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a b s t r a c t 

In this paper, we study the optimal design of weakly secure linear network coding (WSLNC) 

against wiretapping attack . Specifically, given a set of wiretapped links, we investigate how 

to maximize the weakly secure transmission rate of multiple unicast streams between a 

pair of source and destination nodes, and how to minimize the size of the required fi- 

nite field, over which the WSLNC can be implemented. In our study, we apply a novel 

approach that integrates the WSLNC design and the transmission topology construction. 

We first provide theoretical analysis and prove that the problem of finding the optimal 

transmission topology is NP-hard. We then develop efficient algorithms to find optimal 

and sub-optimal topologies in different scenarios. With the transmission topology, we de- 

sign WSLNC schemes and theoretically analyze the relationships between the transmission 

topology and two important system factors: (1) the size of the finite field, and (2) the 

probability that a random linear network coding is weakly secure. Based on the relation- 

ships, we further improve our algorithms to address the two system factors, while keeping 

the same maximal STR . Extensive simulation results show that the proposed heuristic al- 

gorithms can achieve good performance in various scenarios. 

© 2015 Elsevier B.V. All rights reserved. 
1. Introduction 

Over the past decade, network coding (NC) has at- 

tracted significant attention in communications networks 
✩ Part of this work has been published in IEEE ICDCS 2010. 
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[1,2] , thanks to its potential of expanding the throughput 

of a communication network. For instance, Li et al. demon- 

strated that the maximum flow (max-flow) from a source to 

multiple destinations can be achieved by linear NC with a 

certain finite field [3] . Because of its simplicity, linear NC 

has been widely used in practice, and will be applied and 

investigated in this paper. 

In addition to increasing the transmission data rate, NC 

can also secure data transmission against different attacks. 

Based on the attack models, most existing works on secure 

NC design can be classified into two groups: (1) active at- 

tack and (2) passive attack . 
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Fig. 1. The impact of transmission topology on the STR . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active attacks include entropy attack and Byzantine

modification attack, in which an attacker can alter the

messages transmitted in the network, and consequently

the receiver cannot recover the original data. Roughly

speaking, to deal with active attacks, secure NC design re-

quires a data verification scheme to detect and to filter

out modified messages, in order to provide integrity of data

transmission [4–8] . 

In passive attacks , such as wiretapping attack, an at-

tacker may compromise the confidentiality of data trans-

mission by wiretapping one or more edges. To against

wiretapping attack, the conventional approaches are to en-

crypt all messages, by using end-to-end encryption or hop-

by-hop encryption, which is time-consuming, calculation

complex, and requires key distribution infrastructure. To

defend against wiretapping attacks without using encryp-

tion, Cai and Yeung first demonstrated that NC can se-

curely deliver messages with very powerful performance

[9] . Their model includes secret sharing as a special case.

In [10] , Feldman et al. showed that, if a small amount of

capacity is given up, a random code can achieve security

by using a much smaller finite field than that in [9] . In

[11] , Bhattad and Narayanan generalized the model in [9]

and defined a weakly secure model, which can accommo-

date the security requirements of a lot of practical applica-

tions. In this paper, we will investigate weakly secure NC

design against wiretapping attack. 

Generally, the implementation of secure NC involves

two correlated steps: (1) to select a transmission topology

that consists of a subset of nodes and edges from the net-

work, and (2) to design the secure NC scheme based on

the selected transmission topology. However, most of the

previous work on secure NC against wiretapping attacks

has focused on (2), i.e., to design the secure NC scheme

based on a given routing topology, or to compute a trans-

formation matrix based on a given NC scheme [9,12,13] . In

this paper, we will apply a novel approach to integrate the
two steps. Our approach is motivated by the observation

that the transmission topology can significantly affect the

transmission rate under the weakly secure requirement, a

criterion referred to as the secure transmission rate (STR) .

Our objective is to maximize the STR . 

In Fig. 1 , we illustrate the impact of transmission topol-

ogy on STR . Fig. 1 (a) shows a directed acyclic graph where

each edge has a unit capacity. Suppose that a wiretapper

has compromised a set of edges: { s → 6, 7 → 5, 8 → d , 9

→ d }. Given this information, the source node s wants to

transmit messages to the destination node d without leak-

ing meaningful information to the wiretapper. There are

four possible topologies, as shown in Fig. 1 (b–e), each of

which has three disjoint paths between s and d , meaning

that the transmission rate from s to d is 3 without con-

sidering the weakly secure requirement. However, these

transmission topologies can lead to different secure trans-

mission rates, as explained below. 

• In Fig. 1 (b), all three paths have an edge being wire-

tapped, which means that the wiretapper can receive

and decode the same message as the destination node

d does, no matter how NC is designed. In this case, the

achievable STR can be 0. 

• In Fig. 1 (c), there exists a path (with all edges marked

as “x ” and x denotes a message transmitted on the

path.) where no edge on that path is wiretapped.

Therefore, the message x can be transmitted to the des-

tination d without being wiretapped and the achievable

STR can be 1. 

• In Fig. 1 (d), there exists a path (with all edges marked

as “x ”) where no edge on that path is wiretapped.

Meanwhile, there is another path (with all edges

marked as “x + y ”) where some edges are wiretapped.

However, if the second path is used to transmit the

coded message x + y, then the wiretapper cannot de-

code the messages x and y because he or she does not
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Table 1 

Notations. 

Notations Meaning 

G , V , E Network topology, node set, edge set 

A, A Polluted edge set and clean edge set 

s , d Source node and destination node 

r , L Number of data packet streams and coding interval 

X rL original messages that s wants to send to d 

F 
rL 
q rL -dimensional space on F q 

ζ , � Global encoding vector and coding matrix 

�A ′ A matrix whose rows are all wiretapped coding 

vectors 

Y Wiretapped information 

V i A matrix defined in formula (1) 

ϑ The number of wiretapped independent encoding 

vectors 

G m 
k 

A subgraph of G , composed by the maximal disjoint 

paths with k clean paths 

c m 
k 

The maximal number of disjoint paths in G k 
λ The maximal number of secure paths 

c max The maximal STR 

c The capacity between s and d 

 

 

 

have the message x . Therefore, the achievable STR can 

be 2. 

• In Fig. 1 (e), there exists a path (with all edges marked 

as “x ”) where no edge on that path is wiretapped. 

Meanwhile, the other two paths, though both of them 

have some edges wiretapped, can transmit the coded 

messages x + y and x + z, respectively. Again, the wire- 

tapper cannot decode any message because he or she 

does not have the message x . Therefore, the achievable 

STR can be 3. 

The above example clearly demonstrates that the trans- 

mission topology can significantly affect the STR . Therefore, 

it is important to consider the transmission topology con- 

struction and weakly secure NC design together. However, 

to the best of our knowledge, such an important issue has 

been largely overlooked in most of the existing work, ex- 

cept our study in [14–16] . Nevertheless, the attack model 

we study in this work is different to the ones in [14–16] , 

where all intermediate nodes are trying to acquire data in- 

formation passing through them but they do not cooper- 

ate. In other words, the attack models in [14–16] can be 

viewed as an insider attack, while in this paper, we ad- 

dress the case of outsider attack. Next, we summarize the 

novelties and major contributions. 

• Theoretical analysis: We theoretically analyze the suffi- 

cient and necessary condition that there exists a secure 

LNC can be designed based on a transmission topology 

to achieve given STR . Based on the sufficient and neces- 

sary condition, we prove the maximum STR for a given 

source and destination pair. We also theoretically ana- 

lyze the computational complexity of the problem. 

• Transmission topology algorithm design: We design al- 

gorithms to find the optimized transmission topology. 

Since the problem is NP-hard, when the capacity from 

the source to destination is small, we design an optimal 

algorithm to find the optimal transmission topology. 

For the general case, we design efficient approximate 

algorithms to find sub-optimal transmission topology 

that can lead to high STR . 

• Secure NC design: With the optimized transmission 

topology, we design secure NC on it. Furthermore, We 

study the relationship between the transmission topol- 

ogy and two important system factors: (1) the size of 

the finite field, and (2) the probability that a random 

NC is weakly secure. At last, we further improve the 

proposed algorithms to benefit the two system factors 

mentioned above while does not decrease the archived 

STR . 

• Extensive simulations: We conduct extensive simula- 

tions under two classical network models to verify the 

performance of our heuristic algorithms. 

The rest of the paper is organized as follows. We 

first introduce the system models in Section 2 . Next, in 

Section 3 , we define the problem to be investigated and 

analyze its properties, including (1) the conditions that a 

transmission topology can enable NC design that satisfies 

the weakly secure requirement, (2) the maximal STR , and 

(3) the complexity of the problem. In Section 4 , we de- 

sign algorithms that can efficiently find optimal or near- 

optimal transmission topologies in different scenarios. In 
Section 5 , we design secure NC schemes based on the op- 

timized transmission topology, and we further study the 

relationship between the transmission topology and two 

important system factors: (1) the size of the finite field, 

and (2) the probability that a random NC is weakly se- 

cure. To evaluate the heuristic algorithms, we conduct ex- 

tensive simulation experiments and discuss the results in 

Section 6 . Finally, we discuss related work in Section 7 , and 

conclude the paper in Section 8 . 

