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a b s t r a c t

A new paradigm for emergency networking is envisioned to enable reliable and high data-

rate wireless multimedia communication among public safety agencies in licensed spec-

trum while causing only acceptable levels of disruption to incumbent network communi-

cation. The novel concept of mission policies, which specify the Quality of Service (QoS)

requirements of the incumbent networks as well as of the emergency networks involved

in rescue and recovery missions, is introduced. The use of mission policies, which vary

over time and space, enables graceful degradation in the QoS of the incumbent networks

(only when necessary) based on mission policy specifications. A Multi-Agent Reinforce-

ment Learning (MARL)-based cross-layer communication framework, “RescueNet,” is pro-

posed for self-adaptation of nodes in emergency networks based on this new paradigm. In

addition to addressing the research challenges posed by the non-stationarity of the prob-

lem, the novel idea of knowledge sharing among the agents of different ages (either boot-

strapping or selective exploration strategies or both) is introduced to improve significantly

the performance of the proposed solution in terms of convergence time and conformance

to the mission policies.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Reliable and high data-rate wireless multimedia com-

munication (e.g., images, voice, and live video streams)

among public safety agencies is a fundamental require-

ment for efficient rescue and recovery missions in the af-

termath of natural (e.g., earthquakes, hurricanes) and man-

made disasters (e.g., terrorist attacks, industrial accidents).

However, the use of various non-interoperable communi-

cation technologies (e.g., terrestrial trunked radio, analog

radio networks, GSM, UMTS, LTE) by different national and

international agencies prevents seamless information shar-
∗ Corresponding author. Tel.: +8325451949.

E-mail addresses: eunkyung_lee@cac.rutgers.edu (E.K. Lee),

hari_viswanathan@cac.rutgers.edu (H. Viswanathan), pompili@cac.

rutgers.edu (D. Pompili).

http://dx.doi.org/10.1016/j.comnet.2016.01.011

1389-1286/© 2016 Elsevier B.V. All rights reserved.
ing among different teams of first responders [1], Con-

ditional Auction, law enforcement groups, hospitals, mil-

itary personnel, and among rescue shelters [2]. Also, the

responding agencies cannot depend on existing wireless

infrastructure networks for interoperability as such in-

frastructure may have failed or be oversubscribed during

emergencies.

Allocation of dedicated spectrum was recently consid-

ered as a possible solution [3] for a seamless and fully in-

teroperable emergency networking system in the US. How-

ever, dedicated spectrum may increase the network vulner-

ability to jamming attacks, lead to heavy under-utilization

of scarce spectrum resources during non-emergency pe-

riods, and suffer from the problem of over-subscription

during catastrophic events. Hence, some parties have fa-

vored a plan whereby airwaves could be “conditionally

auctioned” off to commercial wireless carriers (possibly at
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Fig. 1. Emergency networks operating in the vicinity of licensed incumbents in the event of an emergency. Mission policies, which reflect the criticality

and hence the QoS of both networks, vary over (a) space (depending on proximity to the scene of the disaster) and (b) over time (depending on the phase

of the mission).
a discounted price) under the condition that they share

it with public safety agencies during emergencies [3,4].

This way, public safety networks will have access to large

amount of spectrum resources when required for differ-

ent types of services (e.g., data messages, real-time voice

or video, still picture, and remote control) as well as sys-

tems (e.g., self-organization, reliability, scalability, power

efficiency, security, multicasting) [5] without the risk of

over-subscription while at the same time avoiding unde-

sired under-utilization of the spectrum.

In order for this conditional-auction plan to be vi-

able to licensed users, emergency network operation in

licensed spectrum should cause only a graceful degrada-

tion (to pre-specified levels) in the performance of the in-

cumbents and should not preempt the licensed user traf-

fic at will. In other words, the emergency network should

consume only as much spectrum resource as required to

achieve a desired level of Quality of Service (QoS) needed

for carrying out a mission successfully. In order to achieve

this, we envision a new paradigm for emergency network-

ing. Emergency networks based on this new paradigm will

need to possess the following cognitive capabilities: (i) spec-

trum agility, for improving spectrum utilization and robust-

ness against intentional jamming; (ii) cross layering, for

jointly optimizing communication functionalities; and (iii)

mission-policy awareness, for steering the emergency net-

work behavior based on the QoS requirements of both in-

cumbent and emergency networks.

Currently available solutions proposed for Cognitive Ra-

dio (CR) networking [6] in licensed spectrum cannot sup-

port our proposed paradigm for emergency networking as

they strictly assign priority to the licensed incumbent net-

work over the incoming CR network [7,8]. On the con-

trary, we envision that the QoS requirements of Emergency

Users’ (EUs’) traffic and that of the Licensed Users’ (LUs’) of

the incumbent network, specified by mission policies, may

vary over space (from the scene of disaster to the periph-

eral areas) as shown in Fig. 1(a) and over time (during dif-

ferent phases of the mission from setup to rescue, recovery,
and exit) as shown in Fig. 1(b). The variation in require-

ments over time can also be attributed to mobility as the

ad hoc emergency network traverses through different ge-

ographical regions of varying criticality.

An emergency network operating in licensed spectrum

while adhering to space- and time-varying mission policies

resembles a multi-agent system. The multiple autonomous

EU agents (the network nodes) of this system try to learn

over time the “best behavior”, i.e., the choice of transmis-

sion parameters that satisfies the QoS of both the incum-

bent and emergency networks as specified in the high-

level mission policies. The controllable transmission pa-

rameters that have to be chosen jointly in a cross-layer

manner may include signal transmission power, modu-

lation scheme, Forward Error Correction (FEC) type and

strength, and Medium Access Control (MAC) parameters.

To overcome the aforementioned problems, firstly, we

propose a model-free Multi-Agent Reinforcement Learning

(MARL)-based [9] communication framework, “RescueNet,”

for self-adaptation of coordinating autonomous agents. Our

distributed solution converges to the local optimal joint con-

trol policy among EUs (i.e., optimal choice of transmission

parameters at all agents in the neighborhood) through co-

ordination. The optimal control policy ensures conformance

to the QoS requirements of the emergency and incumbent

networks as specified by the high-level mission policy. Sec-

ondly, we address the challenges to the convergence of our

MARL-based approach posed by the non-stationarity of the

environment in our problem (due to dynamic mission poli-

cies and node mobility) by adapting the learning param-

eters on the fly. Thirdly, we propose two novel mecha-

nisms, bootstrapping and selective exploration, which enable

the “experienced” agents to share knowledge with “young”

agents in the emergency network in order to expedite the

learning process.

