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a b s t r a c t

Control planes of Software Defined Networking have faced a scalability issue because they

have been widely applied for large scale networks. To address this issue, control planes with

multi-controllers such as Onix and HyperFlow have been proposed in which controllers share

global network view. Since the global network view includes topology, states and events of

a network, shared information could become larger when governed network is large and

complicated. Thus, Onix have proposed reduction method of the information by abstracting

switches as a single virtual switch. However, there is a lack of discussion about reliability of

virtual switches that depends on topology of abstracted networks. To improve reliability of

the virtual switches, there are two viewpoints: (1) administrative areas of controllers, and

(2) limitation of abstraction areas. Hence, this paper proposes construction method of more

dependable virtual switches focusing on bi-connectivity and reduction of shared information

using the virtual switches. Our experimental results show that our reduction method can im-

prove reliability of virtual switches and curb the number of edges in a federation graph that is

regarded as shared information.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Our lives have become increasingly dependent on the

Internet technologies, which has made the volume of data

traffic growing significantly. Then, even a short interval of

failure or performance degradation might cause enormous

influences. Network management focusing on high-speed

failure recovery and load balancing of flows has been get-

ting more attention. These management techniques require a

redundant topology with at least bi-connectivity which con-

tains two or more disjoint paths in order to improve relia-

bility of networks by establishing a spare path for a failed or

congested path [1,2].

OpenFlow has been widely used as a standard pro-

tocol to actualize Software Defined Networking (SDN)
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and facilitates to create testbed environments of realis-

tic network for new control mechanisms [3]. In an Open-

Flow network, a controller is in charge of creating data

forwarding rules while a switch node is responsible for

forwarding data. In this way, an OpenFlow network em-

ploies a centralized architecture where the controller reg-

ulates the data forwarding of switches in an integrated

fashion. As a result, because there would not be neces-

sary to configure network devices individually, it could be

expected to simplify and reduce the burdens related to

the network operation and management by programmable

networking.

However, an OpenFlow network dominated by a single

controller has been expected to raise scalability problems

[4–6]. Although to tackle the scalability problems, HyperFlow

[7] and Onix [8] have been proposed as control platforms of

multiple controllers, the multi-controllers could have two is-

sues: additional control delay and increase of the amount of

shared information.
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Fig. 1. An example of a virtual node in an administrative area of a controller.
The additional delay would be mainly caused by inter-

controller messaging when the controllers establish flows

or control decisions. For reducing the delay, all controllers

should share information to deal with any arriving event by

a distributed storage system [7]. This might cause a surge of

shared information among controllers, because the informa-

tion contains not only topology information, but also events

such as flow arrivals, link failures and network-wide statistics

[9].

To alleviate a burden on controllers from the shared infor-

mation, Onix [8] indicates the abstraction method in which a

controller can regard switches in its administrative area as a

single virtual switch. This method can enclose topology infor-

mation, but it might cause a malfunction of a virtual switch

for particular topologies that do not include enough infor-

mation for establishing a spare path for a failure. The mal-

function of a virtual node should be curbed because it has

negative effect for the other network elements.

There are two viewpoints for creating more reliable vir-

tual switches: (1) administrative areas of controllers, and (2)

limitation of abstraction areas. From the viewpoint (1), reli-

able virtual switches are constructed by improving reliabil-

ity of administrative areas. However, it could be difficult to

obtain administrative areas whose networks are wholly re-

liable. From the viewpoint (2), in order to obtain more re-

liable virtual switches, it is useful to limit abstraction areas

with highly connected networks such as bi-connected net-

works, but this limitation could lead to increase of amount of

shared information. Hence, in case (2), it is desirable to de-

crease amount of shared information.

Therefore, this paper proposes a construction method of

administrative areas, which is defined as switch clustering,

for reliable virtual switches and reduction method of shared

information in terms of two viewpoints.

Section 2 discusses some issues and related works on dis-

tributed OpenFlow controllers, and Section 3 defines relia-

bility of virtual switches and the amount of topology and

event information. Then, Section 4 describes a clustering al-

gorithm that reduces the amount of information by using

cycles. Some numerical experiments are demonstrated in

Section 5, and then Section 6 is concluding remarks.

