
Computer Networks 100 (2016) 28–44

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Mining agile DNS traffic using graph analysis for cybercrime

detection

Andreas Berger a , ∗, Alessandro D’Alconzo

e , Wilfried N. Gansterer b ,
Antonio Pescapé c , d

a Telecommunications Research Center Vienna, Vienna, Austria
b University of Vienna, Faculty of Computer Science, Vienna, Austria
c Electrical Engineering and Information Technology Department of University of Napoli Federico II, Napoli, Italy
d NM2 srl, Napoli, Italy
e Austrian Institute of Technology, Vienna, Austria

a r t i c l e i n f o

Article history:

Received 30 April 2015

Revised 22 December 2015

Accepted 1 February 2016

Available online 15 February 2016

Keywords:

Cybercrime detection

Traffic analysis

DNS

Graph analysis

Network monitoring

a b s t r a c t

We consider the analysis of network traffic data for identifying highly agile DNS patterns

which are widely considered indicative for cybercrime. In contrast to related approaches,

our methodology is capable of explicitly distinguishing between the individual, inherent

agility of benign Internet services and criminal sites. Although some benign services use a

large number of addresses, they are confined to a subset of IP addresses, due to operational

requirements and contractual agreements with certain Content Distribution Networks. We

discuss DNSMap, a system which analyzes observed DNS traffic, and continuously learns

which FQDNs are hosted on which IP addresses. Any significant changes over time are

mapped to bipartite graphs, which are then further pruned for cybercrime activity. Graph

analysis enables the detection of transitive relations between FQDNs and IPs, and reveals

clusters of malicious FQDNs and IP addresses hosting them. We developed a prototype sys-

tem which is designed for realtime analysis, requires no costly classifier retraining, and no

excessive whitelisting. We evaluate our system using large data sets from an ISP with sev-

eral 10 0,0 0 0 customers, and demonstrate that even moderately agile criminal sites can be

detected reliably and almost immediately.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A recent report by Norton estimates the global annual

cost of cybercrime as 113 Billion US$, with 378 Million

victims per year [1] . Although a multitude of advanced

detection (e.g., malware scanners) and mitigation (e.g.,

firewalls) techniques are available and the expenses for

defense mechanisms are significant, the problem is clearly

not under control. This is fundamentally related to the

vulnerability of Internet end-users, who fall victim to

automated attacks at vast numbers.
∗ Corresponding author. Tel.: +43 1505283030.

E-mail address: andreas.berger@alumni.tugraz.at (A. Berger).

http://dx.doi.org/10.1016/j.comnet.2016.02.009

1389-1286/© 2016 Elsevier B.V. All rights reserved.
For example, users are lured into visiting malicious ex-

ploit sites , which in turn install malware on their machines

(drive-by-downloads). This enables criminals not only to

steal sensitive data directly from infected machines, and to

extort money from the victims, e.g., by threatening them

with blocking access to their data [2] . Even worse, re-

motely controlled, malware-infected machines (i.e., bots)

serve as all-purpose platforms (i.e., botnets), and are, e.g.,

used for Distributed Denial of Service (DDoS) attacks and

Spamming campaigns.

In this paper we aim at detecting malicious websites

by monitoring DNS traffic in access networks. We exploit

the fact that these sites are required to be stealthy and

reliably available at the same time. For example, exploit

sites need to be well-reachable by the targeted users, to

http://dx.doi.org/10.1016/j.comnet.2016.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.02.009&domain=pdf
mailto:andreas.berger@alumni.tugraz.at
http://dx.doi.org/10.1016/j.comnet.2016.02.009

A. Berger et al. / Computer Networks 100 (2016) 28–44 29

1 https://github.com/anderasberger/pydnsmap .
ensure that each request can result in a possible infection,

and therefore translate into yet another resource avail-

able to the criminal [3,4] . Similarly, Phishing and Spyware

sites are profitable only if victims can reach them. Further-

more, the administration and maintenance of a botnet re-

quires rendezvous points—so-called Command-and-Control

(C&C) servers—from which the bots regularly download

new commands and malware updates. High availability of

C&C servers implies tight control of malicious operations,

which translates into better botnet utilization, and thus

into more revenue.

In order to achieve high availability and resilience

against countermeasures, Internet criminals adopt net-

working strategies similar to Content Distribution Net-

works (CDNs). Malicious websites use Fully Qualified

Domain Names (FQDNs) which often map to multiple IP

addresses for redundancy, and these addresses change over

time to render access restrictions ineffective (commonly

called Fast-Flux) [5] . IP addresses are often re-used and

host multiple malicious FQDNs. Furthermore, multiple

FQDNs often represent the same criminal site, to impede

DNS-based detection approaches and avoid FQDN-based

blacklisting. Also, FQDNs change quickly over time, of-

ten based on specially crafted algorithms that take, e.g.,

the current time as input to produce a pseudo-random

FQDN, known in advance only to the botmaster (Domain

Generation Algorithms (DGAs)) [6,7] .

Based on the previous definition of Antonakakis et al.

[8] we refer to such highly dynamic FQDN-to-IP address

mappings as agile DNS activity. The main goal of this pa-

per is the reliable detection of such activity in Internet DNS

traffic and thereby force criminals to abandon these CDN-

like strategies at the cost of less reliable (i.e., less prof-

itable) service operation.

1.1. Motivation and contribution

In contrast to existing work in this field, our system

is exclusively based on the mappings between FQDNs and

IP addresses. We track which FQDNs map to which IP

addresses, and thereby establish an understanding of what

represents “normal” DNS activity w.r.t. a specific FQDN and

IP address. The resulting profiles are the basis of our detec-

tion approach. Any DNS mapping which involves an FQDN

that does not “fit” to these profiles is considered suspi-

cious, and enters the second analysis stage. There, we rep-

resent all suspicious mappings in a certain epoch as a bi-

partite graph, where nodes are FQDNs and IP addresses, re-

spectively, and edges indicate the existence of a suspicious

mapping between them. The structural properties of these

graphs relate to the agility of the underlying DNS activity.

E.g., high-degree IP address nodes host many different

FQDNs, while high-degree FQDN nodes map to many dif-

ferent IP addresses. This allows us to apply standard graph

analysis techniques to quickly identify malicious sites.

Our work is based on our detailed analysis of DNS traf-

fic [9,10] . We make the following new contributions and

propose a complete cybercrime detection system:

(1) We present an analysis system which processes

large amounts of DNS traffic data in real time
and continuously adapts over time without requir-

ing a retraining phase. In contrast to most other

approaches, the system does not require a priori

whitelisting that often contains many generic entries

as, e.g., ∗. SUFFIX . Therefore, our system allows sig-

nificantly more control about which FQDNs are actu-

ally ignored. The set of analysis parameters is small,

and can be intuitively tuned for new deployments.

