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a b s t r a c t

The reduction of the energy footprint of large and mid-sized IEEE 802.11 access networks is

gaining momentum. When operating at the network management level, the availability of an

accurate power model of the APs becomes of paramount importance, because different detail

levels have a non-negligible impact on the performance of the optimisation algorithms. The

literature is plentiful of AP power models, and choosing the right one is not an easy task. In

this paper we report the outcome of a thorough study on the impact that various inflections

of the AP power model have when minimising the energy consumption of the infrastructure

side of an enterprise wireless LAN. Our study, performed on several network scenarios and

for various device energy profiles, reveals that simple one- and two-component models can

provide excellent results in practically all cases. Conversely, employing accurate and detailed

power models rarely offers substantial advantages in terms of power reduction, but, on the

other hand, makes the solving algorithms much slower to execute.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The energy saving issue in wireless networks is currently

the focus of many research activities. For example, there is a

plethora of works dealing with the analysis and reduction of

the power consumption in cellular networks [1–3], wireless

sensor networks [4,5], wireless mesh networks [6–8], and

also wireless Local Area Networks (WLANs) [9–11].

With specific focus on IEEE 802.11-based networks, there

is an increasing interest in the design of efficient reconfig-

uration algorithms to reduce the power consumption of the

infrastructure-side when the load is scarce [9,12,13]. Indeed,

by turning some access points (APs) off and adjusting the

power radiated by the active APs, it is possible to achieve

considerable energy savings with respect to the currently

widespread technique of continuously operating the WLAN

at full power. Obviously, this energy gain shall not be
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obtained at the expenses of the coverage nor the quality of

service levels provided when the transmission power of all

APs is set to the maximum.

In designing such reconfiguration algorithms it is often

necessary to first define a power model of the AP. On the

basis of this model it is then possible to study and per-

form the optimisation of the system from an energy-aware

perspective.

The assumptions on the AP power model have, in gen-

eral, a non-negligible impact on the output of the energy-

management algorithm, especially because the optimisation

is often tailored on the features of the model itself. If an inap-

propriate power model is employed, it might occur that the

planned or expected energy improvement is reduced or even

nullified. Consequently, the choice of an appropriate power

model is crucial for the valid outcome of any reconfiguration

algorithm. However, given the plethora of models proposed

over the years, it is not easy to understand which is the most

suitable.

In this paper, we specifically address the last point, i.e.

our goal is providing some insights and indications to help
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choosing the appropriate AP power model for some com-

mon and future network scenarios. To this aim, we perform

a study on the effectiveness and implications that various AP

power models have in minimising the energy consumption of

an enterprise WLAN system. We first define a general model

of the WLAN and of the AP power consumption. We then

build a mathematical programming model to minimise the

total power consumption (while guaranteeing that the whole

traffic demand is met). Finally we solve it to optimality for

various “realisations” of the AP power model, under different

network compositions and device energy profiles. At the end

of this process, we are able to extract valuable information

on the usefulness and impact of the AP power model details.

Going in more detail, we basically build our AP power

model on the one defined by Garcia-Saavedra et al. [14],

which can be regarded as the most detailed and reliable

appeared so far in the literature. In our model, four major

elements contribute to the power consumption of the AP:

baseline (due to circuitry powering), the radio frontend, the

airtime, and the traffic processing cost (power drain of CPU

and memory). Then, by selectively excluding one or more of

these elements, we obtain less complete models down to the

simplest on/off one.

Then, we characterise all the features of the WLAN system

in their most general form, without performing rough ap-

proximations or simplifications. Indeed, while such approxi-

mations and/or simplifications might, on the one hand, lead

to a simpler mathematical programming model, on the other

hand they might undermine the effectiveness of our study,

e.g. by leading to solutions that are not applicable or unsatis-

factory for the original problem.

To achieve the maximum energy-saving of the system, we

operate through a mathematical program on two decision as-

pects at the network management level: (i) associating each

user terminal to one of the available APs, and (ii) setting the

transmission power level of each AP.

The mathematical program we devised is linear (notwith-

standing the non-linearity of some functions, as it will be

detailed in Sections 3.2 and 4.2) and optimised for fast

solving times, so that we can analyse non-trivial network

scenarios in acceptable times. The program is solved to

optimality by means of a general-purpose Mixed-Integer

Linear Programming (MILP) solver, for a wide range of

network scenarios and for four different classes of devices.

In fact, current (and future) AP equipment is characterised

by different ratios among the power drained by its major el-

ements. Consequently, the application of the power model(s)

to diverse device classes might lead to different optimisation

strategies and resource allocations.

In particular, we distinguish the cases of homogeneous

and heterogeneous networks. While the former is undoubt-

edly the most utilised in the literature, and also quite com-

mon in practice (e.g. brand new deployments), it is becoming

not so infrequent for large WLANs to be composed of differ-

ent types of APs (e.g. due to replacement of malfunctioning

equipment, upgrades of old apparatuses, network densifica-

tion after the initial deployment). Indeed, our work unveils

interesting findings about heterogeneous networks which

have often been neglected in the literature under the rea-

soning that passing from a homogeneous to a heterogeneous

network is just a matter of more complex notation.
1.1. Contribution

The main contribution of the paper can be summarised as

follows.

