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a b s t r a c t 

Kademlia is considered to be one of the most effective key based routing protocols. It 

is nowadays implemented in many file sharing peer-to-peer networks such as BitTorrent, 

KAD, and Gnutella. This paper introduces Shades , a combined routing/caching scheme that 

significantly shortens the average lookup process in Kademlia and improves its load han- 

dling. The paper also includes an extensive performance study demonstrating the benefits 

of Shades and compares it to other suggested alternatives using both synthetic workloads 

and traces from YouTube and Wikipedia. 
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1. Introduction 

Distributed Hash Tables (DHT) are at the heart of most

peer-to-peer (P2P) systems. Consequently, a plethora of pa-

pers and ideas on how to implement DHTs have been pub-

lished, e.g., [4,34] . DHTs tend to differ from each other

in the routing scheme they employ, as well as the space

and message overhead they incur for maintaining their

respective overlays. During the last few years, Kademlia

has become one of the most widely used DHTs in prac-

tice [36,39] . This is largely due to its proven robustness

to churn, enabled by its unique partially parallel lookup

mechanism and large routing tables. 

Further, Kademlia’s applications extend beyond P2P. For

example, a variant of Kademlia was suggested for high per-

formance computing in Grids and clusters [43] . 

Like many other DHTs, Kademlia’s routing phase may

involve contacting a logarithmic number of nodes, which

may be too slow for time sensitive applications [32,37] . For

example, one of the lessons of the CoralCDN project [22] ,

a successful DHT based content delivery network, is that
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DHT lookup latency was a performance bottleneck for their

system [21] . 

Since typical workloads of Internet based applications

are often highly skewed, caching lookup results along

the search path has the potential of reducing the aver-

age lookup time experienced by users. However, due to

Kademlia’s unique routing and dynamic bucket manipula-

tion schemes, caching is less effective in Kademlia than in

more rigid DHTs like Chord [16] . 

1.1. Contribution 

We introduce Shades, a novel caching and augmented

routing mechanism for Kademlia that reduces the num-

ber of nodes participating in the lookup process and low-

ers the load of the most congested nodes. Such nodes are

identified as a performance bottleneck for DHTs in gen-

eral [29,33] and for Kademlia [8] in particular. 

In Shades, nodes are equipped with a small local cache

that can shorten lookups in case of a cache hit. Shades

exploits a secondary hashing scheme, called colors , that

makes the caches more specialized. Thus, each cache re-

ceives more traffic for items of its own color, thereby

increasing cache hit rates. This way, Shades achieves a

reduction in the number of contacted nodes per lookup

when compared to previous caching schemes. 
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We have experimented with Shades and compared it to 

plain Kademlia and other previous caching suggestions for 

Kademlia, namely KadCache – the caching suggestion of the 

Kademlia authors [36] , the local cache suggested in [24] –

a.k.a. Local and Kaleidoscope [16] . These experiments were 

conducted using both synthetic workloads mimicking ones 

that are often found in real applications, as well as real 

traces from YouTube and Wikipedia. In these results, we 

have found that Shades significantly reduces the number 

of nodes participating in the lookup process compared to 

plain Kademlia, KadCache, Local and Kaleidoscope. At the 

same time, it also achieves competitive message and band- 

width overheads relative to the other suggested caching 

schemes. 

The rest of this paper is organized as follows: We start 

by describing Kademlia in Section 2 . Section 3 surveys ad- 

ditional related work. Shades is presented in Section 4 and 

is analyzed in Section 5 . The performance evaluation ap- 

pears in Section 6 . Finally, we conclude with a discussion 

in Section 7 . 

2. A brief overview of Kademlia 

Kademlia is described in [36] . Here we only give a brief 

overview of its structure and main properties as a back- 

ground to our work. In Kademlia, each node and each 

object are assigned a 160-bit key using a hashing func- 

tion (such as SHA-1). The notion of distance is defined in 

Kademlia using the XOR metric and objects are stored in 

the nodes whose id is closest to theirs according to this 

metric. 

In Kademlia, each node maintains a bucket of up to k 

nodes (or k-bucket ) for each of the 160 bits of its key. The 

k -bucket corresponding to the i th bit of node p stores up 

to k nodes whose distance from p is between 2 i and 2 i +1 . 

This overlay may constantly evolve as p learns about ad- 

ditional nodes. Each k -bucket is kept sorted by the least- 

recently seen order. Each time p receives a message from 

q that corresponds to a given k -bucket of p , if q does not 

exist there and the bucket is not full, it is added to the 

bucket as the most-recently seen node. If q already exists 

in the bucket, it is simply updated to be the most-recently 

seen node there. Finally, if the bucket is full and q is not 

there, then the least-recently seen node r in the bucket is 

pinged. If r answers, then it is updated to be the most- 

recently seen node. Otherwise, q replaces r in the k -bucket 

and is marked as the most-recently seen node. 

The routing process of Kademlia proceeds as follows: 

When a node p needs to find the node (or value) with key 

d , p begins the following iterative partially parallel lookup 

process. p creates a list of the k closest nodes to d accord- 

ing to its k -buckets (possibly including itself); call this list 

the k-candidate list for d . It is possible that this list con- 

tains fewer than k nodes. Then, on each iteration, p picks 

the first α (a parameter greater than 0) nodes in the k - 

candidates list that were not queried yet and sends each of 

them in parallel an asynchronous query for d . In response, 

each of these nodes r returns to p the k closest nodes to 

d according to r ’s k -buckets. Following the reply, p updates 

its k -candidates list to hold the k closest nodes to d that p 

knows about thus far. Also, after each such reply, or a time- 
out on a given recipient, p sends a query to the first node 

in its k -candidates list that it has not contacted yet (hav- 

ing up to α outstanding queries at any given time). This 

process ends when all nodes in the k -candidates list have 

been queried. At this point, the nodes in the k -candidate 

list are declared as the k closest nodes to d . 

Similar to many DHTs, it has been proved in [36] 

that the lookup time of Kademlia is at most logarithmic. 

In contrast with some other well known DHTs, such as 

Chord [38] , the Kademlia overlay constantly evolves, yet 

need not be updated immediately following joining or de- 

parture of nodes. Also, each entry has k nodes, giving 

the routing protocol some freedom in choosing its pre- 

ferred route. Hence, two consecutive lookup requests for 

the same item may follow different routes even if there is 

no churn in the network. 

3. Related work 

3.1. Shorter search in DHTs 

Several works have investigated how to use caching to 

reduce the lookup length in DHTs. For example, in [24] it 

is suggested to add to Kademlia a local cache named Fast 

Table . This table stores the results of previous lookups the 

node has performed. When a node receives a find value 

request, it first checks its Fast Table to see if it contains 

cached results for it. This approach was shown in [16,24] to 

yield a reduction in average lookup length. As mentioned 

in the introduction, we refer to this scheme as Local in this 

paper. 

