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a b s t r a c t 

The deployment of relay stations (RSs) offers a promising and viable approach to satisfy 

the increasing need of high data rate in cellular networks. With the expected increase of 

the number of RSs, the energy efficiency (EE) becomes a crucial system design parame- 

ter. One of the most effective energy saving methods is to switch off some stations. In 

this paper, joint base station (BS) and RS sleep scheduling algorithms are investigated in 

relay-assisted cellular networks. We aim to maximize the EE of the relay-assisted cellular 

networks under the spectral efficiency (SE) constraint. First, we establish a mathematical 

model which is a mixed integer nonlinear fractional programming problem. To solve it 

with globally optimal solution, a branch and bound (BnB) algorithm based on the denom- 

inator interval values of the objective function is designed and its convergence is proved 

theoretically. Then, two kinds of sub-optimal algorithms are proposed to compare with the 

optimal algorithm: one is a greedy algorithm and the other is based on the Cellular Au- 

tomata (CA) theory. Simulation results are presented to demonstrate the effectiveness of 

our algorithms. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Nowadays, the mobile data traffic is increasing expo-

nentially with the popularity of smart mobile devices.

Therefore, a great deal of technologies have been consid-

ered, one of which is the deployment of relay stations

(RSs) in cellular networks to improve network capacity

and quality of service (QoS) [1,2] . However, the deploy-

ment of RSs also increases energy consumption of cellular

networks. Moreover, it has been revealed that up to 80%

of energy consumption in a cellular network is attributed

to the base stations (BSs) [3] . A large number of tech-

niques for energy saving in cellular networks have been

proposed. In order to minimize the total energy cost, a

joint BS switching-on/off and user association algorithm
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was proposed [4] . The maximum energy saving that could

be achieved in a cellular network under a given perfor-

mance constraint was characterized through optimizing

the density of BSs [5] . However, these techniques face

great challenges to maintain reliable coverage and QoS

while saving energy simultaneously. Therefore, the design

of energy-efficient cellular network becomes a crucial goal.

To improve the energy efficiency (EE), a lot of methods

have been proposed in almost all aspects of cellular net-

works [6] . Among these approaches, switching off BSs is

an effective way to reduce the total energy consumption

and improve the EE [7,8] . A survey showed the importance

of green mobile networking and emphasized the concept

of “sleep mode” in BSs [9] . In recent years, many BS

sleep scheduling schemes have been put forward in some

studies. To save energy, in [10] , the authors proposed the

concept of cell zooming which adaptively adjusts cell size

according to the traffic load. In [11] , a scheme of switching

off BSs dynamically was proposed by switching light-load

BSs into the sleep mode. In [12] , the authors investigated
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the network sleep schemes by applying the Markov De- 

cision Processes to reduce energy consumption. Sleeping 

control and power matching for energy-delay trade-offs in 

one cell of a cellular network with burst traffic was stud- 

ied [13] . Deploying RSs in cellular networks can increase 

coverage and capacity. However, energy consumption also 

increases. Obviously, it is imperative to reduce energy 

consumption and improve EE in relay-assisted cellular net- 

works. An energy-efficiency cell breathing and offloading 

scheme was studied while the BS switching-off aggressive- 

ness was considered [14] . In [15] , the authors showed that 

the cooperation among the relay nodes reduced energy 

consumption in the transmission toward the end users, 

and offset the increase of energy consumption of BSs. In 

[16] , the authors formulated a network energy consump- 

tion minimization framework, where the constraints of 

coverage performance and jointly determination of the 

optimal BS density and BS transmission power were taken 

into account. Taking coverage probability and wake-up 

times into consideration, [17] studied the maximization 

of EE under different sleeping policies by switching off

the small cell BSs. A novel EE sleep scheduling protocol 

was proposed for maximizing the sleep time lengths 

of each node while satisfying the delay constraints in 

wireless local area networks [18] . In our early work [19] , 

we proposed a distributed BS sleep scheduling algorithm 

according to the traffic load considering the fluctuations 

in both temporal and spatial domains in relay-assisted 

cellular networks, and optimized the transmission powers 

of the active BSs via game theory. However, we did not 

consider that the deployment of RSs increases the total 

energy consumption in relay-assisted cellular networks. In 

[20] , the authors demonstrated that about 50% small cells 

could be turned off for saving energy in hyper-cellular 

networks. A traffic-aware RS sleep control scheme was 

proposed to put some RSs into sleep when the traffic 

in their serving areas was lower than a threshold [21] . 

To the best of our knowledge, researches on RS sleeping 

are relatively scarce in relay-assisted cellular networks. 

Accordingly, we design joint BS and RS sleep scheduling 

algorithms in relay-assisted cellular networks. Due to 

the formulation of the mixed integer nonlinear fractional 

programming optimization problem and to obtain the 

globally optimal solution, we propose a branch and bound 

(BnB) algorithm which requires much lower computa- 

tional complexity compared with the exhaustive search 

method. The proposed BnB algorithm is based on the 

denominator interval values of the objective function to 

obtain the globally optimal solution with proper branching 

and bounding rules. Then, two heuristic algorithms, i.e., a 

greedy algorithm and an algorithm based on the Cellular 

Automata (CA) theory are proposed to compare with 

the BnB algorithm. In general, the CA theory has been 

investigated in wireless sensor networks to save energy of 

nodes and prolong the network lifetime. Some attempts 

have also been made by applying the CA theory in cellular 

networks. The authors developed a self-organizing channel 

assignment scheme by applying the CA theory in wireless 

cellular systems [22] . In [23] , a fractional frequency reuse 

scheme was proposed based on the CA theory in cellular 

networks. There is little work on sleep scheduling of BSs 
and RSs in cellular networks based on CA theory. Our 

work differs from the above-mentioned works as follows. 

