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LS3DF, namely linear scaling three-dimensional fragment method, is an efficient linear scaling ab initio
total energy electronic structure calculation code based on a divide-and-conquer strategy. In this paper,
we present our GPU implementation of the LS3DF code. Our test results show that the GPU code
can calculate systems with about ten thousand atoms fully self-consistently in the order of 10 min
using thousands of computing nodes. This makes the electronic structure calculations of 10,000-atom

nanosystems routine work. This speed is 4.5-6 times faster than the CPU calculations using the same
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number of nodes on the Titan machine in the Oak Ridge leadership computing facility (OLCF). Such
speedup is achieved by (a) carefully re-designing of the computationally heavy kernels; (b) redesign of
the communication pattern for heterogeneous supercomputers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

To calculate the physical properties of many real materials,
large systems containing thousands or tens of thousands of atoms
are often necessary. For example, a 5 nm quantum dot can
contain 5 thousand atoms. To describe the fluctuation of the
dipole moment in (CH3;NH3) Pbls, a 20,000 atom system have been
used [1]. An even larger system might be necessary to study the
mechanical properties and the electronic structure consequence of
dislocations. Although density functional theory (DFT) calculations
are necessary for many of such problems, conventional DFT
calculations cannot be used due to their O(N?) scaling of the
system size N [2]. To solve this problem, various types of linear
scaling methods have been developed. One particular approach
of the linear scaling method is based on the divide-and-conquer
strategy. In this approach, a global system is divided into many
small (fragment) systems, and each fragment is solved quantum
mechanically. After all the small fragment systems have been
solved, their results are combined together to yield the result
of the global system. Iteration loops can be used to ensure self-
consistency between the global charge density and the fragment
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potentials. A major advantage of this divide-and-conquer approach
is the possibility to use different computer process groups to solve
different fragments. Since no communication is needed between
different process groups for the computationally most expensive
step (the quantum mechanical fragment calculation), the weak
scaling of this algorithm can be extremely good. Thus, a dual linear
scaling, one to the system size, one to the number of computer
processes can be achieved.

Linear scaling three dimensional fragment (LS3DF) code is
a Gordon Bell winning code based on a divide-and-conquer
method [3]. It can be scaled efficiently to hundreds of thousands
of processes. It has been used to calculate many nanostructure
problems, including the dipole moment of nanorod [4]; the
localized state in random alloy; the effects of MoSe; /MoS, Moire’s
pattern [5]; the ferroelectric vortex structure [6]; the electronic
structure of disordered (CH3NHs3) Pbls [1]. Nevertheless, based
on CPU, even though tens of thousands of processes (e.g., 60,000
processes) have been used, such calculations can often take several
hours. This makes such calculations computationally expensive.

Graphic process unit (GPU) has been a main approach to
accelerate the large-scale computation, especially to reach exas-
cale computing. With 2048 arithmetic processing cores for each
GPU card, and with a single instruction multiple data (SIMD)
paradigm, GPU has proved to be naturally suitable for many sci-
entific computation. Recently, we have used GPU to significantly
speedup the standard plane wave pseudopotential (PW-PP) DFT


http://dx.doi.org/10.1016/j.cpc.2016.07.003
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.003&domain=pdf
mailto:jiawl@sccas.cn
mailto:wangjue@sccas.cn
mailto:chi@sccas.cn
mailto:lwwang@lbl.gov
http://dx.doi.org/10.1016/j.cpc.2016.07.003

W. Jia et al. / Computer Physics Communications 211 (2017) 8-15 9

1x2 2x2

Fig. 1. The fragments used in the LS3DF calculation. The fragments have the sizes
of 1x1,2x1,1x2and 2 x 2 for a 2D illustration. For 3D, they should be 1 x 1 x 1,
1x1x2,1x2x2,2x 2 x 2,etc. For each fragment (color), a buffer region also
needs to be added to cancel the boundary effect. There are such fragments at each
corner of the dashed line grid. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

calculations [7-9]. It is thus reasonable to ask whether that tech-
nique can also be used for LS3DF calculations. This is a particularly
natural question since in LS3DF, the quantum mechanical wave
functions of each fragment are solved using a PW-PP method. This
lets the LS3DF having almost the same accuracy as the other con-
ventional O(N3) scaling PW-PP codes, hence distinguish itself from
other linearly scaling codes which often use localized orbitals. The
same PW-PP method for the fragment provides the opportunity to
take the advantage of the existing GPU PW-PP code to the LS3DF
method.