Another important caching suggestion appears in the 

original Kademlia paper [36] . In this suggestion, every time 

a node performs a find value operation, it sends a store 

value request to the last node it contacted that did not 

have the value. This suggestion, called KadCache in this pa- 

per, was evaluated in [16] for its message cost and (lack) 

of load balance capabilities. In this paper, we extend that 

evaluation of KadCache to cover its average and median 

query length. As we show in the performance section of 

this paper, Shades reduces considerably the number of 

contacted nodes compared to both Local and KadCache, 

and usually also improves the communication overhead. 

The work most related to Shades is Kaleidoscope [16] . 

Kaleidoscope also uses colors to augment the combined 

routing and caching process of Kademlia to obtain better 

caching, but focuses on communication overhead reduc- 

tion. In Kaleidoscope, messages are first forwarded to a 

node of a matching color along the lookup path, and only 

then an iterative lookup starts. Since Kaleidoscope never 

deviates from the lookup path, it cannot efficiently use as 

many colors as Shades, and therefore achieves lower cache 

hit rates. Further, the more colors Kaleidoscope uses, the 

longer it take to reach each cache. 

Unlike Kaleidoscope, Shades may deviate from the 

lookup path of Kademlia if there is probabilistic evidence 

that doing so is likely to find a cached result nearby. 

Shades bases its decisions on a compressed approximated 

statistics in order to both manage its cached content, and 

also decide on the maximal number of cache lookups that 

may deviate from the Kademlia lookup path. So while both 
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Table 1 

Comparison between Kaleidoscope and Shades. 

Kaleidoscope Shades 

# Colors 17 150 

On path lookups Unlimited Unlimited 

Deviates from path No Yes 

Time of first cache lookup During lookup First step 

Cache policy LRU LazyEvict + TinyLFU 

Share policy Always Only if needed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A counting Bloom filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kaleidoscope and Shades rely on the notion of colors as a

secondary hashing mechanism, each takes this concept in

a completely different direction. 

The main differences between Kaleidoscope and Shades

are summarized in Table 1 . As can be seen, Shades uses

more colors than Kaleidoscope and therefore forms a more

effective distributed cache. Further, Shades benefits more

from each cache hit as it performs the first cache lookup

earlier than Kaleidoscope. Shades also uses a more ad-

vanced cache policy that is also used to decide how many

times we deviate from the lookup path, and what node is

most suitable to store the cached value at the end of the

lookup. Finally, the last line of the table titled “share pol-

icy” indicates that shades stores the results of successful

lookups in caches of matching colors that were encoun-

tered along the lookup process only if these caches are

likely to benefit from them. In contrast, Kaleidoscope al-

ways pushes the results of lookups to such caches. This

helps Shades save messages. Evidently, in our performance

evaluation section, we show that Shades contacts substan-

tially fewer nodes than Kaleidoscope, obtains significantly

better load sharing, and generates similar overall traffic as

Kaleidoscope. 

Other methods to reduce Kademlia’s lookup latency in-

cludes careful parameter configuration [39] , techniques to

fill k -buckets with nodes of geographical proximity [9,30] ,

a new metric based on geographical distance [23,35,41]

and a recursive lookup scheme [27] . We believe that

many of these suggestions can be deployed alongside with

Shades as they either reduce the latency of individual mes-

sages, or optimize the configuration parameters of the pro-

tocol. In contrast, Shades slightly changes the algorithm

and satisfies lookups using information from fewer nodes. 

As for non-Kademlia DHTs, multiple works have ex-

plored caching in structured overlays such as Chord and

Pastry, e.g., [5,12,13] to name a few. Caching in such over-

lays is likely to be effective, at least when the churn rate is

low, since search paths are deterministic and stable. Thus,

once a popular item is cached in a node along a search

path, it will likely result in multiple cache hits by future

searches for the same item. As we explained above, this is

not the case in Kademlia, which motivated our study. 

Other DHT’s like OneHop [25] , Kelips [26] and Tulip [3]

achieve O(1) lookups at the cost of background traffic over-

heads. In contrast, Shades does not generate any back-

ground traffic. Systems that provide O(1) lookups include,

e.g., Dynamo [14] and ZHT [31] . Both systems target high

performance data centers. Given that a variant of Kademlia

was also suggested for this context [43] , Shades can also

be adopted to that domain. 
3.2. Brief survey of approximate counting techniques 

Since TinyLFU uses approximate counting techniques,

we provide a brief survey of approximate counting below.

The survey helps in understanding the internal structure of

TinyLFU in Section 4.1.2 . 

Bloom filters [6] are space efficient approximated data

structures for answering set membership queries. Bloom

filters support two methods: add and contain . A Bloom

filter uses k hash functions, h 1 , h 2 ,…, h k to hash elements

over an array of m bits. When adding an element T , h 1 ( T ),

h 2 ( T ),…, h k ( T ) are calculated and the matching bits of the

array are set to 1. 

The contain method hashes the item and tests the ap-

propriate bits; if all the bits are set, the contain method

returns true. If the Bloom filter is properly configured, this

answer is usually correct. Yet, if one of the bits is un-

set, the item is not contained in the set (always). We call

the case when the contain method inaccurately includes

an element in the set a false positive . The false positive

probability of a Bloom Filter that contains N elements is

( 1 − ( 1 − 1 
m 

) 
kN 

) k ≈ ( 1 − e −kN/m ) k . 

While Bloom filters are able to store a set, they can-

not count how many times an item was inserted. Counting

Bloom filters (CBF) [19] are a natural extension of Bloom fil-

ters that support multiplicity queries and deletions. To do

so, a counting Bloom filter replaces the bit array with a

counter array. That is, instead of setting k bits (1 per hash

function), the counting Bloom filter increments k counters.

The contain operation simply checks whether h 1 ( T ),…,

h k ( T ) are all greater than zero. Counting Bloom filters

typically also support a remove operation that calculates

h 1 ( T ),…, h k ( T ) and decrements the corresponding counters

in the counter array. This operation is however not use-

ful in our context. Instead, we are interested in answering

multiplicity queries . That is, for an item T, we would like to

know how many times T was inserted to the CBF. To do so,

h 1 ( T ), h 2 ( T ),…, h k ( T ) are calculated, and the corresponding

counters are read. The minimal value of the counters is re-

turned as the multiplicity estimation of T . This operation is

described in detail in [11] . 

Since only the minimal value of the corresponding

counters ( h 1 ( T ),…, h k ( T )) determines the multiplicity esti-

mation of the CBF, a very efficient optimization is to incre-

ment only the counters whose value is the minimal. In-

tuitively, this optimization prevents low frequency items

from influencing counters that are associated with high

frequency items. This optimization is called Minimal Incre-

ment in [11] and Conservative Update in [17] . It was shown

to significantly increase the accuracy of high frequency

items. 

Fig. 1 illustrates a counting Bloom filter with 3 hash

functions. In this examples, if we assume that the marked

counters are the corresponding counters of an item (T),

then the multiplicity estimation of T is 2 since this is the
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Fig. 2. A high level overview of the lookup process in Shades and Kadem- 

lia. As illustrated to the left, in Kademlia, ( α = 3 ) parallel messages are 

sent according to the Kademlia protocol (that uses the XOR metric). In 

Shades, two messages follow the original protocol and the third follows 

a new protocol. That is, the third message is sent to a node that has the 

same color as the searched key. The cache of that node is more likely 

to contain the searched value and with high enough cache hit rate the 

lookup process is reduced. 

