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a b s t r a c t 

Selling spectrum resources to mobile virtual network operators (MVNOs) is popular among 

primary network operators (POs) for increasing licensed spectrum utilization. An MVNO 

seeks transmission opportunities (TXOPs) on the PO’s licensed spectrum channel(s) by spec- 

trum sensing. Since licensed primary users (PUs) often have higher transmission priority, 

TXOPs available to the MVNO are directly determined by PUs’ transmission behaviors. In 

this paper, we present the first study that uses a pricing scheme to regulate PUs’ trans- 

mission behaviors so that TXOPs for an MVNO are improved, meanwhile quality-of-service 

(QoS) of PUs can be guaranteed as well. Our idea is to design a non-uniform pricing 

scheme that regulates PUs to transmit based on a time-varying non-uniform transmission 

cost. We model the optimal pricing problem as a hierarchical game where the interaction 

between the PO and PUs is modeled as a Stackelberg game and the spectrum random ac- 

cess among PUs is modeled as a non-cooperative game. We first solve the non-cooperative 

game among PUs, as a building block, then we embed its outcome to a Markov Chain 

Monte Carlo (MCMC) framework to solve the whole optimal pricing problem. We strictly 

shows that there could be multiple optimal pricing schemes for a PO. Comprehensive 

simulations confirm the theoretical analysis, and valid the effectiveness of our proposed 

scheme. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Due to spectrum scarcity, free spectrum bands, which

can be allocated to new mobile service operators as li-

censed spectrum resources, are becoming limited. In order

to satisfy increasing demands on spectrum resources, radio

management authorities such as FCC open the spectrum

market thus allows licensed spectrum resources owned by

licensed operators, often called primary operators (POs), to
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be sold to emerging operators who have no statically allo-

cated spectrum bands. For example, in US, AT&T hosts 420

Wireless, AirVoice Wireless and Black Wireless as its sec-

ondary operators. Similar strategies are also used by Ver-

izon, T-Mobile and Sprint, so as in UK like Vodafone and

O2 as well. Those secondary operators are often called mo-

bile virtual network operators (MVNOs) where “virtual” is

in the sense that those MVNOs do not really own any spec-

trum bands. In this way, spectrum scarcity issue is miti-

gated and market demands is relatively fulfilled. 

Not only aiming to satisfy the demands of emerg-

ing MVNOs who are unable to have any licensed bands

http://dx.doi.org/10.1016/j.comnet.2016.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.02.004&domain=pdf
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Fig. 1. A motivating example. 
anymore, but also because of potential improvement on 

spectrum utilization of POs, renting licensed spectrum 

resources to MVNOs becomes popular among POs nowa- 

days. One motivation behind is that POs wish, in future 

with cognitive radio technology [1] , an MVNO will be 

able to access the spectrum resources cognitively so as 

to efficiently utilize the idle spectrum left by primary 

users (PUs). More importantly, POs also expect to gain 

extra revenues by charging transmissions from MVNOs. 

Driven by these, one rich line of research works done 

was to study how well an MVNO can exploit transmission 

opportunities (TXOPs) [2] , and how a PO should charge 

an MVNO so that to gain maximum revenues [3–7] . In 

nutshell, existing works focused more on the subjects of 

TXOP exploitation and TXOP selling. 

We observe that those works have an explicit prereq- 

uisite that idle spectrum already exist ahead, of which we 

think such a reason makes existing works less considered 

the influence of PUs’ transmission behaviors to the avail- 

ability of idle spectrum (i.e., TXOPs). A few prior inves- 

tigations such as in [8,9] have, nevertheless, shown that 

PUs’ behaviors can largely affect the availability of TX- 

OPs. Clearly, due to unmanaged transmissions from PUs, 

TXOPs for MVNOs would be unstable and unpredictable. 

More importantly, as an MVNO will often sign service- 

level-agreements (SLAs) with a PO in reality, if the stabil- 

ity of TXOPs (e.g., a minimum available length) cannot be 

reached, those idle spectrum cannot be used by the MVNO. 

Consequently, some idle spectrum resources will be wasted 

since neither PUs nor the MVNO utilize them eventually. 

Here we give a motivating example in Fig. 1 to illustrate 

the consequence. We define a TXOP to an MVNO as a win- 

dow containing 2 continuously available time slots. During 

a time frame with 20 time slots, if a PU accesses the spec- 

trum channel with probability 0.5, randomly there is only 

1 TXOP (yellow bars), though there are total 5 idle time 

slots. This means that 3 
5 = 60% idle slots are wasted (white 

bars). The root reason here is the PU’s arbitrary transmis- 

sions producing many idle spectrum fragments that can- 

not be used by the MVNO either. Instead, if we can reg- 

ulate the PU to transmit more regular (e.g. more com- 

pactly or more periodically), more continuously available 

time slots (i.e., TXOPs) may appear. Hence, in addition to 

TXOP exploitation and TXOP selling issues, we believe that 

it is equally important to study another line of issues, that 

may be more critical: how a PO can improve TXOPs for an 

MVNO, while such a study is still missing. 
Our study will be positioned in a typical cellular base- 

station (BS) scenario as follows. A PO manages a cellular 

network and in one cell covered by a BS tower, there is a 

set of PUs, each of which contends to access the spectrum 

channel like TDMA. Meanwhile, with coexisting to the pri- 

mary network (i.e., the PO + PUs), an MVNO seeks TXOPs 

cognitively and pays the PO for any successful occupations 

of TXOPs. Based on this scenario, our goal is to maximize 

the total utilization/revenues of the spectrum channel, sub- 

ject to (1) the quality-of-service (QoS) of PUs and (2) the 

SLAs of the MVNO signed with the PO. The objective ac- 

counts for two parts of revenues where the first is the rev- 

enues generated by PUs’ transmissions whose behaviors di- 

rectly determine the TXOPs to the MVNO, who only gener- 

ates the second part of revenues to the PO when the idle 

spectrum fulfill the SLAs requirement. 

It is not a trivial task to generate more TXOPs fulfilling 

the SLAs requirement as well as to guarantee meanwhile 

the QoS of PUs because of the following reasons. First of 

all, PUs’ transmissions are hardly to be controlled directly 

as they are distributed and selfish endpoints. In addition, 

it is even more difficult to predict their influence to the 

TXOPs to the MVNO because outcomes of PUs’ random ac- 

cess are complex. In order to solve the problem, we use a 

pricing mechanism, namely an invisible hand , to stimulate 

PUs transmitting more regular. We formulate the pricing 

problem as a Stackelberg game modeling the interactions 

between the PO and PUs. For PUs, their spectrum random 

access are further formulated as a non-cooperative game . In 

the hierarchical game, the PO first prescribes an incentive 

pricing scheme to the PUs, then the PO observes the re- 

sponses from PUs (i.e., the outcomes of the spectrum ran- 

dom access game among PUs) and measures how the TX- 

OPs for the MVNO will be affected. Through optimization, 

the PO tries to derive optimal pricing scheme(s) subject to 

the constraints mentioned above. 