(2) The basis of our approach is the new methodology

DNSMap for assessing the level of agility of DNS

FQDN-to-IP-address mappings. DNSMap tracks ob-

served mappings between FQDNs and IP addresses

and stores them efficiently. Note that in contrast to

existing work [8,11] , we always consider the entire

FQDN instead of only a suffix. We extend our pre-

vious work [10] , optimize several parameters, de-

scribe a system implementing this concept, and pro-

vide new details and experimental results.

(3) On top of DNSMap, we employ graph analysis for

analyzing sets of suspicious DNS mappings, in order

to address the distributed (CDN-like) nature of ma-

licious networks. We propose a set of graph analysis

features, provide a complete description of our de-

tection system, and demonstrate that even conserva-

tive settings reveal cybercrime activity in large DNS

traffic data sets reliably and efficiently.

(4) Our approach requires significantly less training data

than other approaches (2 days in our experiments)

and our system is more sensitive to cybercrime ac-

tivity. Furthermore, it can be easily tuned to reveal

different kinds of malware activity, and is therefore

not restricted to Fast-Flux detection. Consequently, it

is more versatile than previous work, such as [5,12] .

Due to confidentiality of network traffic data and the

lack of publicly available tools, an objective comparison of

the available approaches is typically not possible. There-

fore, we provide the entire source code 1 of our analysis

tools to enable the verification of our results by others.

The remainder of the paper is structured as follows.

We compare our work to the state-of-the-art in Section 2

and discuss the individual components of our system in

Section 3 . In Section 3.1 , we first review the basic concept

of DNSMap introduced in [10] . Then, we extend by dis-

cussing additional details and presenting several improve-

ments. In Section 3.2 , we discuss the construction of a

graph from the suspicious mappings which DNSMap pro-

duces and propose a number of analysis techniques for ex-

posing group activity patterns. We discuss the system’s pa-

rameters in Section 4 and evaluate a prototype implemen-

tation using DNS traffic data from a large operator net-

work in Section 5 . Finally, we discuss experimental results,

the system’s limitations, and possible evasion strategies in

Section 6 .

2. Related work

Most related work is based on training a classifier us-

ing publicly available blacklists, which are compiled, e.g.,

https://github.com/anderasberger/pydnsmap

30 A. Berger et al. / Computer Networks 100 (2016) 28–44
from domain names found in Spam emails [11–13] . How-

ever, as shown by Kührer et al. [14] , the coverage and com-

pleteness of blacklists is often limited, as the contents of

any given blacklist depend on the analysis method and

the data set they are based on. Furthermore, Kührer et al.

find that domain names used for cybercrime are often

blacklisted only more than 30 days after they were seen

first and typically do not contain pseudo-randomly gen-

erated domains which are often employed by cybercrim-

inals. Most existing systems use also whitelists to train

their classifiers with what is considered known-benign

data, as, e.g., the Alexa list 2 of popular domains. This is,

however, problematic as well. For example, sub-domains

of well-known, whitelisted sites (e.g., dynamic DNS ser-

vices) are known to be used for criminal activities. 3 The

general problem of acquiring high-quality ground truth for

network traffic analysis is discussed in detail by Sommer

and Paxson in [15] . Therefore, for quick and accurate de-

tection of new malicious domains, our system is designed

such that no classifier training based on white/blacklists is

required .

Antonakakis et al. proposed a dynamic reputation sys-

tem for domain names, called “Notos” [13] . The sys-

tem processes DNS query responses from a passive DNS

database and extracts a set of 41 features from observed

FQDNs and IPs. A labeled training set of both benign and

malicious FQDNs is used to derive eight domain classes

(five benign, three malicious) by clustering the FQDNs ac-

cording to their feature vectors. After this initial train-

ing, subsequently seen FQDNs are then assigned to one of

these classes, according to their features. Ultimately, No-

tos derives a reputation score for each observed domain

name. In a similar spirit, Bilge et al. presented their “EX-

POSURE” system [11] , which requires fewer features (15)

and less training data (1 week), but has no notion of

the relations between domains mapping to the same set

of IP addresses. Both Notos and EXPOSURE employ the

Alexa list for whitelisting popular domains. In contrast,

our system uses fewer features, less training data and it

requires no retraining and no a priori whitelisting. Fur-

thermore, it does not require any labeled training data at

all, which constitutes an important advantage over other

approaches. Fundamentally, our system design is closer

to signature-based detection approaches where parameters

directly encode the specific, yet complex, DNS activity pat-

terns one wants to be alerted about. While this may still

yield false positives/negatives, our system guarantees to re-

port any such traffic. Detection results can be intuitively in-

terpreted , thereby avoiding the typical limitations of tech-

niques based on machine-learning (see [15]).

A number of approaches target specific aspects of mali-

cious DNS activity. The system described in [8] aims at de-

tecting malware at the upper DNS hierarchy, and is there-

fore restricted to a subset of domain names (e.g., ∗ .com).

Yadav et al. discuss the detection of algorithmically gen-
2 www.alexa.com

3 http://krebsonsecurity.com/2014/07/microsoft- darkens- 4mm- sites-

in- malware- fight/ .
erated domain names [6] . However, many malicious sites

do not use such names or use improved name generation

algorithms which complicate such an analysis (cf. Fig. 10).

Furthermore, also benign sites use such domain names [9] ,

and may cause many false positives.

Choi et al. proposed “BotGAD”, a system which tar-

gets the DNS group activity patterns of the monitored

(client) hosts [16] . The approach is based on the idea

that malware infected hosts would periodically query the

same (malicious) domains. The authors evaluate the ap-

proach experimentally and reveal 20 previously unknown

botnets. This approach is complementary to the one we

present in this paper. Considering the client hosts in the

analyzed graph is a possible direction for extending our

system.

Hu et al. analyzed the global IP usage patterns of Fast-

Flux botnets by conducting measurements from 240 geo-

graphically distributed network locations [17] . They mainly

aim at differentiating malicious fluxy activity from legit-

imate CDNs. Therefore, they continuously query a set of

5169 suspicious domains to see how the returned DNS

mappings develop over time. Most notably, they find that

whereas legitimate CDNs are trying to mostly return an IP

address that is geographically close to the querying client,

addresses involved in malicious activity are much more

uniformly distributed over the world.