There are however, other challenges unique to the LS3DF
code. We found that, after the quantum mechanical calculations
of the fragments are speeded up by GPU, the communication
between the processor groups, which is used to patch together
the charge density to obtain the global charge density, becomes
the bottleneck. However, due to the use of GPU, the number of
processes has been reduced by an order of magnitude (while the
same number of nodes is used). This makes it possible to redesign
the communication scheme, which has led to our final speedup.

The rest of the paper is organized as follows. Section 2
introduces the LS3DF algorithm, mainly on the conjugate gradient
method and MPI communication. Section 3 describes the step-
by-step speedup of the Kohn-Sham equation solution. Section 4
describes the GPU LS3DF MPI communication pattern. Section 5
shows the testing results and our discussion. Finally, Section 6
presents our conclusions and future work.

2. The LS3DF algorithm

LS3DF is based on the nearsightedness of the quantum
mechanical effects [10], which means the effect of quantum
mechanical is short range. As a result, one can divide a system
into small parts, and the quantum mechanical effects at the center
of one part will not be influenced by the atomic situations of the
other parts. Nevertheless, the classical electrostatic potential is
long ranged, thus has to be solved by the global Poisson equation.
In LS3DF, a system is divided into many small fragments, and each
fragment is solved for its electron wave functions, the quantum
mechanical energy of the global system can be obtained through
the summation of these fragment results. The LS3DF deploys a
special division and patching scheme to cancel out the effects of
the artificial boundary, as illustrated in Fig. 1. Both positive and
negative fragments are used. As a result, the boundary effects from
different fragments will be canceled out, and what left is one copy
of the original system at the center of the fragments. The details of
the LS3DF formalism can be found in Ref. [11].
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Fig. 2. The LS3DF self-consistent field flow chart. M is the number of fragments
within one MPI process.

A flow chart of a LS3DF self-consistent field calculation is de-
picted in Fig. 2. For a given global input potential V (r), the po-
tentials of each fragment system Vi (r) is generated. This Vg (r)
equals to V(r) for the r within this fragment domain F, plus an
additional passivation potential AVr(r). After Ve (r) is obtained,
the fragment wave functions {lpf } are solved based on the frag-
ment Kohn-Sham equation: Hf [ = &f . This will be done by
the conjugated gradient method to be described below. After {wf }
are obtained, the fragment charge density pr(r) will be calculated
as pr(r) = Y |vf ) |2. The global charge density p (r) is calcu-
lated from all the pr(r) as pgor (1) = Y ¢ Sppr(r), here g = +/—is
the sign of the fragment. After p;o () is obtained, the global Poisson
equation is solved using in reciprocal space using a global FFT. The
global Kohn-Sham potential V (r) is then calculated using density
functional theory. Next, a potential mixing scheme will be used to
mix the output potentials from previous self-consistent field (SCF)
iteration steps, the new mixed potential will be used as the input
potential for next iteration run. This will ensure the SCF conver-
gence. Usually, a Pulay mixing together with Kerker mixing are
used. For a conventional system (e.g., semiconductors), even with
thousands of atoms, typically 30-40 iteration steps are enough to
fully converge the problem.

In the calculations of LS3DF, the MPI processes are divided into
groups, as illustrated in Fig. 3. Each process group will calculate
a few fragments quantum mechanically. Note that the fragments
are distributed among the process groups to reach an optimal
workload. For the fragment calculation, the wave functions are
G-distributed (G-space parallel, as will describe in Section 3.1)
within each process group [12]. The only global calculation is
to solve the Poisson equation after the global charge density is
obtained through the patching of the fragment charges. However,
the global Poisson equation and the related FFT are only carried out
within a subset of the whole process.