Firstly, we construct a mixed integer nonlinear frac- 

tional programming mathematical model to study the 

sleep scheduling of BSs and RSs according to the sys- 

tem model. Secondly, the BnB algorithm based on the de- 

nominator interval values of the objective function is pro- 

posed to obtain the globally optimal EE under the spec- 

tral efficiency (SE) constraint in the relay-assisted cellu- 

lar network. Finally, a greedy algorithm and an algorithm 

based on the CA theory are presented to compare with the 

BnB algorithm and the convergence of the algorithms is 

demonstrated. 

The remainder of this paper is structured as follows. In 

Section 2 , we describe the relay-assisted cellular network 

model and formulate the optimization problem. In Section 

3 , the joint BS and RS sleep scheduling algorithms are pro- 

posed, and the BnB algorithm based on the denominator 

interval values of the goal function is employed to ob- 

tain the globally optimal EE. Furthermore, the greedy and 

CA algorithms are proposed to compare with the BnB al- 

gorithm. In Section 4 , performance of the proposed algo- 

rithms is demonstrated by some numerical results. Finally, 

concluding remarks are made in Section 5 . 

2. System model and problem formulation 

2.1. System model 

We consider a downlink, two-hop, and hexagonal 

multi-cell relay-assisted cellular network, where the BSs 

are located at the center of each cell and the RSs are de- 

ployed in the edge of the cells uniformly to service the 

cell-edge Mobile Users (MUs). Moreover, we do not con- 

sider the coordinated multi-point transmission. We con- 

sider that there are H cells in the relay-assisted cellular 

network. The sets of MUs and RSs are denoted by N = 

{ N 1 , N 2 , . . . , N H } and K = { K 1 , K 2 , . . . , K H } respectively. There 

are K h RSs and N h MUs staying within the h th cell, for h ∈ 

{ 1 , 2 , . . . , H } , which follow the Poisson distribution with 

parameter λK and λN , respectively. Without loss of gener- 

ality, we assume that the number of MUs is greater than 

or equal to the number of RSs, i.e., N h ≥ K h . Each RS is al-

lowed to associate with only one MU but the BS is allowed 

to associate with many MUs. The model of the h th cell is 

shown in Fig. 1. 

The decode-and-forward relaying protocol is adopted 

and it is assumed that the decoding is always successful. 

Moreover, the interference among cells is not considered. 

All the stations are assumed to be half-duplex and are 

equipped with a single antenna. Each transmission frame 

is divided into two stages, and the direct links between BS 

and MUs that are associated with the RSs are ignored, e.g, 

due to shadowing. In the first stage, the BS transmits a sig- 

nal to each associated MU or RS, and the received signals 

at the RSs and the MUs in the h th cell can be represented

by 

y ( 
1 ) 

k,h 
= 

√ 

P b g 
( 1 ) 
k,h 

x + n 

( 1 ) 
s , k = 1 , 2 , . . . , K h (1)

y ( 
1 ) 

n,h 
= 

√ 

P b g 
( 1 ) 
n,h 

x + n 

( 1 ) 
s , n = K h + 1 , . . . , N h (2)
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Fig. 1. The model of h th cell in the relay-assisted cellular network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Power consumption parameters. 

Type P i 0 �pi P i _ sleep P i 

BS 130 .0 W 4 .7 75 W 20 W 

RS 56 W 2 .6 39 W 2 W 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively, where P b is the transmission power of BS, x

is the signal transmitted by the BS with zero mean and

unit variance, g (1) 
k,h 

and g (1) 
n,h 

are channel coefficients from

the h th BS to the k th RS and the n th MU, respectively (in-

cluding path loss and shadow fading), n (1) 
s is an additive

white Gaussian noise (AWGN) with zeros mean and vari-

ance σ 2 . 

In the second stage, the RSs forward their decoded sig-

nals to the associated MUs. The received signals at the cor-

responding MUs in the h th cell can be represented by 

y ( 
2 ) 

k,h 
= 

√ 

P r g 
( 2 ) 
k,h 

x + n 

( 2 ) 
s (3)

where P r is the transmission power of RS, g (2) 
k,h 

is the chan-

nel coefficient from the k th RS to the associated MU (in-

cluding path loss and shadow fading), n (2) 
s is an AWGN

with zero mean and variance σ 2 . Accordingly, the signal-

to-noise ratios (SNRs) of the MUs associated with the BSs

directly and the k th RS in the h th cell can be respectively

calculated as 

SN R n,h = 

P b 
∣∣g ( 1 ) 

n,h 

∣∣2 

σ 2 
, n = K h + 1 , . . . , N h (4)

SN R k,h = 

P r 
∣∣g ( 2 ) 

k,h 

∣∣2 

σ 2 
, k = 1 , 2 , . . . , K h (5)

We consider that the BS and RS have an active mode

and a sleep mode, and the power consumption of the

modes are as follows [24] : 

P C = 

{
P i 0 + �Pi P i , acti v e mode 

P i _ sleep , sleep mode 
, i = b, r (6)

where b and r represent the BS and RS, respectively, P i 0
and P i _ sleep are the static power consumption of the sta-

tions in the active mode and sleep mode, respectively, �Pi

accounts for power consumption that scales with the av-

erage radiated power, and P i is the transmission power of

the stations. We set the power consumption parameters of

the BS and RS as in Table 1 [25] : 

