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a b s t r a c t

Name-based routing belongs to a routing category different from address-based routing, it is

usually adopted by content-oriented networks [Sharma et al., 2014, Koponen et al., 2007, Ra-

jahalme et al.,2011, Thaler et al.,1998, Hwang et al., 2010, Gritter et al., 2001, Caesar et al.,

2006, Carzaniga et al., 2004, Koponen et al., 2007, Hwang et al., 2009 Singla et al., 2010,

Detti et al., 2011, Jain et al., 2011 Xu et al., 2013, Katsaros et al., 2012. [1–15]] e.g., the re-

cently proposed Named Data Networking (NDN). It populates routers with name-based rout-

ing tables, which are composed of name prefixes and their corresponding next hop(s). Name-

based routing tables are believed to have much larger size than IP routing tables, because

of the large amount of name prefixes and the unbounded length of each prefix. This paper

presents CONSERT—an algorithm that, given an arbitrary name-based routing table as input,

computes a routing table with the minimal number of prefixes, while keeping equivalent for-

warding behavior. The optimal routing table also supports incremental update. We formulate

the CONSERT algorithm and prove its optimality with an induction method. Evaluation results

show that, CONSERT can reduce 18% to 45% prefixes in the synthetic routing tables depend-

ing on the distribution of the next hops, and meanwhile improve the lookup performance

by more than 20%. Prior efforts usually focus on compact data structures and lookup algo-

rithms so as to reduce memory consumption and expedite lookup speed of the routing table,

while CONSERT compresses the routing table from another perspective: it removes the in-

herent “redundancy” in the routing table. Therefore, CONSERT is orthogonal to these prior

efforts, thus the combination of CONSERT and a prior compressing method would further

optimize the memory consumption and lookup speed of the routing table. E.g., we can first

adopt CONSERT to achieve the optimal routing table, and afterwards apply NameFilter [Wang

et al., 2013. [16], a two-stage-Bloom-filter method, to that optimal table. This combination di-

minishes the memory consumption of the routing table data structure by roughly 88%, and

increases the lookup throughput by around 17% simultaneously. The joint method outper-

forms each individual method in terms of memory savings and absolute lookup throughout

increase.
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1. Introduction

1.1. Background on name-based routing

Routing in current Internet belongs to the category of

address based routing. Different from this practice, Name-

Based Routing (NBR) has been proposed in the literature

[1–15], and is recently re-investigated by the pioneers of In-

formation Centric Networks [17–26], where each piece of

content is assigned a unique name. Just as BGP distributes
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address prefix reachability information among autonomous

systems, NBR distributes name prefix reachability to routers.

NBR needs a name-based routing table1 to route packets,

where each entry consists of a name prefix and its corre-

sponding next hop. The names are hierarchically structured

(the sub-name at each level is called a component), and the

longest prefix match (LPM) rule still applies to name lookup.

As stated in many previous works [16,27–29], a name-based

routing table contains much more name prefixes than the

IP prefixes in an IP routing table, and name prefixes have

much longer lengths than IPv4/v6 addresses. The result is a

name-based routing table of huge size, incurring challenges

on memory efficiency, routing lookup throughput, route up-

date performance, etc.

1.2. Motivation

A remarkable challenge that a name-based routing table

confronts is its large size, in terms of the number of table en-

tries and the length of each entry. The large size can further

degrades the name lookup and packet forwarding perfor-

mance. In particular, this challenge can be described by the

following difficulties. First, names are far more complex than

IP addresses. As introduced above, names are much longer

than IPv4/IPv6 addresses; each name is composed of tens, or

even hundreds, of characters. Moreover, unlike fixed-length

IP addresses, content names have variable lengths, which fur-

ther complicates the name lookup process. Second, name-

based routing tables could be much larger than today’s IP

routing tables. Compared with the current IP routing tables

with up to 500K IP prefix entries, name-based routing tables

could be orders of magnitude larger [29]. Without elaborate

compression and implementation techniques, they can even

exceed the capacity of today’s commodity memory devices.

Third, wire speeds have been relentlessly accelerating. Such

large table size will definitely hinder the goal of high-speed

name lookup, as well as fast routing table updates. Therefore,

we spare no efforts in seeking ways to compress the name-

based routing table.

1.3. Our work

In this paper we present an algorithm for constructing an

optimal name-based routing table that has the least possi-

ble number of entries, while still providing the same rout-

ing information. More accurately, the optimality is defined

as follows: given an arbitrary name-based routing table,

the algorithm produces an optimal one that: (1) has the

least possible number of prefixes, (2) has the same for-

warding behavior as the original routing table. We call

this algorithm CONSERT (Constructing Optimal Name-baSEd

Routing Table, read as “CONCERT”). Actually, CONSERT can be

viewed as the generalization of ORTC [30], a pioneer work

which computes optimal IP routing tables based on the bi-

nary trie [31] presentation. A binary trie is basically a binary

tree where each edge stands for a bit. CONSERT extends from

binary trie to multi-way tree—a generalization on routing ta-

ble optimization problem, but this extension is non-trivial.
1 For brevity, from now on we may only say “routing table”, but the con-

text can distinguish whether it is IP-based or name-based.
CONSERT makes use of the component trie structure to

represent a name-based routing table, which is a multi-way

tree where each edge stands for a component in the name. It

is natural that CONSERT adopts the trie for the name-based

routing table, because a tree-like structure resembles the

structure of a hierarchical and aggregatable name space. The

most important difference between a component trie and a

binary trie (adopted by ORTC) is, in a binary trie, a node has at

most two children nodes, while in a component trie, a node

can have unlimited number of children nodes. This difference

hinders ORTC from being adapted for name-based routing ta-

ble compression, so CONSERT is proposed to accommodate

the unlimited number of children nodes, and this is where

the novelty of this paper stems from.

CONSERT constructs the optimal routing table by three

passes over the trie. Pass One introduces a special ‘#’ sym-

bol by creating a ‘#’ child node for all the non-leaf nodes in

the trie, then pushes the parent’s next hop(s) down to that

child node. Therefore, the next hop of the ‘#’ node can be

viewed as the default route of a sub-tree rooted at its par-

ent node. Pass Two pushes the most prevalent next hop(s)

upwards as high as possible, and Pass Three determines the

final next hop for each prefix and outputs the optimal rout-

ing table. Initially, CONSERT makes two assumptions: (1) the

routing table has a default route, and (2) each prefix has a

single next hop, but later we remove these two restrictions.

Moreover, we also develop an adapted LPM algorithm (from

the conventional LPM) to accommodate an ‘#’ symbol in the

optimal routing table. We formulate the CONSERT algorithm

and prove its optimality using the induction method.

It is worth pointing out that CONSERT aims to remove the

“redundancy” inherently in the original routing table, so as

to achieve an optimal one with the fewest number of entries

(reflected by the number of solid nodes in the trie). Prior ef-

forts often take advantage of fast lookup algorithms and com-

pact data structures, in order to expedite the lookup process

and reduce memory consumption, but the redundancy still

remains. This is the distinction that our work differs from

these efforts. Hence, CONSERT is orthogonal to the prior com-

pressing algorithms and they can be applied jointly. Specifi-

cally, some existing compressing methods, e.g., Bloom filter

based ones, have good performance on memory consump-

tion and lookup speed, but cannot handle routing updates.

It’s appealing that CONSERT deals with updates and produces

an optimal routing table at first (on the control plane), af-

terwards another compressing method is further applied to

that optimal table (on the data plane). As we shall see, such

cooperation can remarkably promote both compressing and

lookup performance.

Specifically, we make the following contributions:

(1) Introduce a special symbol ‘#’ into the trie structure

and create a node for it, whose next hop stands for the

default route of its parent node. This symbol clears the

way for optimal routing table compression to make it

possible;

(2) We propose the CONSERT algorithm to build an op-

timal routing table that has the fewest number of

prefixes, while keeping the forwarding behavior un-

changed.

(3) Adapt the conventional LPM algorithm to accommo-

date the ‘#’ symbol.



64 H. Dai, B. Liu / Computer Networks 94 (2016) 62–79

Table 1

Routing Table.

Prefix Next Hop

/google 4

/google/maps 1

/google/mail 3

/google/scholar 2

/google/news 2

/google/image 2

/yahoo 2

/yahoo/sports/nfl 1

/yahoo/sports/nba 3

/yahoo/sports/nhl 3

/yahoo/sports/mlb 3

/bing 4

/apple 4

/twitter 4

∗ 5

Fig. 1. Component trie representation of the name-based routing table.
(4) Formulate the CONSERT algorithm and prove its opti-

mality by the induction method.

Experimental results show that CONSERT can reduce

roughly 18%–45% prefixes in the synthetic name-based rout-

ing tables, and this compression ratio still reaches 30% when

prefixes have multiple next hops. Having fewer prefixes re-

duces the size of the forwarding data structure, especially

when CONSERT is applied with certain orthogonal method

together. E.g., the combination of CONSERT and NameFilter

[16], a two-stage-Bloom-filter method, can jointly reduce

the memory consumption of routing tables by around 88%.

Meanwhile, since CONSERT reduces the amount of prefixes

and shortens the prefix length, the name lookup perfor-

mance is increased at the same time. Lookup throughput

based on the optimal trie output by CONSERT can increase

by more than 20%, while the joint method of CONSERT and

NameFilter can improve the lookup throughput by around

17% compared with the NameFilter.

The rest of the paper is organized as follows. Section 2

describes the CONSERT algorithm, Section 3 improves the al-

gorithm and Section 4 addresses the routing table updates.

Section 5 evaluates CONSERT in terms of memory savings

and lookup throughput improvement. Section 6 surveys re-

lated work and Section 7 concludes the paper. The proof of

the optimality of CONSERT is provided in the Appendix.

2. Construct optimal name-based routing tables

2.1. Preparation – trie of different granularities

Before elaborating on the CONSERT algorithm, we need

some preparations on the data structure to organize the

name-based routing table. The names, as aforementioned,

are hierarchically structured and have unbound lengths. E.g.,

org/journal/2016/cfp.html is a legitimate name,

where org, journal, 2016 and cfp.html are 4 com-

ponents of the name. IP routing tables often adopt the binary

trie representation, which is basically a binary tree where

each edge stands for one bit. Name-based routing table can

also take advantage of the trie structure to represent itself,

while each trie edge stands for a component in the name,

and we refer to this kind of trie as component trie. Component

trie matches the hierarchical and aggregatable name space of

name-based routing tables.