The work of Hu et al. is similar to other approaches

which exclusively focus on detecting Fast-Flux activity

[5,18] , and which are therefore narrower in scope than

our system. Holz et al. present the first empirical study of

Fast-Flux networks and provide an early approach for au-

tomated identification [19] . The introduced traffic features

are fundamental for many later detection approaches, in-

cluding the one presented in this paper (see Section 3.2).

Most recently, Perdisci et al. proposed “FluxBuster” [12] .

Their system performs a sequence of four steps: (i) All in-

formation collected about a domain name d in an epoch

ε = 1 day is aggregated. (ii) Domains that are unlikely

to represent Fast-Flux are removed. More precisely, Flux-

Buster removes domains with a high average TTL, less than

three IP addresses, and a low IP address diversity (i.e., IP

addresses which belong to a small number of different /16

networks). (iii) The system finds clusters of domains which

share a significant number of IP addresses. (iv) Finally, a

supervised statistical classifier algorithm labels domains as

flux or non-flux. At the end of an evaluation epoch, a set

of 13 features is computed for each cluster. A C4.5 deci-

sion tree classifier, trained using a 4 months long training

set and tuned with an extra 1 month of data, ultimately

decides whether the domains and IPs in a cluster are re-

lated to malicious flux services. The authors state that the

detection of flux domains can take up to 30 h . In contrast,

our system can detect malicious activity immediately , and

is not limited to Fast-Flux. Furthermore, our system is more

sensitive than FluxBuster (which requires a minimum of 30

IP addresses per domain cluster per day to detect flux ac-

tivity, while we required only 20 per week in our exper-

iments), and uses much less training data. At the same

time, our approach requires less parameter tuning, fewer

features, and no periodic classifier retraining.

http://www.alexa.com
http://krebsonsecurity.com/2014/07/microsoft-darkens-4mm-sites-in-malware-fight/

A. Berger et al. / Computer Networks 100 (2016) 28–44 31

Fig. 1. System overview. We discuss the main components in Section 3 and the parameters in Section 4 .

4 https://wiki.mozilla.org/Public _ Suffix _ List .
5 For our experiments, we use a Python implementation of the Lev-

enshtein ratio, which assigns a cost of 2 to the replacement operation,

i.e., one “replace” is considered equivalent to one “delete” and one “add”.

LR(s1,s2) is then defined as 1 − # OP
| s 1 | + | s 2 | , where # OP is the weighted sum

of operations, and | s 1| and | s 2| are the lengths of the two compared

strings.
3. System design

The proposed analysis system comprises four main

stages, shown in Fig. 1 . The Parser reads DNS traffic data

(from the wire/from a dump file), and further processes

DNS NOERROR request responses. Any queries for an FQDN

which were answered with one or more IPv4 address

records are extracted, and are forwarded to the Dupli-

cates Filter . Recall that our approach is based solely on

DNS mappings, therefore there is no added value in mul-

tiple evaluations of the same mapping within short time.

The filter consequently reports each mapping only once,

and ignores any further occurrences within a time in-

terval filtWindow . The remaining mappings are then

processed by DNSMap , which in turn outputs a series

of change events . All events within a certain evaluation

epoch ε are then processed by the Graph Analysis module

which produces the final detection results. DNSMap and

the graph analysis component are discussed in the remain-

der of this section.

3.1. DNSMap—detecting agile DNS

The level of DNS mapping agility of benign Inter-

net services varies widely. Websites of small companies

are hosted on the same IP addresses for years, while

large enterprises host their services on many different

IP addresses. Both of them typically use sets of FQDNs

which are somewhat similar to each other, following, e.g.,

the pattern * .example.com . In contrast, CDNs and hosting

providers reuse the same IP address for a large variety

of different sites, while in access networks sometimes dy-

namic (DHCP) addresses host, e.g., private websites using

dynamic DNS providers. The level and the type of DNS

agility therefore depends on the specific site (i.e., FQDN)

and the IP address we are looking at, and is usually lim-

ited. Even large companies only use IP addresses in a cer-

tain set of networks, though this set may be large. Pri-

vate customers may use many different IP addresses due to

DHCP, but these typically all belong to the same network.

Malicious sites have different constraints: they need to

change both FQDNs and IP addresses often, so to avoid mit-

igation actions (e.g., blacklisting) and react to new “busi-

ness” requirements (e.g., a new Phishing campaign which

requires a different FQDN).

DNSMap’s main objective consists of providing an adap-

tive characterization of this agility. Instead of just count-
ing, e.g., the number of IP addresses for a given FQDN

[11,13] , we infer the real “unusualness” of these DNS map-

pings from evaluating how normal the given FQDN appears

for a specific IP address. In this section, we derive a sys-

tem that scales to large volumes of DNS data and enables

almost instantaneous detection of unusual, suspicious

mappings.

In the following we adopt the established DNS termi-

nology: we consider mappings between FQDNs (domains)

and IP addresses hosting them. We refer to the λth level

of an FQDN as λ-LD, e.g., the 1-LD of www.example.org is

org , the 2-LD is example , and the 3-LD is www . Note that

we use a regularly updated list of public suffixes 4 to iden-

tify the 1-LD, i.e., the 1-LD of yahoo.co.uk is co.uk and

not uk .

3.1.1. Measuring FQDN similarity

A fundamental requirement of our system is the abil-

ity to assess the similarity of domain names. Therefore, we

review our formulation of the Domain Divergence (DD) be-

tween two FQDNs X and Y [10] . Let X λ be the λ-LD of X

and | X λ| its length (Y λ, | Y λ| resp.). Let | X | be the number of

domain levels in X (| Y | resp.). For each domain level λ > 1

we first compute a weight w λ based on (i) the hierarchical

“importance” of λ (i.e., more significant levels with lower

λ receive more weight), and (ii) related to the length of

the currently compared domain level. A dampening con-

stant α controls the rate of decrease of w λ with increas-

ing λ. Based on our experience, setting α = 1 is a good

choice, which we use throughout this paper. For each do-

main level, we further compute a partial domain divergence

dd λ between X λ and Y λ, using the Levenshtein ratio (LR)

which is based on counting the necessary edit operations

(i.e., add, delete, replace 5) for transforming one string into

another [20] . More precisely,

dd λ =

{
1 if λ > Min (| X | , | Y |)
(1 − LR (X λ, Y λ)) · w λ else

(1)

http://*.example.com
http://www.example.org
http://yahoo.co.uk
https://wiki.mozilla.org/Public_Suffix_List

32 A. Berger et al. / Computer Networks 100 (2016) 28–44

Fig. 2. Illustrative example for the information contained in DNSMap:

three IPBlocks holding five FQDNs in total.