To solve the hierarchical game, technically, such a prob- 

lem is known as a bilevel programming with equilibrium 

constraint (BPEC) problem [10] (The equilibrium constraint 

here refers to the spectrum random access game among 

PUs). Theoretical results have shown that a BPEC prob- 

lem is difficult because in most of cases the response 

from the followers (i.e., the PUs) is implicit. Consequently, 

traditional optimization techniques cannot be applied di- 

rectly to find the optimal solutions for the leader (i.e., 

the PO). In addition to the inherited challenge as a typ- 

ical BPEC problem, as to be shown later, our problem 

has a unique challenge in that the objective function of 

the leader is a “black-box”, because it is impossible to 

know how many TXOPs can be generated given a pric- 

ing scheme analytically. This unique challenge further ren- 

ders our problem to be a black-box BPEC problem [11] , 

and thus hampers us to design an exact algorithm like 

gradient-based or approximation-based methods. Hence, 

we first design an efficient solver for the non-cooperative 

game among PUs at the lower level, and then use it as a 

building block to embed in a Markov Chain Monte Carlo 

(MCMC) framework, which holds promise for non-convex 

and black-box problems, to ultimately solve the optimal 

pricing problem. Our contributions are summarized as 

follows. 
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Table 1 

The notations. 

Notation table 

N The set of active PUs with a total number N . 

T The total number of time slots in a frame. 

i The index of the i -th PU. 

−i The indices of all PUs other than i . 

j The index of any PU other than i . 

c 0 The average transmission cost of PUs. 

c s The unit price for every slot transmission from an SO. 

γ t The cost coefficient at time slot t ( γ t ∈ [ γ l , γ u ]). 

γ The vector of all γ t during [1, T ]. 

a it The access probability of PU i at time slot t . 

A The access probability matrix consisting of all a it . 

a i The row vector consisting of all a it of PU i . 

ˆ a t The column vector consisting of all a it at time slot t . 

ξ The transmission status vector of all PUs. 

p i The transmission power of PU i . 

h i The power gain from PU i at the base station. 

SINR it The signal-to-interference-plus-ratio of PU i at time slot t . 

r it The data rate of PU i at time slot t . 

ω i The weight coefficient for the utility gain of PU i . 

τ The time window with length � τ during [1, T ]. 

S The set of all transmission opportunities during [1, T ]. 

R p The revenues from the PUs’ transmissions during [1, T ]. 

R s The revenues from by the SO transmissions during [1, T ]. 

R T The total revenues from by both PUs and SO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 In a Long-Term Evolution (LTE) system, the duration of each frame is 

10ms, which consists of 10 sub-frames or 20 time slots. 
• We present the first study on the influence of PUs’ be-

haviors to TXOPs for an MVNO and propose an optimal

pricing scheme to regulate PUs’ transmission behaviors

so as to improve TXOPs for the MVNO. 

• We formulate the optimal pricing problem as a hierar-

chical game consisting of a Stackelberg game between

a PO and PUs, whose responses are modeled as the re-

sults of an N -player non-cooperative game among PUs.

We prove the existence and uniqueness of the best re-

sponse of PUs to a given pricing scheme, and there

would exist multiple optimal pricing schemes for the

PO. 

• To solve the hierarchical game, we first develop an ef-

ficient solver for the spectrum random access game

among PUs, based on which we further develop an

MCMC-based algorithm to overcome the unique chal-

lenge where the objective function of the PO is a

“black-box”. To the best of the authors’ knowledge,

technically, this is also the first attempt to use an

MCMC method in a gaming problem. 

This paper is organized as follows. In Section 2 , we for-

mulate the optimal pricing problem as a hierarchical game.

After that, the properties of the hierarchical game will be

analyzed in Section 3 . In Section 4 , we develop efficient

algorithms to solve the hierarchical game. Comprehensive

numerical simulations will be conducted in Section 5 . Re-

lated work will be discussed in Section 6 and conclusion is

made in Section 7 . 

2. Problem formulation 

In this section, we first formally define our system

model and our pricing model, and then formulate the hier-

archical game. To facilitate the discussions, we list impor-

tant notations in Table 1 . 
2.1. The system model 

As mentioned earlier, we investigate a typical cellular

BS network scenario, where a BS covers a certain geo-

graphical area, known as a cell . In our study, we consider

that |N | = N PUs within the cell have data to send to the

BS. When transmitting data to the BS, all PUs are synchro-

nized and the time horizon is partitioned into equal-sized

time frames, each of which consists of T time slots 1 . 

In each time slot t , each PU i accesses the spectrum

channel with an access probability a it . In order to represent

the transmission status of all PUs succinctly, we introduce

an N -tuple vector ξ whose entry ξi = 1 if PU i transmits,

ξi = 0 otherwise. Hence, at time slot t , the probability that

PU i is transmitting together with some other active PUs

can be calculated as: 

Pr 
[
ξ, ξi = 1 

]
= 

Pr. of active PUs ︷ ︸︸ ︷ 
a it 

∏ 

∀ ξ j =1 , 

j � = i 

a jt ·
Pr. of inactive PUs ︷ ︸︸ ︷ ∏ 

∀ ξ j ′ =0 , 

j ′ � = i 

(1 − a j ′ t ) , (1)

The data rate of each PU i depends on the signal-to-

interference-plus-noise-ratio (SINR). Suppose that PU i trans-

mits with a fixed power level p i , and the power gain at the

BS side is h i , the SINR of PU i at time slot t will be: 

SINR it ( ξ) = 

p i h i 

I 0 + 

∑ 

j � = i ξ j p j h j 

, (2)

in which I 0 is the level of background white noise, and the

expected data rate of PU i in time slot t , denoted as r it , will

be: 

r it = 

∑ 

∀ ξ,ξi =1 

Pr [ ξ, ξi = 1] · log 
(
1 + SINR it ( ξ) 

)
. (3)

where we assume that the unlicensed users (e.g., unli-

censed users managed by the MVNO) also have ability to

avoid collisions with PUs. 

In this work, we assume the channel gain is identical

during the time frame. We explain the major reasons as

follows. 

First of all, introducing a time-varying channel gain h (t)

is straightforward, but this will not change the problem

property fundamentally rather only modifies the equation

of the channel rate r it . However, such a time-varying fac-

tor will further complicated the formulation. Therefore, for

simplicity, we assume channel gain is a constant during a

time frame. 

More importantly, the major goal of this work is to ver-

ify if the shapes of the desirable pricing schemes would

present some regularities and specific forms, as to be

shown in the simulation results. If we change the channel

gain factor as time-varying, due to the resulted changes on

expected gains in Eq. (3) , such features may become not

very obvious, which hampers us to reveal the insights for

the pricing schemes. 

It is worth to note that, thanks to the MCMC-

based method, our proposed algorithm will also
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work - sampling from a different objective function 

with a time-varying the channel gain even without 

any modification. this again shows that the benefits of 

MCMC-based method on handling tough computational 

problems. 

As mentioned earlier, we investigate a generalized sce- 

nario where an MVNO can have a specific requirement to 

the duration of a TXOP that is necessary for a particular 

frame structure or to transmit a minimum amount of data. 

Thus, we define TXOP as below: 

Definition 1. A transmission opportunity (TXOP) is a time 

window τ in a frame whose interference level I τ ≤ ζ and 

length � τ = � ( ζ and � are two predefined values). 

Note that our definition is flexible and can cover differ- 

ent co-existence scenarios. First, if the length requirement 

is very small, then any available time duration can be a 

TXOP, which is assumed in many existing studies. Second, 

if the MVNO accesses spectrum with the overlay model, 

then we can let ζ = 0 , otherwise it becomes an underlay 

model, in which we let ζ > 0. 

Another point is that, in this work, we directly assume 

that such interference level is known. There are many ways 

to define this value. For example, it could be negotiated 

between the primary operator and the MVNO, or be cal- 

culated from empirical study based on historical statistics. 