This paper is an extended and revised version of one

of our prior conference papers [10]. Presently, to the

best of our knowledge, there are no MARL-based emer-

gency networking solutions. Ours is also the first RL-based
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networking solution to exploit the idea of “knowledge

sharing” among agents of different ages in order to ex-

pedite the learning process. We compare the performance

of RescueNet with other popular approaches for solving

MARL problems and with a localized optimization ap-

proach through extensive simulations [11] in ns-3, a dis-

crete event packet-based simulator [12]. The rest of this

paper is organized as follows. In Section 2, we present

a summary of prior work on RL-based networking solu-

tions. In Section 3, we propose our solution, the RescueNet

framework, which consists of a RL engine that learns

and converges over time to a stationary control policy;

specifically, in Section 3.1, we provide the necessary back-

ground on RL and motivate the need for our framework,

while in Section 3.2 we present RescueNet. In Section 4,

we evaluate the performance of RescueNet in terms of

convergence and conformance. Finally, in Section 5, we

draw our conclusions and provide a brief note on future

work.

2. Related work

The controllable transmission parameters of the emer-

gency networking nodes have to be chosen jointly in a

cross-layer manner so that the QoS requirements of both

the incumbent and emergency networks as specified in

the high-level mission policies are met. The transmis-

sion parameters may include signal transmission power,

modulation scheme, FEC type and strength, and MAC as

well as routing parameters. An “optimal” choice of pa-

rameters may be obtained by solving a centralized cross-

layer networking optimization problem based on unre-

alistic assumptions such as instantaneous knowledge of

global network state, complete knowledge of incumbent

user performance, and availability of infinite computational

capabilities [13–15]. These assumptions compromise op-

timality apart from rendering the centralized approach

impractical.

Another approach to the cross-layer networking is solv-

ing a number of localized optimization problems based

only on locally observed and shared information [16].

However, this approach has to balance the opposing re-

quirements of capturing local interference constraints as

well as satisfying end-to-end (e2e) QoS requirements of

the emergency and incumbent network traffic. Traditional

networking performance metrics do not capture the in-

terplay among communication functionalities of coexisting

networks. Therefore, novel cross-layer performance met-

rics have to be developed for use in the localized op-

timization problems [17]. Even though such cross-layer

performance metrics may use local observations and mod-

els to project and predict e2e behavior and to take lo-

cal decisions, they cannot guarantee any optimality due

to the inadequacy of the prediction models to capture

the global network dynamics. Temporary spectrum leasing

from licensed users has been studied before in works like

[18] under the context of operating secondary mesh net-

works in primary user spectrum. However, this paradigm,

which involves leasing back a portion of the spectrum from

the primary user, is only suitable for non-critical, non-

emergency commercial operations. Conditional auctioning
[4] is better suited for critical public safety operations as

the not-for-profit agencies should not be leasing spectrum.

There are some modeling and protocol-based ap-

proaches concerned with the problem of efficient and in-

telligent message forwarding in wireless networks when

infrastructure-based communication systems have been

damaged or completely destroyed during and in the after-

math of a disaster [19,20]. There are also efforts in ap-

plying distributed multi-agent reinforcement learning for

wireless networking [21] as well as specific studies on RL

for spectrum sensing scheduling and selection in CR mesh

networks [22–24], QoS support in Wireless Sensor Net-

works (WSNs) with and without relay selection [25,26],

and sensing coverage [27] in WSNs. However, presently,

to the best of our knowledge, there are no MARL-based

emergency networking solutions. Ours is also the first hy-

brid distributed RL-based solution that is capable of satis-

fying both the incumbent as well as the emergency net-

work QoS requirements, and the first to exploit the idea

of “knowledge sharing” among agents in order to expe-

dite the learning process. Our solution may look similar to

Network Function Virtualization (NFV) [28], Software De-

fined Network (SDN), or Device to Device (D2D) [29] com-

munications as it employs direct device-to-device com-

munication. However, out solution is a learning-based ap-

proach, which adapts the communication parameters on

the fly. Our learning-based approach can be one of the so-

lutions for emergency communication as the emergency

management faces increasing complexity and decreasing

predictability in its operating environment.

3. Proposed solution

RescueNet consists of a RL engine that learns and con-

verges over time to a control policy. Firstly, we provide the

necessary background on RL that motivated our choice of

a hybrid learning approach (distributed yet localized), and

then we present our policy-aware emergency networking

framework (RescueNet).

3.1. Background and motivation

The underlying concept of RL is finite Markov Decision

Process (MDP), which is defined by a tuple 〈S,A, φ, ρ〉,
where S is a finite set of environment states, A is a fi-

nite set of agent actions, φ : S × A × S → [0, 1] is the state

transition probability function, and ρ : S × A × S → R is

the reward function. The MDP models an agent acting

in an environment where it learns (through prior experi-

ences and short-term rewards) the best control policy π ∗

(a mapping of states to actions) that maximizes the ex-

pected discounted long-term reward. This mapping can be

stochastic π : S × A → [0, 1] or deterministic π : S × A →
0 || 1.

For deterministic state transition models, the transition

probability function φ reduces to φ : S × A × S → 0 || 1

and, as a result, the reward is completely determined

by the current state and the action, i.e., ρ : S × A → R.

The state-action pair’s goodness value is called “Q-value,”

and the function that determines the Q-value is called

“Q-function.” An agent can find an optimal control policy



E.K. Lee et al. / Computer Networks 98 (2016) 14–28 17

Fig. 2. (a) Topology showing 2 EU transmitter-receiver pairs operating in the vicinity of a LU transmitter-receiver pair; (b) Average SINR at EU and LU

receivers when EU transmitters perform transmission power control using Independent MARL (only EU Rx2’s SINR requirement is met); (c) Average SINR at

EU and LU receivers when EU transmitters perform transmission power control using Global reward MARL (only LU Rx’s SINR requirement is met).
by approximating iteratively its Q-values using prior esti-

mates, short-term reward r = ρ(s, a) ∈ R, and discounted

future reward. This model-free successive approximation

technique is called Q-learning. One way to satisfy this cri-

terion is adopting an ε-greedy approach where a random

action is performed with probability ε (exploration) and

the current knowledge is exploited with probability 1 − ε.

As mentioned earlier, emergency networking in li-

censed spectrum resembles a multi-agent system trying

to converge to the optimal joint control policy in a dis-

tributed manner. The generalization of single-agent RL to

the multi-agent case is the MDP specified by the follow-

ing tuple: 〈S, A, φ, ρ〉, where the discrete sets of environ-

ment states S = ∏
i∈M Si and actions A = ∏

i∈M Ai are made

up of individual agent states and actions. Here, M rep-

resents the set of autonomous agents in the multi-agent

system. It is important to note that the transition func-

tion φ and reward function ρ depend on the joint envi-

ronment state and action information, which is not avail-

able at any individual agent. Hence, coordination among

the autonomous agents is required to achieve fast con-

vergence in a multi-agent scenario. There are three pos-

sible approaches to solving MARL problems. We explain

each of those approaches with a toy example, the topol-

ogy of which is depicted in Fig. 2(a), and motivate the

need for our hybrid approach, which is then explained in

Section 3.2.