We assume that all MUs have the same bandwidth re-

quirement w . The information rate of each MU that is as-

sociated with the BSs directly and the k th RS in the h th

cell can be respectively expressed as 

R n,h = 

1 · w · log 2 (1 + SN R n,h ) , n = K h + 1 , . . . , N h (7)

2 
R k,h = 

1 

2 

· w · log 2 (1 + SN R k,h ) , k = 1 , 2 , . . . , K h (8)

Consequently, the h th cell throughput can be written

as R h = 

∑ K h 
k =1 

R k,h + 

∑ N h 
n = K h +1 

R n,h . The EE in the h th cell is

ηE E ,h = 

R h 
P h 

and the total SE and EE of the system can be

respectively expressed as 

ηSE = 

∑ H 
h =1 R h 

B 

, ηEE = 

∑ H 
h =1 R h ∑ H 
h =1 P h 

(9)

where P h is the energy consumption in the h th cell, and

B = 

∑ H 
h =1 w · N h is the system bandwidth. 

2.2. Problem formulation 

A set of RSs in the h th cell and the BSs of

the system can be denoted as { R S 1 , R S 2 , . . . , R S K h } and

{ B S 1 , B S 2 , . . . B S H } , respectively. The state of the BSs and RSs

of the h th cell are denoted as A = ( a 1 , a 2 , . . . , a h , . . . , a H )

and B = ( b 1 , b 2 , . . . , b k , . . . , b K h ) , respectively, where a h =
{ 1 acti v e 
0 sleep 

and b k = { 1 acti v e 
0 sleep 

are the state of the BS and the

RS in the h th cell in active/sleep mode, respectively. 

Therefore, considering the sleep scheduling of the BS

and RS, the throughput and the energy consumption in the

h th cell can be respectively expressed as 

R h = 

K h ∑ 

k =1 

b k ·
1 

2 

· w · log 2 
(
1 + SN R k,h 

)
+ 

N h ∑ 

n = K h +1 

1 

2 

· w · log 2 
(
1 + SN R n,h 

)
(10)

P h = 

( 

P b0 + �Pb P b + 

K h ∑ 

k =1 

[ ( P r0 + �pr P r ) · b k 

+ P r _ sleep · ( 1 − b k ) 
]) 

· a h + P b _ sleep · ( 1 − a h ) (11)

Therefore, the total throughput and energy consump-

tion of the system based on formulas ( 10 ) and ( 11 ) can be

respectively written as 

R tot = 

H ∑ 

h =1 

R h = 

H ∑ 

h =1 

a h ·
[ 

K h ∑ 

k =1 

b k ·
1 

2 

· w · log 2 
(
1 + SN R k,h 

)

+ 

N h ∑ 

n = K h +1 

1 

2 

· w · log 2 
(
1 + SN R n,h 

)] 

(12)
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∑ N h 
n =

 h 

 k,h 

)
+

 k + P r _

 

 

P tot = 

H ∑ 

h =1 

P h = 

H ∑ 

h =1 

[ ( 

P b0 + �Pb P b + 

K h ∑ 

k =1 

[ ( P r0 + �pr P r ) · b k 

+ P r _ sleep · ( 1 − b k ) 
]) 

· a h + P b _ sleep · ( 1 − a h ) 

] 

(13) 

Based on formula ( 12 ) and ( 13 ), the SE and EE of the 

system can be respectively calculated as 

ηSE = 

R tot 

B 

= 

∑ H 
h =1 a h ·

[∑ K h 
k =1 

b k · 1 
2 

· w · log 2 
(
1 + SN R k,h 

)
+∑ H 

h =1 w · N

ηEE = 

R tot 

P tot 
= 

∑ H 
h =1 a h ·

[∑ K h 
k =1 

b k · 1 
2 

· w · log 2 
(
1 + SN R∑ H 

h =1 

[(
P b0 + �Pb P b + 

∑ K h 
k =1 

[
( P r0 + �pr P r ) · b

In this work, we aim to maximize the EE under the 

SE constraint by considering the BS and RS sleep schedul- 

ing in the relay-assisted cellular network. The optimization 

problem can be formulated as 

max 
A , B 

ηEE 

s.t. ηSE ≥ ηSE 

H ∑ 

h =1 

a h ≥ 1 

a h = { 0 , 1 } , h ∈ { 1 , . . . , H } 
b k = { 0 , 1 } , b ∈ { 1 , . . . , K h } (16) 

where ηSE is the minimum required SE. The first constraint 

meets the need of the SE of the system. The second con- 

straint dictates not all the BSs get into sleep to ensure the 

QoS of MUs, and the last two constraints dictate the state 

of BS and RS can only take the value 0 or 1 for sleep mode 

or active mode. 

Proposition. Since the elements of A , B are only 0 or 1, we 

relax them to continuous variables in the closed interval [0,1]. 

The system spectral efficiency ηSE is not a convex function 

with respect to A , B. Hence, the optimization problem ( 16 ) is 

not a convex optimization problem . 

Proof. Refer to Appendix . 

