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a b s t r a c t 

As edge clouds become more widespread, it is important to study their impact on tradi- 

tional application architectures, most importantly the separation of the data and control

planes of traditional clients. We explore such impact using the virtualization of a Peer- 

to-Peer (P2P) client as a case study. In this model, an end user accesses and controls the

virtual P2P client application using a web browser and all P2P application-related control

messages originate and terminate from the virtual P2P client deployed inside the remote

server. The web browser running on the user device only manages download and upload of

the P2P data packets. BitTorrent, as it is the most widely deployed P2P platform, is used to

validate the feasibility and study the performance of our approach. We introduce a proto- 

type that has been deployed in public cloud infrastructures. We present simulation results

which show clear improvements in the use of user resources. Based on this experience we

derive lessons on the challenges and benefits from such edge cloud-based deployments.

© 2016 Elsevier B.V. All rights reserved.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

A new trend in service deployment in the Internet,

based on cloud computing and virtualization, shifts the lo-

cation of applications and infrastructures from the user de-

vice to the network to reduce the costs associated with

the management of hardware and software resources [1] .

In such systems, service providers can provide simplified

software installation, maintenance and update [2] . As cloud

technology has become more popular, we have seen the

emergence of edge clouds [3] , that is, datacenters de-

ployed by Internet access providers, in close proximity

to customers. With such facilities comes new opportuni-

ties to shift traditional computer based applications, which

could not otherwise have easily been virtualized because
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of their complex control plane, towards the cloud. Peer-

to-peer (P2P) applications would be an example of such

applications. 

P2P networks are popular tools for content-sharing be-

cause they provide better scalability and fault tolerance

than the traditional client-server model of computing. A

P2P network can be described as a network of cooperat-

ing peers that work together to complete tasks and share

resources in the Internet. Such a network is composed

of numerous distributed, heterogeneous, autonomous, and

highly dynamic peers with which participants share a part

of their own resources such as processing power, stor-

age capacity, software, and content [4] . P2P networks have

no single point of failure and the network can grow and

shrink without sacrificing the functionality of the system.

Bandwidth utilization is better in such networks as the

peers communicate directly with each other rather than

through a hub which would present a bottleneck [5] . 

P2P applications are often used for file sharing. One

example of a popular P2P file sharing application is
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BitTorrent. Large corporations like the Blizzard Inc. use P2P 

systems to simultaneously distribute bandwidth-intensive 

content to thousands of users without requiring major in- 

frastructure investments [6] . On-demand media streaming 

is another popular P2P application. PPTV [7] delivers video 

content by streaming but peers can watch and share dif- 

ferent parts of a video at the same time thus reducing 

server load [8] . Distributed P2P file storage systems like 

Freenet [9] anonymously publish, replicate and retrieve 

data distributed among peers. Skype [10] is a P2P appli- 

cation which enables voice and video calls over the Inter- 

net to any other Skype user. P2P model can even be used 

to virtualize physical objects and service construction pro- 

cesses on smart spaces [11] . Several distributed scientific 

projects like Seti@Home [12] use P2P public distributed 

computing to share processing cycles. BitTorrent Sync [13] 

is a recent addition to this paradigm that synchronizes files 

between devices on a local network, or between remote 

devices over the Internet. 

For running such P2P applications a user normally has 

to install a client application on her device. The single 

most important task of these applications is to exchange 

data between peers, but apart from that, they may also 

perform routing/forwarding, content validation (e.g. hash 

checking) and implement different mechanisms for effi- 

cient bandwidth usage. As a result these client applications 

consume various resources including processing power, 

memory and bandwidth. Also, NAT traversal is an issue in 

P2P applications as most of the peers usually do not have 

globally routable IP addresses [14] . A local application re- 

quires a prior installation and has to be regularly updated 

for maintenance, which can be a burden for the user. 

In this paper we explore how P2P applications bene- 

fit from virtualization in an edge cloud environment and 

study the architectural tradeoffs. For this process, we intro- 

duce SimpleBit , a virtual terminal-based P2P client which 

follows the BitTorrent protocol but is deployed on a re- 

mote cloud server. This architecture was first introduced 

in [15] , albeit very briefly. An end user accesses and con- 

trols SimpleBit using a standard web browser, which re- 

duces the requirements and the load on user devices by 

offloading the control and session management tasks to 

the remote server. We study two different architectures of 

SimpleBit: 

1. A P2P-type direct download architecture where the 

files are downloaded directly from the peers to the 

end user’s device. 

2. A surrogate-based proxy downloader where the files 

are first downloaded by the surrogate server and 

then transferred to the end user’s device. 

The rest of the paper is organized as follows: Section 2 

briefly describes BitTorrent and discusses a detailed 

overview of how the BitTorrent client works. Section 3 

introduces and discusses virtualization. In Section 4 we 

present the architecture of SimpleBit virtual P2P client. 

We have designed two orthogonal models: SimpleBit with 

proxy downloader is explained with its implementation 

in Section 5 and SimpleBit with P2P download is pre- 

sented with simulation results in Section 6 . In Section 7 

we explain the lessons we have learnt on the challenges 
and benefits from the edge cloud-based deployments. In 

Section 8 we summarize and compare existing effort s that 

are related to our work. Finally, Section 9 concludes the 

paper. 