If we give up the hierarchy information in the name pre-

fixes, a name-based routing table can also be represented

by a trie of finer granularities – each trie prefix stands for

a character or a bit, and we call them character trie and bi-

nary trie (which we already know), respectively. For brevity

we hereby assume that the names in the routing tables con-

sist of only case-insensitive alphabet characters.2 Each node

can have numerous children in the component trie, while at

most 26 for the character trie and at most 2 for the binary

trie. The CONSERT algorithm mainly targets at the compo-

nent trie, and we will also adapt it to character trie and binary

trie for comparison purpose. The majority of the algorithms
2 If the character set expands to include more elements, CONSERT also

works.
are the same, only some minor parts are specific to each kind

of trie.

The following subsections will describe the CONSERT al-

gorithm step by step in combination of a concrete example.

Table 1 shows a typical name-based routing table, and its cor-

responding component trie representation is illustrated in

Fig. 1. We label prefix nodes with next hop information (an

integer or a set of integers) by solid or occupied nodes, while

the non-prefix nodes are empty3.

In the simplest form, we assume each prefix in the rout-

ing table has a single next hop, and the routing table has a

default route. These two assumptions will be removed later

in Section 3. CONSERT optimizes a name-based routing table

using three passes over the trie representation, and below we

elaborate on them.

2.2. Pass One

The first pass converts the component trie representation

of the routing table into a format suitable for compression.

For each non-leaf node v in the trie (including the root), it

creates a new child node w for a special component ‘#’, and

the next hop information for w inherits from v. If node v does

not have next hop information, then inherits from v’s closest
3 Note that an empty node means the corresponding prefix does NOT exist

in the routing table, but it does have a next hop according to the LPM rule,

e.g., /yahoo/sports has a next hop of 2.
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Fig. 2. Component trie representation after Pass One. Newly created nodes

are highlighted by double circles.

Algorithm 1 Pass One.

1: procedure PassOne(Trie trie)

2: for each non-leaf node v in trie do

3: create a new child note w for component ’#’;

4: if v.next_hop �= NULL then

5: w.next_hop ← v.next_hop;

6: v.next_hop ← NULL;

7: else

8: v ← v’s closest solid ancestor;

9: w.next_hop ← v.next_hop;

Fig. 3. Component trie representation after Pass Two.

Algorithm 2 Pass Two.

1: procedure PassTwo(Trie trie)

2: for each node v in trie (from leaves to root) do

3: if v is a parent node then

4: v.next_hop ← v.PrevalentSelect()
ancestor node that is not empty. We denote the newly added

edge by ‘#’ in the trie, the meaning of this special symbol will

be described later. After each ‘#’ child node inherits a next

hop, its parent’s next hop information is no longer needed

and hence discarded. In this way, all the internal nodes plus

the root no longer have next hop information. The trie rep-

resentation after Pass One is illustrated in Fig. 2, where the

newly created nodes are highlighted by double circles, and

the Pass One algorithm is shown in Algorithm 1.

The routing table after Pass One has exactly the same

information as the original one. Due to the introduction of

‘#’, the next hop of a node is “pushed” into the ‘#’ child, so

the LPM algorithm will slightly be adapted: any unmatched

component (including the empty component) will go to the

branch of ‘#’, which means the next hop in the ‘#’ node is

the default route of the sub-tree rooted at its parent node v.

Therefore, at node v, if the next input component is empty4

(meaning there is no further input component), the next hop

of the ‘#’ node should be returned; if the next input com-

ponent does not match any of v’s component (excluding the

‘#’ node), then the next hop of the ‘#’ node should still be re-

turned. According to this lookup rule, we can derive the same

next hop for a name on the trie output by Pass One. The final

adapted LPM algorithm will be presented in Section 2.5.
4 This case can happen in name lookup because the input name has vari-

able length, it may equal a prefix represented by an internal node in the trie.

But in IP lookup this case cannot happen because the input IP address has

fixed length.
2.3. Pass Two

The second pass calculates the most prevalent next hop

among a node’s children nodes based on the output trie of

Pass One, and take such next hop as that node’s candidate

next hop. The most prevalent next hop formally means that

such next hop has the most occurrences among all the chil-

dren nodes of a parent node. The algorithm is shown in

Algorithm 2. This operation is done at every level from the

bottom level up to the tree root, so an easy implementa-

tion could be a bottom-up traversal. At each parent node

v visited during the traversal, a set of next hops is calcu-

lated by the v.PrevalentSelect() function, which ac-

complishes the task of selecting the most prevalent next hop

among the children nodes of v.

If v.PrevalentSelect() finds that more than one

next hops tie for most prevalent among v’s children nodes,

then they are jointly carried up to the parent node v as candi-

date next hops. Extremely, if node v’s children nodes all have

unique next hops, i.e., all the next hops have a population

of 1, then they are all carried up to node v, so v has mul-

tiple candidate next hops. When v’s parent node w invokes

w.PrevalentSelect(), it will take all the candidate next

hops (if more than one) of each child node into consideration

and continue to select the most prevalent one(s), so on and

so forth. When the second pass is complete, every node in

the trie is labeled with a set of candidate next hop(s). Fig. 3

shows the result of the example routing table after Pass Two.

Take the node corresponding to /yahoo/sports as an ex-

ample, because 3 out of its 5 children has the next hop 3, 3 is

selected as its potential next hop. For the same reason, node

corresponding to /google selects 2 and the root node se-

lects 4 as their potential next hops, respectively. While for

the node corresponding to /yahoo, the next hops 2 and 3

from its two children both have a population of 1, so they

are equally most prevalent and both carried up as the parent

node’s candidate next hops.
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Fig. 4. During Pass Three: selecting 4 as next hop for root. Dotted nodes and

edges are to be deleted.
Fig. 5. Optimal routing table after Pass Three.

Algorithm 4 The adapted LPM algorithm for the optimal trie.

1: procedure LPM_Lookup(Node* root, string name)

2: if root = NULL then

3: return NULL;

4: cur_node ← root;

5: next_hop ← root.next_hop;
2.4. Pass Three

The third pass selects final next hops for prefixes and

eliminates redundant routes, from the root to the bottom

level. This could be realized by a top-down traversal by lev-

els. Each node visited in Pass Three will eventually have a set

of final next hops, which is in fact a subset of those computed

in Pass Two. Denote by Pv the set of next hops calculated by

Pass Two for node v.

The algorithm is as follows. For the root node, we ran-

domly pick up an element from its Pv, and set it as the root’s

final next hop. For the rest nodes, each node v will inherit a

next hop p from the closest non-empty ancestor node. If p

is a member of v’s set of potential next hops (p ∈ Pv), then

node v does not need a next hop by itself. Because a match

on this node will inherit the final next hop from its closest

non-empty ancestor node, so v will be set to empty. If v is a

leaf node, it will be deleted from the trie, as well as its edge.

Whenever a node v is deleted (except the ‘#’ node), its parent

node w should be notified and node w keeps track of v’s cor-

responding component in a set Sw. Therefore, set Sw records

node w’s removed children components. Otherwise (p /∈ Pv),

then node v really needs a next hop and it will be set to occu-

pied. We also randomly pick up a member from Pv as the fi-

nal next hop for node v, just as the root node does. The above

process is illustrated in Algorithm 3.

Figs. 4 and 5 illustrate the results during and after Pass

Three. (The number on the top right corner of a node in Fig. 5
Algorithm 3 Pass Three.

1: procedure PassThree(Trie trie)

2: for each node v in trie (from root to leaves) do

3: if v �= trie.root and v.inherit_next_hop() ∈
v.next_hop then

4: v.next_hop ← NULL;

5: w ← v.parent_node;

6: w.Sw ← w.Sw ∪ v.component;

7: if v is leaf node then

8: delete v;

9: else

10: p = RandSelect(v.next_hop);

11: � randomly pick up p from v.next_hop
12: v.next_hop ← p;
is the node ID.) After Pass Two, the root node is labeled with

a next hop set {4}, so Pass Three can only select the next hop

4 for the root. Fig. 4 elucidates this intermediate result of the

trie, where dashed nodes and edges mean that they are to

be pruned, and the corresponding components are kept in

Sroot = {bing, apple, twitter}. After three passes, an

optimal routing tables is constructed, as illustrated in Fig. 5.

The optimal routing table has 10 entries, while the original

one in Table I has 15 entries – 33.33% of the prefixes are re-

duced. It’s so important to point out that according to the

adapted lookup algorithm in Algorithm 4, the next hop for

each prefix remains the same.

Pass Three may choose a final next hop from a set of can-

didate next hops, so CONSERT may produce many different

output routing tables for a given input one. Fig. 5 just shows

one of them. But CONSERT ensures that all the output tables

are optimal (they all have the same number of prefixes). The

appendix contains a mathematical formulation of CONSERT

and a formal proof for its optimality.
6: for each component ci in name do

7: if cur_node.child[ci] �= NULL then

8: � match
9: cur_node ← cur_node.child[ci];

10: if cur_node.next_hop �= NULL then

11: next_hop ← cur_node.next_hop;

12: else if ci ∈ Scur_node then

13: return next_hop;

14: else

15: if cur_node.child[’#’] �= NULL then

16: cur_node ← cur_node.child[’#’];

17: next_hop ← cur_node.next_hop;

18: return next_hop;

19: if cur_node.child[’#’] �= NULL then

20: next_hop ← cur_node.child[’#’].next_hop;

21: return next_hop;
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Fig. 6. Character trie representation.
2.5. The adapted LPM algorithm

The LPM algorithm on the optimal trie representation dif-

fers from convention in two ways: (a) Because of the ‘#’

nodes introduced, a prefix’s next hop may be inconsistent be-

fore and after compression. E.g., prefix /google has a next

hop of 2 in Fig. 5, while in the original routing table its next

hop is 4. Another example is /yahoo/sports. The final

next hop of these prefixes are actually contained in their ‘#’

child nodes. This case corresponds to the situation that the

searched name equals the prefix represented by an internal

node in the trie. Therefore, after the match of a whole pre-

fix, we look ahead to see if the last matched node has a ‘#’

child node. If so, return the next hop of the ‘#’ node (line 19

to 21 in Algorithm 4). (b) Due to the set Sv on node v. When

a mismatch of component c on node v occurs, the follow-

up operation depends on if c belongs to Sv. If c ∈ Sv, then

return the next hop of v (if empty then return v’s inherited

next hop) (line 12–13 in Algorithm 4); otherwise (line 14 in

Algorithm 4), before the lookup process terminates we also

look ahead to see if the last matched node has a ‘#’ child node

and return its next hop (line 15–18 in Algorithm 4).