2. Issues and related works on distributed OpenFlow

controllers

This section discusses some possible issues and relevant

research works in deploying multiple OpenFlow controllers

in a distributed manner from the perspective of failure re-

covery and load balancing.

Tootoonchian et al. [7] represented that some switches

might encounter longer latency for setting up the flow en-

tries when a network has a larger diameter. Thus, they pro-

posed a method gathering requisite information to a local

controller in order to alleviate the latency by a distributed

storage system. HyperFlow enables controllers to share state

information and events of a network by a distributed stor-

age system called WheelFS. The WheelFS employs publish-

subscriber patterns and contains all information of the

network so that a controller can access sufficient informa-

tion for controlling switches quickly. However, the larger

amount of shared information especially in a wide-ranging
and complex network could enlarge workloads of controllers

for maintaining the distributed storage system [10,11].

In order to reduce such a large amount of shared topology

information, Onix offers an abstraction function that creates

a virtual node from a set of nodes in an administrative area of

a controller. This function can enclose the whole topology in-

formation in a virtual switch, but there is no discussion about

reliability of virtual switches created by this method. As de-

scribed above, virtual switches could be fragile when an ad-

ministrative area of a controller is unreliable. For example,

a single link failure could cause a malfunction of the virtual

node as shown in Fig. 1.

On the other hand, Kandoo has proposed an event aggre-

gation method in order to diminish the burden of distributed

database, which is mainly caused by frequent events such as

flow setup requests and network statistics collections [9]. Al-

though the local controllers lessen the frequency of notifying

events to the root controller by aggregating assorted events,

the issue on clustering of a controller remains to be dealt

with.

The paper [12] tries to diminish the amount of shared

information by aggregating all switches in an administra-

tive area of a controller and treating the switches as a sin-

gle virtual switch. The paper compares the characteristics of

two clustering methods and concludes that the minimum cut

clustering can curb the amount of shared information but

it has no discussion about the reliability of an aggregated

switch.

Consequently, there might be no precise discussion on

clustering switches from the view of the reliability of vir-

tual switches and the amount of shared information. Hence,

this paper clarifies reliability of virtual switches and global

network state information, and then discusses a clustering

method for minimizing failures of virtual switches and the

shared information and its implementation technique with

multiple controllers.

3. Definition

This paper describes topology information as graph G =
(V, E). V denotes a set of nodes, and a node indicates a net-

work equipment such as a router or a switch. E represents

a set of links connecting to two network equipment. Deter-

mining administrative areas of controllers is identical with

obtaining the clustering in graph theory [13]. The clustering

C = {Vi | 1 ≤ i ≤ j} of G is a partition of the node set V into

non-empty subsets called cluster Vi.

3.1. Reliability of virtual nodes

From the viewpoint (1), to decrease occurrence of failures

of virtual nodes, it is necessary to expand highly connected
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Fig. 2. An example of the federation tier and the local tier.

Fig. 3. Information of a federation tier and a local tier.
elements in administrative areas. This section describes Tota-

lAP that is a reliability index of virtual nodes by counting out-

going ports called Affected Ports (AP) of failed virtual nodes

focusing on a single link failure.

Let AP be the number of outgoing links of a virtual node

which was failed by a link failure. When the failure causes

no malfunction of virtual nodes, AP is set to zero. TotalAP is

defined as

TotalAP =
∑

e∈E

AP(C , e). (1)

3.2. Shared Information among local controllers

In an OpenFlow network with multi-controllers, each

controller plays two roles: governance of a part of switches

and federation of a whole network by communications with

controllers. We call the interior controlling of the separated

parts a local tier and federating functions a federation tier,

respectively. This section discusses information of each tier

for the case (2).