2.1. All-band CG

In the above LS3DF procedure, one of the most time consuming
step is the solution of the fragment wave functions based on the
fragment Kohn-Sham equation Hf v/ = &l yf. There are different
algorithms to solve this Kohn-Sham equation. Here, we will
concentrate on the all-band conjugate gradient method (AB-CG),
which is implemented in the LS3DF code. The AB-CG flow chart is
shown in Fig. 4. It solves the Kohn-Sham equation Hf ¢/ = &l yf
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Fig. 3. An illustration of the fragments distribution onto supercomputer. Left part
illustrates the calculated system (blue) and fragments divided by the red lines. Right
part shows the distribution of the fragments (blue) over computing nodes (black).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

iteratively. First,a Pf = Hfyf — &y is calculated from the input
wave functions. Then, a subspace diagonalization is carried out
based on the complex matrix (] |H" |1ij ). After this, conjugate
gradient steps with line minimization are calculated. During
this iteration, the computationally most expensive steps include
the following: Pf = Hfyf (Hpsi); projection of residual vector
Pf from the {yf} subspace Pf = Pf —¢fyf (Projection); and
orthogonalization (Orth) among {v; }. The text in the bracket is
used to denote the steps shown in Fig. 4. At the end of AB-CG,
another subspace diagonalization is carried out. Overall, this AB-
CG algorithm is almost the same as the one in the stand-alone
PW-PP code PEtot [13]. The PEtot AB-CG subroutine has already
been implemented in GPU. Here, we port that GPU AB-CG code into
the LS3DF code. Besides the change of variables, global variable
inputs and MPI communication domains, there are issues about
load balance, as well as the efficiency of the GPU calculation for
the different sized fragments. Since the sizes of the fragments
are limited in a LS3DF calculation (e.g., the maximum is about
200 atoms), this provides the opportunity to optimize the GPU
calculation, e.g., by moving all the wave functions into the GPU
memory.

2.2. Data communication between different process groups

After the AB-CG is implemented with GPU, the next bottleneck
is the data communication between the process groups. This is
mainly for gathering the pp(r) together to generate the global
Proe (1) and to distribute the potential V (r) to generate Vr(r). The
later part is essentially the reverse process of the former part. Note
that, the global o, (1) and V (r) are distributed within a subset P; of
the whole processes, not the whole process group. This is because
the FFT is only efficient over a finite number of processes. If the FFT
grid of the global box is n1 x n2 x n3, we usually take n1 as the
number of process in Pg. This ensures that each process in P; has
one slide (n2 x n3) of the real space data set. This will be important
in designing our data communication pattern.

In the original CPU implementation, due to the large number
of CPU process used, the communications are carried out in two
steps. At the first step, the distributed pr (r) within a process group
will be collected by one “head” process in that group. Then, this
head process in this group will communicate to the P¢ process in
the P; group. However, due to the memory constraint, the head
process cannot pre-collect all the real space data in its group, and
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Fig. 4. The all-band conjugate gradient (AB-CG) method for H* ¢/ = efyf. The
asterisk sign indicates the time consuming steps.

then communicate to P; whenever it is needed. Instead, the data
needed by one P are collected by the head process on the flight.
This has significantly increased the number of communication, and
makes the communication fragmented and expensive.

For a GPU run on the Titan machine, only one CPU is used on one
node (the other 15 CPUs will be kept idle), which is tight to one GPU
on that node. As a result, the number of process has been signifi-
cantly reduced. Because of this, we have redesigned the commu-
nication pattern. Instead of two step communication process, we
have used one step communication, let all the processes commu-
nicate directly to P¢. The result is order of magnitude improvement
for the communication time.

3. GPU implementation of the AB-CG code

3.1. CPU parallelization of the AB-CG

Before discussing the GPU implementation, we like first to
discuss the original CPU parallelization of the AB-CG subroutine in
LS3DF. For LS3DF calculations, the fragments are treated as isolated
systems, thus only the Gamma point is used, thus there is no
k-point parallelization [ 14]. The first possible parallelization in AB-
CG is the band index parallelization. It is the parallelization over
the band index ‘" in wave functions {1/ff } In a stand-alone DFT
code, each group of process stores a block of wave functions. If the
whole wave function ; for a given i is stored within one process,
then MPI communication will not be needed in the calculation of
Hpsi. However, the calculation of the wave function overlaps, like
(WilH W), (Pi1;), (Wil ), will require the communication of { ] }.
If these wave functions are passed around in a round robin style,
this communication will be time consuming. Because of this, the
band index parallelization is not used in the LS3DF calculation. The
second choice for parallelization is the G-space parallelization. In
this parallelization, the G-space coefficients of the wave function
are distributed among processes within a fragment process group.
In a plane wave calculation, the wave functions are expanded by
the plane wave basis set. Each plane wave function corresponds to
one reciprocal lattice points of the real space periodic box. These
lattice points are within a G-space sphere in the FFT grid. On the
other hand, the real space FFT grid of a fragment is a full 3D box
with nyg X nyr X nsp points. G-space parallelization scheme does
the FFT within the n_nodes processors. The FFT is optimized for
the spherical G-space data by load balancing and minimizing the
communication between processors [15]. The nonlocal potential
projection operator ), |¢;) (¢y| in LS3DF is calculated in G-space
within a sphere for each atom [16].
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3.2. ZGEMM to CUBLAS_ZGEMM