Since the optimization problem ( 16 ) is not a convex 

problem which is difficult to be transformed into a relaxed 

problem, it will be hardly solved compared with a general 

optimization problem. Besides, solving a nonconvex opti- 

mization problem requires a lot of computation. The opti- 

mization problem ( 16 ) is a mixed integer nonlinear frac- 

tional programming for which finding the optimal solution 

is extreme challenging in general. A simple approach to 

solve it is exhaustive search, but it has very high complex- 

ity. The specific form of the problem motivates us to con- 

struct two sub-problems for simple analysis and to propose 

the BnB algorithm to obtain the globally optimal solution. 

The BnB algorithm may still have high complexity, thus 

two heuristic algorithms based on greedy principle and CA 

theory are proposed. 
 K h +1 
1 
2 

· w · log 2 
(
1 + SN R n,h 

)]
(14) 

 

∑ N h 
n = K h +1 

1 
2 

· w · log 2 
(
1 + SN R n,h 

)]
 sleep · ( 1 − b k ) 

])
· a h + P b _ sleep · ( 1 − a h ) 

] (15) 

3. Sleep scheduling algorithm 

The above objective function includes multiple variables 

while it is difficult to solve the optimization problem di- 

rectly. What is more, because the BS and RS belong to dif- 

ferent network architecture level, the BS and RS sleep 

scheduling should be discussed hierarchically. Therefore, 

the above optimization problem is divided into two sub- 

problems. 

Firstly, the BS sleep scheduling algorithm is designed 

while all the RSs are active, that is b k = 1 . Therefore, the 

above optimization problem can be simply made as 

max ηE E 1 = 

α1 a 1 + α2 a 2 + · · · + αH a H 
β1 a 1 + β2 a 2 + · · · + βH a H + μ

s.t. α1 a 1 + α2 a 2 + · · · + αH a H ≥ ηSE 

a 1 + a 2 + · · · + a H ≥ 1 

a h = { 0 , 1 } , h ∈ { 1 , . . . , H } (17) 

where αh = 

∑ K h 
k =1 

1 
2 · w · log 2 ( 1 + SN R k,h ) + 

∑ N h 
n = K h +1 

1 
2 · w ·

log 2 ( 1 + SN R n,h ) , μ = H · P b _ sleep and βh = P b0 + �Pb P b + 

( P r0 + �pr P r ) · K h − P b _ sleep . 

Secondly, we consider the RSs sleep scheduling in one 

cell, that is H = 1 and a h = 1 . Then, the above optimization

problem can be simplified as 

max ηE E 2 = 

ε 1 b 1 + ε 2 b 2 + · · · + ε K b K + ρ

δ( b 1 + b 2 + · · · + b K ) + ζ

s.t. ε 1 b 1 + ε 2 b 2 + · · · + ε K b K + ρ ≥ ηSE 

b k = { 0 , 1 } , b ∈ { 1 , . . . , K } (18) 

where ε k = 

1 
2 · w · log 2 ( 1 + SN R k,h ) , ρ = 

∑ N 
n = K+1 

1 
2 · w ·

log 2 ( 1 + SN R n,h ) , 

δ = P r0 + �pr P r − P r _ sleep , and ζ = P b0 + �pb P b + P r _ sleep ·
K . Besides, N and K are the number of MUs and RSs in 

one cell respectively. 

Since the EE of the above two objective functions in 

( 17 ) and ( 18 ) are determined by the variables in nu-

merator and denominator. Moreover, the numerator, de- 

nominator, and constraints are linear. Both optimization 

problems ( 17 ) and ( 18 ) are integer linear fractional pro- 

gramming problems [26] . An exhaustive search algorithm 

can be adopted to obtain the optimal solution when the 

variables are few. However, it has a high computational 

complexity O ( 2 H ) and O ( 2 K ) , respectively, when there are 

a lot of variables. 

Accordingly, to avoid the exponential growth of compu- 

tational complexity and obtain the globally optimal solu- 

tion, the BnB algorithm is proposed. 
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Algorithm 1 The BnB Algorithm. 

1. Initialization: make the initial interval S 1 = [ L 1 , U 1 ] = [ L, U] , and 

the current lower bound and upper bound are l b (0) = l 0 and 

u b (0) = min { f ( a 1 0 ) , f ( a 
2 
0 ) } , respectively, initialize P = { S 1 } , 

convergence accuracy υ , and iteration i = 1 . 

2. Stop criterion: if u b (i ) − l b (i ) ≤ υ , go to Step 3; else go to Step 4. 

3. Output: the optimal solution and the optimal value are a and 

u b (i ) , respectively. 

4. Branch: select the maximum length range S j = [ L j , U j ] from P , 

make V j = 

1 
2 
( L j + U j ) , S 

′ = [ L j , V j ] , and S 
′′ = [ V j , U j ] , then make 

P = ( P\{ S j } ) and R = { S ′ , S ′′ } . 
5. Determine bounds and cut down branch: select S ∈ R and solve 

the problem ( 19.5 ). Assume the optimal solution and optimal 

value are a ∗S and l S , respectively. 

If l S ≥ u b ( i −1 ) , R = R\{ S j } . If R = ∅ , go to Step 4, else if there 

has an interval in R , solve the problem ( 19.5 ) and obtain the 

optimal solution which is a 1 S and the optimal value which is l ′ , 
the upper bound and the lower bound are l b (i ) = l ′ and u b (i ) = 

min { u b ( i −1 ) , f ( a 1 S ) } , respectively, else if there are two intervals in 

R , solve the problem ( 19.5 ) and obtain the optimal solutions 

which are a 1 S and a 2 S , respectively, and the optimal values are l ′ 
and l 

′′ 
, respectively, the upper bound and lower bound are 

l b (i ) = min { l ′ , l ′′ } and u b (i ) = min { u b ( i −1 ) , f ( a 1 S ) , f ( a 
2 
S ) } , 

respectively. Then, make P = P ∪ R and i = i + 1 , and go to 

Step 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 
3.1. Branch and bound algorithm 

In the worst case, the BnB algorithm ends up with ex-

amining for all possibilities, and thus the resulting com-

plexity is equal to that of exhaustive search. However, with

proper branching and bounding rules, a large number of

subsets can be eliminated in the BnB algorithm which po-

tentially results in significant complexity reduction com-

pare with exhaustive search. 