6 One tree per /8 network.
7 The number of clusters per IPBlock is limited for performance rea-

sons. Similarly, we limit the number of FQDNs per cluster (Table 1).
where w λ = l λ · 1 / (α + λ) and l λ = Max (| X λ| , | Y λ|) . The

Domain Divergence DD is then defined as

DD := Min

(∑

Max (| X| , | Y |)
λ=2

dd λ

�
+ δ · β, 1 . 0

)

[0 , 1] (2)

where � =

∑

Max (| X| , | Y |)
λ=2

w λ and δ is 0 when the 1-LDs of

X and Y are identical, else δ = 1 . Note that, in contrast to

the earlier formulation in [10] , we assign a fixed penalty β
when X and Y have different 1-LDs, which is independent

of the LR of the two 1-LDs. This is more intuitive than our

previous formulation—all 1-LDs are in fact equally different

from each other. We set β = 0 . 05 for all following experi-

ments.

3.1.2. Detecting significant DNS changes

The detection of changes in DNS mappings requires an

up-to-date understanding of the historic DNS mappings for

a particular range of IP addresses. The basic components

for holding this information are IPBlocks , which describe

continuous ranges of IP addresses and the set of FQDNs

mapping to them. Fig. 2 shows an (illustrative) example:

in the /24-network from IP address x.x.x.0 to x.x.x.255,

three IPBlocks are identified. Addresses 1–63 exclusively

host www.example.com , address 96 hosts mail.example.

com , and addresses 128–255 host Example’s UK webserver

(www2.example.co.uk), and a video site which is reachable

via videos.example.com and www.great-videos.com .

However, keeping track of the FQDNs mapping to an

IPBlock is only the first step. Ultimately, we aim at un-

derstanding which FQDN patterns are used per IPBlock, so

to be able to quickly evaluate how much they differ from

subsequently seen FQDNs. In general, a particular IP range

may be used by several classes of very different FQDNs.

Therefore, we cluster the FQDNs in an IPBlock according to

their Domain Divergence . For each cluster c k , we derive a la-

bel L k , which is based on the level-wise string median [21]

of all FQDNs f i in c k . By construction, DD (L k , f i) ≤ �, where

the domain divergence threshold � ∈ [0, 1] is a system pa-

rameter. The FQDN of any new DNS mapping is then com-

pared to the cluster labels of the corresponding IPBlock,

and is either accepted as “sufficiently similar” (i.e., ≤ �),

or requires that a new cluster is created to contain it. Note

that this strategy enforces that for all FQDNs f j which map

to an IPBlock there exists a cluster for which DD (L k , f j) ≤
�. Also note that this is far more efficient than comparing

a new FQDN to all FQDNs seen previously at this IPBlock.

We refer the reader to [10] for a detailed discussion of the

clustering algorithm and the construction of the labels.
The set of IPBlocks as a whole is therefore a summary

of “what maps where”, and constitutes the foundation of

the detection system. A key requirement for our system is

the ability to efficiently find the IPBlock which contains a

particular IP address. This is accomplished by organizing

the IPBlocks in a set of RBTrees 6 [22] . Each leaf node in a

tree represents one IPBlock, which is keyed on the starting

IP address. The containing IPBlock for any IP address can

then be found in O(log N) time, where N is the number of

IPBlocks per tree.

Algorithm 1 AddMapping(fqdn , ip).

1: ipb ← DNSMap . GetContainingBlock (ip)
2: if not ipb then � IP not seen recently
3: ipb ← IPBlock()

4: ipb . AddCluster ([fqdn])
5: return (NEW , 1.0)
6: end if
7: if ipb . ContainsFQDN (fqdn) then � DNS mapping is known
8: return (OK , 0.0)
9: end if

10: closestCluster , DD ← ipb . ClosestCluster (fqdn)
11: if DD ≤ � then � new FQDN, similar to prev. FQDNs
12: closestCluster . Add (fqdn)
13: return (OK , DD)
14: end if
15: if ipb . IsFull () then � this IPBlock reached max. capacity
16: return (FULL , DD)
17: end if
18: ipb . AddCluster ([fqdn])
19: return (NEW , DD)

Adding DNS mappings: A new DNS mapping is

added by using the AddMapping procedure (shown in

Algorithm 1), which returns a status code and a DD score

that describes how well it “fits” to previously seen map-

pings. The individual steps are the following. Given ip , we

first look up the IPBlock which contains ip (line 1). If ex-

actly the same mapping is already stored in DNSMap, we

return a zero score, indicating a perfect match (line 8).

Else, we find the cluster to which fqdn fits best (line 10).

If it is not sufficiently similar (w.r.t. �) (line 11), and if we

can create yet another cluster for this IPBlock 7 (line 15), we

consider this mapping to represent a significant DNS change

(line 19). Every call to AddMapping which returns the sta-

tus code NEW is called a change event , which triggers the

output of the following information:

〈 timestamp 〉 〈 FQDN 〉 〈 IP 〉〈 score 〉 〈 count 〉
The 〈 count 〉 field holds the number of IPBlocks to

which 〈 FQDN 〉 maps at the time 〈 timestamp 〉 of the

DNS change. This can be found by a simple table lookup,

and is used later by the graph analysis component.

We emphasize that these change events by them-

selves are not exclusively indicative for malware, as most

DNS changes represent completely normal Internet activity.

Note that in addition to real changes (e.g., newly emerg-

ing services), we also register perceived changes, which

are related to services that possibly existed for long time,

but were never queried from the monitored network (see

http://www.example.com
http://mail.example.com
http://www2.example.co.uk
http://videos.example.com
http://www.great-videos.com

A. Berger et al. / Computer Networks 100 (2016) 28–44 33

V

discussion on limited visibility in [10]). Typically, DNSMap

outputs about 10 0,0 0 0 change events per day.

Maintenance: With time, the number of clusters per

IPBlock would steadily increase, and therefore the sys-

tem as a whole would become less and less sensitive

to DNS changes. Therefore, we provide a Maintenance

routine which is executed every time interval 	Ma (see

Section 4.2). The procedure takes care of removing out-

dated FQDNs (which were not recently observed in the

traffic), and of reclustering the remaining ones. The follow-

ing sequence of actions is performed. First, we remove all

IPBlocks which do not contain any FQDN clusters. Second,

for each IPBlock, we remove all empty clusters. And finally,

we remove all FQDNs from all clusters from all IPBlocks.