Our GPU implementation starts with the computationally
intensive kernels in the AB-CG algorithm: calculate the overlaps
matrix in Sub_diag, Projection and Orth steps shown in Fig. 4. In the
CPU implementation, these operations are carried out by calling
the matrix-matrix multiplication BLAS-3 ZGEMM subroutine. In
the GPU implementation, they can be easily replaced with a
CUBLAS-3 subroutine CUBLAS_ZGEMM. Since the book-keeping in
CPU is still needed, each time we calculate the overlap matrix,
the corresponding wave functions {v }, {Pf}, and {W] = H"y/}
will be copied from the CPU to the GPU. The resulting overlap
matrix has to be copied back from the GPU to the CPU. After
that, an MPI_Allreduce within the fragment group processes is
used to sum over the m x m matrix, where m is the number
of wave functions for this fragment. The obtained matrix h,
S will be diagonalized or Cholesky decomposed in CPU, and
the diagonalization (or decomposed) matrix will be sent back
to the GPU, to be followed with wave function rotations (or
projections for P;). The wave function rotation is carried out
using CUBLAS_DGEMM or CUBLAS_ZGEMM. In our test, by moving
the matrix-matrix multiplication into GPU, we could obtain 4
times speedup comparing one GPU with single CPU core. The
CPU-GPU wave function copies due to the book-keeping of the
wave functions in CPU could be further reduced by moving all
computation kernels into GPU.

3.3. GPU hybrid parallelization of the AB-CG

Similar to the stand-alone PEtot GPU implementation [7], a
G-space and band-index hybrid parallelization scheme has been
adopted in a GPU LS3DF code. A G-space parallelization is used
in calculating overlap matrix like Sub_diag, Projection and Orth
(section above), and a band-index parallelization is used to calcu-
late Hpsi, as shown in Fig. 5. In this way, when Hpsi is calculated,
the whole wave function is stored in a single CPU/GPU comput-
ing unit. Wave function book-keeping is still in CPU with G-space
parallelization (each CPU hold all the wave function index i, but
only part of the G-space coefficients). An MPI_Alltoall communi-
cation within the fragment process group is needed in this hy-
brid parallelization scheme to transpose the wave functions from
G-space parallelization (for overlap matrix calculation) to band-
index parallelization (for Hpsi calculation). After this data trans-
pose, each CPU/GPU computing unit will hold a subset of the band
index i, but with the full wave function for each i within the sub-
set. After mapping the G-space coefficients within the sphere into
a full FFT grid and padding the outside of the sphere with zeros, a
standard 3D CUFFT (on a single GPU) will be applied to the wave
functions. This is used for the Hpsi calculation. The FFTs are cal-
culated in a band-by-band manner in order to save GPU mem-
ory. Our tests show that the MPI_Alltoall takes up to 50% of the
total time to calculate Hpsi starting from the CPU book-keeping
G-space parallelization for fragments with about one hundred
atoms.

3.4. Moving most calculations into the GPU

The third step of GPU implementation of AB-CG is to move all
the computations into GPU. This is needed because the CPU-GPU
data movement is rather slow compared with its enormous
computing power. For example, K20X GPU has a peak performance
of 1.31 teraflops in terms of double precision computing power,
while PCI-Express data movement is only 16 GB/s. This means
that more computation should be moved into GPU to reduce the
CPU-GPU memory copy operation. In this step, the wave functions
are kept in the GPU, and book-keeping of the wave functions on
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0 ° Wave function transpose
Py - - . . P Pss {G}
Wo Yig Wys
MPI_Alltoall
Gig| P Hy
Gys| Pis 3D FFT
Nonlocal Projection
{w} '

Diagonalization
Rotation

Fig. 5. G-space and band-index hybrid parallelization scheme in LS3DF GPU code.
P, denote the process, G,, the G-space portion, and ; the full wave function of
index i. The book-keep is at the left hand side, while when Hpsi is calculated, the
data of the wave functions are transposed into the right hand side.