The transmitters (EU Tx1 and EU Tx2) of two EU pairs

operating in the vicinity of a LU pair perform transmis-

sion power control to ensure that the Signal to Interfer-

ence plus Noise Ratios (SINRs) at their receivers (EU Rx1

and EU Rx2) are within prescribed intervals, which are de-

picted as shaded regions in Fig. 2(b) and (c) (20–22 dB for

EU Rx1 and 14–16 dB for EU Rx2). The prescribed SINR in-

terval for the LU receiver is also depicted (24–26 dB). These

SINR requirements at both the emergency and the incumbent

network nodes represent a simple mission policy specifica-

tion serving as an example. The different SINR requirements

are derived directly from the corresponding throughput re-

quirements as SINR dictates the achievable channel effi-

ciency in bps/Hz. All the devices operate in the same fre-

quency band (6MHz wide starting at 515 MHz) and the EU

transmitters choose from one of the possible five power

levels (4–20dBm in steps of 4dB). The transmission power
of the LU is fixed at 20dBm. Log-distance path loss model

is used to calculate the transmission loss.

Independent MARL [30]: Each agent acts independently

without coordination. The Q-learning procedure at a node i

can be summarized as,

Qi
n+1(s, a) = (1 − αi

n)Qi
n(s, a) + αi

n[r + γ i max
a′∈A

Qi
n(s′, a′)],

(1)

where αn ∈ (0, 1] is the learning factor and γ ∈ [0, 1) is

the discount factor. Mission policy conformance in emer-

gency networking depends heavily on intra-emergency-

network and inter-network (emergency and incumbent)

interference; for simplicity, we consider here a binary

reward function (1 if conformed and 0 otherwise). As in-

dependent MARL does not allow for any information ex-

change among the agents, it is impossible to mitigate the

intra-emergency-network interference and, hence, there is

no guarantee for conformance even to simple one-sided

mission policies that do not guarantee any QoS to the LUs.

Inability to incorporate information from LUs prevents it

from supporting two-sided mission policies, which specify

the QoS requirements of both EUs and LUs. Fig. 2(b) shows

the SINR at the EU and LU receivers when the EUs try to

satisfy their own QoS without any coordination and with-

out the LUs’ performance.

Global reward MARL [31]: In this approach, even

though the agents are only aware of their individual states

and actions (exactly as in Independent MARL), the Q-value

estimates are updated based on a global reward that is

disseminated across all the agents. The aggregated inter-

ference generated by the emergency network nodes at the

incumbent users can be measured and a global reward can

be estimated based on the QoS experienced by the LUs.

However, the intra-emergency-network dynamics (effect of

joint actions at each EU Rx) cannot be captured at a central

entity. Hence, global reward MARL can only support mis-

sion policies that convey the QoS of the LUs alone, mak-

ing it unsuitable for emergency networking. The average

received SINR at the EU and LU receivers when Global re-

ward MARL is employed by the emergency network nodes

is shown in Fig. 2(c).

Distributed Value Function (DVF) MARL [32]: In this

approach, the Q-value estimates at each autonomous agent
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Fig. 3. Average SINR at EU and LU receivers when EU transmitters per-

form transmission power control using our hybrid or DVF-MARL approach

(LU Rx’s SINR requirement and EU Rxs’ requirements are met).
are updated based on the individual short-term rewards

as well as on additional information obtained from other

agents in the neighborhood. Neighborhood here refers to a

group of agents that are within the radio communication

range of each other. Every agent exchanges the largest Q-

value that is associated with its current state with every

other agent in its neighborhood. The value iteration pro-

cedure at agent i for the state-action pair (si, ai) can be

summarized as,

Qi
n+1(si, ai)

= (1 − αi
n)Qi

n(si, ai)

+αi
n

[
ri(si, ai) + γ i

∑
j∈N i

w(i, j) · max
aj∈A j

Q j
n(s j, aj)

]
, (2)

where w(i, j) is the weight that agent i associates with the

Q-value estimate obtained from neighboring agent j in the

computation of its own Q-value estimate, and N i refers to

the set of neighboring agents of i. The simplest strategy

for computing the weights w(i, j) is to just consider the

total number of agents in the neighborhood, i.e., w(i, j) =
1/|N i|, in which case

∑
j w(i, j) = 1. More complex strate-

gies taking into account the fact that not all neighbors

are equally affected by the actions of an agent are possi-

ble. The additional information obtained from agents in the

neighborhood when incorporated into the value iteration

procedure at each agent ensures that the agent takes into

account the effect of its own actions on all its neighbors.

DVF-MARL approach can support mission policies that con-

vey the QoS requirements of the emergency networks due

to its ability to capture in-network dynamics. However, it

cannot support a two-sided mission policy (which speci-

fies both EU and LU QoS) due to the inability to capture its

effect on the LUs.

Our hybrid learning approach: In order to support ef-

fectively two-sided mission policies, we propose a hybrid

learning approach that incorporates localized feedback (ei-

ther partial or full) regarding the effect of its own actions

on the neighboring EUs (as in DVF MARL) as well as the

information of LUs (as in Global reward MARL) obtained

from spectrum sensing. The performance of such an ap-

proach is shown in Fig. 3. However, the convergence of the

hybrid approach exhibits great sensitivity to initial states

and to the choice of the three learning parameters, namely,

exploration factor ε, learning factor α, and discount factor γ .

Longer convergence times may hamper critical communi-

cation among the EUs. Moreover, conformance to the spec-

ified mission policy is determined by how well the reward

function captures the dynamics between the e2e behavior

and the effect of an agent’s action on its neighborhood (ob-

served through state-action-pair values exchange). While

all of these techniques focus on the conformance, none of

them care about convergence to a joint non-detrimental

control policy. Our model addresses both the conformance

and convergence (through knowledge sharing).

3.2. The RescueNet framework

We describe here our specific contributions that will

bestow the desired convergence and conformance proper-

ties on the RescueNet framework for mobile emergency
networking in licensed spectrum. The following are our

contributions:

• In Section 3.2.1, we cast the emergency networking

problem as a MARL problem, i.e., identify states, ac-

tions and rewards, and design a flexible reward func-

tion that captures the degree of conformance to both

the EU and LU QoS requirements specified by the high-

level dynamic mission policies. This forms the core RL

engine of RescueNet.

• In Section 3.2.2, we address the significant challenge to

the convergence of the learning process posed by the

non stationarity of the problem of emergency network-

ing in licensed spectrum. We present mechanisms to

adapt the values of key parameters in the iterative ap-

proximation of the Q-function to achieve convergence

in short time scales.

• In Section 3.2.3, we introduce the novel idea of trans-

ferring knowledge from experienced to young agents in

the ad hoc network in order to expedite the conver-

gence of young agents to an optimal control policy. We

introduce two mechanisms, bootstrapping and selective

exploration, which help expedite the learning process

under two different respective scenarios.

3.2.1. Policy-aware emergency networking as a MARL

problem

To cast the emergency networking problem as a MARL

problem, we identify an individual agent i’s states (S i),

available actions (Ai), state transition function (φ), and re-

ward function (ρ).