2. Dissecting BitTorrent 

BitTorrent is the most popular P2P application for dis- 

tributing large size files. It is implemented as a hybrid P2P 

system. Most of the interactions are done directly between 

peers but initial and further occasional interactions with 

a server are required for locating peers [16] . A user gets 

the information about the peers using a meta-information 

(metainfo) file (or metafile). The architecture of BitTorrent 

is shown in Fig. 1 . It can be summarized in the following 

points: 

1. A peer willing to download a shared content has 

to download the corresponding metafile from a web 

server and uses it to identify a tracker for that con- 

tent. 

2. The peer contacts the tracker and requests a list of 

peers that are already participating in the torrent 

(i.e., sharing that content). 

3. The tracker replies with a list of peers with their IP 

address and access port. 

4. The peer selects a number of peers from the list pro- 

vided by the tracker and establishes a connection 

with them. 

5. When connections are established, the peer ex- 

changes pieces of that file with the neighbors. 

A set of peers using the same metafile to share a par- 

ticular file are part of the same swarm . A tracker can in- 

troduce the newly joined peer to multiple swarms at the 

same time. A file is divided into fixed-size pieces and 

peers exchange the pieces with each other. When a piece 

is downloaded its SHA1 hash is computed and compared 

with the value in the metafile. If the values match then 

the piece is declared downloaded and made available for 

downloading to other peers. 

BitTorrent uses pipelining to keep the TCP connections 

operating at full capacity [17] . For this reason each piece is 

divided into many sub-pieces (usually 16 KB-sized) which 

are called blocks or chunks. To reduce the load on seeders 

(a peer who has access to the whole shared file) a peer 

downloads pieces not only from the seeders, but also from 

other peers (which are called leechers). 

In this section, we have carefully studied the compo- 

nents of the architecture of BitTorrent based on its speci- 

fications [18] . Then we have arranged them into different 

modules from a developer’s perspective. The modules are 

identified as part of either data plane or control plane, or 

both. We define the control plane as the part of the ar- 

chitecture which is concerned with drawing up the net- 

work map, or handling state oriented messages between 

other peers or servers. Otherwise, the data plane is de- 

fined as the part where the actual data is transferred be- 

tween the participating peers. Implementation of a full Bit- 

Torrent system can be divided into three distinct parts, 

as follows. 
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Fig. 1. BitTorrent’s file sharing process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Metafile processor (control plane) 

The Metafile processor is a module which is required

by both the tracker server and the client running in

each peer’s machine. A peer willing to publish or share

some content using the BitTorrent protocol has to create

a metafile holding the description of the content that is to

be shared along with contact information for the tracker

server. A peer willing to retrieve the same content using

the BitTorrent protocol must find the metafile and decode

it to start the download process. This file is encoded in a

special format called bencoding [18] . This module decodes

the bencoded file to extract useful information for other

modules. The metafile is structured as a dictionary with

the following keys and values: 

• announce The URL of the torrent tracker; 

• info An embedded dictionary with following keys: 

− name Suggested name to download the file; 

− piece length Number of bytes each piece of the

shared file is split into; 

− length If the content is a single file it indicates the

size of the file in bytes; 

− files If the content is composed of multiple files

it contains a dictionary with the length and the or-

dered sequence of the directories to save the files; 

− pieces The SHA1 hash of the pieces for future ver-

ification of the integrity of the downloaded pieces. 

2.2. Tracker communication module (control plane) 

A peer willing to initiate P2P file sharing contacts the

tracker server through this module using the announce
key in the metafile. A tracker server is an HTTP server

which maintains a list of connected peers as well as in-

formation about the evolution of their status. It answers

to a peer’s requests for the addresses and ports of other

peers. To support efficient data sharing between clients, it

also tracks which fragment of that file each peer possesses.

To contact the tracker, this module must send a standard

HTTP GET Request with the following parameters [18] :

• info_hash A URL-encoded 20-byte SHA1 hash of the

value of the info key from the metafile. 

• peer_id A 20-byte self-designated ID of the peer. 

• port The port number the peer is listening to for in-

coming connections from other peers. 

• uploaded The total amount of bytes that the peer has

uploaded in the swarm. 

• downloaded The total amount of bytes that the peer

has downloaded from the swarm. 

• left The amount of bytes that the peer needs in this

torrent to complete the download. 

After receiving the HTTP GET Request , the tracker

responds with a document with the text/plain MIME

type. It contains a bencoded dictionary with the following

keys: 

• failure reason A human readable string contain-

ing an error message with the reason for the failure if

the peer is unfit to join the swarm. 

• complete The number of seeders (optional). 

• incomplete The number of leechers (optional). 

• peers A bencoded list of dictionaries containing a list

of peers. Each peer is a dictionary containing the keys

peer_id , ip and port . 
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Each peer contacts the tracker typically every 30 min. 

When a peer leaves the torrent, it informs the tracker 

to have its name removed. If the peer leaves silently the 

tracker automatically removes the peer after a predefined 

period of time, following the last connection of the peer to 

the tracker, i.e. a timeout [19] . 

2.3. Peer-to-Peer communication module (data plane) 

This module facilitates communications between two 

peers. It handles creating and listening for peer hand- 

shakes and connections. The information about the peers 

is gathered from the tracker using the tracker communi- 

cation module. Peer connections are established using the 

TCP protocol to the appropriate host IP and port. 

Handshaking. Before any data transfer two peers must es- 

tablish a connection via a handshake . A handshake ex- 

changes a string of bytes with the following structure: 

• Protocol Name The name of the protocol in ASCII, 

such as BitTorrent protocol . 
• Reserved Reserved for future extensions. 

• Info Hash The SHA1 hash of the info value. 

• Peer ID The self-designated peer_id . 