CPU is no longer needed. Since K20X GPU has a memory of 6
GB, it is capable of holding more than 200 full wave functions
(each wave function is no more than 30 MB) for the largest
fragments. Wave functions updates in Sub_diag, Projection and
Orth are directly performed inside GPU. The only part that still
requires wave function CPU-GPU copy operation is before and
after the MPI_Alltoall of the H" " operation. Diagonalization of
matrix h(i,j) using zheev and Cholesky decomposition on the
overlap matrix (Wij) using zpotrf are also examined. While
this part does not scale with the number of processors, we
tested different libraries and chose ELPA_SOLVE_EVP for matrix
diagonalization and GPU MAGMA_ZPOTRF and CUBLAS_ZTRSM for
Cholesky decomposition and wave function rotations, respectively.
Other parts of the code, e.g., precondition and line minimization are
also moved into GPU by hand-coded CUDA code, which also gives
us a gain in the speed. Overall, keeping wave functions inside GPU
throughout AB-CG gives us improvements in both computation
and CPU-GPU memory copy. Our tests show that this part could
improve the speed by a factor of 2.

3.5. MPI communications and mix precision calculations

The MPI_Alltoall within the fragment process group is a
bottleneck in the GPU AB-CG method, yet there is no easy way
to avoid the wave function transpose in the hybrid parallelization
scheme. To reduce the communication between MPI tasks, a
compression algorithm is introduced in the GPU AB-CG. In the AB-
CG algorithm, although not apparent in Fig. 4, the H" ¢ is actually
calculated by HFPf, where Pf is the wave function residual Pf =
HFy[ — &l from the last iteration and it is always very small.
The purpose of the AB-CG algorithm is to minimize the residual
PF. Typically, Pf is reduced by approximately a factor of 10 in
one CG step. Thus, it is not necessary to keep the residual PI.F in
double precision. Note that PiF isin double complex precision in the
CPU implementation. In the GPU implementation, we use 4 bytes
instead of 16 bytes for the residual P,-F. Nine binary digits are used
to represent the numerical amount, and 6 binary digits are used to
represent its exponent. The algorithm is shown in Algorithm 1. This
significantly reduced the MPI_Alltoall data size to 25% of its original
amount. Note the residual is compressed in the GPU and it takes
little time. Furthermore, the precision reduction makes it possible
to use single precision in the GPU calculation. Double precision is
used in all other parts except the Hpsi calculation of the residual Pl-F .
FFT and nonlocal potential calculations are both evaluated in single
precision operations in GPU. The compression does not affect the
final result in precision, nor does it affect the convergence of the
AB-CG algorithm as shown in Fig. 6.



12 W. Jia et al. / Computer Physics Communications 211 (2017) 8-15

Algorithm 1. The wave function residual data compression.

Input: wave function residual R
Output: wave function residual R”
R = (—1)Si x f; x 2¢
m = max (e;)
g = lfi x 2°]/2°
d; = max (64, m — ¢;)
RY = (—1)% x g; x 274

3.6. Wave function occupation

Another computationally intensive kernel is to occupy the
wave function to get the charge density as expressed in pr =

> |lPiF (r) |2. The issue here is that the original wave functions are
stored in G-space with G-space parallelization data distribution.
We need to do FFT over the G-space wave functions to get the
real space wave functions. In the CPU implementation, parallel
FFT is calculated among the G-parallel processors. However, in
the GPU code, an MPI_Alltoall is needed to transpose the G-space
parallel data distribution to band index parallelization, so that one
CPU/GPU computing unit has a full wave function. After the FFT,
in order to sum up the real space wave functions distributed in
different CPU/GPU units, an MPI_ReduceScatter on the real space
charge density pq:(r) needs to be performed. After the partial
charge density pr is obtained, an MPI communication is needed to
patch the fragmented charge density into global charge. Then the
Poisson equation is solved (via a global FFT) to get the potential for
the next SCF iteration.