Fig. 3. An illustration of TinyLFU integration with caches and its internal 

structure. 
minimal corresponding counter value. Further, adding T to 

the CBF will increment all 3 counters, or only the two left 

counters if the minimal increment optimization is used. 

4. Shades 

The idea behind Shades is to employ two lookup mech- 

anisms in parallel: one mechanism to ensure correctness 

and termination and the other one to improve average case 

performance. That is, Shades uses Kademlia’s original rout- 

ing scheme and at the same time performs cache lookups 

that may conclude the lookup earlier in case of a cache 

hit. This idea is illustrated in Fig. 2 . As can be observed, 

Kademlia routes several parallel lookups with the same 

(XOR) metric while Shades uses Kademlia’s routing tech- 

nique as well as an additional technique that amplifies the 

chances of hitting a cache early in the search. 

Specifically, in Shades, each node includes a small local 

cache that is managed with an effective cache admission 

scheme called TinyLFU [15] . TinyLFU maintains frequency 

approximation of recently encountered items that gradu- 

ally adopt to changes in the access distribution. In TinyLFU, 

a new item is only admitted to the cache if it is esti- 

mated to be more frequent than the cache victim. There- 

fore, TinyLFU only admits popular items into caches, and 

the goal of Shades is to make different caches see different 

items as popular. 

To do that, Shades uses a secondary key called color , 

which is derived from the Kademlia key, as described be- 

low. Shades routes some of the requests to nodes whose 

color matches that of the lookup. Therefore, caches are 

more likely to be searched according to color, which in- 

creases the cache hit rate. Shades also uses the frequency 

estimations of TinyLFU to decide how many times it is 

worthwhile to use the color routing technique and deviate 

from the original Kademlia protocol. This approach signifi- 

cantly reduces the overheads associated with Shades. 

In summary, Shades includes three components: a 

highly effective small cache, an augmented routing that is 

based on secondary hashing (colors) whose goal is to di- 

rect lookup traffic to caches that are likely to have the 

data, and an overload protection mechanism. The caching 

mechanism is described below in Section 4.1 , the routing 
scheme is presented in Section 4.2 , and the overload pro- 

tection is explained in Section 4.3 . 

4.1. Caching mechanism 

With Shades, each node in the system has a small lo- 

cal cache in addition to its Kademlia storage. When a node 

receives a find value request, it can either return the k - 

closest nodes, return a cached result or return the stored 

value. The Kademlia storage stores every key/value pair it 

is assigned to by Kademlia for correctness, while the cache 

stores additional key/value pairs to improve performance. 

Ideally, we would like the cache to be small and include 

the most frequently requested key/value pairs. 

4.1.1. Single cache management 

For the cache management, we employ the general 

cache architecture of TinyLFU [15] where there is a clear 

separation between the cache eviction policy and its ad- 

mission policy. The eviction policy is responsible for pick- 

ing a cache victim, while the admission policy decides 

whether admitting the new item at the expense of the 

cache victim is beneficial to the cache. 

Fig. 3 (a) illustrates the operation of TinyLFU. TinyLFU 

stores statistics about the frequency of recently encoun- 

tered items. These statistics are used in order to estimate 

the recent frequency of both the cache victim and the 

newly arriving item. The latter will only be admitted to the 

cache if it is estimated to be more frequent than the cache 

victim. 

4.1.2. TinyLFU internal structure and operation 

Maintaining an approximate statistics can be done, e.g., 

with a counting Bloom filter employing the minimal in- 

crement optimization, as described in Section 3.2 . The 
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Fig. 4. An illustration of a cache augmented by LazyEvict eviction policy, 

and the manner the cache victim is picked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number of (multiple bits) counters needed depends on

the number of items the counting Bloom filter is sup-

posed to represent. However, most real world workloads

exhibit highly skewed access distributions, meaning that

most items are accessed very rarely. This results in a non-

negligible waste since their corresponding counters are

likely to contain either 0 or 1. 

TinyLFU solves this issue by adding a (plain) Bloom fil-

ter, nicknamed doorkeeper , in front of the main counting

Bloom filter, as illustrated in Fig. 3 (b). Only items that al-

ready exist in the doorkeeper are added (when accessed)

to the main counting Bloom filter. Consequently, the lat-

ter can contain considerably fewer counters than would be

needed in a naive implementation. TinyLFU also includes

an aging mechanism, which continuously adapts the fre-

quency estimation to the observed access distribution, and

is highly space efficient [15] . As shown in [15] , the com-

putational complexity of queries and updates in TinyLFU is

O (1). TinyLFU also perform a periodic aging operation on

its counters, whose deamortized cost is also O (1). 

4.1.3. LazyEvict 

As reported in [15] , once employing an admission pol-

icy such as TinyLFU, the impact of the eviction policy be-

comes almost marginal. In fact, for skewed workloads like

the ones we experience here, even naive eviction policies

result in close to optimal ratios between the cache size and

its hit rate. 

Thus, we aim for a replacement policy whose main-

tenance cost is very low. To that end, we have devel-

oped the LazyEvict replacement policy, which aspires to

eventually return the least frequently accessed object as

the eviction candidate, but searches for it lazily, advancing

one object at a time. Specifically, LazyEvict employs two

pointers whose maintenance and query complexity is O (1)

(in addition to the cost of TinyLFU). One pointer points

to the current eviction candidate and the other is used

to rotate among all cached items, as outlined in Fig. 4 .

On each access, the rotation pointer is advanced by one

and the approximated access frequency of the correspond-

ing object as maintained by TinyLFU is compared to that

of the current eviction candidate. If the current eviction

candidate is more frequent, then the eviction candidate

pointer will now point to the same item as the rotation

pointer. 

In the example of Fig. 4 , during the first insertion, T1

will be compared against the current eviction candidate
(T3). Since its frequency is larger than the eviction can-

didate’s, LazyEvict will not replace them and TinyLFU will

compare between the newly arriving object and T3. During

the next access, T2 is compared against the eviction candi-

date (T3). Since its frequency is lower than that of T3, T2

will be pointed to by the eviction candidate pointer and

TinyLFU will then compare the arriving item against the

updated eviction candidate (T2). 

Further, in order to avoid using the TinyLFU histogram

multiple times, we maintain the frequencies of in-cache

items explicitly, effectively having to use TinyLFU only to

estimate the frequencies of items that are not presently

stored in the cache. 

The main benefits of LazyEvict are simplicity and prac-

ticality. LazyEvict is cache friendly since items are scanned

one after another and we do not change the position

of items in the cache (or its meta-data) once admitted.

We also do not have contention over the head of the

list like LRU does [18] . Our measurements reported in

Section 6.3 below show that for our target workloads,

TinyLFU + LazyEvict yields results very similar to a true LFU

cache, which is a lot more complex to implement as it re-

quires keeping the in-cache items ordered at all times, and

therefore uses heaps whose access complexity is O (log ( N )).