2. The system models 

In this section, we present the basics for the weakly 

secure NC design problem, including the network model, 

the attack model, the NC scheme, the transmission model, 

and the weakly secure requirement. To facilitate the dis- 

cussions, we list important notations in Table 1 . 

2.1. The network and attack models 

In this paper, we consider a communications network 

that is represented by a directed acyclic graph G = 〈 V, E〉 ,
where V and E are the node set and the edge set, respec- 

tively. We assume that each edge is noiseless and has a 

unit capacity. Note that we can always split an edge to 

several edges with unit capacity if that edge has multiple 

units of capacity. We further assume that the traffic in the 

network consists of r unicast data streams that share the 

same source and destination nodes, denoted by s and d , 

respectively. 

For the attack model, we let A ⊂ E be the set of edges 

that are wiretapped. We refer to edges in A as polluted 

edges while edges in Ā = E − A as clean edges . A single path

is a clean path if and only if all the edges on the path

are clean edges ; otherwise, it is a polluted path . Two paths 

are edge (node) disjoint if they do not share any com- 

mon edges (nodes). In the rest of the paper, we use dis- 

joint paths to refer to edge disjoint paths when there is no 

ambiguity. 
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2.2. The NC scheme 

We suppose that the encoding (decoding) operations

are only done at source (destination) node while let all

intermediate nodes simply store and forward messages.

This assumption is reasonable because coding operations

in intermediate nodes require extra computation capabil-

ity which may be impossible in many practical scenarios.

Moreover, the coding operation at intermediate nodes will

lead to computational overhead and transmission delay.

For simplify the clarification, we assume that the system is

time division multiplexing (TDM) based, in which each mes-

sage occupies one time slot and the message arrival rate of

each stream is one. 

The following definition is useful throughout the rest of

the paper: 

Defnition 1. A coding interval L means L time slots during

which the source buffer messages from all data streams for

encoding. 

In general, L can be a constant in an NC scheme. How-

ever, it is an important design variable in our scheme,

which will be further investigated in Section 3 . At the end

of each coding interval L , rL buffered messages are encoded

at node s , then the encoded messages are forwarded to

node d . In the following, we will focus on the transmission

in a coding interval L . 

We let vector X(t) = [ x 1 (t) , x 2 (t ) , . . . , x r (t )] � be the

messages received in the t th slot in a coding inter-

val, where [ x 1 (t) , x 2 (t ) , . . . , x r (t )] � means the transpose of

[ x 1 (t) , x 2 (t ) , . . . , x r (t )] and x i (t ) ∈ F q is the t th message in

the i th stream. We let X = [ X (1) � , X (2) � , . . . , X (L ) � ] � be

the rL original messages that node s wants to send to d . To

encode the messages, we will apply linear NC on source

node s and destination node d . 

For each edge in the transmission topology, the mes-

sages transmitted in a time slot can be written as ζ · X ,

where vector ζ ∈ F 

rL 
q is the global encoding vector (GEV)

and F 

rL 
q is a rL -dimensional space on F q . After each cod-

ing interval, the destination node can obtain a set of GEVs,

which can be used to construct a matrix. If this matrix is

full rank, the destination can decode and obtain the origi-

nal messages. 

For a given transmission topology G 

′ = 〈 V ′ , E ′ 〉 , G 

′ ⊂ G

including s and d , let A 

′ = E ′ ∩ A be the wiretapped set of

edges in G 

′ . For each edge in A 

′ , a wiretapper can acquire

both the message and the corresponding GEVs in a given

time slot. Therefore, we can use �A ′ · X to denote the wire-

tapped messages, where �A ′ represents a matrix whose

row vectors are all GEVs of the messages acquired by the

wiretapper. 

Since the coding operations are only done at the source

and destination, and the intermediate nodes only play a

relay and forward role, the coded messages must be trans-

mitted in the network through different disjoint paths.

Specifically, the messages transmitted on the edges of the

same path have the same GEVs. A coding matrix can be

constructed by all the GEVs of the coded messages as its

rows. The NC scheme can be determined uniquely by the

coding matrix applied on the source. 
Let � be a coding matrix with dimension rL × rL in fi-

nite field F q . In each coding interval, node s sends coded

messages � · X to d . In this way, each coded message sent

from s can be written as ζ · X where ζ is a row vector

of �. If � is a full rank matrix, d can recover X by simply

multiplying �−1 to � · X . Note that, if rL original messages

are coded at s , then rL coded messages will be sent to d

from s . 

2.3. The weakly secure requirement 

We define the weakly secure requirement following

[11] . 

Defnition 2. Within a coding interval L , a transmission is

weakly security, if 

I 
({ x i (t) } L t=1 , Y 

)
= 0 , ∀ i 

where Y is the information that the wiretapper can ac-

cess within coding internal L , I({ x i (t) } L 
t=1 

, Y ) is the mu-

tual information between the i th data stream sent from the

source within coding interval L and Y . 

Since all messages transmitted in the network are linear

combination of messages in X , I({ x i (t) } L t=1 , Y ) = 0 means

that the wiretapper cannot obtain any messages which are

linear combination of messages from the same data stream

of coding interval L . For example, if the wiretapper ac-

cesses an edge containing x 1 (1) ⊕x 2 (1), where x 1 (1) and

x 2 (1) come from different streams, the wiretapper cannot

obtain any meaningful information which implies weakly

security. The average number of messages that can be

transmitted from s to d under the requirement of weakly

secure in unit time slot is referred to as STR . 

3. Problem definition and analysis 

In this section, we first define the weakly secure NC de-

sign problem, in which we aim at integrating the weakly

secure NC design with the transmission topology construc-

tion. We then investigate how a transmission topology can

lead to weakly secure NC that satisfies the weakly secure

requirement, and the value of the maximal STR . Finally, we

prove that the problem is NP-hard. 

3.1. Problem definition 

We now define the maximizing STR with NC ( MSTR-NC )

problem as follows. 

Defnition 3. Given a network G , the set of wiretapped

edges A , and r streams from s to d , The MSTR-NC problem

is to find the optimal transmission topology G 

′ , on which a

weakly secure NC scheme can be designed to achieve the

maximal STR . 

3.2. The impact of the weakly secure requirement 

To solve the MSTR-NC problem, we first investigate

the impact of the weakly secure requirement on the

transmission topology. 
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Lemma 1. Given a transmission topology G 

′ , r different data 

streams from s to d , coding interval L and the coding ma- 

trix �, if the transmission is weakly secure, then the maximal 

number of independent GEVs obtained by the wiretapper can- 

not be more than (r − 1) L . 

Proof. Let αj be a row vector with length rL where the j th 

element of the vector is 1 and all other elements are 0. We 

define matrix V i as 

 i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

α(i −1) L +1 

α(i −1) L +2 

. . . 

αiL 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 1 ≤ i ≤ r. (1) 

Then V i · X represents all the messages in the i th data 

stream. 

Suppose a wiretapper obtains ϑ independent GEVs. Let 

ζ j , 1 ≤ j ≤ ϑ, be the j th element of them. All ζ j , 1 ≤ j ≤ ϑ, 
form a matrix, �A ′ , with dimension ϑ × rL . Then the trans- 

mission is weakly secure if and only if by taking any linear 

combination of �A ′ · X, the wiretapper cannot recover any 

message which is a linear combination of V i · X for all 1 ≤
i ≤ r , which implies: for all nonzero vector η1 , η2 

η1 · �A ′ � = η2 · V i , 1 ≤ i ≤ r (2) 

i.e., all row vectors in �A ′ and V i are linearly independent 

for 1 ≤ i ≤ r . Since there are totally ϑ + L row vectors in 

�A ′ and V i , the length of each row vector is rL , we have 

ϑ + L ≤ rL, i.e., ϑ ≤ (r − 1) L . �

Lemma 2. Given a transmission topology G 

′ , r different data 

streams from s to d , coding interval L , if the maximal number 

of independent GEVs obtained by the wiretapper is no more 

than (r − 1) L, then there exists a coding matrix � over F q ( q 

> r ) such that the transmission is weakly secure. 

Proof. Let rank (�A ′ ) = ϑ, i.e. the wiretapper obtains ϑ in- 

dependent GEVs, then ϑ ≤ (r − 1) L . In our transmission 

model, ϑ independent GEVs must be ϑ row vectors in �. 

Without loss of generality, we set the ϑ row vectors to be 

the first ϑ row vectors in �, let these ϑ row vectors form 

matrix A . Therefore, we only need to show that there exists 

� such that (2) hold. 