• We provide an extensive analysis of the impact that the

various elements of the AP power model have in optimis-

ing the energy efficiency of an enterprise-grade WLAN.

This is achieved by means of a general integer linear pro-

gram of the WLAN which accounts for an accurate and

modular power model of the AP and for non-simplistic

network features.

• On the basis of the analysis, we delineate the best strategy

to minimise the energy consumption in current and fu-

ture WLANs. We show that accounting for traffic process-

ing at the APs is detrimental, because it hardly brings any

improvements in terms of energy savings but makes the

problem much harder to execute. We also demonstrate

that resource consolidation is often the best strategy. We

find that the presence of heterogeneous devices might be

exploited to increase the energy efficiency of the system.

The rest of the paper is structured as follows. In the next

section we give a brief summary of the related literature and

works. Then, in Section 3 we illustrate the analytical model

of the WLAN system, with particular emphasis on the power

model of the AP, and sketch the mathematical formulation

of the problem. Section 4 describes the framework under

which we lead our analysis, whose results are reported and

commented in Section 5. Finally, the concluding remarks are

drawn in Section 6.

2. Related work

Over the years, several AP power models have been pro-

posed, with diverse assumptions and varying degrees of de-

tail. For example, simple on/off models, in which the AP has

a constant power drain, have been and are still widely used.

A more sophisticated and yet quite popular model ascribes

the energy consumption to two elements: a baseline one,

plus a term that depends – often linearly – from the activity

of the radio interface, the so-called airtime [15]. Then, var-

ious measurement campaigns have led to characterise the

power consumption as a (variably complex) function of the

traffic load, antenna settings (especially for MIMO devices),

datagram size, transmission/reception data rate, encryption,

number of connected clients [16–19].

Recently, a very detailed AP power model has been de-

scribed by Garcia-Saavedra et al. in [14]. The model is ex-

tracted from a series of accurate measurements on various

real APs. It comprises, in addition to the “classic” baseline

and airtime elements, a factor that weights the energy cost

of processing the traffic.

In parallel to AP power modelling works, several studies

have been produced on the optimisation of the WLAN power

consumption. Each of these have assumed the APs to be char-

acterised by a specific power model. For example, Jardosh

et al. [20] proposed a strategy to dynamically turn APs on/off

to follow the resource demand of the users. This approach,

which has been translated into a working testbed, was based

on empirical considerations, including the simple on/off AP

power model.



R.G. Garroppo et al. / Computer Networks 94 (2016) 99–111 101
On the other hand, a more rigorous optimisation ap-

proach based on integer linear programming (ILP) has been

followed by Lorincz et al. [9] and Gendron et al. [13]. In both

works, the AP power consumption is split in two compo-

nents, fixed and variable. The latter, in particular, depends on

the radiated power. Zhang et al. [21] also employed a very

similar model in investigating both the power allocation and

the placement of an energy-harvesting AP in a single cell

WLAN with cooperative users.

The simple on/off power model is again at the basis of the

work by Couto da Silva et al. [22], who exploited a queuing

model to decide the assignment of the users in a portion of

a dense WLAN with co-located APs. At last, we mention the

work of Garcia-Saavedra et al. [23], who studied the trade-off

between energy and throughput optimisation in case of het-

erogeneous user devices. An exact, but quite complex energy

model, was also derived. Simplifying, it ascribed the power

consumption to a fixed term plus the radiated power and the

airtime.

Even from this short survey, it emerges that many AP

power models have been employed in the past. However, to

the best of our knowledge, no prior work exists that have

studied and evaluated the properties and effects of the var-

ious AP power models in the context of energy-saving opti-

misation in wireless LANs. Our work aims at filling this gap.

3. AP power model and problem formulation

3.1. Wireless LAN model

We model the wireless LAN system as follows.

There is a set of deployed access points (APs) that must

serve a set of user terminals (UTs). For each AP there ex-

ists a set of different transmission power levels (PLs), but at

most one PL must be chosen for each AP. Each AP can also

be powered off. The UTs are static, and their positions are

known. This is a rather common abstraction in network de-

sign and resource allocation, where each UT in fact repre-

sents the barycentre of an area that contains a quantum of

demand [24]. For example, one such UT may aggregate the

traffic of all the physical devices present in a given office or

room. Thanks to this abstraction, it is also possible to build

a stationary traffic model of a mobile population. Then, each

UT has a traffic demand that must be satisfied, and each UT

must be assigned to exactly one AP.

Let I be the set of UTs, J the set of deployed APs, and K
the set of PLs; let i, j, and k be the indexes for such sets.

The power Pj consumed by the generic AP j can be as-

cribed to several elements:

Pj = bj + Aj wj + t j. (1)

At first there is a constant part, say bj, which is bound to the

mere fact that the device is powered on, and therefore en-

compasses AC/DC conversion, basic circuitry powering, dis-

persion, etc. Then, we find a first variable part, say w j, which

is generated by the wireless interface. In turn, w j can be split

into the transmission (wt
j
) and reception (wr

j
) parts. wt

j
es-

sentially depends on the radiated power pj through an effi-

ciency factor ηj that accounts e.g. for the electrical model of

the device; wr
j

derives from the frame reception operations.

