429.734 11122.98 22.574
4 10240 2255.90 92891.23 41.177

from the black shadow part to the white part represents one
communication overhead, and the black shadow section is needed
for communication data. When using texture memory, we can
directly access the texture through x, y. In a kernel function, we
need tomap the threadIdx and blockIdx to the location of the pixel,
and we obtain the data of the adjacent grid blocks using the tex2D
function.

4. Numerical experiment and analysis

4.1. Experimental equipment architecture

NVIDIA server architecture is based on a hybrid computing
model, where CPU and GPU work together. The architecture is
applied in a wide range of scientific computing applications. The
current Kepler architecture has once again raised the HPC industry
standards. GK110 GPU Kepler [26,27] transistor is composed of 7.1
billion. Currently, the GK110 has been applied in the Tesla K20 and
K40 GPU computing accelerator. The experiment uses 4 T K40 GPU
servers, and its core architecture is shown in Fig. 7.

4.2. The experimental results and analysis

Table 1 shows the result of a one-dimensional LU-SGS iterative
method on CPU and GPU. Table 2 shows the results of a two-
dimensional LU-SGS grid iterative method. The one-dimensional
residual value is set to 1e–8. Due to the large size of the two-
dimensional grid, in order to shorten execution time and improve
execution efficiency, the residual value is set to 1e–3.

Using the definition of speedup ratio (the single core serial time
vs. the multi-core parallel time), each test is conducted in the
corresponding K40 Sever and 16 core serial CPU. With continuous
expansion of the number of arrays and grids, CPU serial time
increases at a speed of several tens of times. The parallel time of
the incremental speed slightly is slow, the incremental rate is not
large, and it has been controlled at 5–8 times. Two-dimensional
tests obtained the highest speedup due to the large amount of
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Fig. 4. Schematic diagram of one-dimensional LU-SGS collision iteration.
Fig. 5. A new parallel iterative scheme on GPU.
Table 2
Results of the global memory.

No. Array size Parallel GPU time Serial CPU time Speedup

1 256 × 256 24.679 146.764 5.947
2 512 × 512 99.011 1808.523 18.266
3 1024 × 1024 155.452 4621.609 29.730
4 2048 × 2048 10032.442 10032.442 27.943
computation, and they can effectively use the computing power of
GPU. Fig. 8 lists the different data size of the texture memory and
global memory.

After starting GPU parallel, due to the high parallelism degree
between the GPUs and increasing transmission overhead among
the cards, when 2-4 GPU cards are opened, the execution rate
decreases by 15%∼30%. In addition, by using the method of
zero copy memory to avoid unnecessary data replication, the
performance can be enhanced by nearly 20%. Combined with
texture memory to reduce the memory scheduling overhead, the
acceleration ratio can be improved by 1–1.5 times, as shown in
Table 3.
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Fig. 6. Upward and downward scanning.
Fig. 7. The composition of the 4 GPUs K40 server module diagram.
Table 3
Results of the texture memory.

No. Array size Parallel GPU time Serial CPU time Speedup

1 256 × 256 13.406 109.346 8.156
2 512 × 512 69.501 1561.07 22.461
3 1024 × 1024 102.079 3892.101 38.128
4 2048 × 2048 177.650 8023.912 45.167
Fig. 8. The performance speedup of texture memory and global memory.
According to Fig. 8, we find that the texture memory
acceleration ratio shows an upward trend; a clear turning point
is observed in the third grid, and global memory is more obvious.
Speedup has decreased by 1.787 in the fourth grid. Analysis of the
results show the following two reasons:

(1) The GPU server temperature is too high, reducing frequency
automatically.

(2) The task scheduling overhead between memory blocks
is increased due to external reasons, such as the execution of
parallel programs that require a large number of threads to be
scheduled.

In general, factors affecting efficiency of the implementation of
the program are as follows:

(1) Reasonable distribution of the number of threads can reduce
the unnecessary thread scheduling.
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(2) Familiarity with GPU architecture, using efficient and
reasonable parallel algorithms can reduce the running time
substantially.

(3) Different memory’s read and write operation clock cycle
variation. Shared memory requires 10–20 clock cycles, but global
memory requires more than 200. Shared memory is limited, and
reasonable use can play a major role.

5. Conclusion and future work

By comparison, we can sum up the advantages of GPU for
floating point computing and reasonable scheduling of memory.
With a high-performance price ratio, the power of GPU floating
point computing is approximately 10 times that of CPU, the
bandwidth is 5 times that of CPU, but the cost of GPU is only 3–4
times that of CPU. In addition, GPU has good portability, ordinary
desktop or notebook computers can support general floating point
computing. Due to the characteristics of graphics processing and
general computing, the results can be directly displayed by visual
devices.

One- or two-dimensional LU-SGS iteration in different memory
indicates that the power of GPU for complex floating point
computing is very strong. By analyzing the correlation between
texturememory and the global memory execution rate and setting
reasonable a kernel function, we reduce the scheduling overhead
between blocks. GPUwill play an increasingly large role in the field
of mathematical computing for material and energy that require a
large number of complex calculations.

Future research may focus on the optimization of large-scale
applications, algorithm and system structure, and speeding up the
pace of GPU in the development of application software.
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