We therefore chose to use TinyLFU as it has better com-

plexity than the heap implementation and provides almost

the same hit rate. 

4.2. Routing 

4.2.1. Colors 

As mentioned before, Shades augments the standard

Kademlia routing scheme by utilizing a secondary key

called color . The color is generated by applying a hash

function to the Kademlia key. Unlike the Kademlia key

that comes from a large domain to prevent collisions, the

color domain is small and collisions are desired. Recall that

shades relies on completely autonomous TinyLFU managed

caches. That is, the TinyLFU policy of each cache separately

tracks the observed access histogram and each cache stores

the most frequent items it has encountered. The purpose

of Shades’ routing protocol is to ensure that each node re-

ceives a disproportionate amount of requests for its spe-

cific color, and therefore its cache is more likely to admit

items of that color. 

During the parallel iterative lookup process, Shades may

issue cache lookup requests to nodes that have the same

color as the color of the requested key even if these nodes

do not advance in the XOR metric. For this reason, we call

such deviations side steps . Hence, while intuitively a side

step improves the chances of hitting a cache due to the use

of colors, in the case of a cache miss it prolongs the lookup

process since it does not advance toward the key in the

XOR metric. In order to avoid paying this price for cache

misses, Shades only takes side steps if the item is relatively

likely to be cached already. To that end, Shades relies on

TinyLFU to keep track of the likelihood that the item would

indeed be in the cache, as detailed later in Section 4.2 . 

Finally, once the lookup is done, the search result is

only stored in caches that are interested in caching it. Since

TinyLFU only admits items to the cache if they are more
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Fig. 5. Shades Palette. 

 

 

frequent then the cached items, TinyLFU ensures that the 

cached result reaches a node that is likely to benefit from 

it. Below, we first describe an auxiliary data structure used 

by the routing mechanism of Shades and then provide the 

details of the protocol. 

4.2.2. Palette 

Since each Kademlia node typically remembers a large 

number of other nodes (up to a thousand), going over all 

the k-buckets in order to find a matching color candidate 

can be time consuming. Hence, each node p maintains a 

mapping between colors and the nodes matching these 

colors that p is aware of. This mapping, implemented as 

a hash table, is called the Palette of node p . For each color 

i , when node p has at least one node of color i in any of its

k -buckets, then the i th entry of p ’s Palette points to these 

nodes. However, if p does not have any node of color i in 

any of its k -buckets, then we fill the corresponding entry 

with other nodes that p detects using the following pull 

gossip mechanism. 

Whenever p sends a lookup message, it piggybacks on 

the lookup message a bitmap that represents which col- 

ors have no representatives in its Palette. I.e., bit i in the 

bitmap contains 1 if p is already aware of at least one node 

of color i and 0 otherwise. When a node q receives such a 

lookup message, it piggybacks on the reply one node cor- 

responding to the color of each 0 bit in the bitmap that 

q is aware of (if q knows such a node). In addition, q in- 

cludes at least one node whose color matches the color of 

the searched key. All this data is piggybacked on existing 

messages to avoid generating new messages. The size of 

piggybacked data is relatively small: a bitmap whose size 

in bits is the number of colors and at most one id per color 

(and typically only a few ids or none at all). 

Shades’ Palette is illustrated in Fig. 5 . In this exam- 

ple, there are 8 different colors. The dark tokens repre- 

sent the nodes that appear in the k -buckets whereas the 

bright tokens are nodes discovered through the bitmap 

gossip mechanism. In this example, color 8 does not have 

any representative. Therefore the bitmap [11111110] will be 

added to any outgoing Kademlia message. If any of the 

nodes that receive such a message knows of a node that 

matches color 8, it will include this node in its response. 

4.2.3. Shades routing protocol 

The routing protocol for key lookup, performed by node 

p , goes as follows. Denote c the searched key’s color. While 

node p is not aware of c -colored nodes, p performs tra- 

ditional Kademlia lookups. When node p is aware of c - 

colored nodes, either from its data structures or through 
replies received from other nodes, it performs multiple 

cache lookups denoted as side steps . These cache lookups 

are performed simultaneously to Kademlia’s routing pro- 

tocol. As mentioned before, side steps do not necessar- 

ily advance the search according to the Kademlia XOR 

metric. 

Let q be the c -colored node that is closest to the 

searched key. The first side step is performed by send- 

ing a request to node q . q does not have to be in the k -

candidates list. q checks whether the requested key is in 

its cache. If so, it sends back the (key, value) item from the 

cache. Otherwise, q returns a response that contains the 

following additional information: 

• Is the item needed? i.e., will this specific cache admit 

this item if encountered based on the mechanism de- 

scribed in Section 4.1 . 

• Is the item popular? i.e., is this item popular enough to 

be likely admitted to other caches. 

The “is needed” bit is set if the arriving item would be 

admitted to this node cache. The “is popular” bit is set if 

TinyLFU gives this item a score that is greater than a pre- 

defined threshold (1 in our implementation). In that case, 

since the item was recently encountered it is possible that 

other caches (of matching color) store this item, as each 

node measures a slightly different access frequency. 

When p receives the response from q , it acts according 

to the response: In case of a cache hit, the lookup is fin- 

ished. Otherwise, if the item is not popular, then no more 

side steps are performed and the lookup is continued as 

in Kademlia. If the item is popular, then another side step 

can be taken. Note that by this point, p received more c - 

colored nodes from responding nodes. If p discovered more 

than one c -colored node, it favors contacting the closest 

one according to the XOR metric. 

At the end of the lookup, if the lookup is successful, 

p sends the (key,value) item to the c -colored node that is 

closest to the searched key and has noted in its response 

that the value is needed. This node stores the result in the 

cache for future requests. 

Shades, as Kademlia, has up to α outstanding queries 

at any given time. When not performing a side step, all 

the outstanding queries advance according to the key XOR 

distance metric as in Kademlia. While performing a side 

step, α − 1 of the outstanding queries advance according to 

the key distance metric in addition to the one outstanding 

side step. 

Note that in order to perform a side step, p needs to 

know a node with the same color as the searched key. Re- 

call that the Palette significantly increases the probability 

that p knows such a node. This enables our routing proto- 

col to usually perform the first side step right in the be- 

ginning of a lookup, which is important since the benefit 

of hitting a cache early is far greater than hitting it later. 

Algorithms 1 –3 describe Shades’ routing proto- 

col. The variables declared in Algorithm 1 in the 

global scope are accessible to all three algorithms. 

Algorithm 1 describes the way the request mes- 

sages are sent. Algorithm 2 describes the way the 

request messages are handled by nodes that receive them 

and the information sent in their responses. Algorithm 3 
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Algorithm 1 Find Value: Sending Requests. 