A variable factor, say Aj, accounts for the so-called “airtime”,
i.e. the fraction of time the device is either transmitting or

receiving frames. Aj can in fact be split into the two direc-

tions: A j = (at
j
+ ar

j
) A j, with at

j
, ar

j
∈ [0, 1], and at

j
+ ar

j
= 1.

The last variable part, say tj, weights the traffic processing

operation, and depends on the amount of traffic handled by

the AP, say Tj, and the traffic processing cost μj.

An expanded form of (1) can be written to make all ele-

ments contributing to the power consumption explicit:

Pj = bj + (at
j η j p j + ar

j wr
j) Aj + μ j Tj. (2)

From (1) it is easy to identify the four components that

sums up to build the power model of the AP: the baseline

consumption (bj), the airtime (Aj), the radio operations (w j),

and the processing toll (tj). Accordingly, we call this charac-

terisation “the four-component power consumption model”,

in short the 4C model. The 4C model is currently the most

complete characterisation of the AP power consumption [14].

With respect to the model proposed in [14], however, we

have not made any distinction between the processing toll

of incoming and outgoing traffic, because, as a matter of fact,

they require the same energy.

Eqs. (1) and (2) address the general case of heterogeneous

devices, for which all terms are dependent on the AP index j.

However, in practical circumstances, it may occur that some

of the elements (such as bj, ηj, and μj) do not vary among the

APs, thus allowing to simplify the model.

With regard to the radiated power pj, note that the vast

majority of the commercial APs have a set of preset power

values to choose among (see e.g. [25]), and these values are

pretty standardised among all vendors and devices. Conse-

quently we can assume that pj can take a value in the set

{p jk}, k ∈ K, but also that these values are not a function of

the specific AP j, and therefore p jk = pk,∀ j ∈ J .

Finally, to complete the description of the problem, we in-

troduce the following elements:

• di, the traffic demand of UT i;

• L, the average packet length;

• rij, the capacity of link (i, j), i.e. the data rate available be-

tween AP j and UT i; rij is function of the power pj radi-

ated by AP j; this relationship can be arbitrarily complex,

because it depends on various factors (such as modula-

tion and coding scheme, rate adaptation algorithms, over-

head), in a nonlinear way;

• rijk, the capacity of link (i, j) when AP j transmits with PL

k, i.e. when p j = pk;

• ρ ∈ [0, 1], an AP “utilisation” factor, which can be

employed to limit the AP airtime to values smaller

than 1;

• I ′
jk

= {i ∈ I : ri jk ≥ di
ρ }, the set of UTs whose traffic de-

mand can be carried by AP j when it is using PL k.

Throughout our work, we assume that the wireless links

are symmetric, which implies that ri j = r ji, and consequently

that the ratios of the downlink/uplink airtimes are equal to

those of the downlink/uplink traffic demand. This assump-

tion limits neither the generality nor the validity of the WLAN

model, but allows to keep the notation simpler. For example,

it is not necessary to split the traffic demand di in the down-

link and uplink directions, since they contribute to the air-

time in the same manner.
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Table 1

Classes of devices and related power distribu-

tion (in Watt).

Class Baseline Radio Processing

D1 4.8 2.4 4.8

D2 6 3 3

D3 9.6 1.2 1.2

D4 1.2 4.8 6
3.2. Mathematical programming model

The objective of our study is to minimise the overall

power consumption of the APs while satisfying the traffic de-

mand of the users. It must be decided whether to use or not

each AP, which PL to assign to each (used) AP, and to which

powered-on AP to assign each UT. Therefore, the problem can

be seen as a discrete location problem, where the capacity

to assign to each location also has to be decided (this is the

design part of the problem). Hence, we see this problem as

a particular case of a broader class of location-design prob-

lems, where both the location and capacity dimensioning de-

cisions must be taken.

To formulate the mathematical programming model, we

define the following sets of binary variables:

• xijk, which is set to 1 if UT i is assigned to AP j using PL k,

0 otherwise;

• yjk, which is set to 1 if AP j uses PL k, 0 otherwise.

The objective is to minimise the total power consumption,

as described by:

z = min
∑
j∈J

∑
k∈K

{
bj y jk + (at

j η jk pk + ar
j wr

j)

×
∑
i∈I ′

jk

di

ri jk

xi jk + μ j

∑
i∈I ′

jk

di

L
xi jk

}
, (3)

The minimisation is subject to the following constraints:∑
j∈J ,k∈K:i∈I ′

jk

xi jk = 1, i ∈ I, (4)

∑
k∈K

yjk ≤ 1, j ∈ J , (5)

∑
i∈I ′

jk

di

ri jk

xi jk ≤ ρ yjk, j ∈ J , k ∈ K. (6)

xi jk ∈ {0, 1}, j ∈ J , k ∈ K, i ∈ I ′
jk, (7)

yjk ∈ {0, 1}, j ∈ J , k ∈ K. (8)

Eq. (4) is the single assignment constraints that impose that

each UT must be assigned to exactly one AP and one PL.

Eq. (5) imposes that at most one PL can be selected for each

AP. Eq. (6) is the capacity constraints for each AP, which in-

clude the utilisation factor ρ . The joint enforcement of (4)

and (6) also ensures that the PL assignments are coherent

among the x and y variables and that no UT is assigned to

powered-off APs. Finally, relations (7) and (8) define the in-

tegrality of the variables.