For 1 ≤ m ≤ ϑ, it is sufficient to show if vectors in 

{ ζ1 , ζ2 , . . . , ζm −1 } ∪ V i (3) 

are linearly independent for all 1 ≤ i ≤ r , then it is possible 

to choose new vector ζ m 

such that vectors in 

{ ζ1 , ζ2 , . . . , ζm −1 , ζm 

} ∪ V i 

are linearly independent for all 1 ≤ i ≤ r . Specifically, ζ m 

is chosen such that it is linearly independent of all vectors 

in (3) for all 1 ≤ i ≤ r , i.e., we require that 

ζm 

∈ F 

rL 
q \ 

r ⋃ 

i =1 

〈 ζ1 , ζ2 , . . . , ζm −1 , V i 〉 (4) 

where 〈 · 〉 denotes the linear span of a set of vectors. 
ζ m 

exists in F q if the set of (4) is nonempty. Since the 

vectors in (3) are linearly independent, we have 

| 
r ⋃ 

i =1 

〈 ζ1 , ζ2 , . . . , ζm −1 , V i 〉| ≤
r ∑ 

i =1 

|〈 ζ1 , ζ2 , . . . , ζm −1 , V i 〉| 

= 

r ∑ 

i =1 

q L + m −1 = rq L + m −1 

Therefore, 

| F 

rL 
q \ 

r ⋃ 

i =1 

〈 ζ1 , ζ2 , . . . , ζm −1 , V i 〉| 

≥ q rL − rq L + m −1 = q L + m −1 (q rL −L −m +1 − r) (5) 

Since m ≤ ϑ ≤ (r − 1) L, when q > r , the above inequality

is large than zero, i.e., such ϑ vectors exist in F 

rL 
q which are 

linearly independent with V i for all 1 ≤ i ≤ r . After find- 

ing the first ϑ row vectors according to (4) , we can extend 

{ ζ1 , ζ2 , . . . , ζϑ } to a basis of F 

rL 
q which forms a coding ma-

trix �. With transmission topology G 

′ and coding matrix �, 

the vectors obtained by wiretapper are the first ϑ row vec- 

tors in �. Therefore, the transmission is weakly secure. �

Theorem 3. Given a transmission topology G 

′ , r different 

data streams from s to d , and coding interval L , there exists a

coding matrix � that makes the transmission weakly secure, 

if and only if the maximal number of independent GEVs ob- 

tained by the wiretapper is no more than (r − 1) L . 

Proof. According to Lemmas 1 and 2 , this theorem holds 

obviously. �

Theorem 4. Given a transmission topology G 

′ , r different 

data streams from s to d , and coding interval L , there exists a

coding matrix � that makes the transmission weakly secure, 

if and only if the number of different messages transmitted 

on the clean paths is at least L. 

Proof. In our transmission model, the messages transmit- 

ted on the same path have the same GEVs. Since the cor- 

responding GEVs of the messages are the row vectors in �

and � is full rank, the number of independent GEVs ob- 

tained by the wiretapper equals to the number of different 

messages obtained by the wiretapper. 

If there exists the coding matrix � which makes the 

transmission weakly secure, according to Theorem 3 , the 

maximal number of independent GEVs obtained by the 

wiretapper cannot be more than (r − 1) L . Therefore, the 

number of different messages obtained by the wiretapper 

is no more than (r − 1) L . Thus, the number of different 

messages transmitted on the clean paths is at least L . 

If the number of different messages transmitted on the 

clean paths is at least L , there exists the coding matrix �′ 
such that the maximal number of independent GEVs ob- 

tained by the wiretapper cannot be more than (r − 1) L . 

According to Theorem 3 , there exists the coding matrix �

which makes the transmission weakly secure. �

3.3. The maximal STR 

We now analyze the maximal STR . Note that, in our sys- 

tem model, the transmission topology is actually a set of 
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Fig. 2. An example of the transmission scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disjoint paths which share the same source node and the

same destination node. The set of disjoint paths consists

of some clean paths and some polluted paths. Let G k be

an transmission topology which consists of k disjoint clean

paths and c k total disjoint paths. we have the following

lemma. 

Lemma 5. Given r different data streams from s to d , the

maximal STR from s to d in G k is c ′ = min { rk, c k } , which can

be achieved if and only if rL ≡ 0 ( mod c ′ ) . 

Proof. Let the number of transmission time slots of trans-

mitting rL messages from s to d in G k be T , where T is

an integer. Since the capacity between s and d is c k and

rL messages can be transmitted within T time slots, we

have: 

T ≥
⌈ 

rL 

c k 

⌉ 

(6)

According to Theorem 4 , there exists the coding matrix

� which can transmit rL messages from s to d securely if

and only if the number of different messages transmitted

on the clean paths is no less than L , i.e., kt ≥ L . Since T is

an integer, it is equivalent to: 

T ≥
⌈ 

L 

k 

⌉ 

(7)

According to Eqs. (6) and (7) , T ≥ max {� L 
k 
� , � rL 

c k 
�} . Since

the STR is rL 
T , to maximize the STR , the number of trans-

mission time slots must be: 

T = max 

{ ⌈ 

L 

k 

⌉ 

, 

⌈ 

rL 

c k 

⌉ } 

(8)

According to Eq. (8) , we have the following results. 

(1) If c k > rk , then � rL 
c k 

� < � rL 
rk 

� = � L 
k 
� , T = � L 

k 
� . The STR

is c 1 = 

rL 
T = 

rL 

� L 
k 
� , c 1 = rk which is maximal if and

only if L ≡ 0( mod k ). 

(2) If c k ≤ rk , then � rL 
c k 

� ≥ � rL 
rk 

� = � L 
k 
� , T = � rL 

c k 
� . The STR

is c 2 = 

rL 
T = 

rL 

� rL 
c k 

� , c 2 = c k which is maximal if and

only if rL ≡ 0 ( mod c k ). 

In summary, the maximal STR is c ′ = min { rk, c k } . It can

be achieved if and only if rL ≡ 0 ( mod c ′ ). �

From Lemma 5 , a transmission topology G k from G ,

such that c ′ = min { rk, c k } is maximized among all unicast

topologies in G , is a transmission topology which can lead

to maximal STR . Let the maximal number of disjoint clean
paths between s and d of G be λ (We can get λ by re-

moving all the polluted edges and calculating the maximal

number of disjoint paths between s and d in the remain-

der graph). Let G 

m 

k 
(1 ≤ k ≤ λ) be a subgraph of G which is

composed by the maximal number of disjoint paths with k

disjoint clean paths. Let the capacity of G 

m 

k 
be c m 

k 
. 

Theorem 6. Given a network topology G and r different data

streams from s to d , the maximal STR from s to d is c max =
max 

1 ≤k ≤λ
min { kr, c m 

k 
} , which can be achieved if and only if rL ≡

0 ( mod c max ) . 

Proof. For each k , 1 ≤ k ≤ λ, the maximal STR in

G 

m 

k 
is min { kr, c m 

k 
} if and only if rL ≡ 0(mod c m 

k 
) accord-

ing to Lemma 5 . Therefore, the maximal STR from s to

d in G is c max = max 
1 ≤k ≤λ

min { kr, c m 

k 
} , if and only if rL ≡ 0

( mod c max ). �

Upon obtaining the transmission topology with c m 

k 
dis-

joint paths such that min { kr, c m 

k 
} = c max , we can determine

the coding interval L by the function rL ≡ 0( mod c max ) to

achieve the maximal STR c max . Though L may have multi-

ple values, considering that the coding matrix � is rL ×
rL dimension, small � means short decoding time inter-

val and low encoding/decoding computational complexity.

Therefore, we prefer to have the smallest L . The smallest

value of L satisfying rL ≡ 0( mod c max ) can be calculated by
c max 

(r,c max ) 
, where ( r , c max ) means the greatest common divisor

of r and c max . 

The example in Fig. 2 demonstrates the basic idea of

our transmission scheme. The source wants to transmit 2

independent data streams to the destination. Suppose that

the obtained transmission topology consists of 3 disjoint

paths with 2 clean paths. Thus, the source chooses L = 3

and the maximal transmission rate is 3. The source first

puts the 6 messages into 1 vector, then encodes them with

the proposed coding scheme, and finally transmits them

on the transmission topology. The shaded messages can be

obtained by the wiretapper. When the destination receives

the messages, it first decodes them, then puts them into

the buffers of the original 2 data streams. 

3.4. The computational complexity of MSTR-NC 

In this section, we study the computational complex-

ity of the MSTR-NC problem. We will reduce the well-

known SAT problem [17] to the special case of the MSTR-NC

problem. 
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Fig. 3. Acyclic directed lobe for x i . 

 

 

 

 

 

 

 

 

 

 

 

According to Theorem 6 , a special case of the maximal 

STR is c m 

k 
, 1 ≤ k ≤ λ. In this case, the optimal transmis- 

sion topology required in MSTR-NC problem is G 

m 

k 
. Thus, a 

special case of the MSTR-NC problem is to find G 

m 

k 
. The de- 

cision version of finding G 

m 

k 
equals to find c ′ 

k 
(1 ≤ c ′ 

k 
) dis- 

joint paths with k disjoint clean paths from s to d when c ′ 
k 

is given. 

The SAT is defined as ( [17] ): 

INSTANCE: Set X of variables, collection D of clauses 

over X 

QUESTION: Is there a true assignment τ for D ? 