1: boolean isRequestPopular = true 
2: boolean isThereOutstandingSideStep = false 
3: Node sideStepNode = null 
4: int numberOfSidesteps= 0 
5: Nodes kCandidates= null 
6: Nodes coloredNodes= null 
7: 
8: function findValueRequest (Key key) 
9: if myCache.HasItem(key) then 

10: return myCache.GetItem(key) 

11: kCandidates = closest k nodes found in k -buckets 
12: coloredNodes = nodes having the same color as the searched 

key’s color from the Palette 
13: Do the following with alpha concurrency: 
14: while true do 
15: if all k -candidates are queried then 
16: return k -candidates 
17: if shouldDoSideStep() then 
18: doSideStep() 
19: else 
20: doKademliaStep() 

21: 

22: function shouldDoSideStep ( ) 
23: if ((isRequestPopular==true) AND (isThereOutstanding- 

SideStep==false) then 
24: isThereOutstandingSideStep= true 
25: return true 
26: else 
27: return false 
28: 

29: function doSideStep ( ) 
30: Node node = the closest unqueried node from coloredNodes 
31: � If a sidestep was already taken, node must be closer to the 

searched key then the previous queried node 
32: sideStepNode = node; 
33: Send node a request attached with palette.getBitmap() 

34: 
35: function doKademliaStep ( ) 
36: Node node = get the closest unqueried node from the k - 

candidates list 
37: Send node a request attached with palette.getBitmap() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Find Value: Handling Requests. 

1: function findValueHandle (findValueRequest request) 
2: Key key = request.getKey() 
3: FindValueResponse response= new FindValueResponse() 
4: response.setColorNodeAsKey( getColorNode(key)) 
5: response.setColorNodes(getNodesByBitmap(request.getBitmap())) 
6: if myCache.hasItem(key) then 
7: response.setItem( myCache.getItem(key)) 
8: response.setCacheHit(true) 
9: else 

10: response.setKCandidates( k -candidates from the Palette 
(that appear in k -buckets) 

11: if key.getColor()==myColor then 
12: response.setPopularity( myCache.isItemPopular(key)) 
13: response.setIsNeeded( myCache.isItemNeeded(key)) 

14: Send response 

15: 

16: function getColorNode (Key key) 
17: return closest node with the same color as key from the 

Palette 
18: 
19: function getNodesByBitmap (Bitmap bitmap) 
20: return up to k nodes missing according to the bitmap 

Algorithm 3 Find Value: Receiving Responses. 

1: function findValueResponse (findValueResponse response) 
2: palette.update( response.getBitmapNodes()) 
3: coloredNodes.add( response.getColorNodeAsKey()) 
4: if response.isCacheHit() then 
5: return response.getItem() 

6: kCandidates.update(response.getKCandidates()) 
7: if response.getSender()==sideStepNode then 
8: isThereOutstandingSideStep= false 
9: isRequestPopular= response.isPopular() 

10: if response.isNeeded() then 
11: nodesThatNeedTheItem.add(sideStepNode) � When/if 

the item is found, it is sent to the closest node in nodesThat- 
NeedTheItem 

 

 

 

 

 

 

 

 

 

 

 

 

describes the way the requesting node handles these

responses and the way it updates its data structures. Note

that the updated data structure in Algorithm 3 affects the

subsequent requests in Algorithm 1 . 

4.3. Explicit Congestion Notification 

When we started experimenting with Kademlia in gen-

eral and with Shades in particular, we encountered a con-

gestion problem that caused message drops. In order to

avoid this problem, we have added a simple congestion

control mechanism, inspired by the Explicit Congestion No-

tification of TCP/IP [20] . That is, every time a node han-

dles a message while its incoming message queue is al-

most full (75% full in our measurements), this node marks

this message with a congested bit. Nodes that receive mes-

sages marked with the congestion bit may replace con-

gested nodes without a ping, similarly to the way Kademlia

treats nodes that failed to respond to a message. 

This mechanism helps Kademlia nodes avoid becoming

overloaded with requests by reducing their frequency in

routing tables. As a result, the most congested nodes re-

ceive fewer messages as can be seen in Section 6.9 below.

We note that we added this optimization to all the algo-

rithms and not just to Shades. 
5. Analysis 

Throughout the probabilistic analysis below, we make

several simplifying assumptions as detailed below. Yet, as

demonstrated by our performance evaluation in Section 6 ,

the actual results follow closely our analysis, suggest-

ing that the overall analysis is indicative despite these

assumptions. 

5.1. Simplifying assumptions 

Assumption 1. All nodes request approximately the same

number of values at an arbitrary common distribution. 

Assumption 2. Keys are colored uniformly at random. 

Assumption 3. A side step is performed during every

lookup. (That is, a node with identical color to the

searched item is accessed.) 

5.2. Augmented popularity for same color items 

In this section, we provide mathematical intuition to

the claim that nodes observe augmented frequencies for

items of their own color. Denote P d the popularity of a key

d , i.e., the probability of a given node to issue a request

for d . 
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Denote C the number of colors and n the number of 

nodes. Since every node has a color, on average n / C nodes 

belong to each color. Therefore, since we assume that ev- 

ery lookup performs a sidestep, one of these n / C nodes 

with identical color to d is accessed during the lookup pro- 

cess. Since all lookups for d from n nodes contact a subset 

of the nodes of size n / C , any of these nodes are expected 

to get C times more requests for d than a random node in 

the system. That is, they experience a frequency of approx- 

imately P d ˙ C requests for d , generated both locally and as a 

result of side steps and lookups. 

If we neglect the routing traffic for key d for nodes that 

are not close to d in the XOR metric, these nodes receive 

just local requests for d , and observe a frequency of P d . 

For example, consider a value of popularity 1% ( P d = 

0 . 01 ), and assume that each node issues a request just 

for a single item. Matching colored nodes see C · 0 . 01 = 

150 · 0 . 01 = 1 . 5 requests for d in expectation while other 

nodes only see 0.01 requests for d in expectation. 

5.3. Constant distribution hit rate bounds 

We now characterize the performance envelope of 

Shades. In particular, we wish to explore the achievable hit 

rates in Shades under ideal conditions. 

Assuming C colors and local caches of size S , the max- 

imum distributed cache size is C · S . The best hit rate is 

achieved when every cache contains only the most fre- 

quent items of a specific color and these items are dis- 

tributed perfectly to colors. In this case, the maximal 

hit rate achievable by Shades (after warmup) is: 
∑ C·S 

i =0 P i 
where P i is the relative frequency of the i ′ th item in the 

distribution. 

Similarly, the worst case for Shades is when all the 

caches greedily cache the S most frequent items (regard- 

less of color). In this case, all caches will cache the same 

S items. The “lower bound” hit rate is therefore 
∑ S 

i =0 P i . 

We show in the result section that the hit rate estima- 

tions remain indicative to the performance of the system, 

even though our LFU policy is approximated and may fail 

to identify the most frequent items, and despite our sim- 

plifying assumptions. 

5.4. Load distribution between the colors 

Ideally, all nodes should receive a similar load regard- 

less of their color. Yet, as the request distribution is not 

necessarily uniform, the load experienced by nodes of dif- 

ferent color is not equal. Below, we estimate the likelihood 

for deviation from the average expected load experienced 

by the nodes of a given color. 