A few noteworthy remarks follow. An AP j is turned off if

no PL is selected, i.e. if
∑

k∈K y jk = 0. By defining and using

the set I ′
jk

we arranged the programming model so that the

xijk variables exist only when ri jk ≥ di
ρ . This allows for a faster

resolution of the programming model, but has no impact on

its generality and correctness. The presence of the data rate at

the denominator in (3) and (6) generally leads to a non-linear

problem, because the rate depends on the radiated power pj,

which is an unknown of the problem (specifically, via the yjk

variables: p j = ∑
k∈K pk y jk). To overcome this hurdle, in both

the objective function and the constraints the rate function
rij is always employed in its “sampled” version rijk. This al-

lows to build a linear programming model (which can be fed

directly to general-purpose solvers) which includes a non-

linear function (see Section 4.2 for a realistic example).

3.3. Variants to the power model of the AP

The just outlined model accounts for all aspects of the AP

power consumption, i.e. it minimises the total power con-

sumption according the 4C model defined in (1). However, in

many studies, simplifications of this model have been (and

are still) employed. The most meaningful model variants are

the following:

1C Pj = bj, (9)

2C Pj = bj + ζ Aj, (10)

3Cw Pj = bj + wj Aj, (11)

3Ct Pj = bj + ζ Aj + t j, (12)

In detail, (9) represents the simplest characterisation, which

is a basic on/off model. Eq. (10) adds a variable part that

depends on the airtime. Yet, differently from (1), this is not

weighted by a variable “radio” factor, but by a constant term

(ζ ). The power consumption of the radio frontend is added

by (11), whereas (12) adds the traffic processing cost.

4. Computational analysis

4.1. Identification and characterisation of the device classes.

Following to the work of Garcia-Saavedra et al. [14], we

have identified three classes of devices, as a function of the

relation among the addends of the AP power model (1). A

fourth class has been added to account for the future trends

of energy efficient devices, in which the baseline consump-

tion should be drastically reduced. Table 1 illustrates how

the maximum power (say Pmax) has been divided among the

three addends. The “Radio” element includes both w j and the

airtime Aj (which, in fact, has been assumed to be 1 for this

operation). Devices belonging to class D3 can be taken as an

example of the majority of current carrier-grade devices, in

which the baseline consumption amounts to 75% of the total

[19]. In contrast, class D4 is representative of future energy-

efficient devices, which should scale the power with the us-

age. Classes D1 and D2 are in between these two extremes,

representing, to some extent, two cases of single chip low

power solutions [18].

Note how Pmax has been normalised to the same value

(12 W) for all classes, in order to eliminate any bias due to
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Table 2

Parameter values for the tested scenarios.

Parameter Reference Lower Higher

Number of APs, |J | 16 8 32

Number of UTs, |I| 96 48 192

Number of PLs, |K| 3 2 4

Mean traffic demand, d̄i 300 kbps 150 kbps 600 kbps

Traffic variation, �di 67% 10% –

AP density, YAP 0.003/m2 0.001/m2 0.01/m2

Downlink fraction, at 0.75 0.25 –
unbalancement among the classes. This normalisation has

been achieved by scaling proportionally each component, so

as to keep the ratios among the components of each class

fixed (and in line with the numbers extracted from [14]). We

also re-normalised the components when assessing the per-

formance of the non-4C models in the heterogeneous tests.

This was necessary to keep the maximum power to the same

value (Pmax = 12 W) for all the devices, given that the lack

of one or more components leads, for non-4C models, to an

unbalancement in the power consumption among devices

of different classes. For example, when assessing the 3Cw

model, there is a huge disparity in the maximum consump-

tion between classes D3 and D4 due to the lack of the pro-

cessing term, and therefore we scaled b and η parameters so

that the 12 W value is reached by the sum of the sole baseline

and radio components.

4.2. Parameters of the optimisation model

The first aspect to specify for the computational analy-

sis is the function that binds the rates rij to the transmitted

power pj. To this purpose we can start from this simple for-

mula that defines the rate rij available above the MAC layer:

ri j = 106 · L

τi j

, (13)

where τ ij is the average global time (in μs) for delivering a

single frame. This time includes the overhead created by the

MAC and physical layers, such as headers, control frames, and

various protocol procedures. In the hypothesis of ideal chan-

nel access, there exists a formula that allows to compute τ ij

for the IEEE 802.11g standard 1 (see [26,27]):

τi j = τproto + 4

⌈
Lh,t + L

NDBPS

⌉
, (14)

where τ proto is the protocol delay (e.g. back-off, SIFS, DIFS)

plus the physical frame delimiters (preamble and sync fields),

Lh, t is the length of headers and trailers plus the ACK frame,

and NDBPS is the number of data bits per OFDM symbol. In

turn, NDBPS can be approximated as NDBPS = 4 r̃i j, with r̃i j be-

ing the raw bit rate available at the physical layer (in Mbps).

In case of non-ideal channel, we may assume that r̃i j is the av-

erage raw bit rate resulting from the rate adaptation policies

aimed at keeping the packet error rate at a roughly constant

value.