The SAT is a well-known NP-hard problem. 

For a given instance of the SAT , a collection D = 

{ D 1 , D 2 , . . . , D c ′ 
1 
−1 } of clauses is defined on a finite set X =

{ x 1 , x 2 , . . . , x t } . For each variable x i , a lobe is constructed

as shown in Fig. 3 , in which p i is the number of occur- 

rences of x i in the clauses and q i is the number of occur- 

rences of x i . Then we connect the lobes one by one in se- 

ries as follows: there is a directed edge from node v i 
d 

to 

v i +1 
s (1 ≤ i ≤ t − 1) , s is connected to v 1 s and all the nodes 

v i 
j 

and v i j where j is odd. Node v t 
d 

is connected to d . 

In addition, there are nodes D 1 , . . . , D c ′ 
1 
−1 and a directed 

edge from each of them to d . For the j th occurrence of 

x i ( x i ) , there is a directed edge from v i 
2 j 

( v i 2 j ) to the D x in

which it occurs. 

Output edges of s except s → v 1 s and input edges of d 

except v t 
d 

→ d are polluted edges, while other edges are 

clean edges. It is obvious that this transformation process 

takes polynomial time. 

We next show that the constructed directed graph is 

acyclic. Assume that there exists a directed cycle in G , e.g., 

there exists a node v which has a directed path to itself. 

Note that s has no input edges, d has no output edges, 

and for each D 1 , . . . , D c ′ 
1 
−1 , there is only one output edge 

to d . So we can only have v ∈ ̃

 V = V − { s, d, D 1 , . . . , D c ′ 
1 
−1 } .

However, from the construction of each lobe, we know that 

all edges connected to ˜ V are pointed at right as shown in 

Fig. 3 . So there are no cycles in G 〈 ̃  V , E〉 either. Thus the 

constructed graph is acyclic. 

Let the maximal number of disjoint clean paths in G be 

λ. Since there is only one clean edge in the input edges of 

d , λ = 1 . Since 0 < k ≤ λ = 1 , the decision version of find-

ing G 

m 

k 
is equals to find c ′ 

1 
(1 ≤ c ′ 

1 
≤ r) link-disjoint paths 

with one clean path from s to d in G . 
Lemma 7. The problem of finding c ′ 
1 

link-disjoint paths with 

one clean path from s to d in G is NP-complete. 

Proof. We first give two claims: 

Claim 1: If there are c ′ 1 edge-disjoint paths with one 

clean path in the constructed graph G , then the SAT has 

a YES solution. 

We note that the one clean path has to pass through 

all lobes. Then, for each variable x i in the SAT, we set it 

“true” if and only if that clean path passes through the 

lower part of the i th lobe, otherwise we set it “false”. Since 

there are c ′ 1 − 1 polluted paths and c ′ 1 − 1 clauses, for each 

D m 

( 1 ≤ m ≤ c ′ 
1 

− 1 ), there exists one polluted path pass- 

ing through it. That polluted path must pass through a 

lobe, e.g., the i th lobe. If that polluted path passes through 

the upper part of the i th lobe which means x i ∈ D m 

, then

the clean path must pass through the lower part of i th 

lobe. Therefore, x i is set “true” and D m 

is “true”. Other- 

wise, if that polluted path passes through the lower part 

of i th lobe which means x i ∈ D m 

, then the clean path must

pass through the upper part of the i th lobe. Therefore, 

x i is set “false”, and D m 

is also “true”. Thus D m 

( 1 ≤ m ≤
c − 1 ) is satisfied. Therefore, we have a YES solution to the 

SAT. 

Claim 2: If the SAT has a YES solution, then there are c ′ 1 
edge-disjoint paths with one clean path in the constructed 

graph G . 

Given the YES solution to SAT, we can have one clean 

path where we let the path pass through the lower part 

of the i th lobe if and only if x i is “true”, otherwise let it

pass though the upper part. Since each clause D m 

( 1 ≤ m ≤
c ′ 

1 
− 1 ) contains at least one literal x i or x i which is “true”, 

the polluted path passes through the upper part of i th lobe 

if x i is “true” or lower part of i th lobe if x i is “true”. These

c ′ 
1 

paths are obviously edge-disjoint. 

We can use the example Fig. 4 to demonstrate 

the proof. The example has a network G correspond- 

ing to expression (x 1 ∨ x 2 ∨ x 3 ) ∧ ( x 1 ∨ x 3 ∨ x 4 ) ∧ (x 2 ∨ x 3 ∨
x 4 ) ∧ ( x 2 ∨ x 3 ∨ x 4 ) . There are 4 + 1 disjoint paths (bold)

with one clean path (dashed). 

The above two claims show that the problem of 

finding c ′ 
1 

edge-disjoint paths with one clean path is 

NP-complete. �

The above lemma shows the NP-completeness of a spe- 

cial case of the MSTR-NC problem. Therefore, we have the 

following theorem for the general problem. 

Theorem 8. The MSTR-NC problem is NP-hard. 
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Fig. 4. Satisfiability reduction in a directed acyclic network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 The OTCSP Algorithm. 

Require: G = 〈 V, E〉 , k, polluted edge set A. 
Ensure: Maximum disjoint paths with k clean 

paths. 

1: Transform G to G 

′ ; 
2: for x = c to 1 do 

3: Transform G 

′ to G 

′ 
x ; 

4: Find the shortest path P in G 

′ 
x ; 

5: if the cost of P equals to 0 then 

6: Transform P to x node-disjoint paths with k 
clean paths; 

7: Transform the x node-disjoint paths with k 
clean paths in G 

′ to x edge-disjoint paths 
with k clean paths in G ; 

8: return x edge-disjoint paths with k clean 

paths in G ; 
9: else 

10: x=x-1; 
11: end if 
12: end for 
13: return Fail; 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The construction of transmission topology 

If we can find each G 

m 

k 
, 1 ≤ k ≤ λ, we can get each

c m 

k 
. By comparing, we can find k ′ , such that min { k ′ r, c m 

k ′ } =
max 

1 ≤k ≤λ
min { kr, c m 

k 
} . From Theorem 6 , if k ′ r > = c m 

k ′ , G 

m 

k ′ is the

optimal transmission topology, else, a sub-graph of G 

m 

k ′ 
which composed by k ′ clean disjoint paths and k ′ (r − 1)

other disjoint paths is the optimal transmission topology.

Thus, the key of finding the optimal transmission topology

is to find G 

m 

k 
for each k , 1 ≤ k ≤ λ. In this section, we give

efficient algorithms to find G 

m 

k 
. 

4.1. An optimal algorithm based on shortest path 

In this section, we develop an optimal algorithm to con-

struct the transmission topology. This algorithm is feasible

to optimally solve MSTR-NC problem. We name the algo-

rithm as OTCSP, which stands for Optimal Topology Con-

struction based on Shortest Path. 

4.1.1. The OTCSP algorithm 

Let the capacity between s and d be c . Then the STR be-

tween these two nodes can be x where 1 ≤ x ≤ c . The

OTCSP algorithm will find x disjoint paths with k clean

paths if there exist such x paths. By using such an algo-

rithm with all possible x where 1 ≤ x ≤ c , we can find the

maximal disjoint paths with k disjoint clean paths between

s and d . Algorithm 1 shows the pseudo-code of OTCSP al-

gorithm. 

In the OTCSP algorithm, we first transform the original

topology G to G 

′ , such that the problem of finding edge-

disjoint paths in G can be transformed to the problem of

finding node-disjoint paths in G 

′ . We then transform G 

′ to

G 

′ 
x , such that the problem of finding x node-disjoint paths

with k clean paths in G 

′ can be transformed to the problem

of finding the shortest path in G 

′ 
x . Finally, we can use the

existing algorithm of finding the shortest path to solve the

problem. We now give methods to transform G and G 

′ to

G 

′ and G 

′ 
x respectively. 

(1) transform G to G 

′ : We first add two nodes s ′ and d ′
and two clean edges s ′ → s and d → d ′ to G so that each
edge e in G corresponds to a node e ′ in G 

′ . An edge e ′ 
i 
→ e ′ 

j

is in G 

′ if and only if e i and e j share one node in G . e ′ 
i 
→ e ′ 

j

in G 

′ is clean if and only if both e i and e j in G are clean.

The idea of this method comes from [18] . The difference is

[18] doesn’t consider security. 

(2) transform G 

′ to G 

′ 
x : We first assign a cost to each

edge of G 

′ as follows: if e is clean, c(e ) = 0 , otherwise,

c(e ) = 1 . We then relabel nodes with a number l from 1 to

| V | to ensure that each edge u → v in E satisfies l(u ) < l(v ) .
For simplicity and without confusion, we still use s and d

to represent the source node and the destination node in

G 

′ . Without loss of generality, we may assume that s →
d �∈ E (if s → d does exist, we can add a vertex u and re-

place s → d by s → u and u → d ). Then, we can transform

G 

′ to an acyclic directed graph G 

′ 
x = ( V , E ) as follows: 
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• V = {〈 v 1 , . . . , v x 〉| v i ∈ V, i = 1 , . . . , x, and v i � = v j when i

� = j unless v i = v j = s or v i = v j = d }. 