We associate each key d with a random variable X d 

whose popularity is taken from the original distribution. 

Hence, E(X d ) = P d . Using these random variables, we de- 

fine new random variables { C i } to be the summation of all 

random variables of the color i . An immediate observation 

is that for any two colors i , j , E(C i ) = E(C j ) . This is because

for every splitting that favors one of the colors over the 

other, we can change the color name and receive the op- 

posite one. Let T be the total number of find value requests 

in the system so far. Hence, E(C i ) = E(C j ) = 

T 
C for every i , 
j ∈ [1, C ]. By applying Markov’s inequality, we conclude 

that: 

P (C i > βE(C i )) < 

1 
β

and therefore: P (C i > β T 
C ) < 

1 
β

. This

result limits the probability that a certain color is signif- 

icantly more popular than other colors. In particular, the 

probability that a specific color is β times more popular 

than the average is less than 

1 
β

. To guarantee that this 

property holds for any key popularity distribution, only 

uniformly random hash functions should be employed. 

6. Performance measurements 

6.1. Methodology and setup 

In this section, we evaluate the performance of Shades. 

We also compare Shades to Kaleidoscope [16] , Local [24] , 

and the caching scheme suggested by the original Kadem- 

lia paper [36] (a.k.a. KadCache). For the evaluation, we 

have used a Java implementation of Shades, Kaleidoscope, 

KadCache, and Local. We have experimented with several 

different sizes of networks by running multiple Java VMs 

(one VM per 80 nodes) on two servers and emulating the 

users find value requests that are picked from a given, 

pre calculated workload. We used both synthetic and real 

life workloads. The real workloads are distributions that 

were taken from a real YouTube data set [10] and a real 

Wikipedia data set [40] . 

In the synthetic distributions, each node in the system 

periodically picks an item out of 10 0,0 0 0 possible keys ac- 

cording to the specific distribution and issues a find value 

request for that key. In the YouTube distributions, we used 

a data set that contains statistics of over 161k newly cre- 

ated videos. These videos were monitored weekly during 

21 weeks starting from 16th April, 2008. We used the 

number of views per week in order to directly generate a 

distribution that reflects the popularity of each video dur- 

ing that week. As for the Wikipedia trace, it contains an 

ordered list of requests that were accepted by Wikipedia 

servers during a period of two months. It is very extensive 

and contains 10% of the traffic for Wikipedia at that time 

period. Unfortunately, this trace does not contain client in- 

formation. Therefore, we simply picked a continuous flow 

of 5 million requests, cut it into small chunks and ran- 

domly but equally assigned them nodes. Each request is 

then assigned to a key and is searched for during the ex- 

periment. This scenario is similar to the case where a load 

balancer feeds a P2P network with requests. 

In all experiments, caches are given a warm-up period 

in which each node in the system issues 500 find value 

requests. After the warm-up period, each node in the sys- 

tem issues 500 additional find value requests. Statistics of 

message send/receive, incoming/outgoing bandwidth and 

the number of contributing nodes are monitored locally by 

each node and are collected via HTTP at the end of the ex- 

periment. Our experiments where performed on the real 

system code with the following parameters: bucket size 

k = 7 ; network sizes: 50 0, 250 0 and 50 0 0 nodes; request

distributions: Zipf 0.7, Zipf 0.9. Zipf distributions with sim- 

ilar values were found, e.g., in Web caching and file sharing 

applications [7,28] . Notice that in the case of 50 0 0 nodes, 

the experiment includes a total of 5, 0 0 0, 0 0 0 requests,
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Table 2 

Hit rate of a single (100 items) cache under different 

workloads and cache policy settings. 

Hit rate (%) 

LRU LazyEvict + TinyLFU Full LFU 

Zipf 0.7 0.024 0.095 0.099 

Zipf 0.9 0.155 0.283 0.285 

YouTube 0.110 0.243 0.245 

Wikipedia 0.158 0.322 0.325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Effect of the number of colors on the performance of Shades. 

Performance and the number of colors 

Wikipedia YouTube 

Shades Shades Shades Shades 

(50) (150) (50) (150) 

Self 0.28 0.26 0.21 0.2 

First side step 0.47 0.5 0.59 0.64 

Second side step 0.5 0.53 0.65 0.69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

half during the warmup period and the other half during

the measurement interval. 

6.2. Metrics and definitions 

We have studied the cache hit rates of Shades and

Kaleidoscope, the amount of traffic generated both in

terms of message count and overall bandwidth, and the

number of contributing nodes. 

In considering the cache hit-rate, let us note that in

both Shades and Kaleidoscope, the local cache of each

node p includes two types of values: items that p has re-

quested by itself and items that have the same color as

p and were stored there due to the protocol. We call the

collection of items of the first type self cache and the col-

lection of the other type of items the chromatic cache of p .

Hence, when the local cache size is limited, there is con-

tention between the self cache and chromatic cache. Fur-

ther, in the case of Shades, we distinguish between items

found in the chromatic cache during the first side step and

those found during the second side step. In the measure-

ments, we study both the self caches hit-rate and the chro-

matic caches hit rate, and in the case of Shades, we also

separate between the hit-rate obtained during the first side

step vs. the second side-step. 

6.3. The choice of a cache policy 

We compared the performance of a single cache on

our workloads when the cache management policy is LRU,

LazyEvict + TinyLFU, and Full LFU. In this test, the cache is

tested in clean conditions: it is not part of the system and

does not receive requests from other peers. Instead, a sin-

gle 100 items cache is presented with a stream of requests.

We measure the performance of the cache after a short

warmup phase. Our results are listed in Table 2 . As can

be observed, LFU policies are significantly more appealing

for our workloads. Moreover, LazyEvict + TinyLFU is able to

provide very similar performance to a Full LFU cache, yet

with a fraction of the meta-data storage and computation

overheads. As mentioned before, a more complete study of

TinyLFU (but not LazyEvict) appears in [15] . 

Let us note that even an unbounded cache cannot ob-

tain a 100% hit rate since the first access to each item is

a miss. Further, when the cache is bounded, highly skewed

distributions offer a greater potential for hit rates since the

set of frequently accessed items is smaller and so it is eas-

ier to guess which items are likely to be accessed next.

This is also evident in the results shown in Table 2 . 
6.4. Number of colors 

Varying the number of colors has a complex effect. On

one hand, increasing the number of colors enhances the

observed frequency of items with matching colors more

aggressively, thereby increasing their weight in the cache.

On the other hand, since the cache size is limited, it comes

at the expense of general items, hurting the performance

of the self cache. 

Hence, the number of colors is a tradeoff parameter.

Picking the correct number mainly depends on what the

system goals are. In order to explain this tradeoff, we mea-

sured the hit rates of the self cache, the first side step

and the second side step for different color configurations.

This check neglects searches that end due to other reasons

within their first few steps. 

The results in Table 3 present the different hit rates

achieved using 50 and 150 colors. As expected, 50 Colors

achieves higher self cache hit rates, but lower chromatic

cache hit rates. We feel that Shades offers a more attrac-

tive tradeoff with 150 colors than with 50 colors. 