Message Communication. Following the handshake both 

ends of the TCP channel send messages to each other in 

a completely asynchronous fashion. These messages have 

two different types: 

1. State-oriented Messages. These messages inform 

peers of changes in the state of neighboring peers. 

2. Data-oriented Messages. These messages handle re- 

questing and sending of data. 

A peer-to-peer message contains three fields: the 

Message Length , the Message ID and the Payload 
[18] . In the following we briefly present some important 

messages: 

• interested Informs the peer that the sender peer 

wants some pieces that the peer has. 

• not interested Informs the peer that the sender 

peer is not interested in any pieces that the peer has. 

• have A message sent to all peers once the client has a 

complete piece. 

• bitfield A message only sent after the handshake is 

completed to tell peers which pieces the client has. 

• request A message sent to a peer indicating that 

they would like to download a given piece. The pay- 

load of the message has following fields namely index , 
block offset and length 

• Piece The payload of this field has three fields namely 

index , block offset and data (contains the bi- 

nary data). 

Additionally, the client sends keep-alive messages 

to keep the connections open. 

2.4. File handling module (data plane) 

A file is split into smaller pieces which are of fixed size 

and treated as binary data. Each piece can then be assigned 
a hash code, which can be checked by the downloader for 

data integrity. The most common piece sizes are 256 KB, 

512 KB and 1 MB. The file handling module manipulates 

raw binary data in the local storage. When the pieces of 

the files start arriving at the client, the file handling mod- 

ule temporarily stores them in the local file system. When 

all the pieces of a single file have arrived, they are merged 

into the desired file. 

3. Virtualization 

The idea of virtualization has evolved during the early 

days of computing when the virtual systems in mainframes 

[20] were designed. In general, the process of recreating a 

(virtual) hardware or software environment by emulation 

on top of a real system is called virtualization. The use 

of virtualization is quite broad including network archi- 

tecture virtualization, desktop virtualization, or client pro- 

gram virtualization. The use of virtualization has emerged 

due to the increased popularity of Cloud computing. 

Note that virtualization of hardware and computing re- 

sources is one of the fundamental building blocks of Cloud 

computing [21] . 

Virtualization in networking is mostly observed at the 

network architectural level for hiding the underlying in- 

frastructure network. For example, Cabo [22] presents a 

high–level architecture for a flexible and extensible system 

that supports multiple simultaneous network architectures 

through network virtualization. Cabo identifies two differ- 

ent entities: infrastructure providers (e.g. the ISPs) who 

manage the substrate resources and service providers who 

operate their own customized network inside the allocated 

slices. 

Desktop virtualization or virtual network computing 

[23] can be achieved in a number of ways and with various 

technologies, the most popular being Microsoft’s Remote 

Desktop Protocol [24] or Citrix’s XenDesktop [25] . A virtual 

desktop means in essence that applications run on a ma- 

chine different from the user’s. The desktop is presented to 

the user as an image of the one running remotely and local 

keyboard and mouse are used to interact with it, in typi- 

cal fashion. The virtual desktop server, located on a remote 

platform, is responsible for on-demand application provi- 

sioning, managing user settings and the running the Op- 

erating System’s functions. The matching virtual desktop’s 

image is rendered at the user’s platform through a virtual 

desktop protocol. Since the user’s platform has no perma- 

nent storage, the remote data center works as its virtual 

storage. 

With the aid of virtualization cloud computing dynam- 

ically pools computing resources from a cluster of servers 

[26] . Depending on the demand cloud computing dynam- 

ically assigns and reassigns virtual resources. In the case 

of the Infrastructure-as-a-Service (IaaS) model, a virtual- 

ization layer, also known as the infrastructure layer uses 

well-known virtualization technologies such as Xen, KVM 

and VMware. Thus, a pool of storage and computing re- 

sources are created by partitioning the underlying physical 

resources. 

Unlike virtualization of the whole operating system 

or network architecture, virtualization could be used in 
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Fig. 2. A generic architecture for virtual clients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

smaller levels at the client side applications. Fig. 2 presents

a generic architecture that facilitates client application vir-

tualization. Essential in this architecture is the existence of

a cloud-based server, which we shall call a surrogate , which

is meant to take most of the control load off the termi-

nal client. The surrogate deploys virtual client applications

and thus acts as a remote server for the user to access,

organize, provision and monitor their application’s control

plane related services. 

By transferring most of the control plane’s complexity

to the surrogate, a simple user device with functionalities

restricted to operating the GUI and data transfer could be

used. Web-based GUIs are quite commonly used now for

virtual clients, say for email or desktop applications, and

most user-device platforms are equipped with at least one

and often several web browsers. The web browser is the

most commonly deployed software platform across com-

puting devices of all sizes and format available to develop-

ers today. Present cumulative industry growth projections

give us an estimation that there will be 20 billion Internet-

connected devices by 2020 [27] . Web browsers are getting

ever richer features every day and so are browser-based

applications. The type of platform, its manufacturer, or the

nature/revision of its operating system do not matter for

browser-based applications. 

A surrogate implements a Web server, which receives

a user’s input through the GUI running on the web client

inside the user device. An interaction layer is needed

between the Web server and the virtual client for estab-

lishing communications between them. The virtual client

communicates with a regular client (e.g., in case of P2P

communications) or with a server (e.g., in case of a SIP

server). The existence of a surrogate is transparent to

the other regular clients/servers in the network, i.e., they

behave as if they were communicating with a traditional

client applications. Thus, all signaling or control plane

related activities will be originated and also terminated

at the virtual client. However, data plane activities will
be performed by the end user’s device. Such examples

include uploading/downloading files, video streaming, etc. 