The raw bit rate r̃i j can be related to the transmitted

power pj by the classic signal propagation rules. To this pur-

pose, we employed a simplified version of the COST-231

multi-wall path loss model for indoor, non-LOS environ-

ments [28]. This allows to compute the path loss α as a func-

tion of the number and type of walls, columns, and other

building elements. Then, as reported in several experimental

studies, such as [29], it is possible to bind the signal-to-noise

ratio expressed in dB (SNR
[dB]
i j

) to the data rate by means of
1 This formula could be easily adapted for the IEEE 802.11a standard, and,

with some more work, extended to the IEEE 802.11n standard. Yet, this is

well beyond the purpose of our work, since the rate function serves just as

an example in the computational analysis.
a linear function, where β and δ are two suitable “linearisa-

tion” factors. A further aspect to be considered is that, when

the received power falls below a given sensitivity threshold

γ , we must assume r̃i j = 0. Similarly, we must also cap r̃i j

to the maximum rate allowed by the specific technology, say

r̃max. Thus, we can summarise the relationship between r̃i j

and pj with this unique nonlinear expression:

r̃i j =
{

min{β · SNR[dB]
i j

+ δ, r̃max}, if pj + αi j > γ ,

0, otherwise,
(15)

where pj, αij, and γ are all expressed in dB. As for the specific

parameter values, we have set L to 700 bytes [30], τ proto =
157.5 μs, Lh, t = 428 bits, β = 1.76 and δ = −7.48 [29], γ =
−121 dB [25], and r̃max = 54Mbps.

To complete the parameter list, we set pk taking values in

the range from pmax = 0.1 W to pmin = ( 1
2 )|K|−1 pmax, with

pk+1 = 1
2

pk, k = 1, . . . , |K| − 1, (16)

where, clearly, p1 = pmax and p|K| = pmin.

4.3. Scenarios and instance generation method

We assessed the performance of the power consumption

models over five networks composed of a different mix of de-

vices. Four of them are homogeneous, in which all the APs

belong to the same class, with the class varying from D1 to

D4. In the fifth, the APs of all classes are mixed in the same

proportion, i.e. each AP belongs to any given class with prob-

ability 0.25.

We then defined a set of 13 scenarios. The features of each

scenario are determined by several parameters: the number

of APs, UTs, and PLs, the amount of traffic demand per UT, the

spatial density of the APs2 (YAP, measured in number of AP

per m2), and the ratio between the downlink and uplink traf-

fic (which, given that the links are symmetric, is also the ra-

tio between the transmission and reception airtimes, at and

ar). Table 2 reports the values of each parameter. Each sce-

nario is generated by changing the value of one of the param-

eters from “reference” to “higher” or “lower”; in this way it is

possible to estimate their impact on the model performance.

Table 3 details the parameter values for each scenario.
2 Note that |J | and YAP , i.e. the number and density of APs, affect the

tested scenarios in different ways. An increased/decreased |J | (with con-

stant YAP) implies a larger/smaller test area but the same degree of freedom

in associating the UTs to the APs (i.e. the average number and distance of

available APs per UT is the same). Conversely, a higher/lower YAP (with con-

stant |J |) determines more/less association possibilities per each UT.
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Fig. 1. Power consumption vs. network composition. The vertical axis starts at 40 W to better emphasise the differences among the power consumption models.

Fig. 2. Normalised computational times vs. network composition. The vertical axis is in logarithmic scale.

Table 3

Expanded list of the scenarios with the related parameters.

Scenario |J | |I| |K| d̄i �di YAP at

[kbps] [%] [m−2]

1 16 96 3 300 67 0.003 0.75

2 8 96 3 300 67 0.003 0.75

3 32 96 3 300 67 0.003 0.75

4 16 48 3 300 67 0.003 0.75

5 16 192 3 300 67 0.003 0.75

6 16 96 2 300 67 0.003 0.75

7 16 96 4 300 67 0.003 0.75

8 16 96 3 150 67 0.003 0.75

9 16 96 3 600 67 0.003 0.75

10 16 96 3 300 67 0.001 0.75

11 16 96 3 300 67 0.01 0.75

12 16 96 3 300 67 0.003 0.25

13 16 96 3 300 10 0.003 0.75

Table 4

Average CPU times (in seconds) vs. network compositions and power

models.

D1 D2 D3 D4 Heterogeneous

1C 8.43 3.28 56.9 5.54 5.06

2C 292 207 261 12.6 30.2

3Cw 1881 1859 4377 145 483

3Ct 46.2

4C 504
5. Computational results

The total power consumption for each network compo-

sition (i.e. D1-only, D2-only, D3-only, D4-only, and a mix all
classes) and for each AP power model is reported in Fig. 1.

Then, Fig. 2 shows the time necessary to find the optimal so-

lution normalised to the time of the simplest 1C model. The

absolute values, obtained on a PC equipped with a 2.27 GHz

64-bit processor, can be found in Table 4. Finally, Fig. 3 sum-

marises the airtime values and the number of active APs

yielded by the best possible solutions. The bars in the fig-

ures refer to the average computed over all instances (10

per scenario) and all scenarios (for a total of 130 instances).

The markers for the 95% confidence intervals are also shown.

In general, we have registered pretty similar performance
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Fig. 3. Airtime and number of active APs vs. network composition for the best possible allocation (i.e. based on model 4C).
across all scenarios. The scenarios for which the numbers dif-

fer sensibly from the average are highlighted and discussed

in the text. Detailed comments on the figures are in the fol-

lowing sections.