The rest node transition and termination principle ad-

heres to the conventional LPM. Such adapted LPM algo-

rithm on the optimal trie is illustrated in Algorithm 4, where

child is a map from a component to a node’s corresponding

child node.

2.6. Character trie

Faced with the requirement of storing set Sv at node v,

we propose to represent the routing table by a character trie.

The character trie representation of a simple routing table is

illustrated in Fig. 6(a). Each node in the character trie has

at most 26 (number of characters in the alphabet) children

nodes, therefore, we adjust the CONSERT algorithm accord-

ingly.

Pass One: for any non-leaf node v in the trie, create a

child node for each alphabet character that is originally not

v’s child, and push the next hop information of node v (or

v’s closest non-empty ancestor) down to the newly created
children nodes, as illustrated in Fig. 6(b). By this means,

Pass One supplements all the “missing” children nodes so

that each non-leaf node has 26 children. Pass Two remains

the same, and the character trie after Pass Two is shown in

Fig. 6(c). When Pass Three removes some leaf nodes, a node v
does not need the set Sv to record the characters correspond-

ing to those removed children nodes.

We can see that the trie after Pass One becomes very “fat”

since many children nodes are created. Obviously, the next

hop of each parent node is copied for a lot of times, therefore,

the v.PrevalentSelect() function in Pass Two will al-

ways intend to select that next hop as the candidate next

hop for the parent node. The result is that all the newly cre-

ated children nodes are eventually removed in Pass Three,

which means the character trie has very little opportunity to

reduce the number of prefixes. Hence, the output routing ta-

ble would be very similar to the input one. In our example,

the output optimal trie exactly equals the original one, as il-

lustrated in Fig. 6(a). If we adopt component trie to construct

this routing table, the optimal output is shown in Fig. 7. The

number of prefixes is reduced from 6 to 4, revealing that the

component trie is superior to character trie for routing table

compression.

2.7. Binary trie

The third way to represent a routing table is using a binary

trie. We translate each name prefix in the routing table into

its ASCII code (excluding the delimiters), and then build a bi-

nary trie based on these bit strings. Still taking the routing ta-

ble in Fig. 6(a) as an example, its binary trie representation is

illustrated in Fig. 8. Different from the binary trie for IP rout-

ing table, this trie has unbounded depth. This time, CONSERT

degrades to the ORTC [30] algorithm. After three passes, the

output optimal routing table is the same as the input one in

Fig. 8.

An important property of the binary trie for the name-

based routing table, compared with that for the IP routing

table, is that it has sparse solid nodes. Therefore, ORTC may

have limited opportunity to optimize the number of prefixes

for name-based routing tables.
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Fig. 7. The optimal trie based on the component trie.

Fig. 8. Binary trie representation.

Fig. 9. Compare IP trie and name-based tries.
3. Analysis and improvements

3.1. Analysis – limited address space vs. unlimited name space

IP addresses are of fixed length – 32 bits or 128 bits,

thus an IP routing table has a limited address space – 232

or 2128. This limitation is reflected by the binary trie in two

aspects: (1) each node has a outbound degree of at most 2,

(2) the depth of the trie is at most 32 or 128. Names, on the

other hand, possess an unlimited namespace because they

have unlimited lengths, and each level has unlimited num-

ber of components. They are reflected in the component trie

of name-based routing table by two features: (1) each node

can have countless children, (2) the depth of the trie is un-

limited. We believe these are the fundamental reasons that

make the optimal routing table construction algorithms dif-

ferent for IP and name-based routing tables. Below, we study

how these distinctions impact the algorithm.

Fig. 9 (a) and (b) shows two brief tries for a simple IP

routing table and a simple name-based routing table, respec-

tively. Both routing tables have a default route. In essence,

the default in Fig. 9(a) is generally unnecessary because the

two children nodes have covered all the scenarios in the ad-

dress space: if the current input bit is 0, go to the left branch;

otherwise go to the right branch. The parent node does not

need a default next hop for the uncovered scenarios. How-

ever, the case in Fig. 9(b) can really happen, and is actually

the common case. Because no matter how many children the

parent node has, they still cannot cover all the scenarios in

the name space, and those uncovered scenarios require the

parent node to install a default next hop for them. E.g., the

coffee component does not match any branch, so it will

take the parent node’s next hop. And for exactly this rea-

son, CONSERT needs to create a ‘#’ child to deal with the
uncovered situations. When we apply CONSERT to the trie

in Fig. 9(b), the output optimal trie is illustrated in Fig. 9(c),

where components beer and donut are removed. Actually

this is the cost of our algorithm – some information of the

original routing table is missing. (The reason why ORTC for

the IP trie does not lead to any information missing is that the

node in IP trie has at most 2 children, deleting a child node

means its next hop can be delegated by its parent node’s.)

Therefore, set Sv is required as an auxiliary data structure to

recover this information during the lookup. For the root node,

Sv = {beer, donut}.

Now let’s see how this information missing leads to the

confuse when looking up a name on the optimal trie. Take the

same example of coffee, obviously it cannot match neither

cookie nor milk, but we are not sure if it can match ‘#’

only depending on the information on the trie. If coffee
matches ‘#’, then its next hop is 1, otherwise 2. To remove this

uncertainty, we need the help of Sv. We know that coffee
/∈ Sv, so coffee ∈ ‘#’, thus coffee can match ‘#’ and its

next hop is 1. And because beer ∈ Sv, so beer �∈ ‘#’, thus it

does not match any child and its next hop is 2. This analysis

reveals the main reason to adapt the LPM in Algorithm 4.

3.2. Improvements

Next we provide three improvements to CONSERT.

1. Removing the default routeassumption

As formulated above, CONSERT assumes that the input

routing table always has a default route, i.e., a next hop for

the “∗” prefix. The presence of the default route ensures that

every newly created child node inherits a next hop in Pass

One. However, in the real world we often encounters default-

free routing tables, such as the routing tables in the backbone

routers. A simple and effective approach to deal with default-

free routing tables is to introduce dummy default route: as-

sign an invalid next hop, say -1, to the “∗” prefix. After Pass

Three, the invalid next hops in the trie are removed, and cor-

responding nodes are labeled as empty. In this way, we can

remove the default route restriction.

2. Removing the single next hop assumption

CONSERT also assumes that each prefix in the initial rout-

ing table has a single next hop, while in real routing tables

multiple next hops are often found. Especially, multiple next

hops are common in NDN because name-based routing pro-

tocols like NLSR [24] provides multiple hops for a prefix by

default. There are multiple methods to overcome this limita-

tion in CONSERT.

First, we can pick a single best next hop, if possible, from

the set of next hops for a prefix by some metric, then we can

apply the CONSERT algorithm. If more than one next hops
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tie for best, then we allow the input routing table to CON-

SERT to have multiple next hops for a prefix, so we slightly

modify Pass One to – a new child node may inherit multiple

next hops from its ancestor. Pass Two and Pass Three remain

the same. Actually, multiple next hops can give CONSERT

more opportunities to achieve better compression. E.g., if a

node v has 4 children nodes, when each prefix can only have

one next hop, the first 2 children nodes have a best next hop

of i, and the rest 2 children nodes have a best next hop of j.

Either i or j is selected for node v during Pass Three, only two

children nodes can be set to empty. However, when each pre-

fix is allowed to have multiple next hops, and v’s all children

nodes coincidently have best next hops of i and j, either i or

j is selected for node v during Pass Three, all the 4 children

nodes can be set to empty.

Second, if we cannot select best next hop(s) for a pre-

fix, we allow the input routing table to CONSERT to have

all the original next hops for a prefix, the modification to

CONSERT is the same as the the method above. This method

does not distinguish all the next hops for a prefix, but treat

them equally. These two methods do not preserve the multi-

ple next hop information in the input routing table.

Third, if the multiple next hop information needs to be

preserved “as-is”, we can still apply CONSERT. We take the

set of multiple next hops for a prefix as an atomic (indivisible)

entity, or a virtual next hop that represents the set of next

hops of a prefix. By this means, CONSERT manipulates the

sets of sets of next hops, rather than sets of next hops.

3. Minimize the number of ‘#’

The presence of ‘#’ in the optimal trie requires an associ-

ated set Sv at its parent node v to store the removed children

components of node v. But we have opportunities to reduce

the number of ‘#’ so as to decrease the memory cost of Sv.

Assume the next hop of a ‘#’ node is p. During Pass Three,

while selecting an element from Pv as the next hop for v,

rather than random selection, we give priority to p. If p ∈ Pv,

then p is selected as v’s next hop so that the ‘#’ child node

will be removed, as well as the associated set Sv. After ap-

plying this method to all the ‘#’ nodes, the number of ‘#’ is

minimized.

4. Handling updates

After optimal routing table is constructed, prefixes may

need to be inserted or removed from the routing table due to

routing changes or content publishing and withdrawal. This

section deals with updates – prefix insertions and deletions

– on the optimal routing table. Of course we can commit

the updates to the original routing table and build an op-

timal one afterwards, which is, however, inefficient. Below

we describe the algorithm to handle updates on the optimal

trie.

4.1. Insertion

Inserting a prefix into an original trie is a trivial process:

go downwards the trie from the root until the prefix compo-

nent cannot match an edge, then create nodes and edges for

the rest components in the prefix. But since we have intro-

duced the ‘#’ symbol, the insertion on an optimal routing trie
is a little complicated than this process. We list the following

three cases for an insertion on the optimal trie.

Case 1: The simplest case: no ‘#’ symbol is met while in-

serting the prefix, just adopt the conventional insertion algo-

rithm. E.g., inserting prefix /google/ad with next hop 6 to

the optimal trie in Fig. 5. The component ad requires a new

node as the child node of node 2, so we create a new node

and set its next hop to 6. In this way, the component ad is

added to the children component set of node 2.