Note that the term surrogate was used previously to

demonstrate the idea of edge cloud , where a wide num-

ber of services including virtual IMS client [28] , virtual SIP

client edge cloud , transcoding [3] and content processing

[29] could be deployed. Following the same rationale, a

SimpleBit P2P client would be deployed in an edge cloud. 

4. Virtual P2P client architecture 

The functionalities of a P2P client can be broadly di-

vided into control plane and data plane. Note that these

functionalities will be implemented in two places, at the

user device and inside the surrogate. Depending on the lo-

cations where these functionalities are implemented two

orthogonal models may be developed, which are shown in

Fig. 3 . In this figure, we present two different SimpleBit

P2P client architectures: a proxy downloader model and a

pure P2P downloader model. These two models are illus-

trated in Fig. 3 a and b, respectively. Comparing these archi-

tectures will allow us to explore trade-offs in the location

of some functionalities. 

We would like to mention that the proposed architec-

ture has been designed to be usable by any P2P proto-

col. Since BitTorrent is the dominant P2P protocol at this

stage, we describe in the following how our model can im-

plement a virtual P2P client. Note however that although

some parts of this description are BitTorrent-specific, this

model, with minor modifications could easily be adopted

to other and any future P2P protocols. 

4.1. Proxy downloader model 

We can offload both control and data planes activities

from the user device to the surrogate, with the great ben-

efit of reducing resource usage and implementation com-

plexities on the user side. Thus the surrogate acts as a
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Fig. 3. Virtual P2P client architecture of SimpleBit. 

is further studied with a simulation model in Section 6 . 
proxy for the user’s P2P client. In this model, different 

pieces of a file will be downloaded to the surrogate, then 

merged together to rebuild the file. Depending on the de- 

vice, the whole file could incrementally be transferred to 

the user as the pieces are received, or conversely be held 

by the surrogate for a later, completed file transfer. We 

designate this model as the SimpleBit with proxy down- 

loader. This model is illustrated in Fig. 3 a. We can see 

in the figure that data plane is included in the surrogate 

server which completes all download activities and then 

notifies the user device when download is completed. The 

implementation details of this model have been described 

in Section 5 , where the surrogate first completes the whole 

download then provides a direct download link to the user. 
4.2. Pure P2P downloader model 

In the pure P2P downloader model, the data plane han- 

dler is implemented inside the user device. The surrogate 

is responsible for fetching the peer list from the tracker 

server. This list is forwarded to the user device, which then 

communicates with the peers. Thus, the client in the user 

device directly receives the data pieces from other peers. 

We designate this model as the SimpleBit with P2P down- 

load. This model is illustrated in Fig. 3 b, where the data 

plane handler is implemented inside the user device, but 

the control plane-related activities are offloaded to the vir- 

tual P2P client residing inside the surrogate. This model 
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There are clear trade-offs in terms of server and client ex-

tra complexity and resource consumption to handle these

different scenarios, but they do not pose any specific

challenge. 

4.3. Handling the functions of control and data planes 

In the following we describe the different handlers,

which implement all functionalities of the control and data

planes. In case of BitTorrent type P2P applications, collect-

ing chunks of data from different peers and then merging

them to produce the whole file is challenging. Therefore,

we introduce here a storage handler, which is in general a

part of the data plane handler. 

Control plane handler. The control plane handler is respon-

sible for registration, processing HTTP request/response

messages and interaction with the surrogate, the tracker

server and other peers. It consists of a metafile proces-

sor and the virtual P2P client running in the surrogate. It

replicates all the control plane functions of the existing ar-

chitecture, which include metafile translation, finding the

address and state of available peers from the tracker and

sending them to the peer device. Peers using the virtual

client also send their state oriented messages to the surro-

gate and the surrogate in turn sends them to the tracker

server. 

Data plane handler. The data plane handler may act differ-

ently based on the model chosen for the virtualized P2P

client. In the case of the Proxy Downloader model, the

data plane handler will be deployed inside the surrogate.

In the P2P download model, the data plane handler would

be deployed in the web browser of the user device. The

data plane handler receives the list of active peers from

the control plane handler of the application. When it finds

a suitable peer with the required piece of data, it requests

that piece from the peer. It opens and maintains multiple

data connections from the peers. This is the most challeng-

ing module to be implemented in the end user device. We

will discuss this in the next sections. 

Storage handler. The storage handler is a modified, en-

hanced downloader, which can download the data from

multiple peers and keep track of them. It can keep the

incremental chunks of the file in the local storage or in

the RAM. In the case that the accumulated size of the file

chunks exceeds the maximum allowable size in the lo-

cal storage or RAM (e.g., if the user device has very lim-

ited RAM), it can start writing them to a secondary stor-

age. When to write data to a secondary storage rather

than holding it in the local storage or RAM is a dy-

namic decision, typically based on user profile. An im-

plementation should carefully address the memory capa-

bility of a wide range of devices from PC to tiny cell

phones. 

5. SimpleBit with proxy downloader 

In this model the surrogate server acts as a proxy

downloader. The message sequence for this model is
shown in Fig. 4 . The different steps of this figure run as

follows: 

1. A user would connect to the web server running in-

side the surrogate through a web browser. He pro-

vides the metafile or the magnet URI of the desired

file to the user interface. 

2. The web server transfers the metafile to the virtual

P2P client running inside the same or a different

server. The virtual P2P client handles the control

plane activities on behalf of the user and creates

a session with the user. It communicates with the

tracker server requesting the peer list from the

active swarm. 