This configuration achieves over 50% hit rate within the

first two side steps with both the Wikipedia and YouTube

workloads. In the latter, it is able to reach 65% hit rate for

the first side step and over 70% hit rate after the second

side step. 

Therefore, as long as the increase in hit rate after the

first side step is significant, we suggest increasing the

number of colors in order to achieve shorter searches.

We focus the rest of our measurements on the 150 col-

ors configuration of Shades. Let us also note that increas-

ing the number of colors has some bandwidth overheads.

We address the overall bandwidth overheads of Shades in

Section 6.8 . 

6.5. Self and chromatic caches performance 

In this section, we evaluate the hit rates obtained by

the chromatic caches of Shades with 150 colors and Kalei-

doscope with 17 colors (the recommended Kaleidoscope

configuration by the authors of [16] ). The results are sum-

marized in Table 4 . For a reference, we also point out in

the table two extreme values: MC – the maximal possible

hit rate for Shades when the chromatic cache spans the en-

tire local cache (self cache is empty), and ML – the max-

imum achievable hit rate when the entire cache is dedi-

cated to the self cache (chromatic cache is empty). 

As can be seen, in both schemes, the hit rate of the

chromatic cache is considerably better than the hit rate
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Table 4 

Cache hit rates for Shades and Kaleidoscope. 

Distributed cache performance 

ML Kaleidoscope (17) Shades (150) MC 

Zipf 0.7 0.1 0.16 0.42 0.49 

Zipf 0.9 0.29 0.4 0.55 0.75 

 

of the self cache. This is due to the use of colors that 

increases the likelihood that a searched item will be in 

the cache. In both schemes, lookup requests have a pref- 

erence to visit items of the same colors and both schemes 

attempt to store found values in caches of nodes of the 

corresponding color. Further, Shades overwhelmingly out- 

performs Kaleidoscope. The reasons for this are explained 

below. 

Node behavior in Shades is greedy, where each cache 

stores the most frequent items it observes. Further, the 

routing protocol of Shades is designed to increase the ob- 

served frequency of items with matching color and there- 

fore these items are more likely to appear in caches. When 

the cache size is limited, however, there is some tension 

between the self cache hit rate, which enables terminating 

after zero hops, and the chromatic cache hit rate, which 

enables terminating after the first (or second) side step. 

In general, the best hit rate after the first side step is 

achieved if the entire cache content is of matching colors 

since this configuration results in the largest and most ef- 

fective chromatic cache. However, in this case, since most 

lookups start at nodes with non-matching colors we have 

an extremely low probability to terminate locally (only if 

the searching node is also one of the k -closest nodes to the 

item’s key). Therefore, instead of forcing the local cache to 

contain only monochromatic items, we let it adjust its con- 

tent according to TinyLFU’s observed frequency. The rout- 

ing protocol is therefore responsible to augment the ob- 

served frequency of items of matching colors. The more 

colors we use, the more this frequency is augmented and 

the chromatic cache becomes more effective at the ex- 

pense of the self cache. 

Since Kaleidoscope works best with a smaller num- 

ber of colors than Shades [16] , the chromatic cache in 

Kaleidoscope is smaller. In addition, as the cache replace- 

ment policy in Kaleidoscope is LRU, which is less effective 

than LazyEvict + TinyLFU used by Shades, its hit rate suffers 

further. 

Overall, Shades achieves very attractive performance. 

Even in the mildly skewed Zipf 0.7 distribution where a 

single LRU cache provides less than 3% hit rate, our chro- 

matic cache was able to reach a 42% hit rate after the 

first side step. The more skewed Zipf 0.9 distribution holds 

greater caching potential, and indeed Shades achieves a 

55% hit rate after the first side step. This means that for 

both distributions, Shades allows a large portion of the 

searches to end after a single hop. 

Notice that the benefit of Shades’ chromatic cache over 

Kaleidoscope and a dedicated self cache in the Zipf 0.7 dis- 

tribution is more dramatic than with Zipf 0.9. The reason 

is that when the distribution is not very skewed, the max- 

imal hit rate of a “usual” cache is limited since it is much 
harder to predict which items are likely to be accessed 

next. In Shades, the side steps of the routing protocol and 

the use of a relatively large number of colors skew the ob- 

served frequency of each chromatic cache considerably, en- 

abling the cache to obtain good hit rates. 

6.6. Comparison to other caching mechanisms 

In this section, we compare Shades to previously sug- 

gested caching schemes as well as to a plain Kademlia. We 

use concurrency of α = 3 and measure how many nodes 

contributed to the lookup resolution. In order to verify sta- 

tistical significance, the experiments are repeated 3 times, 

and the number of contributing nodes was averaged for 

15k nodes per protocol. 

Confidence intervals (with certainty of 0.99) were cal- 

culated, but are too small to present in graphs. In particu- 

lar, the maximal confidence interval for all the data points 

presented in this section is slightly less than 1% of the 

average. 

As can be observed from Fig. 6 , Shades outperforms 

all previously suggested caching schemes. Moreover, pre- 

viously suggested caching mechanisms reduce the number 

of contributing nodes only marginally compared to plain 

Kademlia. Local mainly benefits from preventing nodes 

from requesting the same item twice, while KadCache 

mainly reduces the worst case lookups, which are very 

rare and therefore does little to reduce the average num- 

ber. Shades, on the other hand, attempts to hit the cache 

quickly or not at all. Hence, there is a very small minority 

of lookups that would end quicker with KadCache. Shades 

occasionally makes the lookup process longer than in plain 

Kademlia, as its side steps contact nodes that are not part 

of the Kademlia lookup path. However, in the typical case 

of all tested workloads this pays off due to the significant 

increase in the cache hit rates. 

Table 5 presents the median number of contributing 

nodes values for all the protocols evaluated. Shades re- 

duces this median by as much as 22%–34% compared to 

the best alternative for every workload. 

Unlike median, averages can be manipulated in many 

ways and are sensitive to edge values. For example, 

lookups that are resolved at the self cache significantly re- 

duce the average number of contributing nodes without 

impacting their median. Also, the minority of very long 

lookups increase the average number of contributing nodes 

without increasing the median. Our results are presented 

in Table 6 . As can be seen, Shades reduces also the average

number of contributing nodes by ≈18–23% in comparison 

to the best alternative of each workload. 

We expect Shades’ advantage to become more dom- 

inant with larger networks. Since the lookup paths of 

Kademlia grow longer with the network size, the impact 

of finishing a large portion of the searches within the first 

two hops becomes greater in large networks. 

6.7. Unbounded cache size experiment 

The various schemes we tested utilize different cache 

replacement schemes. In particular, KadCache, Local and 

Kaleidoscope use an LRU cache while Shades uses our 
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Fig. 6. Number of contributing nodes required to perform a lookup. 

Table 5 

Median number of contributing nodes during the measurements (the last column is the ratio 

between Shades and its best alternative). 