• E = {〈 v 1 , v 2 , . . . , v x 〉 → 〈 u 1 , v 2 , . . . , v x 〉| v 1 → u 1 ∈ E and

l(v 1 ) ≤ l(v i ) , i = 1 , . . . , x } ∪ . . . ∪{〈 v 1 , v 2 , . . . , v x 〉 →
〈 v 1 , v 2 , . . . , u x 〉| v x → u x ∈ E and l (v x ) ≤ l (v i ) , i =
1 , . . . , x − 1 } . 
The cost of each edge in G 

′ 
x is assigned as follows: 

• c(〈 v 1 , . . . , v i , . . . , v x 〉 → 〈 v 1 , . . . , u i , . . . , v x 〉 ) = c(v i → 

u i ) , i = 1 , . . . , k . 

• c(〈 v 1 , . . . , v i , . . . , v x 〉 → 〈 v 1 , . . . , u i , . . . , v x 〉 ) = 0 , i = 

k + 1 , . . . , x . 

The idea of this method comes from [19] . In [19] , an al- 

gorithm to find two node-disjoint paths from two sources 

to two destinations is introduced. We generalize this tech- 

nique to find x node-disjoint paths from one source to one 

destination. Then, we assign a suitable cost to each edge to 

find x node-disjoint paths with k clean paths. An example 

that transform G 

′ to G 

′ 
2 

is given in Fig. 5 . 

4.1.2. The correctness of the algorithm 

Before giving the correctness of the algorithm, we give 

two lemmas as follows. 

Lemma 9. There are x edge-disjoint paths with k clean edge- 

disjoint paths in G if and only if there are x node-disjoint 

paths with k clean node-disjoint paths in G 

′ . 

Proof. From [18] , we know that any two edge-disjoint 

paths in G correspond to two node-disjoint paths in G 

′ 
and vice versa. Thus we only need to show k edge-disjoint 

paths in G which corresponding to k clean node-disjoint 

paths in G 

′ are clean and vice versa. From the construction 

of G 

′ , this can be easily verified. �

Lemma 10. There exist x directed node-disjoint paths from s 

to d in G 

′ if and only if there exists a directed path P from 

〈 s, . . . , s 〉 to 〈 d , . . . , d 〉 in G 

′ 
x . 

Proof. The “only if” direction: Let P i , i = 1 , . . . , x, be x 

node-disjoint paths in G 

′ . The proof is done by induc- 

tion on 

∑ x 
i =1 L (P i ) , where L ( P i ) represents the number of 

edges in P i . By our assumption, we know L ( P i ) ≥ 2 for 

any 1 ≤ i ≤ c . So 
∑ x 

i =1 L (P i ) ≥ 2 x . If 
∑ x 

i =1 L (P i ) = 2 x,

then there exist x nodes u 1 , . . . u x ∈ V \{ s, d} , such 

that P i = (s, u i , d) , i = 1 , . . . , x are x disjoint paths.

Then P = 〈 s, . . . , s 〉 → 〈 u 1 , . . . , s 〉 → . . . → 〈 u 1 , . . . , u x 〉 →
〈 d, . . . , u x 〉 → . . . → 〈 d , . . . , d 〉 is the desired path in G 

′ 
x . 

Assume that 
∑ x 

i =1 L (P i ) > 2 x . Let P i = (s = v 1 
i 
, v 2 

i 
, . . . ,

v l i 
i 

= d) , i = 1 , . . . , x . Then 〈 s, s, . . . , s 〉 → 〈 v 2 
1 
, s, . . . , s 〉 →

. . . → 〈 v 2 1 , v 
2 
2 , . . . , v 

2 
k 
〉 are the first k edges of P . The rest

edges of P are provided by the inductive hypothesis on 

paths P 
′ 
i 

= (v 2 
i 
, . . . , v l i 

i 
= d) , i = 1 , . . . , x . This completes the

proof of the “only if” direction. 

The “if” direction: Let P = (〈 s, . . . , s 〉 = 〈 v 1 1 , . . . , 

v 1 x 〉 , . . . , 〈 v N 1 , . . . , v 
N 
x 〉 = 〈 d , . . . , d 〉 ) , where N is the length

of P . Then P i = (s = v 1 
i 
, . . . , v N 

i 
= d) for i = 1 , . . . , x are x

directed paths from s to d in G 

′ . We have to prove that 

for any 1 ≤ i ≤ x , 1 ≤ j ≤ x and i � = j, P i and P j are node-

disjoint. If not, there exists at least one common node 

except s and d in both P i and P j . Without loss of generality, 
let such two nodes in G 

′ be v m 

i 
= v n 

j 
where m < n . By the

definition of node in G 

′ 
x , the components of node of G 

′ 
x 

which are nodes in G 

′ are different except s and d . There- 

fore, the common node of P i and P j in G 

′ must correspond 

to different nodes in G 

′ 
x . Since v n 

i 
� = v n 

j 
, we have v n 

i 
� = v m 

i 
.

Since nodes 〈 v m 

1 
, . . . , v m 

x 〉 and 〈 v n 
1 
, . . . , v n x 〉 are in path P ,

there exists m 

′ ∈ [ m , n ], such that l(v m 

i 
) = l(v m 

′ 
i 

) ≤ l(v n 
i 
)

and l(v m 

′ 
i 

) ≤ l(v m 

′ 
k 

) for all k ∈ [1, x ]. Thus l(v m 

′ 
i 

) ≤ l(v m 

′ 
j 

) .

Since v m 

′ 
i 

� = v m 

′ 
j 

, we have v n 
j 
� = v m 

′ 
j 

, and l(v m 

′ 
j 

) < l(v n 
j 
) .

So we have l(v m 

i 
) < l(v n 

j 
) , which is a contradiction of

v m 

i 
= v n 

j 
. �

Theorem 11. Let P be a minimum-cost path from 〈 s, . . . , s 〉 
to 〈 d , . . . , d 〉 in G 

′ 
x . If the cost of P is 0, then the x paths

P 1 , . . . , P x corresponding to P form x node-disjoint paths from 

s to d in G 

′ with at least k clean node-disjoint paths. 

Proof. From Lemma 10 , the x paths P 1 , . . . , P x correspond- 

ing to P are x node-disjoint paths from s to d . According to 

the way that we assign the cost of edges in G 

′ 
x , if the cost

of P equals 0, then the cost of P i (1 ≤ i ≤ k ) equals 0, Thus

P 1 , . . . , P k are k clean paths. �

4.1.3. The complexity of OTCSP 

The time complexity of transforming G to G 

′ 
is O (| E |) 

(Line 1 in Algorithm 1 ). Generating G 

′ 
x takes O (| E | ) op- 

erations. We have | E | ≤ P x | V |−2 
| E| since each edge u → 

v ∈ E yields at most P x | V |−2 
edges in G 

′ 
x . Therefore, 

generating G 

′ 
x can be done in O (| V | x | E |) operations (Line 3

in Algorithm 1 ). Finding the shortest path in G 

′ 
x can be 

done in O ((| V | x | E |) 2 ) operations (Line 4 in Algorithm 1 ).

Transforming P in G 

′ 
x to x edge-disjoint paths with k clean 

paths in G can be done in O (| E |) operations (from Line

6 to 7 in Algorithm 1 ). Thus the complexity of OTCSP is 

O ( c (| V | c | E |) 2 ). 

4.2. Heuristic algorithms based on k -shortest paths 

In the case that the size of the problem is small, we 

can solve the MSTR-NC problem optimally by using the 

proposed OTCSP algorithm within a short period of time. 

However, when the problem size is large, the computa- 

tional complexity of OTCSP algorithm is considerable large 

because that the MSTR-NC problem has been proved as 

NP-hard problem in Section 3.4 . Therefore, we develop effi- 

cient approximation algorithms in this section to efficiently 

solve the problem when the problem size grows large. To 

construct the topology in a general case, we develop a 

baseline algorithm and two efficient heuristic algorithms 

based on k -shortest paths to find G 

m 

k 
with higher STR . 

4.2.1. Baseline algorithm 

We implement a simple algorithm ( Algorithm 2 ) called 

BMF (Based on Max-Flow algorithm) as the baseline for 

performance comparison. BMF algorithm is based on the 

max-flow algorithm. We first hide all polluted edges and 

run the max-flow algorithm, which can generate the maxi- 

mal number of disjoint clean paths because the capacity of 
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Fig. 5. Transformation from G ′ to G ′ 
2 
. 

Algorithm 2 The BMF Algorithm. 

Require: G = 〈 V, E〉 , k, polluted edge set A. 
Ensure: Maximum disjoint paths with k clean 

paths. 

1: Hide all edges in A; 
2: Find the maximal disjoint paths by the max-flow 

algorithm, then randomly pick out k paths, let 
them be P 1 , . . . , P k . 