States: We represent the state of each node si ∈ S i as a

tuple 〈F i
min

, BWi, ηi, Pi, Mi, Ri, k〉 where the starting fre-

quency F i
min

[Hz] and bandwidth BWi [Hz] together rep-

resent the frequency band of operation, ηi represents the

modulation and coding scheme, Pi [W] is the transmis-

sion power, Mi and Ri are parameters associated with the

MAC and network layers, and k is the destination node to

which node i is currently sending data packets. Mi may

correspond to a specific time slot, random access delay, or
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spreading factor depending on the type of MAC used. Our

state transition function is deterministic, i.e., the choice of

a certain set of transmission parameters (action) results in

a deterministic transition to another state.

Stochastic transitions: In a real-world scenario, how-

ever, the transitions will be stochastic in nature. The

stochasticity of the system arises due to interference from

other concurrent users (based on transmitted power [33]),

mobility of users, and non-deterministic channel gains.

Each user is also not aware of the number of other users

in the system and of their actions. As a result, a user can-

not optimize its state (transmission parameters) depend-

ing on other users’ parameters. We explore alternate MARL

formulations where a state is characterized by the average

throughput, network delay and jitter, and the user action

comprises of change in transmit power, frequency chan-

nel, etc. In such cases, a particular action at a user state

does not result in a deterministic transition to another

state, and the state transition is in fact stochastic. The re-

ward function captures the “goodness” of such transition.

Let T(s, a, s′) be the probability of transition to state s′
from the current state-action pair (s, a). For each (s, a)

pair, the reward r(s, a, s′) is defined. Let Q∗(s, a) be the

expected return for taking action a at a state s and con-

tinuing thereafter with the optimal policy, which can be

recursively defined as Q∗(s, a) = ∑
s′∈S T (s, a, s′)[r(s, a, s′) +

γ maxa′∈AQ∗(s′, a′)]. Given the Q values, there is a policy

defined by taking, in any situation s, the action a that max-

imizes Q(s, a). Under the assumption that every situation-

action pair is tried infinitely often on an infinite run, the Q

values will converge to the true Q∗ values [34]. However,

for real-world applications like ours, the exploration vs. ex-

ploitation tradeoff can be leveraged so to converge to the

optimal Q∗ values without exhaustively searching through

the entire state space.

Reward function: The reward function uses direct feed-

back from the environment and the QoS requirements

specified by the mission policy to produce scalar rewards

whose magnitude conveys the degree of conformance with

the high-level policy. The reward function produces an ag-

gregated reward ri, tot at EU agent i (source) by incorpo-

rating feedback from agent k (destination) about e2e delay

(dik), goodput (gpik), and SINR of the incumbent network

performance (lu). We use goodput instead of throughput

as it captures the reliability of data transmission as well.

Also, our reward function is generic as any metric (e.g.,

packet delivery ratio, packet delay, throughput, SINR at the

receiver, etc.) that conveys the performance of the incum-

bent network could also be incorporated without any need

for modifications.

ri,tot = ri,del + ri,gp + ri,lu; (3)

ri,del =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − dik − dmin

dmax − dmin
, dmin ≤ dik ≤ dmax

a, dik < dmin

b, dik > dmax

; (4)
ri,gp =

⎪⎪⎪⎨
⎪⎪⎪⎩

1 − gpmax − gpik

gpmax − gpmin
, gpmin ≤ gpik ≤ gpmax

a, gpik > gpmax

b, gpik < gpmin

; (5)

ri,lu
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − lu − lumin

lumax − lumin
, lumin ≤ lu ≤ lumax

a, lu < lumin

b, l > lumax

. (6)

Eqs. (4) and (5) show how the reward function captures

the requirements for EUs, and (6) shows how the reward

function captures the requirements for LUs as specified by

the mission policies. The positive reward for delay perfor-

mance is high (i.e., close to the maximum reward value of

1) if the achieved average delay is close to the minimum

delay requirement. The positive reward for goodput perfor-

mance is high if the achieved goodput is close to the maxi-

mum goodput requirement. This specific choice of positive

reward values indicates a preference towards short trans-

mission times so to minimize packet collisions and costly

retransmissions. The agents receive negative rewards (or

penalties) if they do not conform with the mission policy’s

requirements. The magnitude of the rewards (in conjunc-

tion with the learning and discount factors) are chosen in

such a way to ensure that the Q-value estimates do not

vary too much within ± 2 db with a single reward. In (4)–

(6), −1 < a, b < 0 and a > b.

The mission policy specifies the QoS requirements of

the emergency network in terms of minimum and maxi-

mum values. The reward function uses these values to give

scaled positive rewards when the requirements are met

and to give negative rewards when they are not met. Note

that negative rewards are given when the experienced

goodput exceeds the maximum threshold value and when

the experienced delay is below the minimum threshold

value [35]. The philosophy behind these negative rewards

for exceeding the requirements is that the emergency net-

work should consume only as much spectrum resource as

required to achieve a desired level of QoS needed for carry-

ing out a mission successfully. Exceeding the requirements

penalizes the other nodes in the emergency as well as in

the incumbent networks.

Incorporation of mission policy: The goodput and de-

lay thresholds gpmin, gpmax, dmin, and dmax together give

RescueNet the flexibility to support four different traffic

classes, namely, (i) loss tolerant and delay tolerant (e.g.,

scalar data from sensors and multimedia content such as

snapshots, which are non time critical), (ii) loss tolerant and

delay sensitive (e.g., video streams that can be within a cer-

tain level of distortion), (iii) loss sensitive and delay tolerant

(e.g., critical data that requires offline post processing), and

(iv) loss sensitive and delay sensitive (e.g., time-critical mis-

sion directives and alerts).

Inverse reinforcement learning (future work): The

scalar reward function does not provide optimal perfor-

mance in dynamically changing environment as the reward

function is static. Hence, we will study and formulate the

inverse reinforcement learning problem to optimize the
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reward function when apriori knowledge is available on

the fly. The inverse RL problem consists in finding a reward

function that can explain observed behavior [35]. Thus, if

we know the measurements of an agent’s behavior (i.e.,

goodput and delay) over time in a variety of circumstances

(i.e., number of users, required bandwidth, and available

channels), we formulate and optimize the reward function

based on given circumstances. We will focus initially on

the setting in which the complete prior knowledge and

mission policy are given; then, we will find new methods

to choose among optimal reward functions as multiple

possible functions may exist. We will also study the

improvement in performance (in terms of goodput and

delay) when flexible reward (with inverse RL) functions

are used to incorporate robustness in the learning process

and thus handling fluctuations.

3.2.2. Convergence under non stationarity

Non stationarity of the environment in ad hoc emer-

gency networks can be attributed to time-varying mission

policies, dynamics of the emergency and incumbent net-

work traffic, node mobility, and the time-varying wireless

channel. We overcome the challenge to the convergence of

our MARL problem posed by this non-stationarity by con-

sidering segments of the MARL problem over time as a re-

peated static game [9], where the centralized optimization

of transmission parameters is not feasible. In a static game,

the rewards depend only on the joint choice of the trans-

mission parameters of the nodes and, hence, the control

policy transforms into π : A → [0, 1]. The game is referred

to as a repeated static game as it is played repeatedly

over time by the same set of nodes. However, stabiliza-

tion of the learning procedure in this repeated static game

requires a balancing of the exploration–exploitation trade-

off and an appropriate choice of learning factor. Note that

we have used the metric, conformance rate, the percentage

of time spent in conformance with the mission policy, to

measure indirectly the convergence time because there is

no guarantee on convergence in such a non-stationary en-

vironment. Incorrectly-chosen learning factors may tamper

the sensitivity of the proposed solution; for this reason, we

have carefully chosen those values to accommodate envi-

ronmental changes (degree of mobility) based on our em-

pirical study upon simulations. As it is hard for the rein-

forcement learning framework to manage multiple param-

eters, we have introduced “bootstrapping” and “selective

exploration”, which are detailed below, in order to reduce

the sensitivity of the proposed solution.