Case 2: Insert a prefix whose parent prefix have

p been optimized, i.e., the node corresponds to pre-

fix p has been set to empty or removed. E.g., insert-

ing prefix /google/news/domestic with next hop 7.

/google/news/ is the prefix of this new prefix, and it has

been optimized since the node for news in the optimal trie

has been removed. This case requires recreating a child node

fornews, leaving it empty, and continuing to create a descen-

dant node for domestic, setting 7 as its next hop.

For the both cases above, after prefix insertion(s) the op-

timality of the trie may be affected, e.g., if node 2 has more

than 3 children nodes whose next hops are 3 after several in-

sertions, then the next hop of node 2 should be updated to

3, and nodes for components scholar, news and image,

as well as their next hops, should be restored (corresponding

to Pass Two and Three). This change may further affect the

optimality of its parent node, so on and so forth. Therefore,

we need to run Pass Two and Three on the trie after prefix

insertion to keep its optimality. We recommend that they are

re-run periodically rather than after each insertion to save

CPU resource.

Case 3: Insert a prefix who has a path in the original

trie, but the end node of the path is empty. E.g., inserting

prefix /yahoo/sports with next hop 8. The last node of

path /yahoo/sports is empty in the original routing table

(Fig. 1). In the optimal trie, the actual node corresponding to

prefix /yahoo/sports is the ‘#’ child node (node 10) of

node 8, rather than node 8 itself (refer to Algorithm 4). For

this case, just replace node 10’s next hop by 8. Note that if

the new next hop equals that of a sibling node of node 10,

say the nfl node, we set the nfl node to empty. If the nfl
node is a cleaf node, remove this node. The reason is under

this scenario the prefix /yahoo/sprots/nfl is no longer

needed, because its next hop can be delegated by its parent

prefix /yahoo/sprots, corresponding to node 10 in Fig. 5.

This case will not affect the optimality of the optimal trie. The

insertion algorithm is presented in Algorithm 5.

It’s worth pointing out that, if the inserted prefix already

exists in the routing table, the insert operation means updat-

ing the next hop of the prefix.

4.2. Deletion

Prior to delete a prefix, we always assume that the pre-

fix to be removed does exist in the routing table. According

to the lookup result, there are three case to consider: (1) The

lookup process involves neither set Sv nor the ‘#’ symbol, just

set the last matched node to empty. If it is a leaf node, delete

the node. (2) The last component matches set Sv, delete the

component from Sv. (3) The last matching node is the ‘#’

node, delete the ‘#’ node. The delete operation is presented

in Algorithm 6.
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Algorithm 5 The insertion algorithm for the optimal trie.

1: procedure Insert(Node* root, string prefix, next_hop p)

2: if root = NULL then

3: return NULL;

4: cur_node ← root;

5: next_hop ← root.next_hop;

6: for each component ci in prefix do

7: if cur_node.child[ci] �= NULL then � match
8: cur_node ← cur_node.child[ci];

9: if ci is the last component then

10: if cur_node.child[’#’] �= NULL then �

case 3
11: cur_node ← cur_node.child[’#’];

12: cur_node.next_hop ← p;

13: set any sibling node of cur_node whose

14: next hop equals p to empty.

15: else

16: cur_node.next_hop ← p

17: return;

18: else � case 1 and case 2
19: if ci ∈ Scur_node then

20: � operation required by case 2
21: Scur_node ← Scur_node − ci
22: create a new child note w for component ci;

23: cur_node ← w;

24: if ci is the last component then

25: cur_node.next_hop ← p
26: return;

Algorithm 6 The deletion algorithm for the optimal trie.

1: procedure Delete(Node* root, string prefix)

2: if root = NULL then

3: return NULL;

4: cur_node ← root;

5: next_hop ← root.next_hop;

6: for each component ci in prefix do

7: if cur_node.child[ci] �= NULL then � match
8: cur_node ← cur_node.child[ci];

9: if ci is the last component then

10: if cur_node.child[’#’] �= NULL then �

case 3
11: cur_node ← cur_node.child[’#’];

12: remove node cur_node;

13: else � case 1
14: cur_node.next_hop ← NULL;

15: if cur_node is leaf node then

16: remove node cur_node;

17: return;

18: else � case 2
19: if ci ∈ Scur_node then

20: Scur_node ← Scur_node − ci
21: return;

Table 2

Hardware configuration.

Item Specification

CPU Intel Xeon E5645 × 2 (6 cores × 2 threads, 2.4 GHz)

RAM DDR3 ECC 48GB (1,333MHz)

Motherboard ASUS Z8PE-D12X (INTEL S5520)
5. Evaluation

This section thoroughly evaluates the CONSERT algorithm

in terms of the compression ratio, time cost, etc. The perfor-

mance of the joint method of CONSERT+NameFilter is also

examined in terms of the lookup speed and the memory

cost.

5.1. Experiment platform

The experiments are conducted on a commodity server

platform, running OS Linux 2.6.43. Platform hardware config-

uration is listed in Table 2. The CONSERT algorithm, as well as

the NameFilter method, is implemented by the C++ program-

ming language, using OpenMP [32] to support multi-thread

programming.

5.2. Generating name-based routing tables

Since there is no public name-based routing tables avail-

able, we generate synthetic ones for our experiments. The

routing table is generated in this way: domain names are

at first collected by a web crawler, then they are hierar-

chically reversed into NDN-style prefixes, e.g., www.journal.

com is transformed to /com/journal/www. Next we map

each domain name to an IP address by querying DNS. Af-

terwards, we obtain the next hop number by looking up

the IP address against an IP routing table downloaded from

archive.routeviews.org. If a prefix maps to multiple

next hops, then the first one is picked. Using these prefixes

and corresponding next hops we build a basic NDN routing

table. Subsequently, we generate synthetic prefixes in this

way: for each prefix in the basic routing table, we randomly

generate a number of components and append each compo-

nent to the prefix, so that this prefix is expanded to multiple

longer prefixes. Their next hops are assigned in two ways: in-

heriting from ancestor nodes (excluding parent nodes) or by

manual generation (so that the next hop popularity among a

node’s children can be tuned). Then the new prefixes are in-

serted into the basic routing table. Afterwards, we repeat this

“expansion” process on the new prefixes, until a preset num-

ber of totaly prefixes is reached. At last we obtain 4 name-

based routing tables consisting of 1000, 10,000, 100,000 and

1,000,000 prefixes, respectively. The distribution of prefix

length and the number of components each prefix contains

is presented in Fig. 10.

The next hops are tuned to obey two cases: (1) common

case. There are some popular next hops among a router’s all

the ports, so a prefix is more probable to be assigned these

next hops. This is common for a router because the connec-

tivity for some ports are higher than the rest ones, which

means these ports can reach more networks. (2) limit case.

Each next hop has almost equal popularity, e.g., the next hops

http://www.journal.com
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Fig. 10. Prefix length and component number distribution. Fig. 11. Next hop popularity distribution.
are uniformly distributed. More generally, if we define the

popularity of a next hop i (denoted by pi) as the number of its

occurrences divided by the total occurrences of all the next

hops, the we can say p = {p1, p2, ...} is the popularity distri-

bution of the next hops. The next hop popularity distribution

for these two cases are shown in Fig. 11, where the next hops

4, 5, 6 and 7 are popular ones for the common case.

5.3. Compression results of single next hop

This section presents the compression results of CON-

SERT. Tables 3 and 4 list the experimental results for the

common case and the limit case respectively. In both tables,

the 2nd and 3rd columns show the number of prefixes in

the synthetic routing table before and after compressing, the

4th column reports the compression ratio in terms of the re-

duced prefix numbers. These three columns reveal that CON-

SERT achieves the best compressibility with the component

trie, which could reach around 45% for the common case and

18% for the limit case. Character trie and binary trie achieves

much smaller compressing ratio, and they have the same

compressibility in our experiments. Comparison between the

common case and the limit case reveals that, the benefit of

CONSERT stems from the high popularity of next hops. If we

rank the popularity in p from high to low, a skewed popular-

ity distribution (e.g., the common case in this paper) can lead

to higher compression ratio by CONSERT than the balanced

popularity distribution (e.g., the limit case in this paper).

Other than the number of prefixes, the number of nodes

in the tries are also significantly reduced (column 5 and 6 in

Tables 3 and 4). CONSERT achieves the most node reduction

as well, which is the direct evidence that CONSERT dimin-

ishes the memory consumption of tries.

The number of ‘#’ symbol using random selection

(RandSelect() in Pass Three) in the optimal component

trie is listed in column 7. Since each ‘#’ requires memorizing

a set of components, we want to keep the number of ‘#’ as

small as possible. Column 8 of both tables report the minimal

number of ‘#’ using the improvement method in Section 3.2.

By using some compact data structures, such as Bloom filter,

we can keep the memory consumption of component set Sv
required by the ‘#’ nodes very small.
The last column reports the processing time on our exper-

imental platform, which reveals that component trie is the

most time-efficient (only around 2000 μs), while character

trie consumes the most time cost, reaching as long as 470

seconds!

5.4. Compression results of multiple next hops

Next we examine CONSERT’s performance when a prefix

may have multiple next hops in the input routing table. The

method to build a synthetic routing table with multiple next

hop information is similar to building one with single next

hop, the distinction is we preserve the multiple next hops if

a prefix maps to multiple ones in the downloaded IP routing

table, rather than pick up the first one. Hence, while expand-

ing the short prefixes to longer ones, a new prefix may inherit

a set of next hops, or is assigned with a set of next hops se-

lected from all the unique next hop sets in the routing table.

We let the distribution of the next hop sets obey the common

case.

CONSERT preserves the multiple next hop information by

treating each individual set of next hops as a unique atomic

next hop set. Table 6 lists the results obtained using this

method. Surprisingly, we find that CONSERT still achieves

good compression. It reduces roughly 30% of the prefixes in

the routing tables. The reason is though there could be enor-

mous potential unique next hop sets, in real routing tables

such next hop sets in use are limited. This result can be af-

fected by the multi-path routing strategy in use, which as-

signs next hop(s) to each prefix.