3. The tracker responds to the virtual P2P client with

the peer list. 

4. The virtual P2P client completes the handshakes

with the peers and finds the active ones. 

5. The virtual P2P client requests the file pieces from

the active peers, and thus different pieces of a file

will be downloaded in the virtual P2P client. 

6. The virtual P2P client periodically exchanges state-

oriented messages with the peers to keep them

aware of the availability of different pieces of the

file. 

7. The virtual P2P client also sends keep-alive mes-

sages to the active peers to check if the opened peer

connections are alive. 

8. The virtual P2P client sends state oriented messages

to the tracker server to keep the tracker updated of

the state of the user participating in the swarm. 

9. After the last piece of the file has been downloaded

correctly, the surrogate merges them all to produce

the file, which will be written to the disk of the

server and the storage handler of the user device is

notified of the availability of the file. 

10. When the file download is completed the user’s

browser window is notified of the completed down-

load and the link to the downloaded file is avail-

able as long as the user’s browser window is open.

It can even forward and store the downloaded file to

a user-designated cloud storage (e.g. Dropbox [30] )

using a suitable API . 

5.1. Cloud implementation 

We have implemented a SimpleBit proxy surrogate as a

NodeJS [31] web application. We have used ExpressJS [32] ,

which is a minimal and flexible NodeJS web application

framework that provides a robust set of features for web

and mobile applications and socket.io [33] which enables

real-time bidirectional event-based communication from

the server to the client. They provide a thin layer of funda-

mental web application features, without obscuring NodeJS

features that are being used in the back-end. We have de-

ployed the instances of this surrogate server in three dif-

ferent environments: in a desktop computer connected to

the Internet through a residential cable connection with

50 Mbps bandwidth, a Linode cloud platform [34] and an

Amazon EC2 cloud platform [35] . 
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Fig. 4. Message Sequence of SimpleBit with the proxy downloader. 

 

The surrogate server hosts an ExpressJS application in- 

cluding the web-based user interface. The web server re- 

ceives the user input through the GUI running on the web 

client which is built using the Bootstrap [36] framework. 

The user requests to download a file by entering a magnet 

link in a form provided in the GUI through the web in- 

terfaces. When the form is submitted a post request will 

be submitted to the same route. After the post request is 

validated a new page will be rendered where the down- 

load links would appear. In the meanwhile, the virtual P2P 

client running behind takes the magnet link as an input 

and starts the proxy download. 

We have borrowed the APIs provided by the WebTor- 

rent [37] library of NodeJS to build the virtual P2P client. 

It is currently in active development by open source com- 

munities. It provides a simple torrent client module, using 

TCP and UDP to talk to other normal torrent clients such 

as BitTorrent, μTorrent, transmission or deluge. After a file 

has been found in any swarm, it exposes it as a stream 

and fetches pieces from the network on-demand. As soon 

as the surrogate server finishes downloading a file using 

the APIs provided by WebTorrent, a download link is sent 

to the user who can download it directly to his device. 

5.2. Performance analysis of the proxy downloader 

As mentioned earlier, we have deployed instances 

of our implementation in three different environments. 
Table 1 shows different configuration parameters of these 

environments. 

To study the performance of these instances, we mea- 

sure the average download time for files of different sizes. 

In our implementation, we are saving two timestamps: the 

start time of the download and the arrival time of the final 

piece of the file. The download time for a file has been cal- 

culated in seconds by taking the difference between these 

two timestamps. The average download time is measured 

by repeating the download ten times in a row. We use the 

same torrent file for different instances and the download- 

ing of a file has been started at the same time in three dif-

ferent instances. To observe the variations of these down- 

load times, for a specific file download, we have calculated 

the standard deviation over the ten download times we 

recorded. Table 2 shows the average download time with 

standard deviations for files of different sizes in three en- 

vironments. Note the standard deviations have been pre- 

sented in brackets. 

Except for the case of the 19.5 MB file, the instances 

running in the cloud outperform the local instance run- 

ning in a desktop. Many factors including upload/download 

bandwidth, aggregate bandwidth at the seed(s), number 

of peers and seed(s), degree of nodes, finding rare pieces, 

presence of high bandwidth peers, etc. influence the down- 

load time of a file [38] . Since we started downloading 

in different environments at the same time, many fac- 

tors remained unchanged. However, available download 
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Table 1 

Configuration of different instances. 

Instance Local desktop Linode Amazon EC2 

Instance Type – Linode 1GB Tiny (t2.micro) 

Processor 2.7 GHz Intel Core i5 Intel Xeon CPU E5-2680 v3 @ 2.50GHz Intel Xeon 2.5GHz 

RAM 16 GB 1 GB 512 MB 

Download Bandwidth 50 Mbps 125 Mbps (Approx.) 500 Mbps (Approx.) 

Operating System Ubuntu Ubuntu Ubuntu 

Location Boston, USA Newark, USA N. Virginia, USA 

Table 2 

Average download time with standard deviations in second. 

File Size Local Desktop (s) Linode (s) Amazon EC2 (s) 

8.9 MB 11 .24 (3.24) 6 .41 (2.57) 6 .17 (0.93) 

19.5 MB 16 .53 (5.5) 17 .68 (6.87) 19 .85 (6.49) 

43.5 MB 22 .68 (5.23) 13 .99 (4.99) 12 .25 (3.9) 

71.0 MB 29 .36 (12.69) 17 .82 (13.13) 18 .37 (16.02) 

86.1 MB 29 .77 (2.73) 10 .83 (1.57) 10 .98 (0.77) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bandwidths were higher in the cloud platforms and thus

reduced the overall average download time. However, it

should be noted that several factors can influence the

download time. More importantly, the factors we have

mentioned are dynamic in nature and may change within

a short period of time. As a result, we may experience sig-

nificant variations in download times if we consecutively

download the same file several times. If we observe the

standard deviations of average download times, we find

large variations in all three environments, as reflected in

Table 2 . 