Another important reason is that, since PUs are basically 

autonomous users in the primary network, real-time gath- 

ering the interference level and applying on the secondary 

market with the MVNO seems impractical. Moreover, on 

a spectrum market, we believe that a stable interference 

level is also desirable to the MVNOs because this value po- 

tentially affects their TXOPs, thereby affects the QoS of the 

secondary network in general. 

2.2. The pricing model 

Based on the system model above, we define the pric- 

ing model, i.e., how the PO charges PUs and sell TXOPs to 

the MVNO. 

For the pricing model to PUs, we use c 0 to denote the 

average transmission cost per time slot. In most of exist- 

ing studies, the cost per time slot during a frame is fixed. 

Thus, for a PU, as transmitting at any time the cost is the 

same, it will have no incentive to consider possibly differ- 

ent transmission costs but purely depend on its transmis- 

sion demand. To create more TXOPs, we can encourage PUs 

to change their behaviors by non-uniform pricing schemes. 

Specifically, we define the cost per time slot as γ t c 0 , where 

γ t is a time-varying cost coefficient for the time slot t . We 

further define γ as the cost vector consisting of all γ t (1 ≤
t ≤ T ). Since the average cost c 0 should be unchanged, we 

have: 

1 

T 

T ∑ 

t=1 

γt = 1 . (4) 

This constraint is practically imperative because it re- 

stricts the PO to behave rationally by preventing it from 

advertising any irrational pricing schemes like only lift- 

ing/discounting the prices at every time slot. Clearly, if any 
γt = 1 , it reduces to the usual case with a uniform pricing 

scheme. 

For the pricing model to the MVNO, we consider that 

the PO will charge c s per time slot during a full TXOP, and 

the PO will not charge the MVNO if the available time win- 

dow is shorter than that of a TXOP. For example, if � = 3

time slots and there is a time window τ with only � τ = 2 

time slots, then the PO will not charge the MVNO because 

the MVNO cannot occupy a fully useful TXOP. With such a 

pricing model, when designing the optimal pricing scheme 

for PUs, the PO has to consider how much revenues could 

be generated from the MVNO. 

2.3. The hierarchical game 

Given the system model and the pricing model, we for- 

mulate the optimal pricing problem as a hierarchical game. 

The goal of the PO is to fully utilize its spectrum resources 

so as to maximize its total revenues, subject to a QoS con- 

straint for PUs. The goal of a PU is, on the other hand, 

trying to transmit more by determining its optimal access 

probability a it during a frame [1, T ] according to its own 

transmission budget. 

For compact and succinct representation, let an N × T 

matrix A be the access strategy matrix whose element a it 
is the access probability of PU i ∈ [1, N ] at time slot t ∈ [1,

T ]. 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 1 , 1 · · · a 1 ,t · · · a 1 ,T 
. . . 

. . . 
. . . 

. . . 
. . . 

a i, 1 · · · a i,t · · · a i,T 
. . . 

. . . 
. . . 

. . . 
. . . 

a N, 1 · · · a N,t · · · a N,T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N×T 

. (5) 

Clearly, the row vector a i of A is the access probability vec- 

tor of PU i in the whole frame, and the column vector ˆ a t 
of A is the access probability vector of all PUs at time slot 

t . 

2.3.1. The spectrum random access game among PUs 

For PU i , given a pricing scheme γc 0 , its utility func- 

tion u it ( · ) at time slot t is its transmission gain minus its

transmission cost, namely net utility gain (NUG): 

u it ( ̂ a t , γt ) = ω i r it ( ̂ a t ) − a it γt c 0 , (6) 

where ω i is the gain coefficient. The total NUG of PU i over 

a frame is the sum of NUG at every time slots: 

u i (A , γ ) = 

T ∑ 

t=1 

u it ( ̂ a t , γt ) . (7) 

Each PU i considers to determine an optimal strategy 

trace a ∗
i 

for every time slots in the frame by solving the 

optimization problem below. 

P i : max 
a i 

u i (a i , A −i , γ ) 

s.t. 

T ∑ 

t=1 

a it γt c 0 ≤ b i 

a it ∈ [0 , 1] , ∀ t ∈ [1 , T ] , (8) 
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Fig. 2. The structure of the hierarchical game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where A −i represents the access probabilities of all PUs

other than i , and b i is the transmission budget limiting the

total affordable costs of PU i . In the sequel, we refer the

N -player non-cooperative game among PUs as { P i } i ∈N . 

2.3.2. The optimal pricing game between PO and PUs 

We now consider the optimal pricing problem for the

PO. We first represent revenues generated from the PUs

and the MVNO by two functions R p (·) and R s (·) , respec-

tively. Revenues from PUs R p (·) can be calculated by the

sum of the transmission costs paid by all PUs during a

frame: 

R p ( A , γ ) = 

T ∑ 

t=1 

∑ 

i ∈N 
a it γt c 0 . (9)

Revenues from the MVNO R s (·) depends on the num-

ber of TXOPs during a time frame. To simplify the discus-

sions, hereafter we assume that the duration of a TXOP is

an integer multiple of the duration of a time slot. Now, let

S be the set of all available windows (i.e., I τ < ζ , ∀ τ ∈ S )

during the frame, which depends on the access probability

of all PUs (i.e., the matrix A ). Hence, R s (·) equals to the

whole cost for all the TXOPs in S , which can be formally

calculated as: 

R s (A ) = c s 
∑ 

τ∈ S 

⌊ � τ

� 

⌋
· �, (10)

where � � τ
� 
	 represents the maximum number of TXOPs

that can be used by the MVNO in the idle window τ .

For instance, if an idle window � τ = 5 and a TXOP re-

quires � = 2 , then � � τ
� 
	 = � 5 2 	 = 2 , meaning that there are

at most 2 TXOPs (i.e., 4 time slots) in τ for the MVNO, and

the PO can maximally gain revenues of 4 c s from this idle

window. 

Remarks. As mentioned before, this part of revenues (i.e.,

R s (·) ) is a “black-box” because (1) it depends on the ex-

act form of the access probability matrix A , which is the

outcome of the spectrum random access game among PUs,

and (2) even if we have the exact form of A , we can only

identify the idle window set S but have to algorithmically

calculate the amount of TXOPs according to Definition 1 .

Recall that, the first challenge above inherits from being

a BPEC problem, while the second one is the unique chal-

lenge of our problem. 

With R p (·) and R s (·) , the objective function of the PO

is the sum of the two parts: 

R T (A , γ ) = R p (A , γ ) + R s (A ) . (11)

There are some constraints for the PO when design-

ing the optimal pricing scheme. The first constraint has

been given in Eq. (4) , which maintains the average price

to the PUs unchanged. The second constraint for the PO is

to guarantee the QoS of PUs, which considers that the av-

erage transmission rate of the primary network in a frame

should be at least a pre-defined value ˜ r : 

1 

N · T 

T ∑ 

t=1 

∑ 

i ∈N 
r it ≥ ˜ r . (12)
 

Note that other kinds of constraints such as fairness of in-

dividual users can be introduced in our formulation. Due

to limited space, we only consider the average transmis-

sion rate above. 

With the above definitions, the optimal pricing scheme

problem for the PO (i.e., to find the optimal pricing scheme

γ∗c 0 ) can be formulated as: 

P : max 
γ

R T (A 

∗, γ ) 

s.t. 
1 

T 

T ∑ 

t=1 

γt = 1 

1 

N · T 

T ∑ 

t=1 

∑ 

i ∈N 
r it ≥ ˜ r 

A 

∗( γ ) = arg max { P i } i ∈N (13)

where the equilibrium constraint appears as the constraint

at the last line. 