The basic idea is constructing the initial upper and

lower bound functions of the objective function. Then,

the denominator interval values are binary. Finally, we

solve the linear programming sub-problems which are de-

termined by the sub-interval through making the upper

bound decrease and the lower bound increase. The upper

bound is close to the optimal value of the objective func-

tion ultimately. 

Since ηE E 1 > 0 , maximizing this objective function in

( 17 ) is equivalent to 

Minimize 

f = 1 / ηE E 1 (19)

Accordingly, we need to solve the following optimiza-

tion problem ( 19.1 ) to obtain an optimal value: 

min f = 

β1 a 1 + β2 a 2 + · · · + βH a H + μ

α1 a 1 + α2 a 2 + · · · + αH a H 
s.t. α1 a 1 + α2 a 2 + · · · + αH a H ≥ ηSE 

a 1 + a 2 + · · · + a H ≥ 1 

a h = { 0 , 1 } , h ∈ { 1 , . . . , H } (19.1)

First of all, the upper and lower bound functions

of the objective function in ( 19.1 ) are calculated. For

describing easily, we define X (a ) = β1 a 1 + β2 a 2 +
· · · + βH a H + μ, Y(a ) = α1 a 1 + α2 a 2 + · · · + αH a H , and

the constraint is A a ≥ b , a = ( a 1 , . . . a h , . . . a H ) 
T , where

A = [ a 1 , a 1 , . . . , a H ; 1 , 1 , . . . , 1] and b = [ ηSE , 1] T , for

h ∈ { 1 , . . . , H } . It is easy to solve the two problems:{
min Y(a ) 

s.t. A a ≥ b 

and 

{
max Y(a ) 

s.t. A a ≥ b 

(19.2)

We assume that the optimal solutions are a 1 and a 2 ,

and the optimal values are L and U , respectively. Therefore,

the upper and lower bound functions of the objective func-

tion are 

X (a ) 

U 

≤ X (a ) 

Y(a ) 
≤ X (a ) 

L 
(19.3)

The problem ( 19.2 ) turns to solving the following linear

programming problems: {
min 

X (a ) 
U 

s.t. A a ≥ b 

and 

{
min 

X (a ) 
L 

s.t. A a ≥ b 

(19.4)

Assume that the optimal solutions to ( 19.4 ) are a 1 
0 

and

a 2 0 , and the optimal values are l 0 and u 0 , respectively. For

the optimal value in ( 19.1 ) f ∗, l 0 and u 0 , we have the fol-

lowing conclusion: 

Theorem 3.1. Assume l 0 = min X (a ) 
U , u 0 = min X (a ) 

L , f ∗ =
min X (a ) 

Y(a ) 
, then l 0 ≤ f ∗ ≤ u 0 . 
Proof. Assume f ∗ = min X ( a ∗) 
Y( a ∗) 

, through the definition of U ,

we know 

X ( a ∗) 
U ≤ X (a ) 

Y(a ) 
, but l 0 = min X (a ) 

U ≤ X ( a ∗) 
U , therefore

l 0 ≤ f ∗. The same way can be used to prove f ∗ ≤ u 0 . �

lb and ub are used to represent the lower bound and

upper bound of the objective function, respectively. Hence,

the initial lower bound and upper bound are l b (0) = l 0
and u b (0) = min { f ( a 1 

0 
) , f ( a 2 

0 
) } , respectively. Initialize S 1 =

[ L 1 , U 1 ] = [ L, U] , a set of P includes the sub-interval of the

[ L, U] , and make P = S 1 , select the maximum length inter-

val S j = [ L j , U j ] ⊂ [ L, U] ( j ∈ I (P) , I (P) is an index set) from

P , make V j = 

1 
2 ( L j + U j ) , S ′ = [ L j , V j ] and S 

′′ = [ V j , U j ] , then

make P = ( P\{ S j } ) ∪ { S ′ , S ′′ } . For each sub-interval S j in P ,

it is easy to obtain the linear programming problem 

min 

X (a ) 

U j 

s.t. A a ≥ b 

L j ≤ Y(a ) ≤ U j (19.5)

The BnB algorithm based on the denominator interval

values of the objective function is described as follows

Algorithm 1 . 

If the BnB algorithm is terminated in a finite step i , it is

concluded that the optimal solution and the optimal value

of the objective function can be obtained and the algo-

rithm converges. Otherwise, if the BnB algorithm is termi-

nated in an infinite step, the convergence of the algorithm

is proved by the following theorem. 

Theorem 3.2. (Convergence behavior) : If the proposed algo-

rithm is terminated in an infinite step, then lb and ub have

the following relation with the increase of the iteration i :

lim i →∞ 

( ub − lb ) = 0 . 

Proof. In the step i , set P i to represent the sub-interval

sets, which is obtained by the interval S i −1 in P i −1 based

on the strategy of the algorithm. By the definition of S 
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Algorithm 2 Greedy BS switch-off algorithm. 