Exploration-exploitation trade-off: In RescueNet, the

exploration factor ε (of the ε-greedy approach) is time

varying with a high value in the beginning of each static

game (more exploration) and a with low value at the end

of each static game (more exploitation). When changing the

transmission parameters, RescueNet selects random (but

selective) parameters for exploration, and selects the op-

timal parameters for exploitation. The exploration factor ε
is a normalized number ranging from 0 to 1. We determine

the exploration decay rate δε of the exploitation factor at

all agents based on the degree of mobility, i.e., δε = ψ(v),

where v is the average speed of all the nodes in the emer-

gency network. An estimate of the average speed of nodes
can be obtained from the nature of the mission the team

of nodes is involved in (first response, rescue, recovery, or

exit). In case of low mobility, nodes should exploit their

knowledge more as their environment changes very slowly.

In the case of medium node mobility, nodes should ex-

plore more than they exploit as their acquired knowledge

may become outdated sooner than in the case of low node

mobility. However, in case of very high mobility the envi-

ronment may change sooner than the time the RL engine

takes to converge. The evolution of the exploration factor

over time is given by ε i
n+1

= ε i
n · δε . However, once the ex-

ploration factor reaches a low value, it is reset to the initial

value in order to ensure that the learning process does not

cease.

Specification of learning factor: The learning factor de-

termines the weights associated with prior experience and

with the new information in the iterative approximation of

the Q-function, as shown in (2). In RescueNet, the learning

factor is time varying in order to ensure stabilization of the

learning process, i.e., greater importance is given to new

information initially in the static game while prior experi-

ence is leveraged more as time progresses. The decay rate

δα of the learning factor at all agents depends not only on

the stage of the static game but also on the degree of node

mobility, i.e., δα = σ (v). In the case of high node mobility,

nodes should refrain from using their experience as it may

be outdated. In case of low mobility, nodes should exploit

their knowledge more as their environment changes very

slowly. The time evolution of learning factor is given by

αi
n+1

= αi
n · δα . Similar to the exploration factor, in order to

ensure that the learning process does not cease once the

learning factor reaches a low value, it is reset to its initial

value.

3.2.3. Knowledge sharing among agents

RescueNet, with its time-varying learning parameters

(α and ε) can enable convergence of multiple agents

to an optimal joint control policy. However, the conver-

gence takes time as the process of Q-learning requires

exploration of all possible control policies with non-zero

probability. When the mission policy changes over time,

the agents have to learn the new optimal joint control

policy all over again. To expedite the convergence, we

propose two novel mechanisms for knowledge sharing

among agents, bootstrapping and selective exploration. To

understand these concepts better, consider the following

examples.

Bootstrapping: Team 1 in Fig. 1 is working in the scene

of disaster, while Team 2 is moving from the peripheral

area towards Team 1 to replace it. The agents of Team

1 are “experienced” as far as the “scene of disaster” is

concerned, while the agents of Team 2 are “young.” Once

the agents of Team 2 reach the new region, each of them

broadcasts a request for knowledge (i.e., Q-value and its

state-action-pair values) from the experienced agents. The

agents of Team 1 that receive this request start a count-

down timer, the duration of which depends on the de-

gree of proximity (a normalized metric computed based on

pre-specified minimum and maximum distances) to the re-

questing agent. Once the first response is sent out by the

closest agent in Team 1, the other experienced agents abort
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Fig. 4. Average SINR at EU and LU receivers when EU transmitters per-

form transmission power control using our hybrid approach along with

bootstrapping, i.e., knowledge of good initial states for the learning pro-

cess (both LU and EU Rx’s SINR requirements are met).

Algorithm 1 RescueNet for Agent i.

Initialize:
t = 0, α, γ , and ε
initialize starting state si

t
if Bootstrapping then

Copy the Q-value Q(s, a, s′) of the replacement node
else

for each s ∈ S, a ∈ A, s′ ∈ S’ do
initialize the Q-value Q(s, a, s′)

end for
end if
Learning:
while do

generate random number rand between 0 and 1
if (rand < ε) then

Selective Exploration: select the action ai
t based on the

transition probability T
else

Exploitation: select the action ai
t characterized by the max-

imum Q-value
end if
waiting for feedback
calculate aggregated reward(ri

tot ) based on the policy and feed-
back
update Q-value using Eq. 2
si

t = si
t+1

(decay α and ε for convergence within a static game)
end while
their timers and mark that request as expired. This boot-

strapping allows the agents of Team 2 to start from a good

initial state as well as to use a significantly higher exploita-

tion rate and a significantly lower learning rate than the

usual so that they can converge to an optimal joint control

policy much faster (shown in Fig. 4) than they would have

under usual circumstances (shown in Fig. 3).

Selective exploration: Consider another example where

Team 2 is moving from the peripheral area towards Team

1 to form a bigger team with more data traffic. Once the

agents of Team 2 reach the new region and broadcast re-

quests for knowledge from experienced agents, the agents

of Team 1, who are already aware of the levels of intra- and

inter-network interference, provide guidelines for selective

exploration strategies to the new learning agents. These se-

lective exploration guidelines prevent the new agents from

exploring already infeasible states (such as the ones cor-

responding to high power levels in frequency bands used

by LUs and many EUs), where T (s, a, s′) = 0. Selective ex-

ploration again reduces the time to converge to an opti-

mal joint control policy. Note that bootstrapping and se-

lective exploration both fall under our knowledge-sharing

mechanism, which is aimed at expediting the learning pro-

cess. Selective exploration using stochastic transition and

overall RescueNet algorithm for a node i is summarized in

Algorithm 1.

4. Performance evaluation

In order to evaluate the performance of RescueNet, we

implemented it on ns-3, a packet-based discrete-event net-

work simulator [12], and performed three different cam-

paigns of simulations. In this section, we explain the ob-

jective of each campaign, report the individual simulation’s

settings and assumptions (in terms of data traffic and mis-

sion policy), and provide our observations.

In Campaign I, we performed simulations to study the

performance of RescueNet in a controlled static setting.

This campaign is different from what is presented in
Section 3.1 as this deals with a much larger state space

(tunable transmission parameters) and the mission policies

are represented using entirely different e2e metrics (good-

put and delay). Specifically, the simulations are aimed (i)

at comparing the performance of RescueNet with other

frameworks in terms of conformance to a specified high-

level mission policy and (ii) at demonstrating how Res-

cueNet adapts to changes in mission policy over time.