3.2.1. Topology information

When each controller handles many switches, it solely

deals with failures or congestion that can be treated using

paths governed by the controller; otherwise, it cooperates

with other controllers for the treatment. In order to recognize

the necessity of cooperation for protection, bi-connected

components in a network becomes important because it

always provides a backup path for any single link failure,

and load balancing also requires bi-connectivity to find a new

path for defusing a congestion. Therefore, a single controller

cannot deal with a failure of a link that is not in any bi-

connected components, so in the federation tier, controllers

should share information of such links. In contrast, the local

tier should have information of internal bi-connected com-

ponents. Fig. 2 indicates an example of the federation tier

and the local tier. The local tier has two controllers governing

three nodes, respectively, and each controller aggregates its

bi-connected component, which is triangle, to a single node

of the federation tier.

When a graph G and a clustering C are given, the local tier

contains local subgraphs Gi = (Vi, Ei) of a graph G where Vi ∈
C . On the other hand, the federation graph G f = (V f , E f ) of

the federation tier has all bi-connected components of local

graphs as Vf and links connecting the local graphs in E. Gf

is bi-connected when a graph G is bi-connected, and a link

in E is included by the federation graph or the local graphs.
Hence, a failure recovery or load balancing method using Gf

or local graphs can deal with all link failures in each graph,

so all links in G can be recoverable.

As described above, a federation tier and a local tier have

a federation graph and a local graph respectively as topol-

ogy information. Fig. 3 shows the information in each tier. In

the local tier, each switch connects to a controller, and con-

trollers construct local graphs. Then, the controllers also cre-

ate contracted graphs to share it with other controllers. In

the contracted graph, all bi-connected components of the lo-

cal graphs are abstracted as a single node. The federation tier

gathers the contracted graphs from all controllers, and dis-

covers links connecting nodes in the contracted graphs in or-

der to create a federation graph.

The federation tier and local controllers also have a rout-

ing algorithm that can decide flows using a graph.

3.2.2. Event information

This section mentions other information of each tier in-

cluding events, such as topology changes, failures and flow

setup requests. Considerable events of both tiers are listed

below. At the events F1, F2, F3 and F4, each local controller

should access a federation graph or shared events of a feder-

ation tier in distributed database.

Events of a federation tier

(F1) arrival of statistic information from a local controller

(F2) arrival of a packet_in from a local controller

(F3) discovery of a change of contracted graph in a local

controller

(F4) discovery of a link failure in the federation graph

Events of a local tier

(L1) arrival of a packet_in from a switch

(L2) arrival of a flow setup request from the federation tier

(L3) arrival of a packet_out request from the federation tier

(L4) discovery of a change of a local graph

(L5) discovery of a failed or a congested link

(L6) discovery of a statistic change of a federation link
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Fig. 4. A behavior of a federator in a packet_in event. Fig. 5. The recovery process of a link failure.
When a local controller receives statistic information

from a switch (L6), the controller invokes a control func-

tion of the federation tier (federator) if the information is not

about local graph (F1).

When a local controller receives a packet_in message (L1),

the local controller decides a path by its routing algorithm if

the local graph contains enough information. Otherwise, it

transfers the message to federator.

Receiving the packet_in (F2), a federator creates a flow by

its routing algorithm and sends setup requests to local con-

trollers following the flow. When the flow setup request is

reached to a local controller (L2), the local controller trans-

lates the flow to a path on the local graph and then sends

flow entries to switches in order to establish the path.

The federator can send packet_out messages to a port of

a local controller for particular purposes, such as topology

probing of inter-local controller links. Receiving the mes-

sages (L3), a local controller transfers the message to a corre-

sponding port connecting to the other controllers. Then, the

message is caught by another local controller as packet_in

(L1) from a switch, and the controller informs the arrival of

the packet_in to a federator (F2). Fig. 4 indicates behaviors

of the federator. The federator updates federation graph if

packet_in contains a topology probing message; otherwise it

establishes a new working path and sends the new path to

the local controller.

When varied topologies is found by a local controller (L4),

the controller updates a local graph and a contracted graph.

If the update changes the contracted graph, the controller

sends it to a federator. Finding a varied link in the federa-

tion graph (F3), a federator updates federation graph. Fig. 5

shows that at the L5 event, the local controller deals with lo-

cally recoverable failures and does not send such failures to

federators; otherwise, requires a backup path to a federator

(F4).

The periodical changes in statistic information about load

and probes of links are likely to pull out the events F1 and F2

frequently [9]. Thus, the amount of information of events is

proportional to the number of federation nodes and links.