6. SimpleBit with P2P download 

In the SimpleBit with P2P download model, most of

the control plane activities are offloaded to the surrogate

yet the data plane related activities are handled in the

user’s device in a P2P fashion. The message sequence of

this model is shown in Fig. 5 . The different steps of this

figure run as follow: 

1. A user connects to the web server residing in the

surrogate through a web browser. There might be a

provision for user authentication. On successful au-

thentication, the end user uploads the metafile or

provides the magnet URI of the desired file to the

user interface running in the surrogate. 

2. The surrogate transfers the metafile to the virtual

P2P client running inside the same or a different

server. The virtual P2P client communicates with the

tracker server requesting the peer list from the ac-

tive swarm. 

3. The tracker responds to the surrogate with the peer

list. 

4. The surrogate immediately returns the peer list (IP

addresses and port numbers of the active peers) to

the user device. 

5. The data plane handler running in the user device

completes the initial handshaking with the active

peers. 
6. The data plane handler requests the file pieces from

the active peers, and thus different pieces of a file

will be downloaded to the user device. The data

plane handler can simultaneously download and up-

load file pieces in a P2P fashion. The storage handler

in the user device keeps track of the pieces down-

loaded so far. 

7. The data plane handler periodically exchanges state-

oriented messages with the peers to keep them

aware of the availability of different pieces of the

file. 

8. The data plane handler also sends keep-alive mes-

sages to the active peers to check if the opened peer

connections are alive. 

9. The data plane handler sends state oriented mes-

sages to the tracker server to keep the tracker up-

dated of the state of the user participating in the

swarm. 

10. Finally, after the last piece has been downloaded

correctly, the storage handler will merge them all

to produce the whole file, which will be written

to the local disk of the user device. When the file

download is completed the user’s machine will seed

the file as long as the user’s browser window is

open. 

6.1. Performance evaluation using discrete event simulation 

The implementation of this model in a traditional web

browser is not possible using existing web standards. Pos-

sible modification in the browser or web standards re-

quired for the implementation of this model are discussed

in Section 7.2 . Thus, in the absence of such web stan-

dards we evaluate and compare the performance of a regu-

lar BitTorrent model and a modified tracker-free BitTorrent

model using discrete event simulation. 

We use the ubiquitous discrete event simulator ns-2
for our evaluation. Note that the goal of this simula-

tion is to compare the performance and resource uti-

lization of a regular BitTorrent client with a BitTorrent

client that performs only data plane activities. Therefore,

in this study, we compare the performance of a regular

BitTorrent model with a tracker free BitTorrent model, us-

ing the widely referenced ns-2 -based model presented

in [39] . 

In the basic model, tracker functionalities are limited to

keeping track of the registered peers’ addresses and avail-

ability. The peers communicate with the tracker periodi-

cally to get the list of active peers for downloading the

file pieces. Besides, the tracker monitors the peer-to-peer
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Fig. 5. Message sequence of SimpleBit with P2P download. 

Table 3 

Simulation parameters and their values in our simulation. 

Parameter Description Values(s) 

file_size Size of the file being 

shared 

{50, 100, 200} MB 

chunk_size Size of each chunk of 

the file being shared 

256 KB 

Q_size Size of the queue at 

each access link 

25 

C_up Upload bandwidth of 

each peer 

20 0 0 Kbps 

C_down_fac Ratio of download 

capacity over upload 

capacity 

8 

num_of_seeds Number of initial seeds 1 

num_of_peers Number of peers 100–1500 
connections and availability of the peers. On the other 

hand, in the tracker-free BitTorrent model, a peer does not 

require any tracker communication or control plane related 

activities; rather the peers’ addresses of the swarm are em- 

bedded in the peer’s client. This model most closely mim- 

ics the activities of a peer that only handles the data plane 

related activities and leaves the control plane activities to 

the surrogate. 

Table 3 shows the important simulation parameters and 

the values used in our simulation. For other parameters 

and detailed information about the implementation proce- 

dure, please refer to [39] . 
6.2. Simulation procedure and results 

We have performed our simulation on a 4 GB RAM, 

Core- i 5, 2.7 GHz machine running Windows 7. As shown 

in Table 3 , we vary the number of peers in the network 

(from 100 to 1500) and the file size (50 MB, 100 MB, and 

200 MB) to generate different scenarios. For each of these 

scenarios, the other parameters such as the size of a sin- 

gle file chunk (256 KB), number of initial seeds (1), up- 

load bandwidth of each peer (20 0 0 KBps), etc., remain con- 

stant. We model each of these random scenarios 30 times 

and take the average value. Over the simulation period, we 

record the download start and finish times of each peer, 

and the download finish time of the entire swarm. Based 

on these data, we evaluate and compare the performance 

of a regular BitTorrent model with the tracker-free BitTor- 

rent model in terms of average download finish time , upload 

link utilization and download link utilization . 