In Campaign II, we performed simulations with node

mobility to show that the performance of RescueNet is not

dependent on any specific network topology and that it

adapts to the non-stationarity in the environment. Specif-

ically, the simulations are aimed (i) at showing Res-

cueNet’s ability to adapt to changes in mission policies

over time and space under mobility and (ii) at discussing

the importance of adapting the key learning parameters

in RescueNet for convergence and conformance in a non-

stationary environment.

In Campaign III, we performed simulations to demon-

strate the effectiveness of knowledge sharing. Specifically,

the simulations are aimed (i) at studying the benefits of

knowledge transfer among agents (Q-tables in order to

help the new agents bootstrap) when a new flow replaces

an existing flow in terms of speed of convergence to an

optimal joint control policy and (ii) at studying the mer-

its of selective exploration when a new flow is added to the

existing data traffic in an EU team.

Transmission parameters and assumptions: The tunable

transmission parameters and assumptions regarding the

loss model and the MAC scheme considered are listed in

Table 1. In all the simulations the EU nodes employ a Di-

rect Sequence Code Division Multiple Access (DS-CDMA)

MAC with self-assigned variable-length chaotic codes [36]

and the Most Forward within Radius (MFR) geographical

routing scheme [37]. Log-distance path loss model is used

to calculate the transmission loss. We assumed there is
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Table 1

Simulation settings (tunable transmission parameters) and assumptions.

Transmission power 4–20 dBm in steps of 4 dB

Transmission band 3 channels in 515–533 MHz band (each

6 MHz wide)

Modulation scheme 8-, 16-, 32-QAM

MAC DS-CDMA with chaotic spreading codes

Loss model Log-distance path loss model

EU Team 1

LU Rx

EU Team 2

Sources of 
unicast flows

Destinations of 
unicast flows

25
0m

500m

EUi

EUr

EUk

Fig. 5. Scenario of two EU teams operating in the vicinity of a LU Rx

used to evaluate RescueNet in terms of conformance to mission policy

and convergence to an optimal control policy.
a shared network to exchange light-weight control mes-

sages such as neighborhood discovery protocol and re-

source management protocol and that their overhead is in

the order of 100 bytes/s to run RescueNet.

Conformance with the QoS requirements of the LUs of

incumbent network requires either explicit feedback from

the LUs themselves (full observability) or requires knowl-

edge of estimates of the worst-case incumbent network

performance at certain emergency nodes based on their

distance from incumbent transmitters (partial observabil-

ity). To acquire information about the incumbent users, we

assumed that the emergency-network nodes employ cyclo-

stationary feature detection [38,39]. This capability ensures

that the EUs cannot only detect the presence of data traffic

in certain frequency bands but also differentiate between

LU and EU traffic.

4.1. Campaign I

The topology of EU and LU nodes used in this cam-

paign of simulations is depicted in Fig. 5, which shows two

teams of EUs operating in the vicinity of a LU receiver.

(1) Conformance to the mission policy. We compared

RescueNet with (i) a framework that employs the local-

ized optimization approach similar to the ones proposed

in [16,17] (referred to as “Baseline”), (ii) a fully distributed

independent MARL-based framework (referred to as “Ind-

MARL”), and (iii) a global reward MARL-based framework

(referred to as “Glo-MARL”). The EUs decide on the ap-

propriate values of the following transmission parameters

in a cross-layer manner: transmission power level, fre-

quency band of operation (from 2 channels), and modula-

tion scheme using one of the four aforementioned frame-

works.
Fig. 6. Campaign I: Emergency network performance in terms of (a) aggregated

when EU nodes employ a local optimization approach, independent MARL (Ind-M

of the references to color in this figure in text, the reader is referred to the web v
The mission policy: Both teams of EUs try to comply

with the QoS requirements of the same mission policy.

The QoS requirement of LUs is specified in terms of ac-

ceptable average received SINR values as it can be esti-

mated at any EU with spectrum sensing capabilities. The

QoS requirement of the emergency network is specified in

terms of acceptable application layer goodput and packet

delay. The data traffic in the EU teams was assumed to

be three unicast flows, 500 Kbps each, one in Team 1 and

two in Team 2. The SINR requirement at the LUs was set

to lumin = 25, lumax = 33dB, and the goodput and delay re-

quirements of the EUs were set to gpmin = 480, gpmax =
510Kbps and dmin = 6, dmax = 12ms, respectively. The pol-

icy requirements are shown as blue-shaded regions in

Fig. 6. The values of a and b in the reward functions (4)–(5)

were set to a = −0.25 and b = −0.5. The results presented

in Fig. 6 are based on 50 independent trials performed to

achieve a relative confidence interval < 5% so to give sta-

tistical relevance to the results.

Observations: Fig. 6(a) and (b) shows the aggregated

goodput and average packet delay, respectively, of all the

three unicast flows in the emergency network. Fig. 6(c)

shows the average SINR measured at the LU. It can be

observed that the emergency network fully conforms to
goodput, (b) average packet delay, and (c) average SINR at LU receivers

ARL), global reward MARL (Glo-MARL), and RescueNet. (For interpretation

ersion of this article.)
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Fig. 7. Campaign I. RescueNet’s ability to adapt to time-varying mission policies (a) Goodput of flows 1 and 2; (b) Average packet delay of flows 1 and 2;

and (c) Average SINR at the LU receiver when the mission policy specification changes over time. (For interpretation of the references to color in this figure

in text, the reader is referred to the web version of this article.)
the mission policy specification when it employs Res-

cueNet. However, the policy is violated when the other

three frameworks are employed for self-adaptation.

EUs employing Ind-MARL try to satisfy only the QoS

requirements of the flows that they handle, and do not

consider the effect of their actions on both the neighbor-

ing EUs and on the incumbent nodes. As a result, the EU

unicast flows suffer from huge delays due to packet colli-

sions, which also affects their goodput. The performance of

incumbents is also adversely affected and that is evident

from the average SINR measurements at the LU receiver.

When EUs employ Glo-MARL, the incumbent network per-

formance is guaranteed, as shown in Fig. 6(c). However, the

EUs do not account for their own QoS and, hence, violate

the pre-specified mission policy specifications.

The localized optimization approach, Baseline, suffers

the most in terms of performance because of its inability

to capture global network dynamics based only on local

observations. To account for the effect of an agent’s action

on its neighbors, Baseline needs information about ongo-

ing receptions, the received power, and the noise interfer-

ence levels in each frequency channel. Hence, besides not

guaranteeing any optimality, Baseline also incurs a huge

overhead. A node using a baseline approach requires at

least 8 bytes of data, i.e., transmission power (2), channel

(2), modulation (2), and location (4) from its neighboring

nodes, whereas RescueNet requires only 4 bytes of data,

i.e., maximum reward from the LU (2) and EU (2). Indepen-

dent MARL does not incur any communication overhead,

Global MARL incurs 2 bytes for maximum reward for LU,

and DVF-MARL incurs 2 bytes overhead for maximum re-

ward for EUs.