3: Hide P 1 , . . . , P k ; 
4: Restore all edges in A; 
5: Find the maximal disjoint paths by the max-flow 

algorithm: P k +1 , . . . , P k + max ; 
6: return P 1 , . . . , P k , P k +1 , . . . , P k + max ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3 The TCKSP Algorithm. 

Require: G = 〈 V, E〉 , k, polluted edge set A. 
Ensure: Maximum disjoint paths with k clean 

paths. 

1: Hide all edges in A; 
2: Find k shortest paths: P 1 , . . . , P k ; 
3: Hide P 1 , . . . , P k ; 
4: Restore all edges of A; 
5: Find the maximal disjoint paths by the max-flow 

algorithm: P k +1 , . . . , P k + max ; 
6: return P 1 , . . . , P k , P k +1 , . . . , P k + max ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each edge is 1. We pick out k of them randomly as k dis-

joint clean paths that we will use, then hide these k dis-

joint clean paths, restore all polluted edges and find the

maximal number of disjoint paths in the remaining graph.

These paths with k disjoint clean paths together form G 

m 

k 
. 

4.2.2. Topology Construction Based On k -Shortest Paths 

(TCKSP) 

From the discussions in Section 3 , we can observe that

if a clean path uses more edges in a minimum cut, then

less number of remaining disjoint paths can be found

when we ignore the clean path. Based on such an obser-

vation, we can design the following algorithm: Topology

Construction based on k -Shortest Paths (TCKSP), as shown

in Algorithm 3 . 

First, we hide all polluted edges, then find k dis-

joint shortest paths, denoted as P 1 , . . . , P k . Obviously, all

of these k disjoint paths are clean paths. Next, we hide

all edges that belong to these k clean paths, and we re-

store all polluted edges. Since each edge have a unit capac-

ity, we can run the max-flow algorithm to find the maxi-

mal disjoint paths in the remaining network, denoted as

P k +1 , . . . , P k + max , where max is the maximal number of dis-

joint paths in the remaining network. Finally, we can form

G 

m 

k 
by using P 1 , . . . , P k , P k +1 , . . . , P k + max , which implies that

the c m 

k 
is k + max . 
The computational complexity of this algorithm equals

to the complexity of finding k shortest paths problem

which is O (| E| + | V | log| V | ) . 
4.2.3. Improved TCKSP (iTCKSP) 

We now further improve the TCKSP algorithm by care-

fully selecting k clean disjoint paths, which may lead to

more disjoint paths. Algorithm 4 shows the pseudo-code

of iTCKSP algorithm. 

Let G 

′ = 〈 V, E ′ 〉 and G 

′′ = 〈 V, E ′′ 〉 be two subgraphs of

G . Initially, we set E ′ = E and E ′′ = ∅ . G 

′ 
c = 〈 V, E ′ − A 〉 is a

subgraph of G 

′ , where all edges in G 

′ 
c are clean edges. We

define a function C ( · ) to denote the maximal number of

disjoint paths between s and d in a graph. 

The basic idea of this heuristic algorithm is as follows.

Initially, all the edges in G are assigned to G 

′ . In each step,

we try to remove one clean path in G 

′ and add it in G 

′ ′
until C ( G 

′ ′ ) equals to k . Then there are k clean disjoint

paths between s and d in G 

′ ′ . Note that both G 

′ and G 

′ ′ are

subgraphs of G and they have no common edges. If C ( G 

′ )
is maximized, the c m 

k 
= C(G 

′ ) + C(G 

′′ ) disjoint paths with

k = C(G 

′′ ) clean paths in G 

′ and G 

′ ′ can form G 

m 

k 
. With such

a property, the key challenge of the algorithm is to design

heuristic rules to maximize C ( G 

′ ) and assure C ( G 

′ ′ ) ≥ k at

last. 

This algorithm works in two stages. In the first stage,

we try to maximize C ( G 

′ ) and assure C ( G 

′ ′ ) ≥ k . At each

step of this stage, we try to remove one clean path from
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Algorithm 4 The iTCKSP Algorithm. 

Require: G = 〈 V, E〉 , k, polluted edge set A. 
Ensure: Maximum disjoint paths with k clean 

paths. 

1: Stage 1: Let G 

′ = 〈 V, E 

′ 〉 , G 

′′ = 〈 V, E 

′′ 〉 , G 

′′′ = 

〈 V, E 

′′′ 〉 , c ′ = C(G 

′ ) ; Set E 

′ = E , E 

′′ = ∅ , E 

′′′ = ∅ ; 
2: while C(G 

′′ ) ≤ k do 

3: Get the shortest path of G 

′ 
c : P 1 ; 

4: if C(〈 V, E 

′ − P 1 〉 ) ≥ c ′ − 1 and C(G 

′ 
c ) is de- 

creased only 1 after removing P 1 then 

5: Update: E 

′ = E 

′ − P 1 , E 

′′ = E 

′′ ∪ P 1 , c 
′ − −; 

6: else 

7: Get an edge e ∗ from the intersection of P 1 
and a minimum cut of G 

′ ; Update: E 

′ = E 

′ −
{ e ∗} , E 

′′′ = E 

′′′ ∪ { e ∗} ; 
8: for each clean edges e in G 

′ 
c except e ∗ do 

9: if C(G 

′ ) = c ′ − 1 after removing e then 

10: Update: E 

′ = E 

′ − { e } , E 

′′′ = E 

′′′ ∪ { e } ; 
11: end if 
12: end for 
13: if C(G 

′′′ ) ≥ 1 then 

14: Get the shortest path of G 

′′′ : P 2 ; Update: 
E 

′ = E 

′ ∪ E 

′′′ ; 
15: if C(G 

′ 
c ) is decreased only 1 after removing 

P 2 then 

16: Update: E 

′ = E 

′ − P 2 , E 

′′ = E 

′′ ∪ P 2 , E 

′′′ = ∅ ; 
17: else 

18: Randomly select maximal disjoint paths 
in G 

′ 
c ; 

19: if there exists path P 2 , all edges in which 

belong to G 

′′′ then 

20: Update: E 

′ = E 

′ − P 2 , E 

′′ = E 

′′ ∪ P 2 , E 

′′′ = 

∅ ; 
21: else 

22: c ′ − −; E 

′′′ = ∅ ; continue; 
23: end if 
24: end if 
25: Update c ′ = C(V, E 

′ − E 

′′ ) ; 
26: else 

27: c ′ − −; E 

′ = E 

′ ∪ E 

′′′ ; E 

′′′ = ∅ ; continue; 
28: end if 
29: end if 
30: end while 

31: Stage 2:Run the max-flow algorithm in G 

′ and 

G 

′′ , pick out all edges which have flow on it. 
These edges with their endpoints form G 

m 

k 
. *Note 

that each edge has a unit capacity.*/ 
32: return G 

m 

k 
; 

 

 

 

 

 

Algorithm 5 Algorithm to find coding matrix �. 

Require: the number of data streams r, coding in- 
terval L , thesize of the base field q , the number of 
wiretapped independentencoding vectors ϑ . 

Ensure: coding matrix �. 

Choose a vector ζ1 ∈ F 

rL 
q \ 

⋃ r 
i =1 〈 V i 〉 ; /* V i comes from 

(1)*/ 
for j = 2 to ϑ do 

Choose a vector ζ j ∈ F 

rL 
q \ 

⋃ r 
i =1 〈 ζ1 , . . . , ζ j−1 , V i 〉 

end for 
Extend { ζ1 , . . . , ζϑ } to a basis of F 

rL 
q , which forms 

a matrix �. 
return �; 
G 

′ and add it to G 

′ ′ which minimizes the decrease of 

C ( G 

′ ). When C ( G 

′ ) only decreases by one after removing the 

shortest clean path in it and C(G 

′ 
c ) only decreases by one 

too, we assign the clean path to G 

′ ′ directly (Line 3 to 5 

in Algorithm 4 ). Otherwise, we obtain the set of edges af- 

ter removing which C ( G 

′ ) only decreases by one and use a 

new graph G 

′ ′ ′ to store these edges temporarily (Line 7–12 
in Algorithm 4 ). Then, we try to get a clean path in G 

′ ′ ′ and

add it to G 

′ ′ , after removing which C(G 

′ 
c ) only decreases 

by one too (Line 14–20 in Algorithm 4 ). If we cannot find 

such a clean path, then we try to find a clean path in G 

′ 
after removing which C ( G 

′ ) decreases by 2 (Line 22 and 

27 in Algorithm 4 ). We repeat the above process until k 

clean paths are found in G 

′ ′ . If there exist k clean paths 

in the original network, C ( G 

′ ′ ) will reach k at last. In the

second stage, we use the max-flow algorithm to find the 

maximal number of disjoint paths between s and d in both 

G 

′ and G 

′ ′ , then combine these disjoint paths together to 

form G 

m 

k 
. 