This implements the following removal strategy. All FQDNs

are removed at most 	Ma after they were observed. Clus-

ters which are not re-populated with any FQDNs during

	Ma are removed, and therefore “live” longer than 	Ma .

IPBlocks are removed only if they do not contain any

clusters, which can happen at earliest 2 · 	Ma after their

creation.

3.1.3. Merging and splitting IPBlocks

So far, we assumed that IPBlocks have a fixed size,

which statically represent a certain number of IP ad-

dresses. We did, however, not discuss how IPBlocks are

created and how they attain their size. This is explained in

the following. We initialize each new IPBlock using a single

IP address, and therefore require a procedure for “grow-

ing” IPBlocks such that they represent an IP range . This is

accomplished by merging neighboring IPBlocks, given that

we find that they host similar FQDNs. Conversely, we pro-

vide a splitting procedure for reverting previous merge op-

erations, in order to be able to reflect DNS changes over

time. A required key concept is the similarity measure σ
between two IPBlocks, which we define in the following.

Consider two IPBlocks A and B, which contain m A and

m B domains, respectively. From all clusters in A we se-

lect the subset of clusters c A
k

with labels L A
k

which satisfy

DD(L A
k
, L B

j
) ≤ � for at least one cluster c B

j
of B. The rel-

ative share of domains of A that “fit” to the cluster con-

figuration of B is then σA , B =

∑

k

| c A
k
|

m A
, which we call the

similarity measure of two IPBlocks.

Definition 1 (MERGECONDITION) . Two IPBlocks A and B
are merged iff (i) they are direct neighbors in the IP ad-

dress space, (ii) they contain addresses from the same

Autonomous System, and (iii) σA , B > γ and σB, A > γ . In

other words, we merge two IPBlocks when at least a per-

centage γ of FQDNs of each IPBlock are in clusters which

are similar to the neighboring IPBlock’s clusters.

In our experiments, we set γ = 50% , i.e., merging re-

quires at least a simple majority of similar domains. The

resulting merged IPBlock then contains m A ∪ m B domains

which we recluster.

Conversely, consider two IPBlocks A and B that were

created from a third IPBlock Z such that A represents the

first half of Z ’s IP addresses and B the second half. Let a

cluster of FQDNs be “active” on an IP range if the cluster

contains at least one FQDN which mapped to an IP address
in this range. Let A contain all those domains of Z where

the containing cluster was active in A ’s IP range (and for B
respectively).

Definition 2 (SPLITCONDITION) . An IPBlock Z is split iffA
and B do not satisfy MergeCondition .

We evaluate MergeCondition for all stored IPBlocks af-

ter each time interval 	Mg , and SplitCondition every 	Ma .

Typically, 	Mg < 	Ma (see Section 4).

3.2. Graph analysis

DNSMap provides a stream of change events, most of

which represent normal, non-malicious DNS activity. In the

following, we apply graph analysis techniques for mining

these events. Our approach is based on the conjecture that

malicious, CDN-like DNS activity maps to community struc-

tures in a graph.

We consider the sets of FQDNs F and IP addresses I
for which we received a change event within an evaluation

epoch ε (e.g., 1 day). These events are represented as a bi-

partite graph G(V, E) with vertices V and edges E , where

 = F ∪ I and each e ∈ E indicates the existence of a map-

ping between an FQDN and an IP address. As our graph

analysis component operates on prefiltered data, ε can be

implemented as a sliding window, to create a new graph,

using an updated list of change events, every few minutes.

This ensures that newly collected evidence is quickly in-

tegrated in the graph, which allows for almost immediate

detection.

As a first analysis step, we partition the graph and find

the set of connected components , i.e., subgraphs which are

not connected to each other [23] . Each constitutes a group

of FQDNs and IP addresses which are (directly or indi-

rectly) related to each other over time, and which were

found to represent a significant change. Note that such a

partitioning would not be possible without DNSMap. A di-

rect representation of all DNS mappings as a graph would

yield giant connected components, where the majority of

services is (indirectly) connected to many others, due to

the widespread use of CDNs. DNSMap accomplishes the

omission of edges which represent activity that is simi-

lar to previously seen one, and therefore makes the graph

separable.

As a second step, we remove all components which

contain only one FQDN and one IP address (in the follow-

ing called singles), as such mappings do not represent any

kind of agile activity. In our experiments, this always had a

dramatic effect and removed ∼ 99% of all components. The

following analysis focuses on the remaining components,

which we refer to as agile groups .

Agile groups are subject to filtering rules, which are

based on a set of features we describe in the following sec-

tion. The remaining subgraph then represents the final out-

put of our system, which we prune for a list of malicious

FQDNs and IP addresses.

3.2.1. Agile group features

We classify the individual agile groups according to the

following features, all of which are exclusively based on

DNSMap’s output and do not require any kind of active

34 A. Berger et al. / Computer Networks 100 (2016) 28–44

Fig. 3. IP distance scores σ for different numbers of IP addresses per /24-

network seen, and different mean distances μ between them.

Table 1

DNSMap parameters.

Param. Range Description Setting

� [0,1] DD threshold [0.25,0.30,0.35,0.4,0.45]

	Ma (0, ∞) Maintenance interval 2 days

	Mg (0, ∞) Merge interval 6 h

Mcl [1, ∞] Limit number of

clusters per IPBlock

50

Msz [1, ∞] Max. number of FQDNs

per cluster to store

30

8 http://dev.maxmind.com/geoip/geolite .
probing or elaborate processing. These features are later

used to formulate queries, which return the FQDNs and IP

addresses of those agile groups which match the activity

patterns encoded in the queries.

φ1. The number of FQDNs per agile group. Cybercrime

reuses IP addresses for multiple different FQDNs, in which

case this number is high.

φ2. The number of IP addresses per agile group. Cyber-

crime hosts FQDNs on multiple IP addresses over time, in

which case this number is high.

φ3. The number of different Autonomous Systems (ASes)

per agile group. We find the AS for an IP address using

MaxMind’s freely available database. 8

φ4. Although a benign FQDN might be known to map to N

IP addresses, the graph analysis module may receive events

indicating suspicious activity of the same FQDN on M other

IP addresses, often with N > > M . We therefore remove all

events that involve FQDNs for which we have significantly

more reason to believe that they are benign than mali-

cious. The maximum 〈 count 〉 value C max for a reported

FQDN indicates to how many IPBlocks this FQDN mapped

in total. We compute the ratio φ4 = M/C max , and consider

FQDNs with φ4 < 0.3 as likely benign . In the remainder

of this paper, we do not consider such FQDNs for further

analysis. Note that this does not necessarily imply that the

entire agile group an FQDN is belonging to is ignored.