5.5. Memory consumption reduction

As aforementioned, CONSERT can be used together with

other routing table compressing algorithms. As an exam-

ple, we first apply CONSERT to obtain the optimal routing

table. Afterwards, NameFilter [16], a two-stage-Bloom-filter

method, is applied to the optimal routing table to further ex-

pedite the lookup process and reduce memory consumption.

The NameFilter method organizes routing table by Bloom

filters to save memory cost and achieve high-speed LPM

lookup. Prefixes are divided according to their levels, with

all prefixes of a given level stored in the same Bloom filter.
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Table 3

Experimental results on synthetic routing table (single next hop, common case).

No. of prefixes

before

compress

No. of prefixes

after compress

Compression

ratio (%)

No. of trie nodes

before compress

No. of trie nodes

after compress

No. of ‘#’ Min No. of ‘#’ time (ms)

component 1000 584 41.60 1011 607 38 38 2

trie 10,000 5522 44.78 10,005 5751 421 405 24

100,000 54,930 45.07 99,980 57,166 4354 4200 273

1,000,000 548,584 45.14 999,782 570,669 43,100 41,601 2841

char 1000 824 17.60 288,142 9477 – – 292

trie 10,000 8118 18.82 3,139,836 95,581 – – 3055

100,000 81,887 18.11 33,895,940 963,101 – – 34,935

1,000,000 815,495 18.45 478,516,302 9,595,675 – – 470,500

binary 1000 824 17.60 86,474 72,034 – – 133

trie 10,000 8118 18.82 875,569 727,365 – – 1607

100,000 81,887 18.11 8,777,500 7,328,347 – – 20,969

1,000,000 815,495 18.45 87,661,413 73,012,929 – – 231,171

Table 4

Results on synthetic routing table (single next hop, limit case).

No. of prefixes

before

compress

No. of prefixes

after compress

Compression

ratio (%)

No. of trie nodes

before compress

No. of trie nodes

after compress

No. of ‘#’ Min No. of ‘#’ time (ms)

component 1000 823 17.70 1011 836 56 53 2

trie 10,000 8187 18.13 10,010 8319 526 475 24

100,000 81,842 18.16 99,980 83,030 5064 4516 287

1,000,000 817,670 18.23 999,782 830,085 50,706 45,696 2943

char 1000 917 8.30 12,013 10,871 – – 294

trie 10,000 9055 9.45 115,488 105,660 – – 3153

100,000 89,913 10.10 1,154,143 1,047,584 – – 34,029

1,000,000 899,824 10.02 11,538,820 10,486,241 – – 465,405

binary 1000 917 8.30 91,398 82,719 – – 140

trie 10,000 9055 9.45 877,530 803,430 – – 1476

100,000 89,913 10.10 8,770,218 7,965,429 – – 21,328

1,000,000 899,824 10.02 87,680,190 79,734,096 – – 235,168

Table 5

Memory consumption of routing tables before and after compression.

No. of prefixes Memory consumption

before compress (MB)

Memory consumption & compression ratio after compression

CONSERT

(MB)

Compression

ratio (%)

NameFilter

(KB)

Compression

ratio (%)

CONSERT+NameFilter

(KB) Compression

ratio (%)

1000 0.116 0.0782 32.31 29.952 74.09 14.309 87.62

10,000 1.145 0.7602 33.60 284.976 75.11 133.141 88.37

100,000 11.442 7.5728 33.81 2,736.116 76.09 1,276.018 88.85

1,000,000 114.416 75.651 33.88 27,357.324 76.09 12,750.778 88.86

Table 6

Compression results when preserving multiple next hop information.

No. of prefixes before compress No. of prefixes after compress compression ratio (%)

1000 702 29.80

10,000 6954 30.46

100,000 68,951 31.05

1,000,000 680,781 31.92
Meanwhile, prefixes are also divided by their next hop port

numbers, and all the prefixes with the same port number

are stored in the same Bloom filter. Therefore, there are two

sets of Bloom filters, and each prefix is inserted twice. We

then perform the Longest Prefix Match to obtain the matched

prefix for a given name, by querying Bloom filters according
to prefix levels: from the Bloom filter with the longest level

to the one with the shortest level. A match on a Bloom filter

implies that the longest matched prefix is of current level. Af-

terwards, the matched prefix is queried in all the port Bloom

filters, and a match on a Bloom filter reveals the next hop

number. This section examines the memory consumption of
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Fig. 12. Multi-thread lookup throughput based on component trie.
Fig. 13. Multi-thread lookup throughput based on NameFiler alone and

CONSERT+NameFilter.
both individual methods as well as the joint method. The

results are presented in Table 5, note that we only list the

results for the common case next hop distribution. Table 5

reveals that CONSERT and NameFilter individually obtains a

compression ratio of around 34% and 76%, respectively. How-

ever, CONSERT+NameFilter achieves a compression ratio of

roughly 88%. Since Bloom filters can not handle updates be-

cause they can not perform deletions, it is appealing that

CONSERT deals with updates to the routing table, and Name-

Filter generates a compact forwarding table accordingly.

5.6. Lookup performance

This section provides the lookup performance of CON-

SERT (based on the component trie structure), as well as

the joint method of CONSERT+NameFilter. Firstly, we mea-

sure the lookup performance before and after CONSERT is

applied using multiple treads. Because CONSERT operates on

the component trie, the lookup results are also derived based

on the component trie, which are illustrated in Fig. 12. For

single thread, the lookup speed increases from 0.71 million

packet per second (MPPS) to 0.90 MPPS, leading to 21.11%

increase. The highest throughput by multi-thread increases

from 4.09 MPPS to 5.11 MPPS, leading to 24.93% increase. The

benefit is due to less and shorter prefixes, so the outbound

degrees of the nodes and the depth of the tree are reduced.

Hence, each lookup has a shorter path to go through.

Fig. 12 shows that lookup performance increases almost

linearly and then flattens out at 24 threads, the reason is

that the CPU in our experiment platform has 24 hardware

threads (refer to Table 2). If more than 24 threads are used,

the threads will compete for the hardware resource, and the

number of concurrent threads is 24 at any time in the ex-

periment. Therefore, more threads than 24 will not help to

improve the lookup performance anymore. The behavior of

the curves in Fig. 13 can also explained by this reason.

Next we examine the lookup performance of the joint

method of CONSERT+NameFilter. The curve labeled by

square symbols in Fig. 13 shows the lookup performance of

CONSERT+NameFilter. Recall that the first stage of the Name-
Filter method assigns a Bloom filter to prefixes with the same

length (in terms of the number of components). Since the

prefixes are shortened by CONSERT, the number of Bloom

filters required is also reduced. This decreases the number

of memory references while looking up a name, and hence

increases the lookup throughput. As a comparison, Fig. 13

also present the lookup performance when only NameFilter

is performed, denoted by the curve with circle symbols. With

the joint method, the highest throughput of multi-thread

reaches 36.78 MPPS, while NameFilter alone achieves 30.63

MPPS. Hence, the joint method obtains 16.72% improvement.

5.7. Update performance

The update performance is measured by continuously in-

serting and deleting prefixes on the optimal routing table. Ex-

periments show that the insertion speed can achieve 408K

prefixes per second (K/s), and the deletion speed is 375 K/s.

6. Related work

In the literature, routing table compression generally

refers to compressing IP routing tables, and there has been a

wide range of research works devoted into this problem. We

cannot fully cover such a vast background but only list the

most notable ones. ORTC [30] was proven to be the theoreti-

cally optimal compression algorithm in terms of the number

of prefixes, and it remains the best algorithm in terms of its

compression ratio since 1999. Experiments on real backbone

routing tables also showed superb performance of ORTC. It

is worth pointing out that ORTC aims at reducing the num-

ber of prefixes at maximum, rather than elaborating on com-

pressing the data structures, so ORTC can be applied jointly

with other data structure compressing techniques to further

reduce the memory requirement, e.g., the fast IP forward-

ing structure presented in [33]. In [33], the main technique

is the controlled prefix expansion, which transforms a set of

prefixes into an equivalent set with fewer prefix lengths. In

addition, the authors use optimization techniques based on
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dynamic programming, as well as local transformations of

data structures to improve cache behavior. When applied to

trie search, their techniques provide a range of algorithms

(Expanded Tries) whose performance can be tuned. Other

notable prior efforts that provide data structure compress-

ing methods include Lulea [34], LC-trie [35], Bitmap trie [36]

and FlashTrie [37]. Lulea [34] uses very little memory, aver-

aging 4–5 bytes per entry for large routing tables. This small

memory footprint allows the entire data structure to fit into

the processor’s cache, thus speeding up the operations. LC-

trie [35] compresses the IP-routing table from another angle

– it is a trie structure that combines path compression (Pa-

tricia tree [38]) and level compression [39]. This data struc-

ture enables us to build efficient, compact, and easily search-

able implementations of an IP-routing table. Bitmap trie [36]

compresses non-leaf-pushed multibit tries, where each node

contains two bit maps, one for internally stored prefixes and

one for the external pointers. FlashTrie [37] combines hash

operation and multibit-trie compressing structures to re-

duce off-chip memory accesses, thus achieving high lookup

throughput.

Name-based routing is not a new concept, but has been

studied in the literature [19–26]. Name-based routing also

needs a routing table to route packets to their destinations,

where each table entry is filled with name prefixes, rather

than IP prefixes. For name-based routing table, several com-

pressing techniques with compact data structures have been

proposed, often along with fast lookup purposes. NCE [27,28]

employs a component-trie to organize the name-based rout-

ing table. In the trie the name components are represented

and replaced by a unique code (integer), reducing memory

cost and accelerating lookup. NameFilter [16] divides prefixes

in the name-based routing table into groups by their lengths

as well as next hops, and employs Bloom filters to store each

group separately. BFAST [40] employs a Counting Bloom fil-

ter to balance the load among hash table slots, making the

number of prefixes in each nonempty slot close to 1, and thus

enabling high lookup throughput and low latency. Moreover,

the First-Rank-Indexed technique is proposed to effectively

reduce the massive storage requirement for the pointers in

all the hash table slots. The memory-efficiency of Bloom fil-

ter helps compress the name-based routing table. All these

methods are orthogonal to the CONSERT method and can be

applied jointly.