4. Clustering algorithm

This section proposes a clustering algorithm with cycles

that are basic bi-connected components.
It is desirable to reduce TotalAP in the case (1) and de-

crease |Ef| in the case (2). As previously stated, a larger bi-

connected component in a cluster reduces TotalAP. In another

words, increase of the number of links not in bi-connected

components, that is |Ef|, improves TotalAP. Since reduction of

|Ef| in the case (2) also decreases TotalAP, the objective func-

tions for improving reliability of virtual nodes and minimiz-

ing the size of federation graph is

Minimize |E f | = f (G, C ) s.t.|Vi| < k,Vi ∈ C (2)

where k is the upper bound of a cluster size which indicates

controller capability to govern switches and the size should

be less than the maximum capability of controllers.

Generally, minimum cut or conductance is known as

clustering indices focusing on intra-cluster density or inter-

cluster sparsity [13]. these indices only consider the number

of links in clusters and out of clusters, so they might have

possibilities to fail to curb the size of federation graph. For

instance, the lower graphs of Fig. 6(a)–(c) depict clustering

examples in which the same graph are separated into two

clusters. Although clustering in both Fig. 6(a) and (b) has the

same number of inter-cluster links, the federation graph of

(b) could include the larger number of nodes than (a). Be-

cause difference between (a) and (b) is balance of the num-

ber of inner-cluster edges,it may be a reasonable index for

diminishing the federation graph. However, balancing the

number of inner-cluster edges does not always decrease the

number of bi-connected components like Fig. 6(c). These ex-

amples imply that a clustering method should focus on the

number of bi-connected components in order to decrease the

size of a federation graph. The following of this section pro-

poses a clustering method considering cycles that are basic

bi-connected components.

Let L be a set of cycles in a graph G = (V, E), and the union

of all cycles in L includes all nodes in V. Then, a cycle graph

G = (L, E,ω) is defined as a meta-graph whose node is a cy-

cle and a link between two cycles indicates existence of more

than one shared nodes of the two cycles. A link cost function

ω : L × L → P(V) indicates shared nodes in V of two cycles

on both ends of the link provided P(V) is the power set of

V. An example of cycles Li in a graph and its cycle graph are

shown in Fig. 7.

A division of a graph into some clusters must break

some other cycles because nodes cannot belong to two or

more clusters. For instance, when L in Fig. 7 is in a cluster,
2
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Fig. 6. Differences of federation graphs by clustering.

Fig. 7. An example of cycle graph.

Fig. 8. Differences of bi-connected components by cycle selection.

Algorithm 1 Cycle clustering.

Require: G = (L, E,ω) and k

1: Let NL be adjacent cycles of L in the graph G.

2: k is upper bound of a cluster size

3: Clustering C ← φ
4: while L 	= φ do

5: Select a cycle La with minimum IN(La) from L
6: C ← La

7: Candidates ← NLa

8: Delete cycles with larger than k − |V(C)| nodes from

Candidates

9: while Candidates 	= φ do

10: Select a cycle Lb with minimum INE(C, Lb) from

Candidates

11: Combine Lb to C

12: Candidates ← NC

13: Delete cycles with larger than k − |V(C)| nodes

from Candidates

14: end while

15: Add V(C) to C

16: Add IN(C) to C

17: Delete C from G

18: end while

19: return C
cycles L1, L3 and L4 are decomposed. Moreover, the cluster

including L2 could result in larger number of bi-connected

components depicted in Fig. 8(a) although the graph can be

decomposed three bi-connected components like Fig. 8(b).

Hence, the cluster selection method should consider the de-

composed cycles. Therefore, the selection method counts

the number of nodes isolated from all cycles because the

nodes on a decomposed cycle can be included in the

other unchanged cycles. The Isolated Nodes IN(La) are indi-

cated as

∪Li∈NLa

(
V(Li) − ∪L j∈NLi

−NLa
ω(Li, L j)

)
(3)

where Li is a selected cycle, and NLi
is adjacent cycles of Li in

G . In Fig. 8, L1, L3 and L4 have no isolated nodes whereas L2

has seven.