φ5. Hosting providers typically allocate a set of IP ad-

dresses in a sub-network to a large, diverse set of FQDNs.

These addresses often form dense groups, i.e., they differ

only by a small (integer) value. In contrast, cybercrime

hosting is often less organized. For example, Fast-Flux uses

IP addresses that are scattered over multiple networks.

This has been recognized also by other authors, and was

often addressed by computing entropy-based measures

from the set of used addresses [12] .

However, entropy provides an overall metric for the dis-

tribution of the IP addresses in the agile group, but cannot

capture the difference between dense and sparse groups of

addresses. In the following, we therefore derive a score de-

scribing this “scatteredness”. For each /24-network per ag-

ile group, we find the lowest (x 1) and the highest (x n) of

the integer representation of n IP addresses, and compute

the average distance μ = (x n − x 1) /n between them. We

weight μ logarithmically and derive ρ ∈ [0, 1]. Addition-

ally, ν conveys on how many addresses μ is based, and

therefore expresses the confidence level of ρ .

ρ = − log 2

(
μ

255

)
/ 8 ν = − log 2

(
n

255

)
/ 8

For each /24-network i , we compute a score σ i ∈ [0,

1] and define the agile group’s “scatteredness” φ5 as the

mean of these scores.

σ = ρ + (1 − ρ) · ν φ5 = Mean (σ) [0 , 1]
i i
Fig. 3 shows the values of σ i for different μ and n .

The dashed lines indicate theoretical values which cannot

be reached (e.g., there cannot be 100 IP addresses with

a mean distance of 20 in a single /24). E.g., in order to

reach φ5 ≤ 0.7, a malicious component must on average

either use ≥ 21 addresses per /24, or use at least six ad-

dresses (per /24) which are direct neighbors, or implement

a trade-off between these two extremes. This is hard to

achieve for cybercrime using agile DNS, which aims at al-

ways being “on the move” to evade countermeasures. In

the remainder of this paper, we remove all agile groups

with φ5 ≤ 0.7. Note that this is a conservative setting, as

we typically observed φ5 > 0.9 for malicious components.

We emphasize that one could easily define more fea-

tures (e.g., based on [5,8,11,12]), with the additional advan-

tage of being able to exploit the graph’s structural connec-

tion information. However, we did not consider this neces-

sary for the purpose of this paper, as the detection results

were excellent, and as a lower number of features can be

tuned more intuitively.

4. Parameters and tuning

We turn now to discussing the configuration of our sys-

tem consisting of DNSMap and graph analysis. We summa-

rize DNSMap’s parameters and the settings used in the ex-

periments in Table 1 . The settings of 	Mg , Mcl , and Msz

mostly affect the degree of loss of the system’s DNS infor-

mation compression. More aggressive settings (i.e., lower

	Mg and higher Mcl and Msz) consume more system re-

sources (i.e., CPU and memory), and create more accurate

DNSMap representations. The limits imposed by Mcl and

http://dev.maxmind.com/geoip/geolite

A. Berger et al. / Computer Networks 100 (2016) 28–44 35

Table 2

Examples for domain divergences in Fig. 2 .

d 1 d 2 d 3 d 4 d 5

d 1 = www.example.com 0 .0 0 .3 0 .09 0 .39 0 .58

d 2 = mail.example.com 0 .3 0 .0 0 .35 0 .31 0 .75

d 3 = www2.example.co.uk 0 .09 0 .35 0 .0 0 .44 0 .63

d 4 = videos.example.com 0 .39 0 .31 0 .44 0 .0 0 .77

d 5 = www.great-videos.com 0 .58 0 .75 0 .63 0 .77 0 .0

Fig. 4. Domain divergences DD for FQDNs with three domain levels

which differ only w.r.t. 3-LD. Note that ζ = 1 . 0 is an unreachable upper

bound (as always l 2 > 0).

Msz are reached for less than 0.1% of the IPBlocks and clus-

ters we retrieved during our experiments. The most critical

parameters are the divergence threshold � and the main-

tenance interval 	Ma , as well as the graph query parame-

ters. We provide guidance for tuning them in the follow-

ing.

4.1. Domain divergence threshold �

The configuration of � controls DNSMap’s ability to ab-

sorb FQDN changes, and heavily influences the system’s

performance. High settings (i.e., closer to 1.0) make the

system more “permissive”, and lead to a lower number of

change events, and therefore to reduced detection sensitiv-

ity. Furthermore, the overall number of clusters is reduced,

which leads to a lower memory footprint, and to faster

processing times. Low settings (i.e., closer to 0.0) have the

opposite effects, and make the system more sensitive to

differences between two given FQDNs. Therefore, we inves-

tigate how low we can set � while still allowing for small

variations in DNS mappings.

The Domain Divergence provides a numerical measure

for the similarity of two FQDNs which aims at reflecting

the intuitive interpretation of a human analyst. Table 2

shows the domain divergences between the FQDNs from

Fig. 2 , and gives a first “hands-on” idea of the behavior

of this metric. For our application, we definitely want to

consider d 1 and d 2 similar, which requires � ≥ 0.30. Con-

versely, we clearly want to differentiate d 3 and d 5 , there-

fore � < 0.63.

For a more formal analysis, let us now consider the

comparison of two FQDNs consisting only of two domain

levels each. The maximum editing budget for two simi-

lar FQDNs X and Y , where | X| = | Y | = 2 and X 1 = Y 1 , is

given as � · (| X 2 | + | Y 2 |) (based on the definition of LR -

see Section 3.1.1). As one replacement operation consumes

two editing “tokens”, this allows, e.g., one different charac-

ter if | X 2 | = | Y 2 | = 6 and � = 0 . 30 (0 . 30 · (6 + 6) = 3 . 6 →
3 . 6 / 2 1). This leaves only limited degrees of freedom for

malicious FQDNs trying to evade the detection threshold.

Of course, the number of “credits” is proportional to the

length of the FQDN. Longer FQDNs provide more freedom,

at the cost of having to contain longer stable patterns.

By construction, the weight of the Levenshtein ratio di-

minishes with increasing domain level λ (see Eq. (1)). To

illustrate this effect, we investigate the comparison of two

FQDNs which differ w.r.t. 3-LD only. The influence of the

unweighted string difference dd 3 / ω 3 on DD depends on the

fixed w 3 , as well as on the relative length of 3-LD. We de-

fine this length as ζ = l 3 / (l 2 + l 3) . Fig. 4 illustrates the in-

fluence of a string difference on 3-LD on the total domain
divergence DD between two FQDNs, assuming that both

contain three domain levels and do not differ at all w.r.t.