4. Global MPI communication in the LS3DF code

In this section, we discuss the improvement of the global
MPI communication scheme for pp(r) and Vi (r). Although these
communications are done purely on CPU, the reduction of the
number of CPU process due to the use of GPU (only one CPU is used
on one node) makes it possible to improve the communication
scheme.

4.1. The original MPI communication scheme

For the LS3DF code, the computationally intensive parts are
solving the Kohn-Sham equation Hf ¢/ = ¢ff and occupation
of the wave function. On the other hand, distributing the global
potential Vj,(r) among different MPI tasks and getting the total
density pg (1) from the fragmented charge density take most of
the time in terms of global MPI communications. In a typical CPU
LS3DF SCF step, the above communication parts take up to 20% of
the total time.

In the SCF iteration shown in Fig. 2, distributing the global
Vin(r) and getting the total density p;:(r) are exactly opposite
operations. Here, we will only examine the total density gathering
operation. After the wave function calculation in AB-CG, the pr
is calculated within each MPI processor group using pp(r) =
LA |2. The global ;o (1) is then calculated through peo: () =
ZF Sepe(r), S = +/— is the sign of the fragment. Because the
CPU LS3DF can scale to hundreds of thousands cores, a two-layer
hierarchical communication scheme was designed specifically to
avoid direct global communication. It begins with dividing the
global charge density o, (1) into slices. Then all MPI processor
groups (as shown in Fig. 3) first collect the charge density of
that particular slice within the group, and give them to a lead
process within the group. Because one MPI processor group
can hold several fragments, this part is actually a summation
over different fragments. Next, an MPI_allreduce among different
fragment groups is needed to get the slice of the global charge
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Fig. 6. Comparison of the maximum errors of the 512 atom GaAs system eigen-
states for 20 AB-CG steps with and without data compression. This system has
1024 electrons and the FFT size is 128°. Each SCF step is consisted of 4 line
minimization. The vertical axis is in logarithmic scale with a base 10. Note that the
data compression does not change the convergence of the SCF.

density o (1) and give it to one process within the P; group (to
calculate the global Poisson equation). After this communication,
the Poisson equation will be solved via parallel FFT within the Pg

group to get the V2 (r) for the next SCF iteration.

4.2. The modified MPI communication scheme

The CPU two-layer communication scheme limits the commu-
nication within fragment process groups, and global communica-
tion is avoided. The disadvantage however is the increased num-
ber of MPI communication calls since for each slide of the py (1),
the charge densities need to be collected from different processes
within a fragment group in an on-the-flight fashion. This two level
communication pattern might be suitable when the total number
of process is extremely large (e.g., 60,000 processes), where a di-
rect all-to-all communication can overwhelm the network. In the
GPU LS3DF code, however, the number of total processes (the to-
tal MPI tasks) has been significantly reduced (by 16 times). In the
Titan machine, much like other typical heterogeneous supercom-
puter, one computing node is equipped with 16 CPU cores, but only
one GPU card. For the CPU code, if we use all computing power of
Titan, we will have 299,008 MPI tasks. On the other hand, in a GPU
run we only need only 18,688 MPI tasks (one CPU core binding to
one GPU card). Since GPU code uses much less MPI tasks, one can
attempt to use a simple communication pattern.

A one-layer communication pattern is used in our GPU LS3DF
code. The idea is that in order to get the total density, we use a
point-to-point MPI communication to send the fragmented charge
density pr(r) from a process within one fragment process group
directly to the corresponding MPI task within the Pg group that
holds the p(r). Since the total charge density is distributed
among n, MPI processors (11 being the first dimension of the global
FFT grid) within the P; group and each of the n; processor will hold
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Algorithm 2. MPI handshake to get the charge density global index.

MPI senders:

Endfor
Endfor
Forx <nl:

Send buffer[x] to MPI rank x
Endfor

//only the first n1 MPI processes receive.
MPI receiver:
For j < nprocessors:
Receive the buffer[j] from rank j.

Endfor

For each fragment that reside in current MPI process:
For each charge density data point:
Calculate the global index (x,y,z) of the data point within the global grid
Packing the global index into the buffer [x].

Unpack the buffer and construct the global index from all received buffer.