Containing a selected cycle, a cluster can be expanded if

the number of nodes in the cluster is less than k. The ex-

pansion of a cluster can insert isolated nodes IN(Li) ∩ Lj in

L j ∈ NLi
into the bi-connected component Li ∪ Lj. However,
this expansion could causes different isolated nodes, so Iso-

lated Nodes after Expansion (INE) of Lj is

INE(Li, L j) = IN(Li) ∪ IN(L j) − V(Li) − V(L j). (4)

Algorithm 1 shows a clustering method (cycle clustering)

with a cycle graph, IN and INE. First, it selects a cycle La by IN

from the cycle graph and inserts La into a cluster in the lines 5

and 6. Then, in order to expand the size of nodes in the cluster

up to k, Lb with minimum INE are chosen from candidates

that represent the neighbors of cycles in the current cluster

in the lines 9. Then, Lb are added to the cluster, and finally,

the expanded cluster is obtained.

5. Experimental results

This section presents experimental results about compar-

ison on TotalAP and the number of edges in federation graph.
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a b

c d

Fig. 9. An example of graphs. (a) Connected caveman. (b) NWS. (c) Real net-

work model 1 [14]. (d) Real network model 2 [15].

Algorithm 2 Connected clustering.

Require: G = (V, E) and k

1: Clustering C ← φ
2: while V 	= φ do

3: Select a root ∈ V

4: C ← root

5: while |C| < k and C has adjacent nodes v ∈ V do

6: C ← v
7: end while

8: Clustering C ← C

9: Delete C from V

10: end while

11: return C

Algorithm 3 HCS clustering.

Require: G = (V, E) and k

1: function HCS(G, k)

2: (H1, H2,C) ← MinimumCut(G)
3: if G is highly connected and |V(G)| ≤ k then

4: C ← V(G)
5: else

6: HCS(H1, k)
7: HCS(H2, k)
8: end if

9: end function

10: Clustering C ← φ
11: HCS(G, k)

12: return C

(a) Connected caveman.

(b) NWS.

Fig. 10. The # of nodes |V| vs. the # of affected ports.
This experiment compares cycle clustering algorithm with

connected clustering and HCS (Highly Connected Subgraph)

clustering [16]. The connected clustering is a simple cluster-

ing method that randomly selects a node as a cluster seed

and expands it by using a tree search algorithm BFS (Breadth

First Search). This clustering seek to shorten distances

between controllers and switches when the controllers are

randomly deployed. Such a cluster construction method fo-

cusing on distance is shown in [17]. The pseudo-code of this

algorithm is shown in Algorithm 2. HCS clustering shown

in Algorithm 3 repeatedly separates a graph by minimum

cut in order to deminish the number of inter-cluster edges.
These three clustering algorithms are implemented by using

Python and NetworkX.

Connected caveman graph, Newman Watts Strogatz

(NWS) random graph and graphs of two real network model

are used for our experiments. A connected caveman graph is

a graph formed by cycle of caves that are subgraphs removed

one link from cliques. They can be used as benchmark graphs

of clustering algorithms because the caveman graph is most

sparse graph whose clustering coefficient is nearly one (one

is maximum), that coefficient is the measure of the degree to

which nodes in a graph tend to cluster together [18]. Fig. 9 de-

scribes five types of graphs used in experiments with show-

ing the characteristics in Table 1.

For TotalAP and the number of federation edges, there

are two types of experiments: the first varies the number of

nodes in a graph and the second varies the number of node

limitation k of a cluster which is important factor as same

as the size of a graph for clustering methods. In the first, the

node limitation k is set to 15. In the second, the number of

nodes is set to 140 for connected caveman graphs and 144

for NWS graphs.
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(a) Connected caveman. (b) NWS.

(c) Real network model 1. (d) Real network model 2.

Fig. 11. The node limit k vs. the # of affected ports.

Table 1

The number of nodes and edges of graphs in experiments.