1-LD and 2-LD. For example, in order to consider www.

exampledomain.com and mail.exampledomain.com similar,

we would need to set � ≥ 0.19 (dd 3 /ω 3 = 1 . 0 , ζ = 4 / 17 =
0 . 24). On the other hand, xxxxxx.example.com and yyyyyy.

example.com would require � ≥ 0.39 (dd 3 /ω 3 = 1 . 0 , ζ =
6 / 13 = 0 . 46).

Based on this initial analysis, we evaluate the results

for � = [0 . 25 , 0 . 30 , 0 . 35 , 0 . 4 , 0 . 45] in the following exper-

iments (Section 5). Lower settings are to be preferred, as

long as they do not severely impact the performance and

number of false positives.

4.2. Maintenance interval 	Ma

The maintenance interval setting controls DNSMap’s in-

ertia to changes, as well as the memory consumption. The

less often old DNS mappings are removed, the more mem-

ory is required and the longer we remember that (benign)

FQDNs have been seen. At the same time, it becomes more

likely that the storage limits of the IPBlock (Mcl and Msz)

are exceeded, and that we are therefore forced to ignore a

DNS mapping. Also, this causes the system to be less sensi-

tive to changes, as more stored FQDNs per IPBlock increase

the chance that a new FQDN is similar to one of them.

Therefore, for high detection sensitivity, we want to set

	Ma to a low value. However, due to the daily cycle of In-

ternet activity, a reasonable lower limit for 	Ma is 1 day—

more aggressive cleanup would prematurely remove, e.g.,

peak-hour activity. During our experiments we found that

some IP addresses of popular services are used even less

often than once per day. We therefore set 	Ma = 2 days for

our experiments.

4.3. Graph analysis parameters

The final analysis stage requires as input a set of six

parameters. The settings for φ4 and φ5 were already dis-

cussed in Section 3.2.1 . Features φ1 , φ2 , and φ3 intuitively

quantify the FQDN/IP/AS-diversity per graph component

over an evaluation epoch ε. In order to be able to detect

even moderately agile cybercrime activity [24] , we aim at

setting ε as large as possible. Together, the setting of ε and

http://www.example.com
http://mail.example.com
http://www2.example.co.uk
http://videos.example.com
http://www.great-videos.com
http://www.exampledomain.com
http://mail.exampledomain.com
http://xxxxxx.example.com
http://yyyyyy.example.com

36 A. Berger et al. / Computer Networks 100 (2016) 28–44

Fig. 5. Processing time for DS1, using different �.

Fig. 6. Number of IP addresses/IPBlocks/events created by DNSMap over

time, for DS1, with � = 0 . 35 . By configuration, the first change events are

produced after 48 h. Note the two different scales on the y -axis.
the thresholds for φ1 , φ2 , and φ3 define the lower bound

for the degree of agility we target.

In our experiments (Section 5.3.3), we focus on two ex-

treme scenarios. On the one hand, Fast-Flux networks use

many (potentially hundreds) of IP addresses in many dif-

ferent ASes over time (large φ2 , φ3), but only a limited

number of FQDNs (small φ1). On the other hand, graph

components representing (agile) Malware Hosting , typically

use several FQDNs (large φ1), but often only a small set of

addresses in a low number of ASes (small φ2 , φ3).

5. Experimental evaluation

The following experiments are driven by three goals.

First, we evaluate the performance of DNSMap for differ-

ent settings of �, and demonstrate that it scales even to

large deployment scenarios over extended periods of time.

Then, we investigate whether there exists indeed a cer-

tain level of low agility in benign networks which needs

to be absorbed by DNSMap, so that the corresponding

FQDNs and IPs do not spoil the detection results. Finally,

we discuss the configuration of the graph analysis stage

and the detected cybercrime activity. All experiments were

done on a standard PC (Intel i5@3.1 GHz) with 16 GB

of main memory, of which we used at most 9 GB dur-

ing our tests. We experimented with two data sets (see

Table 3) where duplicates were filtered out with a time

window filtWindow = 1800 s (Fig. 1) before processing

them, in order not to have disk I/O and the DNS parser

dominate the processing time. All our tools are imple-

mented in Python and are available at https://github.com/

anderasberger/pydnsmap .

5.1. Performance

In the following, we provide an empirical evaluation of

our system’s performance. We refer the reader to the ap-

pendix for a formal performance evaluation. Fig. 5 shows

the performance of DNSMap for processing DS1, using dif-

ferent settings for �. Processing 48 h of DNS data requires

only ∼1–2 h, and the processing time grows about lin-

early with the length of the observation period. Interest-

ingly, and in contrast to our initial expectations, the sys-

tem does not necessarily run slower with lower values of

�. We found that often the main difference in processing

times originates from the time required for the evaluation
of SplitCondition . This can be seen from the marked re-

gions in Fig. 5 , which show a relative drift happening ev-

ery 2 days of trace time, which corresponds to 	Ma . Higher

values of � cause more IPBlocks to be merged over time,

and therefore reduce the overall required number of eval-

uations of SplitCondition . However, larger IPBlocks may

also have more clusters, and therefore the time required by

call increases. Overall, the setting of � has only limited ef-

fect on the processing time, and easily allows for realtime

processing.

Next, we investigated the volume of DNSMap’s output

in terms of number of IPBlocks and change events over

time, which define the memory requirements and the size

of the graph to be analyzed, respectively. Fig. 6 shows the

results for � = 0 . 35 . After an initialization period of 48

h, the system reaches a stable working point which, from

then on, only adapts to changes in traffic volume (i.e., the

number of IP addresses seen) depending on the time of

day. Note that the number of IPBlocks is not significantly

lower, which indicates that the vast majority of IP ad-

dresses do not host similar services as their neighbors. The

number of change events also depends on the time of day,

and is relatively stable throughout the entire 2 weeks of

data. Around a third of all change events relate to new IP

addresses (i.e., which were at this time not contained in

DNSMap), which underlines the high dynamicity of Inter-

net DNS traffic.

5.2. Benign service agility

The main objective in the design of DNSMap is the abil-

ity to describe the agility of IP address ranges, and to find a

set of labels for the FQDNs which map there. Ideally, most

benign IP ranges would host similar FQDNs over time, and

can therefore be distinguished from highly agile cyber-

crime activity. In the following, we evaluate to which ex-

tent this assumption holds using data set DS1 (see Table 3).