1. Initialization: set a h = 1 , ∀ h ∈ H, H = { 1 , 2 , . . . , H } , make 

op = η
E E 1 

(A ) and iter = 1 . 

2. While A  = 0 do 

3. Let h ∗ = arg min ηE E ,h 
h ∈H 

, set a h ∗ = 0 , and calculate η∗
E E 1 

(A ) by 

solving ( 17 ). 

4. If ( 17 ) is feasible and η∗
E E 1 

(A ) > op, then assign op := η∗
E E 1 

(A ) , 

else set a h ∗ = 1 . 

end if 

5. Update it er := it er + 1 . 

6. End while 
and the infinite termination of the algorithm, the inter- 

val length of S i is d( S i ) = U ji − L ji → 0 . Thus, there has 

lim 

i →∞ 

( u b ( si ) − lb ) = 0 ( u b ( si ) is the upper bound of the ob- 

jective function in S i ). By the definition of ub, it is ob- 

vious that there has u b ( si ) ≥ ub in the step i . Therefore, 

lim 

i →∞ 

( ub − lb ) = 0 . �

Then, the reciprocal of the optimal value in ( 19.1 ) is the 

optimal EE of the optimization problem ( 17 ). For the op- 

timization problem ( 18 ), the procedure is similar to the 

above algorithm. Since the complexity of the BnB algo- 

rithm is related to the branch rule and the bound, we can 

know that the complexity of the BnB algorithm is lower 

than that of exhaustive search due to cutting down the 

branch. 

By analyzing the BnB algorithm, it is equivalent to a bi- 

nary tree search with depth I, where I is the times of con- 

vergence. In the worst case, each branch is feasible, and 

the complexity of the BnB algorithm is O ( 2 I ) . However, 

the use of pruning will make the times of comparison be 

far less than O ( 2 I ) in the actual operation. The proposed 

BnB algorithm terminates when the convergence accuracy 

is satisfied or when P is empty. However, in reality, finding 

the globally optimal solution by using the BnB algorithm 

generally brings high complexity. Therefore, two heuristic 

algorithms are proposed in the following. 

3.2. Two sub-optimal algorithms 

Despite the fact that the proposed BnB algorithm re- 

quires lower complexity compared with exhaustive search, 

the complexity of the proposed BnB algorithm is still high 

for large-scale networks. In this subsection, we propose 

two sub-optimal algorithms to compare with the BnB al- 

gorithm. 

3.2.1. Greedy switch-off algorithm 

We find a cell with the minimum EE and make it sleep. 

Then, we calculate the total EE and set up it as the optimal 

value. Specifically, we switch off the BSs by setting a h = 0 

in each step and compute the EE. If the result is feasible 

and leads to better EE, the set of BSs are switched off and 

the iterative procedure continues. 

Algorithm 2 terminates after H steps, i.e., the complex- 

ity of the greedy is O (H) . The RS sleep scheduling is simi- 

lar to the greedy BS sleep scheduling algorithm. 
3.2.2. Cellular automata algorithm 

By applying the self-organizing characteristics of the 

cellular network, a sleep scheduling algorithm based on CA 

theory is proposed. CA is a decentralized, discrete space- 

time system that can be used to model physical systems 

[27] . It consists of a large number of small cells. The state 

of an individual simple cell changes synchronously and is 

stimulated by state updating in neighboring cells. A 2-D CA 

can be formally defined as a five tuple ( C, V, Q, ψ, t ) . 

• C represents a series of cells in the CA, C = 

{ C nb , nb = 1 , 2 , . . . N } , where N is the size of the neigh- 

bor. V is a set of neighboring cells, which is a finite sub- 

set of C, i.e., V ⊂ C. 

• Q represents a finite set of configuration state of each 

cell, Q 

t+1 
m 

= f ( Q 

t 
m −N 

. . . Q 

t 
m −1 

, Q 

t 
m 

, Q 

t 
m +1 

. . . Q 

t 
m + N ) , where 

Q 

t 
i 

is the state of the mth cell at time t . 

• ψ is the localized transmission rule, and the local rule 

is a function f : Q 

N → Q . 

• t is the transmission time of a cell moving from its cur- 

rent state to its final state. 

Each cell updates its individual state based on its cur- 

rent state and that of the adjacent cells. The most com- 

mon types of neighbors are the Von Neumann, Moore, and 

Hexagonal [28] . In this paper, when considering the BS 

sleep scheduling, a Hexagonal neighbor model is adopted 

because it is analogous to our system model where a 

hexagonal cellular cell shape is considered. While consid- 

ering the RS sleep scheduling, a Moore neighbor model is 

adopted for simple analysis. Based on the Life Game, which 

considers the growth condition in the nature to guarantee 

the whole system not too desolate or crowded, the CA lo- 

cal rules can be defined. In judging the state of a current 

cell based on the local rule of the CA theory, the current 

cell is called the reference cell. 

Local rule 1 for the BS sleep scheduling: given each cell 

have six neighboring cells in our system model, if there are 

two neighboring cells which are active, the state of the cell 

will not be changed. If more than two neighboring cells are 

active, the reference cell will go into sleep to save energy. 

If there is only one active neighboring cell, the reference 

cell must be active. 

Similarly, the local rule 2 for the RS sleep scheduling 

can be defined. Taking a Moore neighbor model into ac- 

count, each cell has eight neighboring cells. If three neigh- 

boring cells are active, the reference cell must be active. 