Connected caveman graph

The # of nodes 40 60 80 100 120 140

The # of edges 180 270 360 450 540 630

The # of nodes in a cave 10 10 10 10 10 10

NWS graph

The # of nodes 49 64 81 100 121 144

The # of edges 98 128 162 200 242 288

Real network model 1

The # of nodes 365

The # of edges 772

Real network model 2

The # of nodes 48

The # of edges 82
Fig. 10 describes TotalAP for the first experiments and

Fig. 11 depicts TotalAP for the second experiments. Cycle

and connected in these figures indicate clustering, and bi-

connected and hole node mean limitation of abstraction area.

Figs. 10 and 11 depict that abstracted nodes of cycle clus-

tering are more reliable than connected clustering in each

graph. These figures also indicate that virtual nodes ab-

stracting bi-connected components are truly reliable in any

situation. In connected caveman graphs, cycle clustering sig-

nificantly decreases TotalAP while connected clustering de-

pends on the node limitation. Fig. 11(c) shows that connected

clustering cannot decrease the TotalAP when the node limita-

tion is large in real network model 1 which is sparse graph. In

contrast, in a real network model 2 that is more dense than

network model 1, connected clustering can decrease the To-

talAP as shown in Fig. 11(d). It is considerable that connected

clustering can efficiently work in dense graphs.

Figs. 12 and 13 show |Ef| of the first experiments and the

second experiments, respectively. Fig. 12(a) shows that cy-

cle and HCS can decrease the number of federation edges

|Ef| in connected caveman graphs. Fig. 12(b) shows that cycle
clustering has the smallest federation edges in NWS graphs.

From the above, cycle clustering can curb the number of fed-

eration edges in each type of graphs.

On the other hand, the second experiment changes the

node limitation of a cluster. Fig. 13(d) shows that cycle
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(a) Connected caveman. (b) NWS.

Fig. 12. The # of nodes |V| vs. the # of federation edges |Ef|.

(a) Connected caveman. (b) NWS.

(c) Real network model 1. (d) Real network model 2.

Fig. 13. The node limit k vs. the # of federation edges |Ef|.
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clustering can decrease the number of federation edges when

the node limitation is small. In addition, Fig. 13(a)–(c) indi-

cate that cycle clustering decreases the federation edges in

connected caveman, NWS and real network model 1 graphs.

In Fig. 13(a), the results of connected clustering sharply fall at

20 and 30 nodes. This is caused by higher possibilities to con-

struct a cluster containing whole nodes in a cave when the

node limitations are equal to integral multiple of cave size

(10 nodes).

6. Discussion on implementation issues

This chapter describes how to deploy the results of clus-

tering by using Onix or HyperFlow. To deploy the clustering

results, each Onix/HyperFlow instance should govern a sub-

network consisting of nodes in a cluster; thus, the topology

of the subnetwork correspond to a local graph. The instances

also share the federation graph by its distributed database

that is the NIB (Network Information Base) or WheelFS. To

construct the federation graph, the instance should share ag-

gregated topology information such as the contracted graph

with other instances and have an observation function of

inter-cluster links.

The experimental results indicate that the cycle clus-

tering can diminish the number of federation links, which

allows our method to generate a larger cluster including bi-

connected components. The clustering also enables a local

controller to register the flow entries to switches without us-

ing a globally shared graph when a link failure occurs in the

administrative area. In the case of traffic balancing, the bur-

den of construction of consistent flow entries can be reduced

because the controllers can locally distribute traffic in their

bi-connected components.

The computation time of cycle clustering is 13 seconds on

average for the real network model 1 which is the largest

graph in our experiments. The computer used for experi-

ments has intel corei7-960 processor, 24 GB RAM and ubuntu

14.04 installed. The calculation time is sufficiently short be-

cause this paper focuses on calculating the initial settings of

switch clustering.

7. Conclusion

This paper presents issues of multi-controllers of Open-

Flow: (1) reliability of abstracted virtual nodes and (2)

increase of the amount of shared information when more re-

liable virtual nodes are constructed. In order to improve the

reliability of virtual nodes and reduce surge of shared infor-

mation among controllers, this paper proposes effective clus-

tering method focusing on cycles. Experimental results show

that our cycle clusterin gmethod can improve reliability of

virtual nodes and curb the number of edges in a federation

graph that is regarded as shared information.
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