Median number of contributing nodes 

Kademlia Local KadCache Kaleidoscope Shades Shades/Best 

Zipf 0.7 5.47 5.29 5.18 5.1 3.27 0.64 

Zipf 0.9 3.76 3.42 3.76 3.15 2.18 0.69 

YouTube 2.69 2.66 2.44 2.64 1.9 0.78 

Wikipedia 3.48 3.44 3.23 3.2 2.21 0.69 

Table 6 

Average number of contributing nodes during the measurements (the last column is the ratio 

between Shades and its best alternative). 

Average number of contributing nodes 

Kademlia Local KadCache Kaleidoscope Shades Shades/Best 

Zipf 0.7 5.34 5.29 5.16 5.12 4.08 0.79 

Zipf 0.9 4.01 3.92 4.01 4.20 3.03 0.77 

YouTube 3.72 3.41 3.40 3.40 2.74 0.81 

Wikipedia 4.32 4.06 4.14 4.15 3.31 0.82 

 

 

 

 

 

 

 

 

 

 

than a 100 items Shades cache for all tested workloads. 
own LazyEvict + TinyLFU. Therefore, it is important to un-

derstand what gives Shades the edge over other strate-

gies. In order to level the playing field regarding the cache

policy, we experiment with unlimited caches, which ren-

der the eviction policy immaterial, using exactly the same

workloads as our other experiments. The only bound for
the cache size in this experiment is the length of the ex-

periment that remains the same. 

The results are illustrated in Fig. 7 . As can be ob-

served, both Local and KadCache perform worse than an

unbounded Shades cache. Moreover, they are even worse
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Fig. 7. Competitors with unbounded caches vs. Shades with 100 items cache and an unbounded cache. 

Table 7 

Average number of handled messages during the measurements (the last column is the ratio 

between Shades and its best alternative). 

Average number of handled messages (10 0 0’s) 

Kademlia Local KadCache Kaleidoscope Shades Shades/Best 

Zipf 0.7 7.1 7.1 7.2 5.5 6.0 1.09 

Zipf 0.9 5.6 5.3 5.9 4.8 4.7 0.98 

YouTube 5.2 4.9 5.1 4.3 4.3 1 

Wikipedia 6 5.6 6.1 5.2 5.2 1 

Table 8 

Average bandwidth costs during the measurements (the last column is the ratio between Shades and its best alternative). 

Average incoming traffic (MB) 

Kademlia Local KadCache Kaleidoscope Shades Shades/Best 

Zipf 0.7 12.00 11.59 11.99 9.78 10.93 1.12 

Zipf 0.9 9.16 8.55 9.9 8.61 8.49 0.99 

YouTube 8.52 7.90 8.52 7.87 7.66 0.97 

Wikipedia 9.84 9.06 10.14 8.5 9.24 1.09 
This result implies that a major contribution of Shades in- 

deed comes from its routing protocol. 

Note that TinyLFU is inherent in Shades routing proto- 

col, as detailed in Section 4.2 . Hence, running Shades with 

LRU would simply add management overhead and there- 

fore does not make sense. 

6.8. Communication overheads 

The message overheads of Shades and the other proto- 

cols are quantified in Table 7 . As can be observed, Shades 

sends a comparable number of messages to the best al- 

ternative for every workload. Yet, as Shades modifies the 

original Kademlia messages to include its own information 

inside them, each Shades message is slightly bigger. Table 8 

quantifies the overall average bandwidth received by each 

node during our measurements. This bandwidth includes 

all the data sent by the protocols. 

As can be observed, Shades is always comparable to the 

best alternative for that workload. Thus, although message 

count and communication bandwidth are not part of our 

design goals, Shades encounters no significant overheads 

in these metrics. 
6.9. Congestion control 

The effect of our explicit congestion notification mecha- 

nism is evaluated in Fig. 8 . This figure is a sorted histogram 

of the number of messages handled by each node during 

both the YouTube and the Zipf 0.7 measurements. As can 

be observed, Shades offers a significantly better load dis- 

tribution when equipped with this simple congestion con- 

trol mechanism. This mechanism also had similar effects 

on the load distributions of all other protocols. The down- 

side of this mechanism is a slight decrease in the average 

cache hit rate, as lookups are routed more evenly in the 

network. However, the total impact on hit rate is almost 

unnoticed. 

Yet, even when all other caching suggestions are 

equipped with the explicit congestion notification mech- 

anism, Shades offered a significantly more balanced load 

distribution. The effect is quantified by Table 9 that com- 

pares the average number of messages handled by the 

most congested 50 nodes in the network (1% busiest 

nodes). As can be observed, for each workload, Shades im- 

proves the load placed on these nodes by 22–43%. We 

credit the improvement to Shades’ routing technique since 
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Fig. 8. Load distribution across the 10 0 0 most congested nodes (out of 50 0 0 overall) for Shades (150 colors) with and without congestion control mecha- 

nism. 

Table 9 

Load placed upon the most congested nodes (the last column is the ratio between Shades 

and its best alternative). 

Messages handled by 1% most congested nodes 

Kademlia Local KadCache Kaleidoscope Shades Shades/Best 

Zipf 0.7 26.2 23.9 22.7 20.05 11.45 0.57 

Zipf 0.9 21.4 18.6 16.7 17 13.00 0.78 

YouTube 22.4 18.2 21.1 17.9 13.3 0.74 

Wikipedia 26.6 17.6 19.9 17 13.3 0.78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all other routing protocols are also equipped with the same

congestion control mechanism. 

7. Discussion 

We have presented Shades, a combined routing/caching

scheme that augments Kademlia, yielding a significant re-

duction in the number of contributing nodes. Through

simulations that are based on artificial Zipf-like dis-

tributed workloads as well as real traces from YouTube

and Wikipedia, we have found that Shades reduces the

median number of nodes contributing to each lookup by

22–36% compared to the best of breed among the other

schemes in the workloads tested and a 30–40% reduction

compared to plain Kademlia. Shades obtains a load reduc-

tion on the busiest nodes (hot-spots) of 22–43% with re-

spect to the best scheme and 40–56% compared to plain

Kademlia. With reported latencies of 5.8–7.6 s for tuned

Kademlia based systems such as [32,37] , our improvements

can have a significant impact on the user experience of

these systems. 

Shades also generated fewer messages than KadCache

and Local, and a similar bandwidth consumption as the

best of breed among them. In some workloads, Kaleido-

scope offers slightly lower message and bandwidth costs,

but the differences are small. 

Another feature of Shades is that with a small 100

items cache it performs better than any of the other

caching schemes even when they are equipped with an

unbounded cache. Shades is an open source project [2] ,

implemented as an extension to OpenKad [1] . 

When using caching, there is always the question of

keeping the cache content consistent. There are many ap-
plications in which data is immutable, in which case the

problem does not exist. In particular, in such systems ex-

plicit versioning is often used instead of updates (e.g.,

http://www.saphana.com/ ). In other cases, using periodic

revalidation against the main copy or deleting items from

the cache after a TTL is enough to ensure timely eventual

consistency [42] . 
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