In practice, the PO can further link the values of c s and

c 0 based on its preference to different sets of users. Partic-

ularly, the PO can set c s < c 0 if it prefers revenues from

the PUs, and can set c s > c 0 when it considers selling to

the MVNO is more profitable. The impact of c s / c 0 will be

further investigated in the numerical discussions. 

Overall, when the PO solves the problem P in (13) , the

best response of the PUs (i.e., A 

∗) is given by solving the

non-cooperative game defined by { P i } i ∈N in (8) . The struc-

ture of the hierarchical game formulated in this section is

sketched in Fig. 2 . 

3. Game property analysis 

In this section, we first analyze the equilibrium prop-

erties of the spectrum random access game { P i } i ∈N among

PUs. After that, we analyze the properties of the optimal

pricing game P between the PO and PUs. 

3.1. The spectrum random access game among PUs 

According to the system model, the strategy of a PU

is its access probability a it ∈ [0, 1], meaning that all PUs

randomize between “transmit” and “back-off”. Before we

study the property of the randomized strategy of PUs, we
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first exclude the existence of pure-strategy Nash equilib- 

rium by Theorem 1 . 

Theorem 1. No pure-strategy Nash equilibrium exists in the 

spectrum random access game among PUs. 

Proof. We prove the statement by contradiction. 

We first assume that the capacity of the spectrum chan- 

nel is n̄ , which means that if more than n̄ PUs transmit 

simultaneously, utility gains of PUs will be smaller than 

the transmission cost. We then assume that there exists 

a pure-strategy Nash equilibrium A 

∗ where each PU deter- 

ministically chooses to either “transmit” or “back-off” (i.e., 

∀ a ∗
it 

∈ { 0 , 1 } ) during a frame. At time slot t , we denote the

PUs choosing to transmit as N tx (i.e., a ∗
it 

= 1 , ∀ i ∈ N tx ) and

the PUs choosing to back off as N bo (i.e., a ∗
jt 

= 0 , ∀ j ∈ N bo ).

Hence, there are three possible cases as following. 

Case |N tx | < n̄ , which means that the channel capacity 

is not saturated. Clearly, any PU j ∈ N bo who is back off

now, can improve its NUG by unilaterally deviating from 

a ∗
jt 

= 0 to a ∗
jt 

= 1 . Thus, the total NUG of PU j will increase

during the frame. 

Case |N tx | > n̄ , which means that the channel usage is 

over its capacity. In this case, any PU i ∈ N tx who is trans- 

mitting now, can save its transmission cost by unilaterally 

deviating from a ∗
it 

= 1 to a ∗
it 

= 0 since keeping transmitting 

will suffer serious interference from other active PUs. Thus, 

switching to be back-off can improve the NUG as well. 

Case |N tx | = n̄ , which means that the PUs in N tx exactly 

saturate the channel capacity. This strategy profile is unsta- 

ble because the PUs in N tx benefit from always successful 

transmissions while those PUs in N bo will never transmit 

to avoid interference. Without any communication and co- 

operation, this status will never be achieved among selfish 

PUs because any PU is not willing to back-off while letting 

others to transmit forever. 

Note that, during the whole time, the state machine 

runs dynamically rather than stays statically. For exam- 

ple, when the channel is not saturated (i.e., in the first 

case above), for those successfully occupy the opportunity, 

their NUGs will increase. However, for those fail to trans- 

mit, their situation will transfer to the second case in this 

proof. 

Therefore, in general, all PUs’ status will transfer among 

those three cases, which exactly implies that there is no 

pure strategy Nash equilibrium again. Otherwise, every PUs 

will hold on one deterministic state. And the increase of 

respectively NUGs is also an expected view locally from in- 

dividual PUs. 

Generally, at any time slot, a PU transmitting determin- 

istically (i.e., choosing a pure strategy) is not an equilib- 

rium strategy. Thus, the pure strategy A 

∗ is not a Nash 

equilibrium and contradicts the initial assumption. This 

completes the proof. �

Remarks. For the spectrum random access game among 

the PUs, the equilibrium will be a mixed strategy, called 

a focal equilibrium of the game [12] . It has been theoreti- 

cally proved that focal equilibrium will be the first choice 

a player will tend to use in the absence of communication. 
Based on Theorem 1 , the optimal solution of the game 

among PUs will be a mixed-strategy Nash equilibrium (MS- 

NE), meaning that each PU shall transmit probabilistically. 

Next we show that this MS-NE is unique. The result is es- 

tablished by verifying two properties of the spectrum ran- 

dom access game among PUs: (1) the convexity of the 

strategy set of a PU during a frame, and (2) the convexity 

of the payoff function of a PU. Based on these properties 

we reach the conclusion in Theorem 2 . 

Lemma 1. The strategy set of any PU i is a convex set (i.e.,

condition (1) holds). 

Proof. In a frame, the strategy set of a PU i is to choose its

access probability a it for each time slot subject to its trans- 

mission budget constraint. Since the transmission budget 

constraint is a half hyperspace and the intersection opera- 

tion on every constraints preserves convexity, the possible 

strategies of a PU form a non-empty convex set. This com- 

pletes the proof. �

Lemma 2. The utility function u i ( ·) of PU i is a concave-

convex function in a i and A −i , respectively (i.e., condition (2) 

holds). 

Proof. We first prove that u i ( ·) is concave in a i , i.e., con-

cave in PU i ’s strategy profile during a frame. According to 

the definition of u i in Eq. (7) , entry a it ∈ a i only appears in

time slot t during a frame, and u i (·, A −i ) is linear in a i . For

a linear function, it is both convex and concave. Hence, u i 
is a concave function in a i . 

We next prove that u i ( ·) is convex in A −i , i.e., convex in

the strategy profiles of PUs other than i . In the definition 

of u i given by Eq. (7) , any PU j other than i at time slot

t (i.e., a jt ) could have a transmission status of either ξ j = 

1 or ξ j = 0 in the transmission status vector ξ. Therefore, 

the coefficients denoted by co ξ j 
of any a jt in the 1st-order 

derivative of u i ( ·) could be either 

co ξ j =1 = a it 
∏ 

∀ ξ j ′′ =1 , 

j ′′ � = i, j 

a j ′′ t 
∏ 

∀ ξ j ′ =0 

(1 − a j ′ t ) log (·) , or 

co ξ j =0 = −a it 
∏ 

∀ ξ j ′ =1 

a j ′ t 
∏ 

∀ ξ j ′′ =0 , 

j ′′ � = i, j 

(1 − a j ′′ t ) log (·) , ∀ ξ, (14) 

where both cases are constant. Thus, u i ( ·) is also linear in 

A −i , which implies that it is convex (and concave) in A −i . 

This completes the proof. �

Remarks. Lemma 1 and Lemma 2 together ensure that 

the game among PUs is an N -player concave-convex game, 

but the equilibrium solution of such a game might not be 

unique. We prove its uniqueness in the following theorem. 

Theorem 2. The game among PUs possesses a unique MS-NE. 