7. Conclusion

This paper proposes an algorithm called CONSERT to build

an optimal name-based routing table with the minimal num-

ber of prefixes. CONSERT consists of three passes, where Pass

One introduces the ‘#’ symbol and pushes the next hops

down to the ‘#’ nodes, Pass Two pushes the most prevalent

next hop(s) upwards as high as possible, and Pass Three de-

termines the next hop for each prefix. CONSERT can apply to

the situations of no default route and multiple next hops, and

it works for tries of different granularities as well. We formu-

late the algorithm and prove its optimality using the induc-

tion method. Experimental results show that CONSERT can

effectively reduce the number of prefixes in a routing table

and improve the lookup performance, especially cooperates
with other orthogonal data structure compressing methods

like NameFilter.
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Appendix

This section contains a mathematical formulation of CON-

SERT and a formal proof for its optimality. The proof proceeds

via induction on the deepest level of the routing table trie.

A.1. Definitions

The proof is based on the component trie. For generality,

CONSERT considers N-component prefixes for any integer N,

where N is the deepest level of the component trie.

A formal definition of a routing table can be given by a

function or a map. Let PN be the set of all the prefixes with

length (in terms of the number of components) less than or

equal to N. Let AN denote the prefixes of exactly N compo-

nents, so PN = A0 ∪ A1 ∪ · · ·AN . Let H be the set of all possible

next hops for the router, and � be the set of all the subsets of

H. A routing table assigns a subset (may be empty) of H to all

the prefix x ∈ PN. So we define a routing map to be any map

R : PN → � (1)

We use |x| = k to indicate x’s length or level in the routing

table’s tree representation. We use R(x) to denote the next

hop of x in the routing map R, and say that x is occupied if

R(x) �= ∅. Let |R| denote the number of occupied vertices in

the tree, or the number of entries in the routing table. The

root node in the tree on PN is denoted as rN. There is a unique

path from the root rN to every vertex x in PN. On this path,

either (1) there is a unique occupied vertex which is closest

to x, but not equal to x, call it the ancestor of x, denoted by

Anc(x), or (2) there are no occupied vertices. We define the

inherited next hop of x as

Inh[x, R] =
{

R(Anc(x)), in case (1)
∅, in case (2)

(2)

Given two routing tables R1 and R2, for any prefix p in R2,

if R1(p) ⊂ R2(p), then we say that R1 ⊂ R2 (read as R1 covers

R2). If ∀p ∈ PN, R1(p) = R2(p), we say R1 = R2.

A.2. Formulate the algorithm

The algorithm presented below formulates CONSERT by

symbols and formulas. The input is a routing map R after Pass

One, and the output is a collection of optimally compressed

routing tables. The algorithm proceeds in two steps. The first

step pushes the prevalent next hops in the leaf nodes up-

wards the tree level by level, until all nodes in the tree are

http://dx.doi.org/10.13039/501100001809
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occupied (correspond to Pass Two). The second step succes-

sively prunes the nodes until only the minimal number of

entries remains (correspond to Pass Three). Given a vertex x

in a component trie, we use xc1
, xc2

, . . . , xcm to denote its m

children vertices (let cm = ‘#’).

The input. The expected input for this algorithm

is the output of Pass One. Now we assume thatthe in-

put R is the result of Pass One on PN , and therefore

R(rN) = ∅. Step 1. Define inductively a sequence of

routing maps (Q0, Q1, ..., QN) by

QN = R (3)

and for 1 ≤ k ≤ N:

Qk−1(x)

=
{

PrevalentSelect(Qk(xc1
), Qk(xc2

), ..., Qk(xcm
)),

if x ∈ Ak−1 and Qk−1(x) = ∅
Qk(x), otherwise

(4)

Q0 will be used for step 2.

Step 2. Construct inductively a sequence of routing

maps (T0, T1, ..., TN) by:

T0(x) =
{

Q0(x), if x �= rN

RandSelect[Q0(rN)], if x = rN
(5)

And for 1 ≤ k ≤ N:

Tk(x) =
{

Tk−1(x), if x /∈ Ak

∅, if x ∈ Ak and Inh[x, Tk−1] ∈ Tk−1(x)
RandSelect[Tk−1(x)], otherwise

(6)

Remarks for T0: non-root vertices in T0 inherit the

same next hop informationfrom Q0, while the root

node randomly selects a next hop from Q0(rN)by

RandSelect[Q0(rN)].

Remarks for Tk, (1 ≤ k ≤ N): For x /∈ Ak, there are two

cases to consider:

(1) |x| < k.In fact, the final next hop information for

x has already been calculatedin Tk−1, now Tk in-

herits it from Tk−1(x) directly;

(2) |x| > k. The final next hop information has

been not calculatedyet, so Tk(x) inherits all the

possible next hops from Tk−1(x)(seemingly in-

herits from Tk−1(x), but actually inherits from

Q0(x)).Both situations arrive at the same result:

Tk(x) = Tk−1(x), if x /∈ Ak.

The output. The output of the above algorithm is

the routing map TN constructed atthe end of Step

2. Since many choices are made in Step 2 by the

RandSelect()function, there are manypossible results.

We denote them by TR,s, where s is an index that distin-

guishesbetween them. The collection of all indices is a

finite set S, so the possibleresults of the algorithm are

the routing maps {TR,s} (s ∈ S).
Remarks on the formulated algorithm:

(1) For 1 ≤ k ≤ N, all the leaf vertices in Qk(x) are occu-

pied, which means the routing information Qk(x) for

each leaf node’s corresponding prefix x is not empty.

For non-leaf vertices, Qk(x) is the empty set if |x| < k,

and is non-empty if |x| ≥ k. Therefore, Q0 has an entry

for every prefix in PN.

(2) Next we prove that TN ⊂ R. For 1 ≤ k ≤ N, ∀x ∈
Ak (i.e., |x| = k), we have Tk−1 = Q0(x). This is because

|x| = k, and in Tk−1, the next hop information of x

has not been calculated yet, therefore Tk−1(x) = T0(x).

According to Step 2, T0(x) = Q0(x), x �= rN, so Tk−1 =
Q0(x).

According to Step 2 again, ∀x ∈ Ak (|x| = k), Tk(x) has two

results:

(1) Tk(x) = RandSelect[Tk−1(x)] ∈ Q0(x)

(2) Tk(x) = ∅, which means Inh[x, Tk] = Inh[x, Tk−1] ∈
Tk−1(x) = Q0(x).

Therefore, Tk(x) ⊂ Q0(x), x ∈ Ak, 1 ≤ k ≤ N.

Plus T0(rN) = RandSelect[Q0(rN)] ∈ Q0(rN), yielding

T0(x) = RandSelect[Q0(x)] ∈ Q0(x), |x| = 0, so we have

Tk(x) ⊂ Q0(x), x ∈ Ak, 0 ≤ k ≤ N.

On one hand, actually, ∀x ∈ Ak, TN(xk) = Tk(x) ⊂
Q0(x), 0 ≤ k ≤ N (also derived from Step 2), hence TN ⊂ Q0.

On the other hand, Q0 is derived from R, it has the same

next hop information for each prefix x as R does (i.e., ∀x ∈
Pk, Q0(x) = R(x)), therefore we say Q0 = R. Hence TN ⊂ R.

Therefore, {TR, s} ⊂ R, s ∈ S.

A.3. The theorem

Let R be any name-based routing table after Pass One, let

R′ be any routing map that covers R. Let MR = Q0(rN), where

Q0 is the result of Step 1. Note |R| is the number of prefix en-

tries in R. Then we have the following theorem.

The Optimality Theorem:

(1) |R′| ≥ |TR, s| for all s ∈ S.

(2) If R′(rN ) �⊂ MR, then |R′| ≥ 1 + |TR,s| for all s ∈ S.

This theorem implies that:

(i) |TR,s| = |TR, j| for all s, j ∈ I. All the routing tables con-

structed by the algorithm have the same size.

(ii) |TR, s| is the smallest possible size for a routing table

that covers R, meaning

that these routing tables achieve the optimal compres-

sion.

A.4. The proof

The proof of the Optimality Theorem relies on three op-

erations that we call merging, pushing and splitting of rout-

ing tables. The merging operation takes m routing tables

Rc1
, Rc2

, ..., Rcm on the PN tree and joins them by creating a

new root node to form a routing table Rc1
∗ Rc2

∗ ... ∗ Rcm on

the PN+1 tree. The new root node of the merged PN+1 tree is

not occupied. The pushing operation takes a routing table R

on the PN+1 tree and produces a new routing table Push[R]
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on the PN+1 tree: the next hop of root rN+1 is assigned to the

empty child node of rN+1, then rN+1 is set to empty. The out-

put routing table is Push[R], such that Push[R] can be written

(uniquely) in the form Push[R] = Rc1
∗ Rc2

∗ ... ∗ Rcm for some

PN trees Rc1
, Rc2

, ..., Rcm . The notation Push[R] indicates that

we push down the routing information from the root to its

children, which is a necessary step before we can split the

table. Formally we have:

Merging: If x and y are k−component and

n−component prefixes respectively, we denote by xy

the (k + n)−component names obtained by concatenating x

and y. Let Rc1
, Rc2

, ..., Rcm be routing maps on PN. Define the

routing map Rc1
∗ Rc2

∗ ... ∗ Rcm on PN+1 by

Rc1
∗ Rc2

∗ ... ∗ Rcm
(x)

=

⎧⎪⎪⎨
⎪⎪⎩

∅, if x = rN+1 (root node)
Rc1

(y), if x = c1y
...
Rcm

(y), if x = cmy

(7)

where c1, c2, … , cm are name components corresponding to

the edges that link Rc1
, Rc2

, ..., Rcm to the root node in Rc1
∗

Rc2
∗ ... ∗ Rcm on PN+1. Rc1

∗ Rc2
∗ ... ∗ Rcm is the output of the

merging operation.

For a routing map R after Pass One, its root has no next hop

information (R(rN) = ∅), therefore, it can be written uniquely

in the form of R = Rc1
∗ Rc2

∗ ... ∗ Rcm for some Rc1
, Rc2

, ..., Rcm .

Pushing&Splitting: Let R be a routing map on PN. Define

a new routing map Push[R] on PN as follows:

Push[R](rN) = ∅
Push[R](c1) =

{
R(c1), if R(c1) �= ∅
R(rN), if R(c1) = ∅

...