If there are two active neighboring cells, the state of the 

cell will remain unchanged. In other cases, the reference 

cell must be sleep considering the Life Game, which con- 

siders the growth condition in the nature to guarantee the 

whole system not too desolate or crowded. Then, the sleep 

scheduling algorithm based on CA is described as follows 

Algorithm 3 . 

The number of active BS and RS gets to convergence 

gradually depending on the CA. The analysis of a steady 

state is indicated theoretically in [29] . The steady state 

means the existence of a steady state distribution. The 

state of the cell can reach convergence by evolution gradu- 

ally based on the CA theory. In cellular networks, the sys- 

tem converges to a steady state after sufficient negotiations 

and coordination of neighboring cells using the local rules. 
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Algorithm 3 Sleep scheduling of BS and RS based on CA. 

1. Initiation: a set of state of the BS and RS are 

A = ( a 1 , a 2 , . . . , a h , . . . , a H ) and B = ( b 1 , b 2 , . . . , b k , . . . , b K h ) 

respectively. 

2. Based on the local rule 1 and 2 of the CA, the state of BS 

( a 1 , a 2 , . . . , a H ) and the state of RS ( b 1 , b 2 , . . . , b K h ) is obtained 

respectively in time t + 1 , where t = 0 , 1 , . . . . 

3. If the values of ( a 1 , a 2 , . . . , a H ) and ( b 1 , b 2 , . . . , b K h ) satisfy the 

constraints in ( 17 ) and ( 18 ), 

Calculate the EE ηE E 1 and ηE E 2 , t = t + 1 . 

Else return 2, until the number of active BS and RS get to 

convergence. 

End 

Table 2 

Simulation parameters. 

Parameter Value 

Total system bandwidth 10 MHz 

Inter-site distance d ISD (BS-BS) 10 0 0 m 

Path loss (dB) 128.1 + 37.6log10( d ) ( d in km) 

Noise power -174 dBm 

Minimum value of SE 0.5 bit/s/Hz 

Convergence accuracy υ 1.0e −10 

Shadow fading exp(1) 
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Fig. 2. Upper and lower bound evolution of the objective function in 

( 19.1 ) with λK = 5 , λN = 50 . 
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Fig. 3. The EE of the system with λK = 5 , λN = 50 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relevant work [30] has indicated that the system con-

verges to a steady state and shows the final steady state by

simulation. We also show the convergence of the CA algo-

rithm in the simulation. 

Remark : In our system model, each RS is allowed to as-

sociate with one MU only, in order to simplify the expres-

sions of the SNRs of the MUs. Each RS can associate with

multiple MUs. In this case, the expressions of the SNRs, the

system spectral efficiency, and the energy efficiency will

change, but they will not affect the implementation of the

proposed algorithms. 

4. Simulation results 

In this section, we carry out numerical simulations

to evaluate the performance of the proposed algorithms.

Some simulation parameters are specified in Table 2 [31] . 

The side length of the hexagonal cell can be cal-

culated as r cell = 

d ISD √ 

3 
. The distance between BS and RS

is set to d RS = 0 . 7 r cell in one cell. Here, in the h th

cell, the distance from the BS to the n th MU d n,h and

from the k -th RS to the MU d k,h follows uniform distri-

bution d n,h ∼ U[ 0 , 0 . 7 r cell ] and d k,h ∼ U[ 0 , 0 . 3 r cell ] , respec-

tively. We set H = 9 . The computer program is repeated for

10 0 0 times. 

Fig. 2 shows the upper and lower bound evolution of

the objective function in ( 19.1 ) with λK = 5 , λN = 50 . It

is seen that the upper bound decreases while the lower

bound increases until it is satisfies the convergence ac-

curacy and the convergence behavior of Algorithm 2 is

proved. 

By taking the reciprocal of the value of the upper

bound, we can obtain the optimal EE value with the BS

sleep scheduling of the system. In order to prove the op-

timality of our proposed algorithm, the globally optimal
solution is also plotted by exhaustive search. In Fig. 3 we

compare the EE of the system with exhaustive search, BnB,

greedy, and CA algorithms. 

It is noticed that the BnB algorithm achieves the glob-

ally optimal EE of the system and coincides with exhaus-

tive search which has a high computational complexity,

and the EE of the BnB algorithm is better than that of the

greedy and the CA algorithms. The EE of the greedy al-

gorithm is superior to the CA algorithm which does not

need central control. Moreover, the EE of the proposed

algorithms is better than that of scheme without sleep

scheduling. The convergence behaviors of the proposed al-

gorithms are demonstrated. 

In Fig. 4 , under different λK and λN , we compute the

energy consumption when the proposed algorithms get to

convergence. As shown in Fig. 4 , the BnB algorithm has

the minimum energy consumption while the algorithm
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Table 3 

Algorithm comparisons. 

Performance of solution Operation manner Required information 

BnB Globally optimum Decentralized Local information 

Greedy Locally optimum Centralized Global information 

CA Locally optimum Decentralized Local information 
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Fig. 4. Energy consumption of the system after reaching convergence 

with λK = 5 , λN = 50 and λK = 10 , λN = 100 . 
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Fig. 6. The EE with RS sleep scheduling in one cell. 

 

without sleep scheduling has the maximum energy con- 

sumption. It can be seen that the energy consumption 

of the BnB algorithm decreases dramatically, followed by 

the energy consumption of the greedy and CA algorithms. 