Proof. To prove the uniqueness, we verify the sufficient 

condition proposed in [13] , which guarantees the unique- 

ness of MS-NE. Specifically, the sufficient condition states 

that there should exist an N -element positive vector λ
such that a linear combination of all PUs’ utility func- 

tions g(A ) = 

∑ 

i ∈N λi u i (·) is concave in the access probabil- 

ity matrix A . We next verify this property of the function 

g ( A ). 
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In the function g ( A ), entry a it ∈ A appears in two differ-

ent parts: 

g(A ) = λi u i (·) + 

∑ 

j ∈N , j � = i 
λ j u j (·) , (15)

where the first part is the utility function of PU i itself,

i.e., u i ( ·). For this part, we have proven in Lemma 2 that

u i is linear in a i , thus it is a concave function. The second

part is the utility function of any PU j other than i , i.e.,

u j ( ·). From the perspective of PU j , a it is a strategy of PU

i in A − j . Since we have also proven in Lemma 2 that any

utility function u i (w.r.t. u j ) is linear in A −i (w.r.t. A − j ), the

second part is also linear and thus concave in a it . Clearly,

the sum of the two linear terms is also linear in a it , which

means that the function g ( A ) is linear (i.e., concave) in A .

Hence, the sufficient condition is satisfied. This completes

the proof. �

Remarks. Theorem 2 guarantees the existence of a unique

optimal strategy trace a ∗
i 

of any PU i during a frame and

any unilaterally deviating this optimal strategy will lower

the NUG of the PU. 

3.2. The optimal pricing game between the PO and PUs 

We now analyze the properties of the optimal pric-

ing game defined in P . The main result is that our opti-

mal pricing game could have multi-optimality because it is

proven as of a D.C. programming problem. A D.C. program-

ming has an objective function which can be decomposed

as a convex function minus a convex function (or equiva-

lently, a convex function plus a concave function) [14] . We

establish this result based on the following two Lemmas. 

Lemma 3. In the objective function of the PO R T (·) , the rev-

enue from PUs R p (·) is a concave function in the decision

variable γ . 

Proof. Since variable γ of R p (·) in Eq. (9) is also a param-

eter affecting the access probability matrix A , we first need

to analyze the property of equilibrium solution of the spec-

trum random access game among PUs defined in P i . 

According to the formulation of P i , if the strategy pro-

files of all PUs other than i , i.e., A −i , are fixed, given any

pricing scheme γ , the problem P i is a linear programming

(LP) that maximizes u i (·, A −i , γ ) subject to the transmis-

sion resource budget constraint. However, the LP changes

in terms of a parameter, i.e., γ . Such a type of LP problems

containing uncertain parameters is called multi-parametric

LP (MP-LP) problems [15] . 

According to the property of an MP-LP problem, the op-

timal solution is a continuous and piecewise affine func-

tion of the uncertain parameters. To our problem, this

property means that the optimal access probability matrix

A 

∗ is an affine function of γ , which is both convex and

concave. Thus we have the slop value a ′∗
it 

< 0 (since the

access probability decreases with the price coefficient γ t )

and 2 nd -order derivative a ′′∗
it 

= 0 (since A 

∗ is affine). 

The entries of the Hessian matrix of the revenues from

the PUs R p (·) with respect to γ are: 

∇ 

2 
γt 
R p = a ′′∗it γt c 0 + a ′∗it 

∇ γt γt ′ R p = 0 (16)
Since a ′′∗
it 

= 0 and a ′∗
it 

< 0 , we have: 

∇ 

2 
γt 
R p < 0 , ∇ γt γt ′ R p = 0 , (17)

This indicates that the Hessian matrix is negative definite,

which means that R p is concave in γ . This completes the

proof. �

Lemma 4. In the objective function of the PO R T (·) , the rev-

enues from the MVNO R s (·) is convex in the decision variable

γ . 

Proof. Since R s (·) is already a form of a non-negative

weighted sum, proving its convexity is equivalent to prov-

ing that the set of all available windows, i.e. S , mapped

from the transmission strategy profile of PUs (i.e., matrix

A ), is convex. 

However, S is a discrete set as the period length of any

τ is an integer number, which renders the ordinary defi-

nition of a convex set invalid. We thus use the definition

from discrete convexity analysis as developed in [16] to

verify the generalized convexity of the set S . 

In the discrete case, a convex set requires that, given

any two distinct points x and x ′ from that set, the two new

points � x + x ′ 2  and � x + x ′ 2 	 are still in the same discrete set.

This is to say that, given two available windows τ and τ ′
both from S and their middle point ˜ τ = 

τ+ τ ′ 
2 (may not be

defined in S ), we need to prove that the two new points

� ̃  τ and � ̃  τ	 are still in S . 

Since we can always organize the set S on a 2-D grid,

e.g., by sorting all available windows in an ascending or-

der, the � ̃  τ and � ̃  τ	 can always find the closest rounding

points on the grid. Therefore, both the two new points are

in the set S . Given this property, the set S is real-value ex-

tensible by relaxing Z 

+ to R 

+ . The relaxed set in the real-

valued space is also a normal convex set. This completes

the proof. �

Theorem 3. The optimal pricing game is a D.C. programming

problem (multi-optimality). 

Proof. According to Lemmas 3 and 4 , we know that the

objective function of the optimal pricing game problem in

P is the sum of a concave function (i.e., the revenues from

the PUs R p ) and a convex function (i.e., the revenues from

the MVNO R s ). Since the objective function can be decom-

posed as the sum of a concave function and a convex func-

tion, it is a D.C. programming problem. This completes the

proof. �

Overall, the key properties of our optimal pricing prob-

lem are: (1) PUs’ best response A 

∗( γ) to any pricing

scheme is a unique MS-NE, and (2) there could be multiple

optimal pricing schemes γ∗ for the PO. 

4. Algorithms 

In this section, we first describe the main idea and then

elaborate on the details of the algorithms. 

4.1. The main idea 

Recall that the optimal pricing game is a black-box

BPEC problem because PO’s utility function contains a
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Algorithm 1 The PUs’ game solver 

Input: Maximum iteration number K, Pricing scheme γ , 

Precision tolerance ε
Output: A 

∗

1. initialize A 

0 ∼ X , tol ← inf ; 

2. A 

k ← A 

0 ; 

3. while tol > ε or k ≤ K 

4. A 

′ ← arg max A ′ ∈X 
(A 

k , A 

′ ) ; 
5. update A 

k ← (1 − τk ) A 

k + τk A 

′ ; 
6. end 

7. A 

∗ ← A 

k ;

 

black-box term: the revenues from the MVNO (i.e., R s ). 

Without a black-box term, traditional methods generally 

replaced the equilibrium constraint (i.e., the game among 

PUs) by its KKT-conditions so that the bilevel programming 

can be reduced to a single-level programming, and solved 

by branch-and-bound methods, trust-region methods, gra- 

dient descent methods, etc. One initial presumption behind 

those methods is that, after transforming to a single-level 

programming, the problem will become easier. 

However, this is not the case in our problem because 

even if the spectrum random access game among PUs 

is replaced with its KKT conditions, the objective func- 

tion of the transformed single-level programming is still a 

black-box problem due to the implicit revenue term of the 

MVNO R s . 

To solve the problem, our idea is to design an efficient 

solver for the spectrum access game among PUs first, and 

then embed the solver as a building block into an MCMC 

framework, targeting on the black-box challenge, to solve 

the optimal pricing game. An MCMC method will estab- 

lish a Markov chain of feasible solutions to visit the solu- 

tion space. With sufficient samples, the trace can restore 

the whole domain of the objective function. This therefore 

overcomes the black-box challenge because it only needs 

to probe the value of the objective function, which can be 

done algorithmically. More importantly, since our problem 

has multiple optimal solutions, an MCMC method over- 

comes locally optimal issues. 

Next, we will first introduce the building block solver 

for the PUs’ random access game, and the elaborate on the 

MCMC algorithm to solve the whole optimal pricing game. 