The main computational complexity of this algorithm 

comes from its repeated invocations of the max-flow algo- 

rithm and the shortest path algorithm. When we use Ford–

Fulkerson algorithm to compute the maximal flow and use 

Dijkstra algorithm to find the shortest path, the compu- 

tational complexity of our heuristic algorithm is O (k (V 2 + 

c| E| 2 )) . 
5. The design of NC schemes 

In this section, we present a deterministic NC scheme 

that can achieve the maximal STR on a given transmission 

topology. We also derive the lower bound of the size of 

finite field for the constructed linear code to be weakly se- 

cure. Finally, we analyze the probability that a random NC 

is weakly secure. 

Algorithm 5 shows the pseudo-code to construct 

a coding matrix �. Let the number of independent 

GEVs obtained by the wiretapper be ϑ and ϑ < (r −
1) L . We first choose a vector ζ 1 from F 

rL 
q \ ⋃ r 

i =1 〈 V i 〉 ,
where V i is defined in Eq. (1) . Then we choose ζ j 

from F 

rL 
q \ ⋃ r 

i =1 〈 ζ1 , . . . , ζ j−1 , V i 〉 for j = 2 , . . . , ϑ . According

to Lemma 2 , such ζ j exists when q is sufficient large. Then 

we extend { ζ1 , . . . , ζϑ } to a basis of F 

rL 
q . According to the

proof of Lemma 2 , a coding matrix can be formed by vec- 

tors in the basis as its rows such that the transmission is 

weakly secure. 

From Lemma 2 , we know that we can construct a cod- 

ing matrix if the finite field is large enough. However, a 

larger finite field can increase the bandwidth consump- 

tions since more binary bits are needed to represent sym- 

bols and encoding coefficients. Moreover, a larger finite 
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field can increase the computational complexity on encod-

ing and decoding. Such a feature is especially important if

the nodes have limited computational capability, in which

calculating the transformation matrix is a major challenge.

With regard to the lower bound of the size of the finite

field, we have the following theorem which shows that

the size of the finite field is related to the transmission

topology. 

Theorem 12. Given the number of data streams r and a

transmission topology, suppose that the STR is c max with k

clean paths on the given transmission topology and the cod-

ing interval is L = 

c max 
(r,c max ) 

, a lower bound of the size of the

finite field such that there exists a coding matrix � is r 
1 
θ ,

where θ = (kr/c max − 1) L + 1 . 

Proof. From Eq. (5) , we know that we cannot construct a

coding matrix such that the transmission is weakly secure

unless 

q > r 
1 

(r−1) L −ϑ+1 , (9)

where ϑ is the number of GEVs obtained by the wiretap-

per. Given a transmission topology where there are c max

disjoint paths with k clean paths, we have rL messages to

transmit, so ϑ can be shown as 

ϑ = 

rL 

c max 
(c max − k ) = rL (1 − k/c max ) . (10)

Substitute Eq. (10) to Eq. (9) , then we have q > r 
1 
θ , where

θ = (kr/c max − 1) L + 1 . �

According to Theorem 12 , when r , c max and L are fixed,

we can reduce q by increasing k . 

Kapil and Krishna [11] show that random coding can

also lead to weakly secure. However, there is only one

symbol per data stream in their transmission model. In

this section, we give the lower bound of the probability

that random coding is weakly secure under the transmis-

sion model considered in this paper and analyze the re-

lationship between the lower bound and the transmission

topology. Different from the deterministic linear coding,

the elements of � in random coding are randomly chosen

from a finite field F q instead of computing with an algo-

rithm. The lower bound of probability of random coding

being weakly secure is shown in the following theorem. 

Theorem 13. Given an rL × rL matrix � whose elements

are randomly chosen from the finite field F q , if a wiretap-

per obtains ϑ independent row vectors in �, then the prob-

ability that the transmission is weakly secure is no less than∏ ϑ 
j=1 (1 − r 

q (r−1) L − j 
) . 

Proof. Let �A be the matrix that consists of ϑ row vectors

obtained by the wiretapper. The transmission is weakly se-

cure if and only if row space of �A doesn’t include vec-

tors like βi = [0 , . . . , 0 , a (i −1) L +1 , a (i −1) L +2 , . . . , a iL , 0 , . . . , 0] ,

where 1 ≤ i ≤ r , a j ≥ 0, (i − 1) L + 1 ≤ j ≤ iL . 

Let σ be the number of matrix �A ( ϑ × rL -dimension),

with elements in F q such that row space of �A doesn’t in-

clude β i , 1 ≤ i ≤ r . 

σ ≥ (q rL − q L r)(q rL − q L +1 r) . . . (q rL − q L + ϑ−1 r) 
where each term of the product is a lower bound for

the number of choices of j th row vector ε j of �A given

ε 1 , ε 2 , . . . , ε j−1 such that the span { ε 1 , . . . , ε j } doesn’t in-

clude any β i , 1 ≤ i ≤ r . The number of such matrices with

dimension ϑ × rL is q ϑrL . Let P s be the probability that a

random coding scheme is weakly secure, then 

P s ≥ σ

q rLϑ 
= 

ϑ ∏ 

j=1 

(
1 − r 

q (r−1) L − j+1 

)
. (11)

�

Corollary 1. Given the number of data streams r and a

transmission topology, suppose that the STR is c max , coding

interval is L = 

c max 
(r,c max ) 

, and the number of secure path is k.

The lower bound of the probability that random coding is

weakly secure is 
∏ rL (1 −k/c max ) 

i =1 
(1 − r 

q (r−1) L − j+1 
) . 

Proof. The result can be obtained by substitute Eq. (10) to

Eq. (11) . �

According to Corollary 1 , when r , c max , L and q are fixed,

we can increase k to increase the lower bound. 

Suppose that c max is the maximal number of disjoint

paths found by the iTCKSP algorithm. We now propose

another heuristic algorithm, referred to as iTCKSP-MCP,

which aims to find more clean paths (i.e., a larger k ) with-

out sacrificing the maximal STR , so that the size of the

finite field can be reduced and the lower bound of the

probability that random coding is weakly secure can be in-

creased. 

iTCKSP with More Clean Paths (iTCKSP-MCP): Suppose

that we have obtained c max = c m 

k 
by the iTCKSP algorithm

with G 

′ and G 

′ ′ respectively, where G 

′ ′ is composed by k

disjoint clean paths and G 

′ is composed by the other part

of G . The basic idea of iTCKSP-MCP algorithm is to find

c max − k disjoint paths with more clean paths in G 

′ . Specif-

ically, if a clean path satisfies the condition that the ca-

pacity of G 

′ is decreased only by 1 when it is taken away,

we call it as augmenting clean path . We may first find an

augmenting clean path in G 

′ . We then try to find another

augmenting clean path in G 

′ after removing the found aug-

menting clean path and so on. This process will continue

until no augmenting clean path can be found. Such strat-

egy leads to more clean paths in G without changing the

maximal STR . We suppose that the number of augmenting

clean paths is k ′ , k ′ ≥ 0. Since there are k disjoint clean

paths in G 

′ ′ , if we can find c max − k disjoint paths with k ′
disjoint clean paths in G 

′ , then we can find c max disjoint

paths in G with k + k ′ disjoint clean paths. 

The unicast transmission topology can be formed by

c max disjoint paths in G with k + k ′ disjoint clean paths. Let

the maximal number of disjoint clean paths between s and

d in G be λ. The computational complexity of iTCKSP-MCP

algorithm is O (λ(V 2 + c| E| 2 )) . 
6. Simulation 

To evaluate the proposed TCKSP and iTCKSP algorithms,

we conduct extensive simulation experiments. In the rest

of this section, we first introduce two different types of

network topology model. We then run the proposed algo-

rithms on them and present the simulation results. 
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Fig. 6. The CDF of node degree for PA models with different average node 

degrees on log–log scale. 
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6.1. Network topology models 

In [20] , it has been shown that network topology gen- 

erators based on node degree are much better than that 

based on structure. According to the node degree distri- 

bution, network topology models can be classified into 

two types. The internet topology has been proved to fol- 

low power law distribution [21,22] , while wireless AdHoc 

networks have been proved to follow normal distribu- 

tion [23,24] . Thus, we choose two typical topology models 

for our simulation, PA model [22] and AdHoc model [23] , 

which follow the power law distribution and the normal 

distribution respectively. 

The PA topology model has an approximate power-law 

degree distribution and higher likelihood compared with 

other models in [22] . The process of generating PA topol- 

ogy is as follows: begin with 3 fully connected nodes, then 

in successive steps add one new node to the graph, such 

that this new node is connected to an existing node with 

probability proportional to the current node degree. Then 

add additional links successively by choosing a node ran- 

domly and connecting it to the other nodes with proba- 

bility proportional to the current node degree. When the 

number of nodes is fixed, the link density can be decided 

by the link number or the average node degree of the 

topology model. Fig. 6 shows the node degree distribution 

of the PA model with different average node degrees on 

log–log scale. 