Push[R](cm) =
{

R(cm), if R(cm) �= ∅
R(rN), if R(cm) = ∅

Push[R](x) = R(x), if x ∈ A2 ∪ A3 ∪ ... ∪ AN (i.e., |x| ≥ 2)

(8)

The pushing operation pushes the next hop of the root

to its empty children nodes. After R is pushed into Push[R],

Push[R] can be written in the form Push[R] = Rc1
∗ Rc2

∗ ... ∗
Rcm , which means Push[R] can be split into m routing maps

Rc1
, Rc2

, ..., Rcm on PN−1. This reveals that, while we have m

routing maps on PN−1, we can build a new routing map on

PN by the merging operation, and the new routing map is

Push[R], i.e., Push[R] = Rc1
∗ Rc2

∗ ... ∗ Rcm .

Some properties concerning Push[R]:

• Property 1: For any R, |R| − Push[R] ∈ [−(m − 1), 1].

• Property 2: For a routing table TR, s derived from the CON-

SERT algorithm, |TR,s| − |Push[TR,s]| ∈ [−(m − 1), 0]. This

is because the only situation when |TR,s| − Push[TR,s] = 1

is that the root node and all its children are occupied in

TR, s. However,the actual situation is only the root node

will always be occupied in TR, s, and therefore some (or

all) children of it are empty.

• Property 3 (∗Important property): Let R = Rc1
∗ Rc2

∗
... ∗ Rcm be a routing map on PN+1 (Rc1

, Rc2
, ..., Rcm are

routing maps on PN), and let SR, SRc1
, SRc2

, ..., SRcm
be
the index sets produced by the CONSERT algorithm for

routing maps R, Rc1
, Rc2

, ..., Rcm , respectively. For every

s ∈ SR, there exists unique j1 ∈ SRc1
, j2 ∈ SRc2

, ..., jm ∈
SRcm

, such that Push[TR,s] = TRc1
, j1

∗ TRc2
, j2

∗ ... ∗ TRcm , jm .

TR, s is the optimally compressed routing map for R, and

TRc1
, j1

, TRc2
, j2

, TRcm , jm are the optimally compressed rout-

ing maps for Rc1
, Rc2

, ..., Rcm , respectively. This is the key

property of the CONSERT algorithm – every compressed

table constructed on the PN tree is equivalent to a bunch

of compressed routing tables on the PN−1 sub-trees, and

these can be derived using the pushing and splitting op-

erations.

Proof. The proof of the theorem is by induction on

N – the number of the deepest levels in the tree.

For N = 1, R is a routing map on P1, the tree has

m + 1 vertices, namely the root r1 and its m children.

Let p1 = R(c1), p2 = R(c2), ..., pm = R(cm) (R(ci) returns the

next hop of one-component-prefix ci in R), then MR =
PrevalentSelect(p1, p2, ..., pm). Let TR, s be any routing ta-

ble produced by the CONSERT algorithm with R as input, and

R′ be any routing table that covers R (R′ ⊂ R). Let G = R′(rN)

(note that G may be empty). Define

� = |R′| − |TR,s| (9)

We must prove that � ≥ 0, and if G �⊂ MR, then � ≥ 1. Be-

cause both Push[R′] and Push[TR, s] covers R, then |Push[R′]| =
|Push[TR,s]| = m. Rewrite � as

� = |R′| − |Push[R′]| + |Push[TR,s]| − |TR,s| (10)

We have proved that |Push[TR,s]| − |TR,s| ≥ 0. For |R′| −
|Push[R′]|, there are three cases to consider: �

Case 1. |R′| − |Push[R′]| = 1. Because here |Push[TR,s]| =
m ≥ |TR,s|, then |Push[TR,s]| − |TR,s| ≥ 0, so � ≥ 1, it’s done.

Case 2. |R′| − |Push[R′]| = 0. Hence � = |Push[TR,s]| −
|TR,s| ≥ 0. Since |TR, s| ∈ [1, m], we have two subcases to con-

sider:

Subcase 1: |TR,s| = n ∈ [1, m − 1], then � ≥ 1, so it’s done.

Subcase 2: |TR,s| = m, then � = 0, we need to prove

G ⊂ MR (remember that G = R′(r1)). In this case, p1, p2, …

, pm all have a population of 1, which means p1 ∩ p2 ∩ ... ∩
pm = ∅, so in Step 2 PrevalentSelect(p1, p2, ..., pm) = p1 ∪
p2 ∪ ... ∪ pm. Hence MR = p1 ∪ p2 ∪ ... ∪ pm. Because here

|Push[R′]| = m, and |R′| − |Push[R′]| = 0, so |R′| = m. Hence

there are two scenarios for G to consider:

(a) G = ∅, then G ⊂ MR, it’s done.

(b) G �= ∅, then Push[R′] pushes G to exactly one of root’s

children vertices in R′. So G ⊂ R′(c1) or G ⊂ R′(c2) or ...

or G ⊂ R′(cm). Because R′ ⊂ R, then G ⊂ R(c1) = p1 or

G ⊂ R(c2) = p2 or ... or G ⊂ R(cm) = pm, which means

G ⊂ p1 ∪ p2 ∪ ... ∪ pm = MR, and it’s done.

Case 3. |R′| − |Push[R′]| ∈ [−(m − 1),−1]. Since

|Push[R′]| = m, then |R′| ∈ [1, m − 1] (|R′| = m has been

considered in Case 2). Again, there are two subcases for |R′|
to consider.

Subcase 1: |R′| = 1. In this case G �= ∅ and all the m chil-

dren vertices of the root are empty. So Push[R′] assigns G to

all the root’s children vertices in R′. Again because R′ ⊂ R, G is

the most prevalent next hop among the children vertices and
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has a population of m, meaning that G ⊂ p1 ∩ p2 ∩ ... ∩ pm �=
∅. Meanwhile MR = PrevalentSelect(p1, p2, ..., pm) = p1 ∩
p2 ∩ ... ∩ pm, yielding G ⊂ MR and |TR,s| = 1. Then � = 1 −
m + m − 1 = 0, it’s done.

Subcase 2: R′ ∈ [2, m − 1]. In this case G �= ∅ and at least

2 children vertices of the root in R′ are empty. Denote by

(t ∈ [2, m − 1]) the number of empty children vertices of

the root in R′. Since the order of the children vertices makes

no difference on the algorithm, we always assume the first

t vertices are empty. Then Push[R′] assigns G to the first t

children vertices of the root in R′, again because R′ ⊂ R, then

G ⊂ R(c1) = p1, G ⊂ R(c2) = p2, ..., G ⊂ R(ct ) = pt . Since |R′|
≥ 2, p1 ∩ p2 ∩ ... ∩ pm = ∅ (if p1 ∩ p2 ∩ ... ∩ pm �= ∅, then |R′| =
1). Therefore, PrevalentSelect(p1, p2, ..., pm) picks out the

most prevalent next hop(s) among p1, p2, … , pm, and assign

such next hop(s) to MR. Assume that the next hop(s) in MR

has a population of q, i.e., for any next hop u ∈ MR, q chil-

dren vertices of the root contains u as next hop. Then three

scenarios for G need to be considered:

(a) G �⊂ MR: G is not among the most prevalent next

hops, and we need to prove � ≥ 1. In this case

q > t, so q − t ≥ 1. Assume u = RandSelect(MR)

and q children vertices will be filled with u

in Push[TR, s], so |TR,s| = m + 1 − q, yielding

|Push[TR,s]| − |TR,s| = m − (m + 1 − q) = q − 1. While

|R′| − |Push[R′]| = (m − t + 1) − m = −t + 1, there-

fore � = (−t + 1) + (q − 1) = q − t ≥ 1.

(b) G ⊂ MR but G �= RandSelect(MR): G is one of the most

prevalent next hops but is not selected as the next

hop for TR, s, and we need to prove � ≥ 0. In this case

q = t . Assume u = RandSelect(MR) and q children ver-

tices will be filled with u in Push[TR, s], which yields

|Push[TR,s]| − |TR,s| = m − (m + 1 − q) = q − 1. While

|R′| − |Push[R′]| = −t + 1, then � = (−t + 1) + (q −
1) = 0.

(c) G = RandSelect(MR): G ∈ MR and G is selected as the

next hop for TR, s, so we need to prove � ≥ 0. In

this case q = t, and t vertices will be filled with G

in Push[TR, s], which yields |Push[TR,s]| − |TR,s| = m −
(m + 1 − t) = t − 1, then � = (−t + 1) + (t − 1) = 0.

The proof for N = 1 ends.

Next we prove the induction step, namely we assume

our theorem holds for all integers less than or equal to

N, and prove it for N + 1. So now R is a routing map on

PN+1 output by Pass One, and R = Rc1
∗ Rc2

∗ ... ∗ Rcm , where

Rc1
, Rc2

, ..., Rcm are routing maps on PN. R′ covers R (R′ ⊂ R),

and Push[R′] = R′
c1

∗ R′
c2

∗ ... ∗ R′
cm

, where R′
c1

, R′
c2

, ..., R′
cm

are

routing maps on PN. TR,s, TRc1
, j1

, TRc2
, j2

, ..., TRcm , jm are op-

timally compressed routing maps for R, Rc1
, Rc2

, ..., Rcm ,

respectively. Let G = R′(rN+1), and p1 = TRc1
, j1

(rN), p2 =
TRc2

, j2
(rN), ..., pm = TRcm , jm (rN), MR = Q0(rN+1).

A more intuitive view is illustrated in Fig. 14, which re-

veals that merging optimal routing maps on PN can lead to an

optimal routing table on PN+1. Specifically, Rci
, R′

ci
and TRci

, ji

(1 ≤ i ≤ m), denoted by triangles, are routing maps on PN.

Here is the induction reasoning: if TRci
, ji

is the optimally com-

pressed routing map for Rci
, then after the merging operation

(TRci
, ji

’s are merged to TR, s, Rci
’s are merged to R), TR, s is also

an optimally compressed routing map for R. (R and TR, s are
on PN+1.) In other words, if there exists any R′ that covers

R, then |R′| ≥ |TR, s|. Note that R′ ⊂ R yields R′
ci

⊂ Rci
, so it’s

easy to see |R′
ci
| ≥ |TRci

, ji
|. We will use this condition in the

induction method. Afterwards, we have the following induc-

tion procedure.