4.2. The solver for PUs’ random access game 

We have shown that the game among PUs possesses a 

unique MS-NE A 

∗( γ) in Theorem 2 . During a frame, there 

are a total N optimization problems to solve, each of which 

is defined in P i . Due to the correlations of the decision 

variables in the formulation, it is impossible to solve the 

set of optimization problems sequentially because when a 

PU calculates its a ∗
i 

all other PUs will also calculate their 

own optimal access probabilities. This renders A −i to be 

not fixed but PU i cannot control them. In order to resolve 

these correlations, we reformulate the spectrum random 

access game originally containing N optimization problems 

to one single optimization problem. The main idea is as 

following: 

Since a ∗
i 

is an equilibrium strategy for PU i , PU i can- 

not further improve its NUG by unilateral deviation. This is 

to say that if there exists another strategy profile a ′ 
i 

that 

could further improve the NUG u i ( ·), the current strategy 

a i would not be optimal. Hence, solving the original game 

can be reformulated as iteratively searching a new strategy 

profile a ′ 
i 

based on the current strategy profile a i until the 

improvement becomes zero. This idea was first proposed 

in [17] to deal with strategy set correlations among multi- 

ple players 2 , and is called “NI-reformulation”. Formally, at 
2 The correlation on the feasible strategy sets of players means that one 

player’s strategy set is constrained by the strategies applied by other play- 
each iteration, we solve the following optimization prob- 

lem to find a locally optimal access probability matrix 

A 

′ ∗: 

max 
A ′ ∈X 


(A , A 

′ ) , (18) 

where 

X := X 1 × X 2 × · · · × X N (19) 

is the whole strategy space of all PUs, X i is the strategy set 

of PU i , and 
( ·) is defined as: 


(A , A 

′ ) = 

∑ 

i ∈N 

[ 
u i (a ′ i , A −i ) − u i (a i , A −i ) 

] 
, (20) 

to represent the sum of improvements of each PU i by uni- 

laterally deviating from its current strategy a i to a ′ 
i 
∈ A 

′ 
while keeping A −i fixed. 

The algorithm for solving this reformulated problem is 

a dynamic process iteratively approaching the MS-NE. At 

the beginning, we initialize a random feasible A 

k , and then 

we search an optimal A 

′ ∗ that maximizes the improvement 


( ·) based on A 

k . With A 

′ ∗, we move A 

k toward A 

′ ∗ with

a convex combination. This process is repeated until the 

improvement approaches zero (in practice: becomes small 

enough) or a prescribed K iterations finished. The pseudo- 

code is given in Algorithm 1 . Convergence of the algorithm 

in a finite number of iterations is guaranteed provided that 

τ k → 0 and 

∑ ∞ 

k =0 τk = ∞ according to the result in [18] . 

Remarks. It is worth noting that the equilibrium A 

∗ can 

be easily achieved in a distributed way as well if all PUs 

follow a continuous best-response dynamic strategy [19] . 

It means that communications between PUs are not neces- 

sary. Moreover, it is enough to consider converged results 

for the interest of a PO. 

4.3. The solver for the PO’s optimal pricing 

We now solve the optimal pricing game. One challenge 

is that there could be multiple local optima in our prob- 

lem, and any local optimum cannot guarantee its global 

optimality. In order to find a global optimum, we must 

find all local optima and compare them. This, however, is 

unusually hard, especially in high-dimensional cases. More 
ers. Simply put, with correlation on strategy sets, players cannot choose 

their strategy profiles freely since one’s strategy set depend on the moves 

of other players. 
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Algorithm 2 Pricing scheme sampling solver 

Input: Total number of samples K 

Output: γ∗

1. k ← 0 , γk ∼ dom R T , S ← O ;
2. A 

∗( γk ) ← call Algorithm 1 for all { ̂ a ∗t } t∈ [1 ,T ] ; 
3. while k < K 

4. γk +1 ∼ π( γk , σ
2 ) within dom R T ;

5. A 

∗( γk +1 ) ← Algorithm 1; 

6. a ∼ min 

{
1 , 

R T ( γk +1 ) 

R T ( γk ) 

}
; 

7. if accepted, γk ← γk +1 , A 

∗( γk ) ← A 

∗( γk +1 ) , 

S ← S ∪ γk ;
8. else keep γk , A 

∗( γk ) ;
9. k ← k + 1 ; 

10. end 

11. γ∗ ← arg max γ∈ S R T ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

essentially, as discussed before, another challenge in our

problem is that the PO’s utility function is a black-box. No

matter if we can have exact solutions for the responses

of the PUs (i.e., the access probability matrix A ), the rev-

enue part from the MVNO can only be evaluated algorith-

mically, which impedes us to derive the analytic gradient

information. 

In order to address these two challenges, we design

an MCMC algorithm as introduced in the beginning of

this section. Formally, this sampling optimizer works as

following: 

First, we initialize a pricing scheme γ0 c 0 from the do-

main of R T (·) and let it be the sample in the k th step

γk ( k = 0 at the beginning). Given the value γk , we call

Algorithm 1 to calculate the best response A 

∗( γk ). Next we

randomly generate a new feasible sample γk +1 from a pro-

posal distribution 

3 π ( ·) based on γk . After that, we calcu-

late an acceptance probability a by choosing the smaller

value between 1 and 

R T ( γk +1 ) 

R T ( γk ) 
. Based on the acceptance

probability a , if accepted, we update both γk and A 

∗( γk )

with γk +1 and A 

∗( γk +1 ) , otherwise we discard the new

sample and do re-sampling. The sampling algorithm ends

once it collected enough samples K (predefined). Finally,

we choose the pricing scheme(s) that maximize R T (·) as

the optimal solution(s) γ∗. The pseudo-code of this sam-

pling algorithm is given in Algorithm 2 . 

Note that integrating Algorithm 1 into the MCMC

framework is crucial because it largely reduces the di-

mensionality of the search space. Specifically, by using the

solver to calculate A each time for a given γk , we reduce

the whole solution space from the original [ A , γ] whose

dimension is (N + 1) × T to a T -tuple vector space γ . This

greatly improves the efficiency of the sampling process. 

Additionally, advanced sampling frameworks are avail-

able. One could, for example, approximate the objective

function better and quicker by dynamically adapting the

proposal distribution π ( ·) [20] . Also, maximum-entropy ar-

guments can be used to establish optimality of the pro-

posal in some sense [21] . However, since developing a new
3 Here we choose a multivariate Gaussian distribution π ( γk , σ
2 ) whose 

mean is γk and covariance matrix σ2 is a predefined square matrix. 

 

 

 

 

sampler is not the main topic of this work, we use the ba-

sic one. 

4.4. Computational analysis 

An MCMC algorithm normally needs many computa-

tional resources because of its sampling process. And usu-

ally the efficiency of an MCMC algorithm is weaker than

a deterministic algorithm, when it is possible to facilitate

the problem’s structures. As we explained already, how-

ever, the spectrum pricing problem formulated in our work

has some unique computational challenges, especially the

‘black-box’ feature, which makes most deterministic al-

gorithms infeasible. Therefore, when exploiting the solu-

tion of our problem, our priority in mind is to solve the

problem. 