1x1x2

—.
x
o
3
Y

2x1x1

2x2x1

2x2x2

Fig. 7. The illustration of different size of fragments and the entire 3877 atom Si quantum dot system. Blue dots represent the Si atoms and orange ones represent the H
atoms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a slide of n, x n3; data, a mapping index array is first generated
in order to map the fragment charge to the global charge. In the
implementation, two handshakes are used to setup the mapping
array. In the first handshake, a single number is send from each
processor to the n; processors, indicating the total number of the
communicational data in the following handshake. The mapping
array is obtained by executing Algorithm 2. Note that the mapping
array is calculated before the SCF iteration begins and it does not
need to be recalculated during the SCF steps.

Once the global mapping array is obtained, the Gen_density
procedure of Fig. 2 becomes straightforward. In MPI senders,
fragmented charge density data is packed and sent in the same
manner as in Algorithm 2. Next the n1 MPI receiver (within the
P; group) will receive the data, and then a mapping procedure
is executed to map the fragmented charge density to the global
charge density. Note that the handshake is one time only,
and only the charge density point-to-point communication is
necessary in the SCF calculation. Compared to the CPU two-
layer communication pattern, the direct communication for
heterogeneous architecture is more efficient. It suits the current
heterogeneous supercomputers.

5. Results and discussions

We have used two nanosystems to carry out a comparison
between the original CPU version of the LS3DF code and the new

GPU version of the code. The first test runs on Titan supercomputer
with 24,000 CPU processors for the CPU code, and 1500 MPI tasks
for the GPU code. The second test runs with 55,296 CPU MPI
processes, and 3456 MPI tasks for the GPU code. Note that for each
test, CPU and GPU use the same number of computing nodes.

The first system is a Si quantum dot passivated by H atoms. The
system has 3877 atoms, 13,024 electrons. The box size is [102.6,
102.6, 102.6] A, the global FFT grid is [480, 480, 480]. The largest
2 x 2 x 2 fragment contains 199 atoms with 472 electrons. With
the vacuum buffer, the largest 2 x 2 x 2 fragment has a grid point
of [ 144, 144, 144]. The energy cut off for the plane wave basis set is
489.8 eV. Fig. 7 shows the Si quantum dot system as well as a few
prototypical fragments. The second system is CaTiO3 perovskite
system. The system has 8640 atoms, 41,472 electrons. The box size
is [86.32, 86.32, 86.32] A, the global FFT grid is [384, 384, 384]. The
largest 2 x 2 x 2 fragment contains 95 atoms with 288 electrons.
With the vacuum buffer, the largest 2 x 2 x 2 fragment has a grid
point of [ 128, 128, 128]. The energy cut off for the plane wave basis
setis 816.3 eV.

The computation and the tests are carried out on the Titan
supercomputer at the Oak Ridge Leadership Computing Facility.
The Titan machine has 18,688 computing nodes; each node is
equipped with one 16-core AMD Opteron 6274 CPU and one Kepler
K20X GPU. The Kepler K20X GPU has a peak performance of 1312
Gflops, so totally the accelerators contribute 24.5 petaflops of the
Titan 27 petaFlops peak performance. The computing nodes are
connected through Cray’s high-speed Gemini network.
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Table 1

The partial and total computational time (s) and the GPU speedup compared to CPU for two testing systems. Note that the tests are performed on Titan supercomputer with
the same number of computing nodes. Each node has 16 AMD operon cores and one GPU card. So the comparison is one K20X GPU card against 16 CPU cores.
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Process

Gen_VF

AB-CG occupy

Gen_density

Poisson

Total

3877
Atom
Si
8640
Atom
CaTiOs

CPU 24,000
GPU 1,500
Speedup

CPU 55,296
GPU 3,456
Speedup

200
23
8.7x

220
82
2.7x

1368
236
5.8x

7433
1559
4.7x

307
15
20x

340
91
3.7x

33
28
1.2x

15
10
1.5x

1908
302
6.3x

8008
1742
4.5x

It takes 18 SCF steps to reach convergence for the 3877 atom Si
quantum dot system using both CPU and GPU on 1500 computing
nodes. The CPU code takes 1908 s for 18 SCF steps, each step
taking 106 s. The GPU code takes 302 s for 18 SCF steps, each SCF
step taking 16.8 s. Note that the GPU LS3DF code has the same
convergence rate compared with CPU code, as shown in Fig. 8. The
8640 atom CaTiO3 system is calculated on 2345 computing nodes
on Titan supercomputer. It takes the CPU code 8008 s to finish 30
SCF steps, while the GPU code finishes the same 30 SCF iteration
with 1742 s. The overall speedup is 4.5x (see Table 1).