Average download finish time refers to the average time 

needed by a peer to download the required file. We have 

utilized the following formula for calculating the average 

download finish time : 

A v erage download f inish time = 

∑ num _ of _ peers 
i =1 

T i 

num _ of _ peers 

Here, T i is the download finish time for the i th peer. Next, 

using the following equations we compute the upload link 

utilization and the download link utilization considering all 
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Fig. 6. Average download finish time of the swarm. 
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peers participated in the swarm: 

pl oad l ink util ization 

= 

num _ of _ peers × f ile _ size × 1024 × 8 

Swarm end time × C _ up × num _ of _ peers 

Downl oad l ink util ization = 

U pl oad l ink util ization 

C _ down _ fac 

Here, swarm end time is the time when all peers of

the swarm finish downloading the file. We multiply the

file_size by 1024 × 8 to convert the file size from MB to

Kb, since C_up has been given in Kbps. While calculating

the upload link utilization , we divide how much data has

been actually transferred during the swarm end time by

the aggregate bandwidths of the links. The download link

utilization has been calculated by dividing the upload link

utilization with the C_down_fac while all other parameters

remain unchanged. 
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Fig. 7. Upload link 
We present comparative simulation results for regu-

lar BitTorrent and tracker-free BitTorrent by varying the

number of peers. The average download finish time shown

in Fig. 6 demonstrates that the modified tracker-free Bit-

Torrent model completes downloading quickly compared

to the regular BitTorrent model. The figure also demon-

strates that, predictably, the average download time in-

creases with the growth of the file size. Moreover, for a

specific file size, the average download time slightly in-

creases more or less linearly with the number of peers,

which reflects the increased latency before a transfer can

be initiated when a copy becomes available on a peer

whose link is not saturated. 

We present the comparison of regular BitTorrent and

tracker-free BitTorrent for upload link utilization and down-

load link utilization in Figs. 7 and 8 , respectively. These two

figures illustrate that the bandwidth utilization is better in

the tracker-free BitTorrent model compared to the regular
00  1000  1200  1400  1600

f_peers

Tracker-free Bit-Torrent (200MB)
Tracker-free Bit-Torrent (100MB)
Tracker-free Bit-Torrent (50MB)

Regular Bit-Torrent (200MB)
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utilization. 
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Fig. 8. Download link utilization. 
BitTorrent model. Moreover, it can be observed that the 

mean upload/download utilization decreases with the in- 

crease of the number of peers, which is the dual of the 

behavior observed in Fig. 6 . Observing the equation of the 

upload link utilization , it can be found that all parameters 

except the swarm end time remain unchanged. Therefore, 

the upload link utilization is inversely proportional to the 

swarm end time . Although we are not presenting the swarm 

end time , during our simulation we have recorded this pa- 

rameter and observed that it increases with the number of 

peers. For example, for a 200 MB file size, in regular Bit- 

torent client, for 100 and 1500 nodes, the swarm end times 

are 1190 and 1400 msec, respectively. Note that this same 

trend is observed in Fig. 6 where the average download fin- 

ish time increases with the number of peers. 

Thus, it is clearly shown that the removal of tracker 

communication from the client reduces the time to fin- 

ish and enhances the bandwidth utilization in the swarm. 

Therefore, we can conclude that segregating the control 

plane and placing it in a surrogate server would increase 

overall performance of the P2P client from both the users’ 

and swarm’s perspective. 

7. Lessons learned 

We draw here some lessons from our work, on the ben- 

efits of the architecture, and the challenges of its imple- 

mentation. 

7.1. Benefits of the virtual P2P model 

In the following we summarize some of the key bene- 

fits of the proposed model. 

1. No installation hassle : To use a traditional BitTor- 

rent client the user needs to install some software. 

A wide selection of client software is available now, 

with some good enough and quite simple but the 

user needs to understand the basic working princi- 

ples of BitTorrent and have some skills in network 
configuration (routers, firewalls etc.) to make it work 

effectively. However, a virtual P2P client does not re- 

quire any installation. 

2. Operability in restricted environments : A P2P 

client program could not be installable on the user’s 

terminal due to various reasons such as organi- 

zational policy, licensing issues or platform sup- 

port. In such a restricted environment, the proposed 

model works without any difficulty through web- 

based clients. 

3. Location independence : As cloud infrastructures 

are off-site (typically provided by a third-party) and 

accessed via the Internet, users can connect to the 

virtual P2P client from anywhere. Moreover, it will 

be possible to access P2P services from behind the 

firewall. Still, we need to further study in the fu- 

ture how virtual P2P clients could be accessed be- 

hind their firewall or the case of NAT traversal and 

its impact on end-to-end data transfer. 

4. Simpler maintenance : P2P applications and proto- 

cols are still evolving. To implement the most ef- 

ficient method of content sharing a P2P client ap- 

plication requires frequent updates. In the case of a 

virtual P2P client implementation, any update in the 

protocol or application can be easily maintained on 

the surrogate. The client does not have to update or 

modify anything locally. 

5. Network access mobility : The virtual P2P client ar- 

chitecture decouples a swarm from the user termi- 

nal while the surrogate maintains swarm-related in- 

formation. Hence, a terminal could be switched off

without disrupting or restarting the swarm. A user 

could change her access network seamlessly, say due 

to the availability of a faster or cheaper access net- 

work. 

6. NAT traversal : In traditional BitTorrent applications, 

two peers behind the NAT cannot directly commu- 

nicate with each other. In our proposed model, the 

virtual P2P client is running in a public server and 
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thus can facilitate hole-punching [40] for NAT traver-

sal between the peers. To do so it can first ask for

the public and private endpoints of the peers and

provide the user’s end points to them. The peers can

then negotiate with each other for hole-punching. As

a result the user device can reach more peers, re-

sulting in a higher download speed. 