Regarding the computational efficiency, our algorithm

generates a Markov chain in the solution space based on

a proposal sampling distribution. With time t increasing,

we can collect increasing number of samples (i.e., possible

solutions) from the solution space. Those samples are ex-

pected to represent the objective function well, so that we

can achieve the optimal solutions. Here have two aspects

to concern: 

The first aspect is whether or not those samples can

perfectly represent the objective function, which is the ap-

proximation ratio of the algorithm. For this, an important

result is that, the approximation ratio of the algorithm

could be 1, which means that collected samples will per-

fectly represent the objective function [22] . Here we refer

a classic convergence result: 

Theorem 4. (Convergence Theorem) Suppose that P is irre-

ducible and aperiodic, with stationary distribution π . Then

there exist constants α ∈ (0, 1) and C > 0 such that 

max 
x ∈ 

|| P t (x, ·) − π || ≤ Cαt . (21)

This theorem directly says that with t increasing, the

maximum distance between the generated distribution and

the stationary distribution approaches to 0, considering α
is a number between (0, 1) and t is a positive integer

(could be a positive float number as well in continuous

case). Defining the left-hand-side in inequality (21) as d ( t ),

a positive result that we can also have is the distance d ( t )

decaying exponentially with the sampling time t , and will

approaches to 0 when t → ∞ . 

As we can see, the convergence result is related with

the sampling time t , so the second aspect is how long

does the sampling process need to converge, called “mix-

ing time”. However, such problem is still an open question

in this research field, which means that it is quite difficult

to quantitatively how long does an MCMC algorithm needs

to 100% converge in general except some low dimensional

or discrete cases. 

In general, to make αt small it suffices to take t larger

than 

−1 
log α

. In our work, we exactly took large time referred

by the parameter discussed above when sampling, because

(1) the dimension of our problem is high and (2) long sam-

pling time helps to cover multi-optimality of the pricing

solutions. While it is truly a long time, and potentially a

parallel sampling algorithm or a more advanced proposal
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Table 2 

The three different pricing schemes. 

The values of γ t 

γ LH γt ,t ∈ [1 , 5] = 0 . 5 and γt ,t ∈ [6 , 10] = 1 . 5 

γ LHL γt ,t ∈ [1 , 2] = 0 . 5 , γt ,t ∈ [3 , 8] = 1 . 5 and γt ,t ∈ [9 , 10] = 0 . 5 

γZigZag γt ,t ∈ odd = 0 . 5 and γt ,t ∈ e v en = 1 . 5 

γ0 γt ,t ∈ [1 , 10] = 1 

 

 

Fig. 3. PUs’ behaviors and TXOPs of the MVNO. 
distribution can speed up the sampling process. This is in- 

deed one important extension in our future work. 

5. Numerical results 

To evaluate the performance of the proposed scheme, 

we develop a comprehensive simulation testbed using 

MATLAB. In this section, we first explain the simulation 

settings. We then show the effect of non-uniform pricing 

schemes to PUs’ spectrum access behaviors. After that, we 

illustrate the characteristics of the optimal pricing scheme. 

Finally, we test the proposed pricing schemes under differ- 

ent dynamic spectrum access (DSA) protocols. 

5.1. Settings 

In our experiments, we let the number of PUs N = 10 , 

and we consider a typical LTE scenario whose frame con- 

sists of T = 10 sub-frames. The transmission power of any 

PU i is p i = 10 dBm and the power gain at the BS ∀ h i = 

−30 dB. The background noise I 0 = −100 dBm . We let the 

transmission budget of a PU be b i = 0 . 4 T c 0 , which is not

enough to cover the whole frame’s transmission, other- 

wise the problem becomes trivial because a PU has no in- 

centive to prefer cheaper transmission prices. Additionally, 

the weight coefficient of the transmission rate r it is set to 

ω i = 5 c 0 . For the QoS constraint of PUs in Eq. (12) , we set

˜ r = 80% r 0 , where r 0 is the average transmission rate under 

a uniform pricing scheme γ0 . 

5.2. The spectrum random access game among PUs 

We compare a uniform pricing scheme γ0 with three 

non-uniform pricing schemes: γLH , γLHL and γZigZag , shown 

in Table 2 . Given the pricing schemes, the expected trans- 

mission numbers (Expected Tx#) as the outcomes of cor- 

responding spectrum random access game among PUs are 

shown in Fig. 3 . 

In Fig. 3 , we can see that the three non-uniform pricing 

schemes stimulate PUs to transmit non-uniformly. Specif- 

ically, during the low-price periods (e.g., t ∈ [1, 5] under 

γLH ), 5 PUs are expected to transmit, but the Expected Tx# 

is 2 during the high-price periods (e.g., t > 5 under γLH ). 

If we assume that a TXOP requires � = 2 as a minimum 

length and ζ equivalent to 2 expected PUs’ transmissions, 

then there will be 2 TXOPs with pricing scheme γLH but 

no TXOP available with uniform pricing scheme γ0 , since 

the Expected Tx# of PUs is 3, which is above the threshold 

ζ = 2 . 

5.3. The optimal pricing game 

We first show multi-optimality of the optimal pricing 

game. We then study the link between the price c s to c . 
0 
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Fig. 4. Multiple optimal pricing schemes ( � = 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1. Multi-optimality 

We show the optimal non-uniform pricing schemes that

maximize R T and also plot uniform pricing scheme γ0 as

a baseline. In order to see the pattern of the non-uniform

pricing schemes, we fit each of them with a polynomial

function. The results are presented in Fig. 4 . 
In Fig. 4 , five optimal pricing schemes are found by

Algorithm 2 and plotted in three sub-figures (symbolized

as γ∗
1 

∼ γ∗
5 
). This first confirms our theoretical result that

a D.C. programming problem may have multiple optimal

solutions. More interestingly, in Fig. 4 , we can observe that

the optimal pricing schemes are either monotonic (i.e., in-

creasing or decreasing plotted as γ̄HL and γ̄LH in Fig. 4 (a)

and Fig. 4 (c), respectively) or convex-shaped plotted as

γ̄LHL in Fig. 4 (b). In fact, they are equivalent if we consider

multiple consecutive frames, since they are all periodic. 

Additionally, we can expect that if we lower the length

requirement of a TXOP � (e.g., changing � = 4 → 1 ), the

number of optimal solutions γ∗ will increase accordingly.

Some of them will oscillate very frequently between high

and low γ values in a frame. But note that in the optimal

set, those solutions generating longer consecutively avail-

able windows (as those presented here) will still be found.

This is also the reason why we choose � longer because it

enables us to observe clearer the features of the optimal

solutions. 

In order to gain deeper understanding, we show three

important metrics including (1) the total revenue values of

the PO, (2) the average transmission rate (QoS) of PUs, and

(3) the NUGs of PUs under the optimal pricing schemes

(i.e., γ∗
1 

∼ γ∗
5 
) and those under γ0 as well in Fig. 5 . 

We can observe that the total revenue R T under the

five optimal pricing schemes is all higher than the revenue

with uniform pricing scheme γ0 because more TXOPs are

generated, which achieves the main goal of our proposed

scheme. In Fig. 5 (b), we see that the average transmission

rates of PUs are lower than the rate under γ0 . The reason

of this phenomenon is because the PO has the QoS con-

straint in Eq. (12) , which allows that the average rate of

PUs shall be at least 80% r 0 . Similarly, in Fig. 5 (c), the NUGs

of the PUs are also lower than the NUGs under γ0 . This

reveals the importance of the QoS of the PUs because the

PO cannot ignore the experiences of PUs who are its major

customers. 

5.3.2. Different price c s for the MVNO 

In addition to the price c 0 for the PUs, we are also in-

terested in how the price c s for charging the MVNO affects

the non-uniform pricing schemes. We evaluate different

ratios c s 
c 0 

∈ [0 . 5 , 1 . 5] . Since every optimal pricing schemes

are globally optimal, we take the monotonic optimal pric-

ing scheme (e.g., an increasing-value one) as an example

in the sequel. 