The total computational time shows that the GPU code has
a speedup of 4.5x to 6x. This can be divided into three parts:
the AB-CG and Occupy part, the Gen_VF and Gen_density part,
and the Poisson equation part. AB-CG and Occupy is the most
computationally intensive part. As discussed in session 3, it takes 4
steps to move the AB-CG algorithm entirely into the GPU. However,
the speedup is not ideal. First, in the SCF iteration, there are still
partsresiding in the CPU, e.g., to get the nonlocal G-space projector.
The other reason is that for small fragments like 1 x 1 x 1, which
could contain only 5 atoms, there is not enough data operation to
fully utilize the GPU computational power. In a real application
scenario, such small 1 x 1 x 1 fragments take a large proportion;
further optimization is perhaps possible in the future work.

The Gen_VF and Gen_density parts are the global commu-
nication parts. As discussed before we use a single-layer MPI
communication pattern instead of the two-layer communication
pattern. The testing results show we have 8.6x and 20x speedup for
Gen_VF and Gen_density, respectively. Note that these two proce-
dures are the opposite MPI operations. The Gen_VF distributes total
potential into fragments and Gen_density collects the fragmented
charge density to get a total charge density. The total charge den-
sity is solved via Poisson solver to get the total potential V (r). The
main difference between Gen_VF and Gen_density are that Gen_VF
sends data from a group of processors (Pg) to all the MPI processes,
while Gen_density sends data from all MPI processes to the group
of processors Pg. These two communications are un-symmetric,
which leads to their slight time differences.

Another part is the Poisson solver. In the Si system, it takes 1.7
percent of the total time; while in the CaTiO3 system, it takes 0.2
percent of the total time. In the Poisson solver, the global FFT is
solved in parallel within the n; processors in the P group (n1is the
first dimension of the global FFT). The GPU LS3DF uses the same
Poisson solver as the CPU LS3DF code. The speedup comes from
the fact that we use one MPI per node in the GPU code, thus the
network contentions are avoided.

6. Conclusions and future work

In this paper, we presented our LS3DF GPU work on heteroge-
neous supercomputer. This code can calculate a system with thou-
sands of atoms for SCF convergence within 5-25 min when enough
GPU nodes are used. It is about 4.5-6 times faster than the cor-
responding CPU code. We have presented the detailed steps to
speedup the code. This includes (1) a hybrid parallelization be-
tween G-space and band-index parallelization to speedup the FFT;

Total energy error(Hartree)
>

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
SCF iteration

Fig. 8. The SCF convergence of the CPU and GPU LS3DF code for 3877 atom Si
quantum dot system. Note that the GPU and CPU code convergence is the same.
The vertical axis is in logarithmic scale with a base 10.

(2) moving all the computationally heavy parts into GPU to re-
duce CPU-GPU memory copy operations; (3) a data compression
algorithm to reduce the MPI_Alltoall communication; (4) using di-
rect point-to-point MPI for global communication when patching
up the charge density. Nanosystem electronic structure calculation
can now be reduced from hours to minutes. For example, one SCF
step of the 8640 atoms CaTiO3 system (with 41,472 electrons) takes
only about one minute.

Current GPU AB-CG and Occupy takes about 80% of the
total computational time. One of our future works is to further
speedup this kernel. The bottleneck is with the small fragments, as
mentioned in session 5. Two ways could be used to further speedup
this part, the first is moving other CPU parts, e.g., calculating the
nonlocal projector, into GPU; the second is to use CUDA streams
to further exploit the parallelization of the small fragments. In
this paper, we have used one MPI per GPU. However, on the
Titan supercomputer, one node is equipped with 16 CPU cores
and 1 GPU card. In order to fully utilize the CPU part, one good
programming model would be MPI/OpenMP/CUDA. Nevertheless,
such a programming model would be a big challenge in the
implementation, as we have moved the most computationally
intensive tasks already into the GPU.
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