5.1. Homogeneous networks

5.1.1. Traffic processing is uninfluential

Starting the analysis with the homogeneous patterns, it

can be immediately noted that for these network scenar-

ios we have reported the power consumption for the 1C,

2C and 3Cw models only. In fact, following to the defini-

tion of the objective function (3), the traffic processing term

becomes a constant, because all μj are the same (say μ)

and all the traffic (say D) must be processed (as a result of

constraints (4)):

μ j

∑
i∈I

∑
j∈J

∑
k∈K

di

L
xi jk = μ

∑
i∈I

di

L
= μ

D

L
.

Therefore the traffic processing term is not relevant for the

solution of the problem (there is no point in minimising a

constant). Given that all APs consume the same energy to

process the traffic, it makes no difference on which AP the

traffic is processed. Therefore, in homogeneous networks,

model 4C is equivalent to 3Cw, and model 3Ct to 2C.

Thus, a first remarkable point is that in homogeneous de-

ployments there is no use in accounting for the power con-

sumption that arises from traffic processing.

5.1.2. Resource consolidation fits all

The second aspect that emerges from Fig. 1 is that in all

homogeneous networks the gains of the 2C and 3Cw models

are marginal with respect to model 1C. Indeed, among all sce-

narios and network compositions, the highest difference we

observed between 1C and 3Cw is 5.1%. This occurred when

all APs belongs to class D4 and are very densely deployed

(scenario 11). On average, however, employing the most com-

plete 3Cw model leads to a power efficiency gain of about

1.6% with respect to the simple 1C model. On the other hand,

solving 3Cw to optimality requires roughly 100 times greater

computational resources than 1C (see Fig. 2).
Therefore, unless even minimal energy reductions are

valuable, it seems clear that in homogeneous networks em-

ploying the simple on/off power model leads to good results

without requiring much computational effort. Note that em-

ploying the 1C model implies that the optimal allocation im-

plements the resource consolidation strategy, i.e. it concen-

trates the traffic on the least number of APs, and all these

APs operate at the maximum transmission power. Also, 1C

does not distinguish among the classes of devices, as proven

in Fig. 4, where it is manifest that the solution is almost

the same for all network compositions. Nevertheless, even

in cases where the most complete 3Cw model might make

some difference in terms of number of active APs (see the D4

bars in Figs. 3 and 4), the power gain is still minimal (2.4%).

In addition, since the solving times of 1C are very short (see

Table 4), it can lend itself for quasi-real time resource alloca-

tion techniques.

As for the 2C model, it lies somewhere in between 1C and

3Cw, but it provides neither short solving times (10 times

slower than 1C, on average), nor good power gains (just a

0.7% better than 1C). Therefore, the presence of the airtime

in the AP power model does not bring substantial benefits.

The same can be said for the PLs. The difference between 2C

and 3Cw in terms of power efficiency is also minimal (0.9%),

but has a notable impact in terms of solving time (roughly 11

times higher).

5.1.3. Better to pay as you go

In terms of absolute power consumption, it is apparent

(see again the groups of bars in Fig. 1) that using devices with

a low baseline consumption (i.e. class D4) is definitely bene-

ficial with respect to devices with a high baseline consump-

tion (i.e. class D3). The average power gain of D4 over D3 is

around 19%, with a peak of 29.3% for scenario 10 (and model

3Cw). Since in such a scenario the APs are less densely dis-

tributed, there is the need of keeping more APs active, but

less loaded (figures varying from 7.1% to 12.6%), in order to

cover the whole service area. As a consequence, the more the

APs allow to scale the power, the more efficient the network

becomes.
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Fig. 4. Airtime and number of active APs vs. network composition for the resource consolidation strategy implemented by model 1C.
More in general, we can see from Fig. 3 that when D4-

based devices are employed (and model 3Cw is used for

computing the solution), the optimal allocation provides for

a few more active APs (+4%), but with slightly less occupancy

(smaller airtimes, −3%), than employing devices belonging

to class D3. The reason is that in scenario D4 the power con-

sumption model of the APs has a very low baseline figure,

and therefore it is beneficial, in terms of overall power con-

sumption, to have more active APs than in the other scenar-

ios. However, since the density of the UTs is constant and the

offered traffic is roughly the same, it follows that the UTs are

closer to the APs, and consequently the service data rate is

higher and the airtime is smaller. In other words, the use of

class D4 tends to spread the load over more APs, whereas

class D3 tends to consolidate the traffic over less APs. Never-

theless, D4-based APs allow to save considerably more power

(19.7%).

The last comment is about the effect of the components

of the AP power model on the diverse device classes. The

addition of the airtime (model 2C) allows for a peak power

improvement of 1.2% in the D4-based network with respect

to the average (over all network patterns) 0.7%, and a poor

0.3% for class D3. Similarly, enriching the model with the

radio frontend power (model 3Cw) provides a further 0.9%

gain on average, with peaks of 1.2% both in D1 and D4, and

a minimum (0.3%) in D3. Thus the D4 class of devices allows

for greater system optimisations when more complete power

models are employed, whereas class D3 is almost model-

agnostic (as it could have been expected given the numbers

in Table 1).