In RescueNet, agents in the vicinity coordinate to tackle

intra-emergency-network interference by exchanging only

the maximum state-action-pair values associated with

their current states. Hence, EUs not only conform with

their own QoS requirements but also take into account the

effect of their actions on their neighbors. This exchange in-

curs only a negligible overhead as this small amount of

information can be piggy-backed with the frequent con-

trol packets that any other functionality may already re-

quire (e.g., neighborhood discovery). RescueNet also en-
ables conformance with the requirements of the incum-

bent receivers as it incorporates estimates of the worst-

case LU performance and incorporates the same in the re-

ward function.

(2) Adaptation to time-varying mission policy. One of

the main attributes of RescueNet is its ability to conform to

time-varying mission policies. To verify this ability, we use

the setup depicted in Fig. 5 but with only Team 2 operat-

ing in the vicinity of a LU receiver. The EUs decide on the

appropriate values of the following transmission parame-

ters in a cross-layer manner: transmission power level and

modulation scheme using the RescueNet framework. The

EUs and LUs operate in the same frequency band, i.e., there

is only one channel for use.

The time-varying mission policy:EUs try to satisfy the

QoS requirements specified by Policy 1 at the beginning

of the experiment. The data traffic in the EU team at this

time was set to two unicast flows, 250 Kbps each. Ini-

tially, the SINR requirement at the LUs was set to lumin
1

=
28, lumax

1
= 33dB and the goodput and delay requirements

of the EUs were set to gpmin
1

= 230, gpmax
1

= 260Kbps and

dmin
1

= 6, dmax
1

= 8ms, respectively. After 100 s into the ex-

periment, the increase in priority of emergency network

over the incumbent network was simulated by increasing

the rate of both the unicast flows to 500 Kbps. Policy 2

was enforced by changing the goodput and average delay

requirements of the EUs to gpmin
2

= 480, gpmax
2

= 510Kbps

and dmin
2

= 5, dmax
2

= 6ms, respectively. The SINR require-

ment of the LU was reduced to lumin
2

= 25, lumax
2

= 33dB

according to this new policy. The two different policy re-

quirements are shown as pink- and gray-shaded regions in

Fig. 7.

Observations: Fig. 7(a) and (b) shows the average (mov-

ing window) goodput and packet delay, respectively, of

each unicast flow in the team of EUs. Fig. 7(c) shows the

average SINR measured at the LU. It can be observed that

the emergency network employing the RescueNet frame-

work fully conforms to the time-varying QoS requirements

imposed by the two different mission policies. This flexi-

bility is due to the generic nature of the reward function

of the proposed RescueNet framework. The maximum and
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Fig. 8. Campaign II. (a) Average goodput and (b) delay of flows corresponding to policies A, B, and C when 3 mobile teams under 3 distinct policies are

operating in the vicinity of a LU pair. Average node speed is 1 m/s; (c) Impact of the periodicity of decay of learning factor and of growth of exploitation

factor on conformance with a mission policy under different node velocities.
minimum limits in all the three components of the reward

function (4)–(6) can be varied over time to capture the QoS

requirements of different mission policies.

4.2. Campaign II

To obtain results that help demonstrate conclusively

RescueNet’s ability to adapt to the non stationarity in the

operating environment, we performed simulations with

node mobility as well as with time- and space-varying

mission policies. These simulations were also intended to

show that RescueNet’s performance is not dependent on

any specific topology of emergency network nodes.

Mobility pattern:The EUs in all teams perform a random

walk (for a randomly chosen duration between 5 and 20 s)

within a rectangular area (200 × 200 m2) around their

initial positions with a pause (randomly chosen between

5 and 10 s) after every walk. This mobility pattern simu-

lates movement patterns of first responders in the scene

of disaster by incorporating uniformly distributed random-

walking and random-pause durations. This was done to

eliminate any bias that may be introduced by a static net-

work topology.

(1) Policy conformance under mobility. We considered

a simulation scenario with 3 teams (with five nodes per

team and with one unicast flow per team) of EUs operat-

ing in the vicinity of a LU pair. At any given point in time,

the 3 teams adhere to distinct mission policies. In addi-

tion, a team operates under different policies from time

to time over the course of the simulation. This was done

to eliminate any bias to a specific combination of policies

among the 3 teams. Also, the results we obtained were av-

eraged over 50 trials – with the sequence of events dif-

fering in each trial – to obtain very small relative confi-

dence intervals. In the simulations, the average speed of

nodes was chosen in a uniform random manner between

0.5 and 1.5 m/s. The EUs decide on the appropriate values

of the following transmission parameters in a cross-layer

manner: transmission power level, frequency band of op-

eration (from 2 channels), and modulation scheme using

RescueNet.

Time-varying mission policy:The QoS requirements

(goodput and delay) of the three policies A, B,
and C were set to gpmin
A

= 115, gpmax
A

= 130Kbps and

dmin
A

= 9, dmax
A

= 12ms, gpmin
B

= 230, gpmax
B

= 260Kbps and

dmin
B

= 6, dmax
B

= 9ms, and gpmin
C

= 480, gpmax
C

= 510Kbps

and dmin
C

= 3, dmax
C

= 6ms, respectively, in increasing

order of QoS levels. The corresponding LU SINR require-

ment for the three polices were lumin
A

= 30, lumax
A

= 33dB,

lumin
B

= 28, lumax
B

= 33dB, and lumin
C

= 25, lumax
C

= 33dB. The

offered load corresponding to policies A, B, and C were set

to 125, 250, and 500 Kbps, respectively.

Observations: Our simulation results in Figs. 8(a) and (b)

show clearly that the average goodput and average delay of

unicast sessions corresponding to the three different mis-

sion policies A, B, and C are very close to the goodput and

delay specifications of each of those policies with small

relative confidence intervals. The average SINR at the LU

receiver did not drop below the minimum required SINR

(25 dB) at any point in time during the experiments. The

consistency in the performance of RescueNet under node

mobility clearly demonstrates its ability to adapt to dy-

namic time- and space-varying mission policies as well as

to the non stationarity in the environment.

(2) Adaptation of learning parameters. To adapt to the

non stationarity of the environment (due to node mobil-

ity), RescueNet needs to determine dynamically the val-

ues of its learning parameters (α and ε) and their de-

cay/growth rates (δα and δε ) based on the degree of node

mobility. However, prior knowledge about the relationship

between the degree of mobility and the periodicity of de-

cay/growth of the learning parameters is essential to adapt

the rates online for convergence and conformance.

Observations: Fig. 8(c) compares the performance of the

emergency network in terms of average packet delay at

various decay periodicity values for four different average

node velocities (0.5, 1.0, 1.5, 2.0 m/s). We can observe that,

as the node velocity increases, the decay period has to be

increased to achieve delays that conform with the mission

policy. This is due to the fact that, at higher node veloc-

ities, the knowledge acquired by agents do not hold for

long and, hence, they should have the capability to learn

and adapt to the new environment quickly. This ability to

learn quickly can be retained only if the decay period of

α is high. This offline tuning of the periodicity is essential

to choose the right values of learning parameters and their
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Fig. 9. Campaign III. Effect of Bootstrapping (BS) and Selective Exploration (SE) over time when an EU pair in the team is (a) replaced and (b) added,

respectively. Conformance (in terms of % of total time, here 100 s) of the EU team in the vicinity of a LU pair (c) when one EU Tx-Rx pair is replaced by a

new pair and BS is employed, and (d) when a new Tx-Rx pair is added to the EU team and SE is employed. Vanilla Learning refers to the hybrid learning

approach without any knowledge sharing.
decay/growth rates for ensuring policy conformance even

under mobility.