The AdHoc topology model is designed for wireless Ad- 

Hoc networks based on geometric random graph. In this 

model, a wireless AdHoc network consists of a number of 

nodes or radio devices spread over a certain geographic 

area randomly. Two nodes i and j are connected with 

the probability p ( r ij ), where r ij is the distance between i 

and j . p( ̂ r ) = 

1 
2 [1 − er f (3 . 07 ln ( ̂ r ) 

ξ
)] , ξ � 

σ
η , which is derived

by the log-normal shadowing model and is shown in ex- 

pression (3) of [23] . A high value of ξ corresponds with 

stronger shadowing effects and higher link density. Fig. 7 

shows the CDF of degree for AdHoc model with different ξ
on log–log scale. 

Since directed and acyclic graph is needed in our net- 

work model as mentioned in Section 2.1 , we assume that 

the direction in PA and AdHoc is from low id nodes to high 
id nodes, while each node id is assigned successively when 

the node is added to the topology. A link is labeled as a 

polluted link with probability p p . In the following, we first 

evaluate the performance of the TCKSP and iTCKSP algo- 

rithms on finding G 

m 

k 
, after that, we evaluate the STR gain 

from the secure network coding. 

6.2. Performance of the TCKSP and iTCKSP algorithms 

We evaluate the performance of the TCKSP algorithm 

and the iTCKSP algorithm on finding G 

m 

k 
by comparing 

them with the baseline algorithm BMF. 

Given a topology G , node pair < s , d > , the capacity of

G between s and d is an upper bound of the capacity of 

G 

m 

k 
between s and d . In the simulation, we calculate the 

average of the difference between the capacity of G 

m 

k 
for 

each proposed heuristic algorithm and the capacity of G 

over the capacity of G , referred to as the relative error of 

secure capacity , which is simplified to resc . The smaller the 

resc is, the G 

m 

k 
found by the heuristic algorithm is closer to 

the optimum. 

For each combination of the number of secure paths k , 

the polluted probability p p and the topology density (av- 

erage node degree in PA and ξ in AdHoc), we generate 5 

topologies, randomly choose 50 node pairs for each top- 

pology, and run different algorithms to find G 

m 

k 
for each 

node pair. At last, we calculate the average resc to depict 

the simulation figure. For computation complexity consid- 

eration, the node number of the topology is always set to 

10 0 0. 

In Figs. 8 and 9 , we show the variation of resc ver- 

sus k in the PA model and AdHoc model respectively. In 

these experiments, p p is set to 10%, the average node de- 

gree of PA is set to 9 and the ξ of AdHoc model is set to

2. For fairly comparison, we choose 50 node pairs for each 

topology model, such that each source-destination pair has 

no less than 6 maximal clean disjoint paths. Then, we 

find out G 

m 

k 
(k = 1 , 2 , . . . , 6) by the proposed algorithms for

each node pair, and calculate the average resc for each k . 

We can see that the iTCKSP algorithm consistently outper- 

forms TCKSP and BMF algorithms. The increase of k makes 

it harder to find k optimal disjoint clean paths, and the 

capacity of the optimal G 

m 

k 
decreases as k increase. Thus, 

the resc s of both topology models increase as k increase. 
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Fig. 8. resc vs. k in PA model. 

Fig. 9. resc vs. k in AdHoc model. 

Fig. 10. resc vs. p p in PA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. resc vs. p p in AdHoc model. 

Fig. 12. resc vs. a v erage node degree in PA model. 

Fig. 13. resc vs. ξ in AdHoc model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resc in the AdHoc model is higher than that in the PA

model, this is because the AdHoc model is more compli-

cated than the PA model with similar average node degree,

so it is harder to find optimal disjoint clean paths espe-

cially for BMF and TCKSP. 

In Figs. 10 and 11 , we show the variation of resc

versus p p in PA model and AdHoc model respectively. In

these cases, the average node degree of PA model is set

to 9 and ξ of AdHoc model is set to 2. p p is changed

from 10–60%. We choose 50 node pairs for each topology

model, such that each pair has more than 3 maximal clean

disjoint paths. Then we run the proposed algorithms to

find G 

m 

3 
for each value of p p . We can see that the iTCKSP

algorithm consistently outperforms TCKSP and BMF
algorithms. Moreover, a larger p p results in more polluted

edges, which implies that it is harder to find optimal dis-

joint clean paths. Thus, the resc s of both topology models

increase as p p increase. 

In Figs. 12 and 13 , we show the variation of resc versus

the a v erage node degree in PA model and ξ in AdHoc model

respectively, which demonstrate the relationships between

resc and the network density. In these cases, p p is set to

10%. The average node degree of PA model is changed from

5 to 10, and ξ of AdHoc model is changed from 0 to 6. We

choose 50 node pairs with more than 3 maximal clean dis-

joint paths. Then we run the proposed algorithms to find

G 

m 

3 
for each value of a v erage nod e d egree and ξ . We can see

that iTCKSP algorithm consistently outperforms TCKSP and
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Fig. 14. Coding scheme vs. No coding scheme in PA model. 

Fig. 15. Coding scheme vs. No coding scheme in AdHoc model. 
BMF algorithms. In AdHoc model, the increase of ξ results 

more complicated AdHoc models, which makes the find- 

ing of the optimal disjoint clean paths more difficult. In PA 

model, due to the power-law node degree distribution, the 

increase of the average node degree mostly increases the 

degree of a small number of nodes, thus the complexity of 

PA model doesn’t change too much. Algorithm iTCKSP can 

always find the optimal G 

m 

3 
, while TCKSP and BMF fluctuate 

due to the random cause. 

6.3. The gain of STR from NC 

In this section, we evaluate the performance of achiev- 

able secure transmission rate by using approaches with 

and without NC. In Figs. 14 and 15 , p p is set to 30%, the 

average node degree of PA model is set to 9 and ξ of Ad- 

Hoc model is set to 2. For each model, We randomly gen- 

erate 5 topologies, select 50 node pairs from each topolo- 

gies, and classify them by the maximum number of clean 

paths between each node pair. We then use the iTCKSP al- 

gorithm to find all G 

m 

k 
s and decide the best k to achieve 

the maximal STR according to Theorem 6 for each state 

of the maximum number of clean paths. From both fig- 

ures, We can see that the STR with NC is very close to 

the upper bound capacity and much higher than the STR 

without NC. 
7. Related work 

For secure NC against passive attacks, besides weakly 

secure, there is another major secure model, namely, infor- 

mation theoretical secure (ITS). In the ITS model, a transmis- 

sion is secure if the attacker cannot obtain any information 

of the original messages. To fulfill such a requirement, ran- 

dom numbers must be included in the coding process. To 

achieve the ITS requirement, in [9] , Cai and Yeung gave a 

sufficient condition for finding an admissible code to pro- 

tect the message from being decoded if a set of channels 

can be accessed by a wiretapper. The requirement is also 

considered by Fedman et al. in [10] , in which they showed 

that the problem of finding a secure network code is the 

same as finding a block code with certain distance prop- 

erties. In this paper, we only focus on the weakly secure 

model. However, we believe that our approach can be ex- 

tended to address the ITS model. 

From the perspective of traffic pattern, most existing 

studies addressed multicast [9–11] . As a special case of se- 

cure multicast, secure unicast routing is studied in [25] , 

in which the authors considered a single unicast flow 

over a cyclic network under the information theoretical 

secure model. In this paper, we consider weakly secure 

NC for unicast with multiple streams. [14,15,26] studied 

how to use network coding to deal with the eavesdropping 

on noncooperative nodes, different with them, this paper 

studies how to use network coding deal with the eaves- 

dropping on cooperative edges. Several recent studies deal 

with eavesdropping on cooperative edges by network cod- 

ing [27–29] , however, all of them didn’t consider the im- 

pacts of transmission topology on STR. 

There are previous work that focuses on transmis- 

sion topology problems to minimize transmission cost [30] 

or to maximize transmission rate [31,32] . However, these 

studies do not consider the security requirement. 

8. Conclusion 

In this paper, we have investigated the optimal design 

of weakly secure NC under wiretapping attack , where we 

focused on the scenario that there are multiple unicast 

streams between the same source and destination nodes. 

Our objectives include (1) maximizing the STR under the 

weakly secure requirement, and (2) minimizing the size of 

the finite field, on which the weakly secure NC is defined. 

To address the issue, we have applied a novel approach 

that integrates weakly secure NC design with transmission 

topology construction. In particular, we first defined the 

problem and analyzed its behaviors, including the char- 

acteristics of an optimal transmission topology, the max- 

imal STR , and the NP-hardness of the problem. Based on 

the understandings of the problem, we developed an opti- 

mal algorithm that is practically solvable when the capac- 

ity between the source and destination nodes is small, and 

we developed two efficient heuristic algorithms for gen- 

eral case to achieve the above two objectives. We then de- 

vised deterministic and random coding schemes that can 

achieve the maximal STR , given a transmission topology, 

where we also studied the relationship between the trans- 

mission topology and two major system factors: (1) the 
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size of the finite field, and (2) the probability of a random

code is weakly secure. Then, another heuristic algorithm

is developed for the transmission topology which can re-

duce the size of the finite field and increase the probability

of a random code is weakly secure. Finally, we have con-

ducted extensive simulation experiments and the results

show that the the proposed heuristic algorithms achieve

good performance in various scenarios. 
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