5.2. Heterogeneous network

5.2.1. Simple is not enough

In this case, differently from all homogeneous networks,

the simple 1C power model shows its weakness. The total

consumption (see Fig. 1) is definitely higher than the other

models, with a peak value of about 13% recorded for scenar-

ios 3 and 4 (when the ratio |I|/|J | is the smallest). In par-

ticular, the 4C model can yield a tangible advantage in those

scenarios where there are more degrees of freedom in allo-
cating the resources. For example, in cases in which the ra-

tio between the number of users and the number of APs is

low, when the traffic is scarce and with little variation among

the users, and when the APs are densely deployed, employ-

ing the 4C model yields the largest gap with respect to sim-

ple models. In fact, to verify this concept, we have run fur-

ther computational experiments on a set of instances with

the just mentioned features (i.e. with |J | = 32, |I| = 96, d̄i

= 150 kbps, �di = 10%, and YAP = 0.01), and the outcome

was a 18.4% of power saving with respect to the 1C model.

Therefore, even though the 1C model runs in much shorter

times than 4C (two orders of magnitude, on average), it also

performs definitely worse.

5.2.2. Airtime is the key

Still from Fig. 1, it can be seen how the greatest jump is

between the 1C and 2C models. This means that the sole in-

troduction of the airtime in the power model allows for no-

table energy savings. In detail, the 2C model achieves on av-

erage 7% lower power consumption than 1C, with six times

slower solving times. The difference between 2C and 4C is,

in terms of power consumption, less than 1%. Hence, the 2C

power model yields very good results in reasonable times,

thus being an interesting tradeoff between the complete, but

complex to solve 4C model, and the fast-executing, but sim-

plistic 1C model.

Further, but limited gains, can be obtained by adding to

the 2C model the wireless operations related power (3Cw),

the traffic processing term (3Ct), or both (4C). The first leads

to an improvement of a miserable 0.5% with respect to 2C, but

it also needs sixteen times more computational resources.

The second reduces the consumption by a negligible 0.3%, de-

livered in 1.5 times as 2C. Finally, 4C improves over 2C by a

0.9% in roughly the same time as 3Cw.

5.2.3. The traffic processing term, again

A further insight into the results can be achieved by

analysing the impact of the traffic processing term, which, in

the homogeneous networks, was not relevant, as discussed

in Section 5.1.1.



R.G. Garroppo et al. / Computer Networks 94 (2016) 99–111 107

Fig. 5. Cumulative percentage of allocated power levels for the various scenarios when the 4C model is used in the heterogeneous network.
From a comparison between the 3Ct and 2C models, and

between the 3Cw and 4C models, which differ by the traf-

fic processing term only, it appears (see Fig. 1) that the re-

sults are almost identical. Going to the numbers, 3Ct and 2C

yield, respectively, 55.11 W and 54.96 W, whereas 3Cw and

4C yield 54.82 W and 54.64 W. The gains allowed by con-

sidering the traffic processing term are indeed minimal (no

more than 0.3%), but the time to obtain them might be in-

creased by up to four times (see Fig. 2).

5.2.4. The mix is better than the average

The last information we extract from Fig. 1 is about the

power consumption of the heterogeneous pattern. Note, at

first, that the average total power consumption of all the ho-

mogeneous networks, when computed by means of the 3Cw

model, is 57.78 W. For the heterogeneous this is 54.64W (4C

model), which implies that some efficiency can be obtained

also from having a mix of different devices. Indeed, having a

diversity of AP classes to choose among is a benefit that the

optimisation program can use to best match the AP selection

in function of the specific scenario.

However, it must also be pointed out that this saving can

be achieved only when the more complete models are em-

ployed. The 1C model is not that smart. For example, in com-

paring the D1-based network and the heterogeneous case, it

can even provide worse results (since it chooses the APs irre-

spectively of their energy profile).

Therefore, a simple AP power model can be deemed suit-

able for homogeneous networks, but for heterogeneous de-

ployments at least the airtime should be considered to obtain

an acceptable power efficiency.

5.2.5. Adjusting the transmission power

Fig. 5 shows how the AP power levels are allocated when

using the 4C power model in the heterogeneous case. We re-

call that three PLs are available in all scenarios except for sce-

nario 6 (two PLs) and 7 (four PLs), and that PL1 is the high-

est level and PL4 the lowest. From the figure, it appears that

there is no uniformity across the scenarios, as in some the
highest PL dominates, whereas in a few the lowest is most

used.

From a deeper analysis, it emerges that the highest power

level is typically employed when the network is scarcely

loaded (e.g. scenarios 3, 4, 8, 12). In such cases, the re-

source consolidation approach is followed by the optimisa-

tion model, and the strategy is to keep active as few APs as

possible, but with the highest power, in order to accommo-

date the demand of many distant users. Most notably, all APs

are set to PL1 in scenario 12, and this scenario corresponds to

the case at = 0.25, i.e. the uplink traffic is dominant.

Conversely, when the network is heavily loaded, the opti-

mal approach tends to keep more APs active, but with lower

power levels. When dealing with much more traffic per user

(or with more users), it is necessary to employ more APs, but,

given that the users are closer, it is not necessary to radi-

ate at full power. This applies, for example, to scenarios 2, 5,

and 9.