4.3. Campaign III

RescueNet enables knowledge sharing (bootstrapping

and selective exploration depending on the scenario)

among agents of different ages in order to reduce the con-

vergence time to the optimal joint control policy. To verify

this ability we use the following setup. Team 1 with two

EU Tx-Rx pairs is operating in the vicinity of one LU Tx-Rx

pair. The EUs decide on the appropriate values of the fol-

lowing transmission parameters in a cross-layer manner:

frequency band and transmission power level using our hy-

brid learning mechanisms.

Mobility pattern: Each EU performs a random walk

within a rectangular area (20 × 20m2) around their ini-

tial positions with a pause after every walk. The veloc-
ity is increased up to 3.0 m/s in steps of 0.5 m/s. This

mobility pattern simulates movement patterns of first re-

sponders in the scene of disaster. This was done to elimi-

nate any bias that may be introduced by a static network

topology.

(1) Bootstrapping. In order to demonstrate the effective-

ness of bootstrapping, we assume that a new EU Tx-Rx

pair belonging to a different team replaces one of the EU

Tx-Rx pairs in Team 1 resembling a replacement of over-

worked first responders involved in a specific mission over

time.

Mission policy: EU pairs operating in the vicinity of a

LU pair perform transmission power control to ensure

that the SINRs at their receivers EU and LU receivers are

within prescribed intervals (20–22 dB for EU Rx1 and 14–

16 dB for EU Rx2). The different SINR requirements are de-

rived directly from the corresponding throughput require-

ments as SINR dictates the achievable channel efficiency in
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Fig. 10. Convergence time of vanilla learning and RescueNet (with its

bootstrapping mechanism). Avg. node velocity is set 0.5 m/s. Convergence

time is defined as the time t when the SINR of all the channels conforms

to their mission policy with a tolerance rate of 5% afterward.
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Fig. 11. EU’s and LU’s performance of Vanilla Learning and RescueNet

(BS+SE) when increasing the number of EU pairs in the existing incum-

bent network with 5 LU pairs.
bps/Hz. In the bootstrapping experiment, the new EU pair

replaces EU Tx2-Rx2 pair and retains the same policy spec-

ification.

Observations: The time taken by all the Tx-Rx pairs in

Team 1 to converge back to an optimal joint policy and,

hence, the percentage of time spent in conformance with

the mission policy, were measured by observing the behav-

ior (from multiple runs for statistical relevance) over time

as shown in Fig. 9(a) and (b). It is evident from Fig. 9(c)

and (d) that RescueNet with its bootstrapping mechanism

conforms to the mission policy 30% more time than the

vanilla hybrid learning mechanism. Fig. 10 shows that Res-

cueNet converges nearly 70% faster than the vanilla hybrid

learning mechanism. It is because the transfer of additional

knowledge (from the experience to the young agents)

of the appropriate initial state expedites the learning

process.

(2) Selective exploration. In order to demonstrate the

effectiveness of selective exploration, we assume that a

new EU Tx-Rx pair belonging to a different team joins

Team 1 thus increasing the total number of EU Tx-Rx pairs

resembling a scenario where reinforcement is called in to

increase the team size.

Mission policy: The mission policy (in terms of SINR re-

quirements of the LUs and EUs) for the selective explo-

ration experiment is the same as that of the bootstrapping

experiment with a minor change: the new EU pair, which

is added to Team 1, has the same SINR requirement as the

EU Tx2-Rx2 pair.

Observations: In Fig. 9(d), which corresponds to the

scenario where a new EU Tx-Rx pair is added to Team

1, it can be seen that applying bootstrapping solely to

the new Tx-Rx pair is ineffective as the interference pat-

tern of the entire network is affected. This change in

interference map necessitates learning at all the agents

and “selective exploration” at all agents serves to expe-

dite convergence. Selective exploration avoids unnecessary

exploration of states already deemed infeasible by the

experienced agents. Selective exploration has its limita-

tion under high degree of node mobility in the network

(e.g., when the average velocity of nodes is greater than

2.0 m/s).

(3) Scalability. To show scalability and feasibility of Res-

cueNet, we increase the number of EUs in the existing in-

cumbent network.
Mission policy: EU pairs operating in the vicinity of a

LU pair perform transmission power control to ensure

that the SINRs at their receivers are within prescribed in-

tervals: (20–22 dB, 14–16 dB, and 24–26 dB). The pre-

scribed intervals are randomly selected for EUs and LUs in

the simulations. The different SINR requirements are de-

rived directly from the corresponding throughput require-

ments as SINR dictates the achievable channel efficiency in

bps/Hz.

Observations: Fig. 11 shows EU’s and LU’s performance

of Vanilla Learning and RescueNet (BS+SE) when increas-

ing the number of EU pairs in the existing incumbent net-

work with 5 LU pairs. This simulation is designed to assess

the maximum number of users and performance degrada-

tion of EUs and LUs when the number of EUs increases.

It shows that in a confined space (600 × 600m2), the per-

formance of EUs drops drastically when more than 6 EUs

pairs come into the field, while the performance of LUs is

marginally compromised. We can imply that our solution

does not degrade the performance of LUs due to the selec-

tive exploration even if the number of users exceeds the

capacity of channel.

5. Conclusion and future work

We introduced a policy- and learning-based paradigm

for emergency networking in conditionally auctioned li-

censed spectrum. The concept of mission policies, which

specify the Quality of Service (QoS) for emergency as

well as for incumbent network traffic, is envisioned. Our

paradigm for emergency networking represents a shift

from the established primary–secondary model (which

uses fixed priorities) and enables graceful degradation in

the QoS of incumbent networks based on mission-policy

specifications. We developed a Multi-Agent Reinforcement

Learning (MARL)-based communication framework, Res-

cueNet, for realizing this new paradigm. The proposed so-

lution can go beyond the emergency scenario and has the

potential to enable cognitive ad hoc network operation in
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any frequency band, licensed or unlicensed. The perfor-

mance of RescueNet in terms of convergence and policy

conformance is verified using simulations on ns-3.

Our future work includes Inverse Reinforcement Learn-

ing (IRL) for the reward function. As the scalar reward

function does not provide optimal performance in dynami-

cally changing environment, we will study the IRL problem

to optimize the reward function when a priori knowledge

is available on the fly. The IRL problem consists in find-

ing a reward function that can explain observed behavior.

We will focus initially on the setting in which the com-

plete prior knowledge and mission policy are given; then,

we will find new methods to choose among optimal re-

ward functions as multiple possible reward functions may

exist.
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