7.2. Implementation challenges 

Implementing a BitTorrent application in a web-

browser requires a few modifications in the BitTorrent pro-

tocol and the web browser standards as well. Traditional

browsers have some limitations to deploy peer-to-peer ap-

plications. We discuss the possible modifications to web

browser standard and BitTorrent protocol in the following. 

Bidirectional connections in a browser. Existing BitTorrent

applications use the BitTorrent protocol in the applica-

tion layer and open a bidirectional TCP connection with

each of the peers. However, a browser does not natively

“speak” the BitTorrent protocol. The WebSocket protocol

[41] allows two-way communications which can be initi-

ated from the browser, with the server [27] . It can be used

to tunnel BitTorrent messages, as well as the keep-alive

messages. 

Data exchanges between peers can further be facili-

tated with WebRTC, which is now available in mainstream

browsers like Chrome, Firefox and Opera [42] . 

BitTorrent messages over HTTP/WebRTC. The BitTorrent pro-

tocol has its own defined headers and payloads. A

browser-based implementation can only communicate us-

ing the HTTP/WebRTC protocol suite. However, a browser

based client can be designed using the HTTP/WebRTC

protocol where the payloads will be the BitTorrent

messages (both state-oriented and data-oriented). These

types of clients can only communicate with peers that

are using similar browser-based clients. To communi-

cate with both browser based and traditional BitTor-

rent clients, hybrid clients could be designed. The hy-

brid clients may have a module that would be able to

parse HTTP/WebRTC requests from browser based clients

with BitTorrent protocol oriented messages in the pay-

load; along with the ability to communicate with tradi-

tional BitTorrent clients using the BitTorrent protocol. It

will then be able to seed and leech to either type of

implementations. 

Downloading pieces from forwarded IP addresses. Because

of the same-origin policy, the web browser enforces con-

straints on which requests can be initiated by the ap-

plication and to which content originator. As a result,

when the IP forwarder returns with the IP addresses of

the peers to connect to, it cannot initiate a connection

to the peer which has an origin outside of the domain

of the initial remote server. However, implementation of

peer-to-peer applications requires bidirectional communi-

cation between multiple peers. It can be solved using

Cross-Origin Resource Sharing (CORS) [27] , which provides

a secure opt-in mechanism for client-side cross-origin

requests. 
8. Existing work 

In the following, existing bodies of work related to our

goal are summarized, as well as their limitations. It is to be

noted that not a single one of them could fully implement

our architecture. 

8.1. Java plugin based implementations 

BitLet [43] is a browser-based BitTorrent client that

runs on any browser that supports the Java Plugin (version

1.5 or newer). Note that using a Java based plugin has its

pitfalls. The Java Runtime Environment (JRE) has to be in-

stalled on the system. If a plugin requires a newer than, or

a version of the JRE more specific than the one available on

the system, the user may need for an update to complete,

or be left unable to run the plugin. Most importantly, a

significant portion of mobile devices e.g. PDAs (Blackberry,

Palm), tablets (iPad, Android, Windows Surface RT), smart

phones (iPhone, Android), gaming consoles (Nintendo Wii)

do not support java plugins at all [44] , thus this model has

become obsolete. 

8.2. Cloud-based, pre-downloaded P2P file retrieval system 

Some on-demand cloud-based P2P direct downloader

applications such as ZbigZ [45] , put.io [46] and CloudTor-

rent [47] first complete the download of the whole file

on their server. Then the latter provides the end user

with a download link or keeps the file in the user’s

cloud storage from where the user can directly down-

load the file in a client-server method. Such systems keep

the user identity and activity for downloading the file

anonymous to other peers as the user only downloads

the pre-downloaded file from the cloud. However, these

systems violate an important dimension of P2P systems

through unnecessary redundancy and wastage of resource

by downloading a single file twice and also storing it in the

cloud. 

Still, a platform such as ZbigZ is close to our con-

cerns and its existence shows the benefits in our work.

Unfortunately, they have not disclosed their architec-

ture and we cannot directly compare our approach to

theirs. 

8.3. WebTorrent 

WebTorrent [37] , a work in progress project, is focused

on developing a browser-based BitTorrent client. The ob-

jective of WebTorrent is to build a browser-based Bit-

Torrent client which requires no installation (no plugin

or extension) and has the ability to communicate with

the traditional BitTorrent network. It is based on We-

bRTC data channels [42] for peer-to-peer transport. The

web-based clients using the JS file supplied by WebTor-

rent can only download from other Web-based clients un-

til mainstream BitTorrent clients support WebTorrent. Our

proposed model separates the control plane and the data

plane of the BitTorrent client and only the data plane re-

lated activities are delegated to the end host to reduce
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complexity. On the other hand, in WebTorrent, all the ac- 

tivities of a BitTorrent client are mimicked in the user de- 

vice using WebRTC and there is no notion of a virtual P2P 

client. 

9. Conclusion 

We have presented a scheme to virtualize P2P clients, 

using BitTorrent as a case study. The main point of this 

scheme is to reduce the load on user devices, but it also 

supports mobility and facilitates inter-networking. We use 

the ubiquitous browser to implement the user interface of 

the virtual client. It uses a combination of JavaScript pro- 

gramming combined with Web Services based communi- 

cations between browser and server, as well as between 

peers. 

In future work, we would like to explore the full po- 

tential of using WebRTC to implement this model. We also 

plan to better study the trade-off between execution of 

functions between the browser and the server, as well as 

investigate better ways to facilitate inter-operations with 

“traditional” P2P clients. 
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