First, in Fig. 6 , we show three optimal pricing schemes

under c s coupled to c 0 with {0.5 c 0 , 1 c 0 , 1.5 c 0 } fitted by

linear functions, respectively. We observe the increase of

slopes of the optimal pricing schemes (fitted with dashed,

solid, and dash-dotted lines, respectively) when c s increas-

ing. This indicates that, if possible, the PO prefers to gain

more revenues from the MVNO. Intuitively, it conforms

the reality because trading the transmission management

out is easier and still can yield revenues from secondary

operators. 

Similarly, we show in Fig. 7 the three metrics to eval-

uate and understand the optimal pricing schemes when c s
increases. 
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Fig. 5. Three metrics under multiple optimal pricing schemes. 

Fig. 6. Pricing schemes with different prices c s for The MVNO. 

4 Initially, if the spectrum is busy, the MVNO waits cw 0 = 

T 
4 

time slots. 

If the spectrum is busy after back-off, the back-off time will be k · cw 0 , k ∈ 
[0 , 2 c − 1] , where c is the number of collisions encountered. 
Specifically, in Fig. 7 (a), we observe that TXOPs as well 

as the total revenues, increase when c s approaches c 0 , 

while TXOPs does not increase further when c s > c 0 . This 

is due to the QoS constraint for PUs where no more room 

to generate more TXOPs. However, since the transmission 

from the MVNO is valued more (due to larger c s ), the rev- 

enues still rise. In Fig. 7 (b) and (c), both the average trans- 
mission rate and the NUG values of the PUs decrease with 

increasing c s but still guaranteed above 80% r 0 as required 

in Eq. (12) . 

5.4. Different DSA protocols 

We now evaluate the proposed pricing scheme with 

two different DSA protocols, where the MVNO can use two 

different access strategies, a best-effort strategy operation 

(denoted as “BE-SO”) and an exponential back-off strategy 

operation 

4 (denoted as “ExpB-SO”) to capture free spec- 

trum, respectively. Fig. 8 shows the access of PUs and the 

MVNO. We can see that the proposed scheme successfully 

stimulated PUs to access spectrum non-uniformly (dash- 

line curve fitting by polynomial in red), which generates 

TXOPs for MVNOs (see yellow and green bars representing 

transmissions from different MVNOs). We also note that, 

the “BE-SO” strategy can capture more TXOPs than the 

“ExpB-SO” because the latter may miss some TXOPs due 

to longer back-off effects. However, using smarter sensing 

strategies in literature, those missed TXOPs can be more 

efficiently utilized as well. 

6. Related work 

We mainly discuss our differences from two per- 

spectives: spectrum pricing schemes and game-theoretical 

approaches. 

6.1. Spectrum pricing schemes 

Pricing schemes have been widely used in wireless 

network management especially when directly interven- 

ing is unrealistic. Spectrum as resources being sold and 

bought between spectrum owners and customers has been 

considering as a very effective manner for its efficient 

utilization. Fruitful results can be found as in [3,5,7,23–

29] , though numbers of spectrum sellers and buyers 
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Fig. 7. Three metrics under different secondary market prices. 

Fig. 8. Transmissions (Tx) in 5 frames (1 frame = 20 slots). 

 

 

 

 

 

 

 

 

 

 

 

an MVNO. 
involved are different in their problem scenarios respec-

tively. As being pointed out, most of them focus on design-

ing pricing schemes to charge unlicensed spectrum buy-

ers (in our problem, the MVNO). Authors of [27] stud-

ied the coexistence issue of PUs and unlicensed users,

however, their goal was to maximize the whole net-
work throughput and assumed unlicensed users cogni-

tively access any idle spectrum. Differently, our goal aims

to study the influence of PUs’ behaviors ot the TXOPs

for an MVNO, and we proposed a pricing scheme applied

on licensed users (i.e., PUs) to generate more TXOPs for
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Regarding the main idea of the pricing scheme: non- 

uniform pricing , some studies have a similar idea such as 

in [6,30] . Prices depend on transmission powers of cog- 

nitive radio endpoints [30] and in [6] , prices depend on 

the interference generated by the unlicensed users. Their 

goals, however, are to reduce collision and/or interference 

rather than to improve the spectrum availability. Again, the 

present pricing scheme charges non-uniform prices on PUs 

while improves TXOPs’ availability for an MVNO. 

Since the availability of TXOPs is directly determined 

by PUs’ behaviors, e.g., the achievable transmission rate 

of a secondary network [8] , this again shows that it is 

equally important to regulate PUs’ behaviors though they 

have higher priority. Some studies considered cooperation 

between sellers and buyers [31,32,33] . They proposed co- 

operative schemes based on revenue rewarding to moti- 

vate licensed users to relay traffics from unlicensed users. 

In this way, licensed users indirectly provide more TXOPs 

for unlicensed users. Differently, our scheme realizes co- 

operation in a different way. Specifically, rather than di- 

rectly forwarding traffics of unlicensed users, we regulate 

transmissions of PUs themselves via pricing so as to pro- 

vide more TXOPs to an MVNO. First of all, since PUs still 

transmit their own traffics, there is no resources consumed 

for others. More importantly, our scheme also physically 

separates PUs and an MVNO, but any cooperative schemes 

as in [ [31,32,33] , need protocol-level modification for inter- 

domain communications, which is unrealistic when involv- 

ing a large number of PUs. 

Last but not least, most of existing works consider 

any idle spectrum as a TXOP, but it may not be practical 

enough, e.g. an MVNO may require longer consecutively 

available time slots as its minimum data and this will be 

claimed in the SLAs with the PO. 

6.2. Game-theoretical approaches 

We now discuss from the technical point of view. 

From the perspective of game models, previous 

studies either formulated Stackelberg games [34] or 

non-cooperative games [35] . Our problem, however, con- 

tains both game models as a hierarchical game. Further- 

more, some previous studies contained both game mod- 

els, but they often replaced the non-cooperative game 

with its analytical solutions. This reduced their prob- 

lems to a single-level optimization problem. Our prob- 

lem does not allow such a reduction because the out- 

come of the spectrum random access game has no analytic 

solutions. 

We also note that most of methodologies presented in 

existing works were restricted to explicit forms. Different 

from these cases, our game problem has a unique chal- 

lenge where the whole problem is generally a black-box 

BPEC problem due to the implicit form in the objective 

function of the PO and the equilibrium constraint from 

the spectrum random access game among PUs. This fails 

exact algorithms like gradient-based and approximation- 

based methods. Technically, our work showed a first at- 

tempt of using an MCMC-based framework to solve a gam- 

ing problem. 
7. Conclusions 

Emergence of secondary operators motivated us to 

study the influence of PUs’ behaviors to TXOPs for MVNOs. 

In this paper, we proposed a non-uniform pricing scheme 

applied on PUs to improve TXOPs for MVNOs subject to 

the QoS constraint for PUs and the SLA constraint for 

an MVNO. We formulated the optimal pricing problem 

as a hierarchical game consisting of a PO-PUs Stackelberg 

game and a spectrum random access game among PUs, 

which is a challenging BPEC black-box optimization prob- 

lem. To solve it, we thoroughly studied the property of 

the problem, and based on the understandings, we de- 

signed efficient solver based on an MCMC-based frame- 

work, which has not been used in game-theoretical anal- 

ysis. Finally, we have also conducted extensive simulation 

experiments, which confirm the effectiveness of the pro- 

posed scheme. In future, multiple MVNOs scenarios can be 

also considered and studied under the general framework 

here. 
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