Note that this last remark was not as obvious as it might

look. In fact, decreasing the transmission power implies that

lower data rates might be available at the user terminals, and

consequently longer airtimes might be necessary to trans-

fer the data. Hence, transmission power and airtime are in-

versely proportional. Since they are combined by multiplica-

tion (see (2) and (3)), spotting which element is dominating

is not straightforward.

A common aspect to almost all scenarios is the bimodal

distribution of the power levels. In most cases, the middle

power lever is very seldom chosen (if any). Only in the three

scenarios in which the network is heavily loaded (i.e. 2, 5, and

9), does PL2 have some utility.

From a comparison with the homogeneous networks, see

Figs. 6–9, it emerges how such a bimodal distribution charac-

terises the heterogeneous and, even more, the D4-based ho-

mogeneous networks only, whereas all other homogeneous

networks presents a smoother PL distribution.

A last remark that is common to all network types, is the

fact that in scenario 11 almost all APs employs PL3. This is

the consequence of the increased AP density, which implies

that the UTs are closer to the APs, and therefore radiating at



108 R.G. Garroppo et al. / Computer Networks 94 (2016) 99–111

Fig. 6. Cumulative percentage of allocated power levels for the various scenarios when the 4C model is used in the D1-based network.

Fig. 7. Cumulative percentage of allocated power levels for the various scenarios when the 4C model is used in the D2-based network.

Fig. 8. Cumulative percentage of allocated power levels for the various scenarios when the 4C model is used in the D3-based network.
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Fig. 9. Cumulative percentage of allocated power levels for the various scenarios when the 4C model is used in the D4-based network.
the lowest power is sufficient to reach all UTs and accommo-

date their traffic. On the other hand, in the sparse scenario

10, there is a predominance of PL1, which compensates for

the longer distances between APs and UTs.

6. Discussion and conclusions

In the paper we have discussed the impact that the

various elements of the AP power consumption model

have when optimising the power efficiency of an enterprise

wireless LAN. The performance of the models has been

assessed for four classes of devices with different balance

of the power components, deployed in homogeneous and

heterogeneous networks, and for a variety of operational

scenarios. From this extensive analysis, it emerged that:

• The power consumption due to the traffic processing

operation is fundamentally irrelevant. This has been

mathematically proven for the homogeneous networks,

whereas in the heterogeneous case the computational

analysis revealed that its impact is well below the 1%.

• In homogeneous networks, the simplest on/off power

model is sufficient to provide very good results. Further

but marginal energy gains can be achieved with the more

sophisticated 2C and 3Cw models, but at the expense of

much greater computational complexity.

• In heterogeneous networks, the best compromise be-

tween energy efficiency and computational complexity is

given by the 2C model, which includes the baseline and

the airtime components. The fast-executing on/off power

model could be regarded as a passable alternative only

for heavily loaded networks or in cases with an evenly

distributed traffic demand. Conversely, the complete 4C

model might produce some energy benefits only for net-

works where the APs are very densely deployed (but with

much longer solving times).

• The “resource consolidation” strategy, i.e. turning off as

many APs as possible, tends to be a good solution in the

majority of the scenarios. This is especially true for the

homogeneous networks, with the exception of the class

D4 case. Indeed, when the APs are characterised by a very
low baseline consumption and for heterogeneous net-

works, keeping active more APs with a low transmission

power is more energy efficient than applying consolida-

tion. However, to achieve this result, it is necessary to em-

ploy the 3Cw or 4C models, which are also the most com-

plex to solve.

• When more power levels (PLs) are available at the APs

(and a suitable model is used for the optimisation), for

the heterogeneous and D4-based homogeneous networks

the optimal PL allocation tends to be bimodal, i.e. either

the highest or the lowest PL is chosen. The PLs are more

evenly distributed in the other homogeneous networks.

In any case, however, the contribution of the PLs to the

overall power saving is quite limited, but requires a no-

table computational effort.

In the light of the above-mentioned findings, for currently

deployed networks, which are mostly built with sets of iden-

tical (or very similar) devices for which the baseline power

consumption is prevailing, the best approach to obtain satis-

fying energy-efficiency figures is to apply the resource con-

solidation strategy. This can be easily achieved with a simple

on/off power model, which has also the advantage of being

quickly solvable.

Nevertheless, as the networks grow and evolve with the

addition (or replacement) of new and different devices, as

well as for future networks based on more energy-efficient

APs, this straightforward strategy might no longer be suit-

able. In such scenarios, enhancing the power model with a

term that weights the power consumption due to the airtime

becomes the mandatory upgrade to keep the energy perfor-

mance of the system close to optimality. However, since this

addition comes at the cost of notably increased solving times,

the study of very efficient heuristics might be a requisite if

real-time network reconfiguration is envisioned.

As a final remark, note that both the suggested 1C and 2C

models do not account for the availability of multiple trans-

mission power levels at the APs. This implies that, to allo-

cate also the PLs more complex models must be used, but

you cannot expect notable energy savings. On the downside,

resorting to heuristics to overcome the complexity of these
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models might not be convenient, because the solutions pro-

vided by 2C and 3Cw/4C models are very close, and therefore

designing heuristics that are much faster than 3Cw but with

better performance than 2C seems to be a very tough job.
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