Besides, the larger λK and λN , the more obvious of the 

effectiveness of energy saving. 
Next, we simulate the sleep scheduling algorithm of the 

RSs in one cell. Fig. 5 shows the upper and lower bound 

evolution of the reciprocal of the objective function in ( 18 ) 

with K = 9 , N = 100 . It is shown that the obtained value

of the upper bound remains unchanged in each iteration 

while the lower bound increases gradually until it satisfies 

the convergence accuracy. 

After the bounds get to convergence, by taking the re- 

ciprocal of the value of the upper bound, Fig. 6 plots the 

optimal EE with the RS sleeping in one cell. It is noticed 

the BnB algorithm achieves the globally optimal EE. Re- 

call that the upper bound remains unchanged while the 

lower bound increases gradually until convergence in Fig. 5 

where the BnB algorithm converges in 10 iterations. There- 

fore, the EE of the BnB algorithm by taking the recip- 

rocal of the value of the upper bound always equal to 

the optimal solution which coincide with the exhaustive 

search. When the greedy algorithm does not converge, the 

EE of the BnB algorithm is superior to the greedy algo- 

rithm, however, when the greedy algorithm gets to con- 

vergence, the EE of the greedy algorithm is same with 

the BnB algorithm. The reason is that the greedy algo- 

rithm achieves the optimal EE. Specially, the reason for the 

fast convergence of the CA algorithm is that the number 

of RSs is few. As a whole, the EE of the BnB algorithm 

is superior to the greedy and CA algorithms. Moreover, 

the EE of the proposed algorithms is better than that of 

the scheme without sleep scheduling. In addition, Table 3 

shows more comprehensive comparisons for the three 

algorithms. 
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5. Conclusions 

In this paper, we have proposed joint BS and RS sleep

scheduling algorithms and investigate the EE maximiza-

tion problem in the relay-assisted cellular network. A

mixed integer nonlinear fractional programming mathe-

matical model is constructed for the optimization prob-

lem. In particular, the proposed BnB algorithm can ob-

tain the globally optimal EE, and the convergence of the

BnB is proved. Moreover, we have proposed a greedy algo-

rithm and a CA algorithm to compare with the BnB algo-

rithm. Results have demonstrated that the BnB algorithm

can achieve the globally optimal EE and is consistent with

the results obtained by exhaustive search. The BnB algo-

rithm is superior to the greedy and CA algorithms in im-

proving the EE. Furthermore, performance of the proposed

algorithms is better than that of the scheme without sleep

scheduling. Convergence of the algorithms is also illus-

trated. 

Acknowledgment 

This research was supported by the National Natu-

ral Science Foundation of China ( 61162008 , 61172055 ,

61471135 ), the Guangxi Natural Science Foundation

( 2013GXNSFGA019004 , 2015GXNSFBB139007 ), and the

Innovation Project of Guangxi Graduate Education

( YCSZ2015144). 

Appendix. Proof of proposition 

Since the elements of A , B are only 0 or 1, we relax

them to continuous variables in the closed interval [0,1]. If

ηSE is not a convex function in the closed interval [0,1], we

can conclude that it will not be a convex function at the

endpoint 0 or 1 according to the definition of convex func-

tion. Due to the existence of multiple variables, we prove

it by contradiction. 

Based on the above description, since the expression of

B is constant, we need to prove the concavity and con-

vexity of R tot for A , B in the closed interval. To simplify the

analysis, we denote 

� = 

N h ∑ 

n = K h +1 

1 

2 

· w · log 2 
(
1 + SN R n,h 

)
and 

c hk = 

1 

2 

· w · log 2 
(
1 + SN R k,h 

)
k = 1 , 2 , . . . , K h , 

h = 1 , 2 , . . . , H. 

Then, we need to prove the following formula: 

F( a h , b k ) = 

H ∑ 

h =1 

a h ·
( 

K h ∑ 

k =1 

b k · c hk + �

) 

. 

We take the first and second-order partial derivative of

F with respect to a 1 , a 2 , . . . , a H , 

the f irstcell ︷ ︸︸ ︷ 
b 1 , b 2 , . . . b K 1 , ... , 

t heH−t hcell ︷ ︸︸ ︷ 
b 1 , . . . , b K H .
Then, we get the Hessian matrix as follows: 

H = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 c 11 c 12 c 13 · · · c 1 K 1 

c 11 · · · · · ·
. 
. 
. 

c 12 

. . . 

. 

. 

. 0 

c 1 K 1 · · · · · ·
. 
. 
. 

0 c 21 c 22 c 13 · · · c 2 K 2 

c 21 · · · · · ·
. 
. 
. 

c 22 

. . . 

. 

. 

. 0 

c 2 K 1 · · · · · ·
. 
. 
. 

. . . 

0 c H1 c H2 c H3 · · · c H K H 

c H1 · · · · · ·
. 
. 
. 

c H2 

. . . 

. 

. 

. 0 

c H K H · · · · · ·
. 
. 
. 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

We can see that the Hessian matrix is a block diago-

nal matrix. Hence, it is easy to get the determinant of the

Hessian matrix as follows: 

| H | = 

{
0 else 

( −1 ) 
H c 2 11 c 

2 
21 · · · c 2 H1 K h = 2 , ∀ h = 1 , 2 , . . . , H 

It is known that the Hessian matrix is neither positive

definite nor negative definite but is related to the num-

ber of cells H. Therefore, the constraint of the optimization

problem ( 16 ) does not meet the properties of convex func-

tions. Hence, the optimization problem ( 16 ) is not a convex

optimization problem. �
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