Induction hypothesis:

(1) |R′
ci
| ≥ |TRci

, ji
|, 1 ≤ i ≤ m;

(2) If R′
ci
(rN) �⊂ pi, |R′

ci
| ≥ 1 + |TRci

, ji
|, 1 ≤ i ≤ m

Goal:

(1) |R′| ≥ |TR, s|;

(2) If G �⊂ MR, |R′| ≥ 1 + |TR,s|;
Define

� = |R′| − |TR,s|
= |R′| − |Push[R′]| + |Push[R′]| − |Push[TR,s]|
+ |Push[TR,s]| − |TR,s| (11)

We need to prove � ≥ 0, and � ≥ 1 if G �⊂ MR. As afore-

mentioned, there are unique routing maps R′
c1

, R′
c2

, ..., R′
cm

and unique indices j1, j2, … , jm such that:

Push[R′] = R′
c1

∗ R′
c2

∗ ... ∗ R′
cm

Push[TR,s] = TRc1
, j1

∗ TRc2
, j2

∗ ... ∗ TRcm , jm

(12)

Define

ρ1 = |R′
c1
| − |TRc1

, j1
|,

ρ2 = |R′
c2
| − |TRc2

, j2
|,

...
ρm = |R′

cm
| − |TRcm , jm

|
(13)

By the induction hypothesis, since R′
c1

⊂ Rc1
, so ρ1 ≥ 0.

And if R′
c1

(rN) �⊂ TRc1
, j1

(rN), ρ1 ≥ 1. This result holds for all

the rest ρ2, … , ρm. Due to |R ∗ S| = |R| + |S| for any routing

maps R and S, we have

� = |R′| − |Push[R′]|
+ |R′

c1
| + |R′

c2
| + ... + |R′

cm
|

− |TRc1
, j1

| − |TRc2
, j2

| − ... − |TRcm , jm
|

+ |Push[TR,s]| − |TR,s|
= |R′| − |Push[R′]| + ρ1 + ρ2 + ... + ρm

+ |Push[TR,s]| − |TR,s|
We have define |R| as the number of occupied nodes in

the tree, if R is on PN and N ≥ 2, then |R| equals the number

occupied nodes among the root and root’s children nodes in

R (denote by N1), plus the number of occupied nodes among

the rest low level nodes of R (denote by N2), so |R| = N1 +
N2. From now on, there is a very important remark on notation

|R|: for brevity, we omit the N2 operand and only write |R| =
N1. The reason of this simplification is, in the following proof

we only care about the occupation of a tree’s root and root’s

children nodes, letting |R| = N1 will help to understand this

occupation status, and will not affect the correctness of the

proof.

Again, there are three cases to consider:

Case 1. |R′| − |Push[R′]| = 1. � = 1 + ρ1 + ρ2, ..., ρm +
|Push[TR,s]| − |TR,s| ≥ 1, it’s done.
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Fig. A.14. Induction illustration for routing maps: R′ ⊂ R ⇒ R′
c1

⊂ Rc1
, R′

c2
⊂ Rc2

, ..., R′
cm

⊂ Rcm
.

Case 2. |R′| − |Push[R′]| = 0. Hence � = ρ1 + ρ2, ..., ρm +
|Push[TR,s]| − |TR,s| ≥ 0. Since |TR, s| ∈ [1, m]5, we have two

subcases to consider:

Subcase 1: |TR,s| = n ∈ [1, m − 1], then |Push[TR,s]| −
|TR,s| ≥ 1, so � ≥ 1, it’s done.

Subcase 2: |TR,s| = m, then � = ρ1 + ρ2, ..., ρm ≥ 0.

Remember that p1 = TRc1
, j1

(rN), p2 = TRc2
, j2

(rN), ..., pm =
TRcm , jm (rN). In this case, all the next hops in p1, p2, … , pm

have a population of 1, which means p1 ∩ p2 ∩ ... ∩ pm = ∅,

so in Step 2 PrevalentSelect(p1, p2, ..., pm) = p1 ∪
p2 ∪ ... ∪ pm = MR. Because here |Push[R′]| = m, and

|R′| − |Push[R′]| = 0, so |R′| = m. Hence there are two

scenarios for G to consider:

(a) G = ∅, then G ⊂ MR, it’s done.

(b) G �= ∅, then Push[R′] pushes G to exactly one of the

children vertices of the root node in R′, i.e., one from

R′
c1

(rN), R′
c2

(rN), ..., R′
cm

(rN). Let’s assume it is R′
ci
(rN), so

G ⊂ R′
ci
(rN). Two scenarios to consider: 1) R′

ci
(rN) ⊂ pi, then

G ⊂ MR, it’s done. 2) R′
ci
(rN) �⊂ pi, then ρ i ≥ 1, so � ≥ 1, and

it’s done.

Case 3. |R′| − |Push[R′]| ∈ [−(m − 1), −1]. Since

|Push[R′]| = m, then |R′| ∈ [1, m − 1] (|R′| = m has been

considered in Case 2). Again, there are two subcases for |R′|
to consider.

Subcase 1: |R′| = 1. In this case G �= ∅ and all the m chil-

dren vertices of the root in R′ are empty, so we have G ⊂
R′

c1
(rN), G ⊂ R′

c2
(rN), ..., G ⊂ R′

cm
(rN). Two situations to con-

sider:

(1) If R′
c1

(rN) ⊂ p1, R′
c2

(rN) ⊂ p2, ..., R′
cm

(rN) ⊂ pm, then

ρ1 ≥ 0, ρ2 ≥ 0, … , ρm ≥ 0 and p1 ∩ p2 ∩ ... ∩ pm

�= ∅. Hence MR = PrevalentSelect(p1, p2, ..., pm) =
p1 ∩ p2 ∩ ... ∩ pm, which yields G ⊂ MR and |TR,s| = 1.

Then � = 1 − m + ρ1 + ρ2 + ... + ρm + m − 1 ≥ 0, it’s

done.

(2) Only t (t < m) of R′
c1

(rN), R′
c2

(rN), ..., R′
cm

(rN)

is a subset of p1, p2, … , p2. Assume that it

is the first t children node of the root in R′,
then R′

c1
(rN) ⊂ p1, R′

c2
(rN) ⊂ p2, ..., R′

ct
(rN) ⊂

pt , R′
ct+1

(rN) �⊂ pt+1, ..., R′
cm

(rN) �⊂ pm, which means

G ⊂ p1, G ⊂ p2, ..., G ⊂ pt , G �⊂ pt+1, ..., G �⊂ pm, and

ρ1 ≥ 0, ρ2 ≥ 0, ..., ρt ≥ 0, ρt+1 ≥ 1, ..., ρm ≥ 1.

Three scenarios about G to consider:
5 |TR, s| should be actually in range [1 + N2, m + N2]. Here we apply the

simplification on |R| for the first time, so |TR, s| is redirected into range [1, m].
(a) G �⊂ MR: we need to prove � ≥ 1. Assume

u = RandSelect(MR) and q children vertices will

be filled with u in Push[TR, s]. In this case q

> t, so q − t ≥ 1, and |TR,s| = m + 1 − q, yield-

ing |Push[TR,s]| − |TR,s| = m − (m + 1 − q) =
q − 1. While |R′| − |Push[R′]| = 1 − m, there-

fore � = 1 − m + ρ1 + ρ2 + ... + ρm + (q − 1) =
q − m + ρ1 + ρ2 + ... + ρm = q − m + ρ1 + ρ2 + ... +
ρt + (ρt+1 − 1) + ... + (ρm − 1) + (m − t) = q − t +
ρ1 + ρ2 + ... + ρt + (ρt+1 − 1) + ... + (ρm − 1) ≥ 1,

it’s done.

(b) G ⊂ MR but G �= RandSelect(MR): we need to prove �

≥ 0. In this case q = t, and � = q − t + ρ1 + ρ2 + ... +
ρt + (ρt+1 − 1) + ... + (ρm − 1) ≥ 0.

(c) G = RandSelect(MR): we need to prove � ≥ 0. In

this case q = t, and � = q − t + ρ1 + ρ2 + ... + ρt +
(ρt+1 − 1) + ... + (ρm − 1) ≥ 0, it’s done.

Subcase 2: |R′| ∈ [2, m − 1]. In this case G �= ∅ and

at least 2 children vertices of the root in R′ are empty.

Denote by s (s ∈ [2, m − 1]) the number of empty chil-

dren vertices of the root in R′. Then Push[R′] assigns

G to the s children vertices of the root in Push[R′],
so |R′| = 1 + m − s. Assume that first t children of the

root node in R′ is a subset of p1, p2, … , pm, namely

R′
c1

(rN) ⊂ p1, R′
c2

(rN) ⊂ p2, ..., R′
ct
(rN) ⊂ pt , R′

ct+1
(rN) �⊂

pt+1, ..., R′
cm

(rN) �⊂ pm, so ρ1 ≥ 0, ρ2 ≥ 0, ..., ρt ≥ 0, ρt+1 ≥
1, ..., ρm ≥ 1. Assume that the next hop(s) in MR selected

by PrevalentSelect(p1, p2, ..., pm) has a population of q,

now |TR,s| = 1 + m − q, � = (1 + m − s) − m + ρ1 + ρ2 +
... + ρm + m − (m − q + 1) = 1 − s + ρ1 + ρ2 + ... + ρt +
(ρt+1 − 1) + ... + (ρm − 1) + m − t + q − 1 = m − s + q − t +
ρ1 + ρ2 + ... + ρt + (ρt+1 − 1) + ... + (ρm − 1). Apparently

m − s ≥ 1 (because s ∈ [2, m − 1]). In the following, three

scenarios for G need to be considered:

(a) G �⊂ MR: we need to prove � ≥ 1. In this case q > t, so

q − t ≥ 1, therefore � ≥ 2, it’s done.

(b) G ⊂ MR but G �= RandSelect(MR): we need to prove �

≥ 0. In this case q = t, so � ≥ 1, it’s done.

(c) G = RandSelect(MR): we need to prove � ≥ 0. In this

case still q = t, so � ≥ 1, it’s done!

The proof for the component trie completes.

For the character trie, since Pass one complements all the

children nodes of characters that are absent, let m = 26 and

our theorem holds. For the binary trie, the ORTC algorithm

has been proven [30].
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