We set � = 0 . 35 and analyze DNSMap’s output from pro-

cessing the entire 2 weeks of DNS data.

https://github.com/anderasberger/pydnsmap

A. Berger et al. / Computer Networks 100 (2016) 28–44 37

Table 3

Data sets from large access provider.

Name Time frame Total Unique Unique IP Unique

mappings FQDNs addresses clients

DS1 11/22/2010–12/05/2010 3 .2B 13M 1 .6M ∼ 500k

DS2 11/15/2011–11/21/2011 2 .4B 5.4M 1 .2M ∼ 1M

Fig. 7. Subfigures (a) and (b) represent the status of the DNSMap representation at 6 days (resp. 14 days) into the data set. Shown are the relations

between the observed IP addresses of the /24-network of Akamai for which we saw the most IP addresses (102 out of 255) being used. We show the

differences of all pairs of IP addresses in this range, w.r.t. to the FQDNs they host. Figure (c) shows the difference over time.

An indicator of the overall DNS agility is given by the

final number of clusters per IPBlock. Many clusters would

indicate many dissimilar FQDNs per IP address, which

would contradict the assumption that we can extract stable

FQDN patterns per IPBlock. After processing the entire 2

weeks of data, DNSMap stored ∼ 850k IPBlocks and ∼3.4M

FQDNs. The mean number of clusters per IPBlock was 2.2,

with a 95th’s percentile of 6.0 clusters. Therefore, only 5%

of the IPBlocks required more than six clusters for con-

taining all FQDNS mapping to them in (at least) the last

4 days (2 · 	Ma). 75% of all IPBlocks just had a single clus-

ter. Overall, there was significant stability in the extracted

FQDN patterns.

But how does DNSMap represent the DNS activity in

one particularly busy (i.e., agile) network, and how does

this develop over time? For this purpose, we define the

difference between two IP addresses as the average of the

smallest Domain Divergences between any two pairs of

cluster labels of the two containing IPBlocks. We com-

pute this difference for each pair of IP addresses in a cer-

tain range. The difference between two IP addresses from

the same IPBlock is therefore zero. Fig. 7 a shows the dif-

ferences between the IP addresses in a /24-network of

Akamai, w.r.t. the hosted FQDNs, after 6 days. 9 The di-

agonal represents the difference of each address to it-

self, white space indicates that the corresponding address

has not been seen by DNSMap. Three different sub-ranges

are clearly visible, which are all rather homogeneous by

themselves, but quite dissimilar from each other: (A:10-

80) addresses ending on 10–80 host a large variety of dif-

ferent FQDNs of smaller services; (B:105-160) host vari-

ous Facebook services, plus a small set of other (large)
9 We chose 6 days to allow for some initial training for more represen-

tative results.

sites (e.g., Symantec); (C:200-250) almost exclusively host

Facebook sites. This apparent dissimilarity indicates that

we are able to identify sub-ranges with specific hosting

patterns. Fig. 7 b shows the same information after pro-

cessing all 14 days with DNSMap. Interestingly, the rel-

ative differences between the addresses are almost un-

changed. Note, however, that some slightly larger blocks

appeared along the diagonal: the availability of more DNS

data over time apparently caused DNSMap to merge neigh-

boring IP addresses. Finally, Fig. 7 c shows the difference

between both snapshots. We find the containing IPBlocks

for each address at both times, and compute their differ-

ences. Block A shows some limited variation in the hosted

FQDNs, which is expected for a range of smaller sites that

are observed rarely. Still, most IP address differences are

below � = 0 . 35 , therefore most of these services would

not trigger a change event. Blocks B and C are remark-

ably stable. Even after 8 days, the cluster labels are highly

similar.

5.3. Cybercrime detection

We now turn to the evaluation of DNSMap’s change

events for detecting cybercrime activity. We consider an

agile group as malicious if we were able to confirm that

at least one FQDN in this group is malicious. Indeed, in

our trials we found such evidence for a significant share

of FQDNs in each group. Note that we exclusively investi-

gate the FQDNs contained in the change events created by

DNSMap. One may want to retrieve the list of all FQDNs

mapping to an IP address, as soon as it was found to host

malicious services, given the availability of such data ex

post . It is, however, not immediately obvious where to stop

with such an analysis, as one might then also consider re-

trieving the IP addresses which were used by FQDNs which

38 A. Berger et al. / Computer Networks 100 (2016) 28–44

mapped to a malicious address, and so on. Hence we leave

such an analysis for future work.

The evaluation of our results is a challenging task, as

there exists no reliable ground truth. A central metric for

evaluating classification systems is the false positive rate

(FPR), which is defined as FPR = FP/(FP + TN) where FP

and TN are the total number of false positives and true

negatives, respectively. As we do not have ground truth

available, we cannot calculate FPR. However, in our exper-

iments we analyze more than a million FQDNs and report

at most only a few thousand as malicious. Intuitively, most

analyzed FQDNs are not malicious and are therefore true

negatives. Therefore, the false positive rate is expected to

be extremely low—in the order of one promille . Therefore,

we do not report it separately for each experiment.

Due to the lack of ground truth, we cannot assess the

number of false negatives. However, we can adjust the pa-

rameter settings of our system such that the correspond-

ing agile activity is guaranteed to be reported. This comes

at the cost of reduced classification precision , which is de-

fined as TP/(TP + FP) where TP is the number of true pos-

itives. Sometimes we observe significantly more FP than

TP, which results in low precision. However, the abso-

lute number of results (i.e., TP + FP) is generally low in

our experiments 10 and can be sorted out manually (see

Section 5.3.2). Therefore, we deliberately trade precision

for high sensitivity, to assure that even moderately ag-

ile activity is detected, by setting the system parameters

accordingly.

Similar to [8,11,12] , we use publicly available blacklists

as one means for assessing the quality of our results.

Note, however, that we never found all detected malicious

FQDNs in any single blacklist we used. This is not only

because of limitations of the underlying analysis systems,

but also due to the fact that blacklists are based on dif-

ferent data sets (e.g., Spam emails) from other networks.

Typically we do not know what specific techniques were

used to flag a domain name as malicious, nor can we be

absolutely sure that the blacklisted domains are actually

malicious [14] .

As an example, we consider the blacklist from exposure.

iseclab.org . The underlying analysis is based on [11] , which

pursues similar goals as our approach. We downloaded

the list on November 22, 2011, i.e., 1 day after the end

of DS2. 11 Out of ∼ 60,0 0 0 domains in the blacklist, only

478 were also present in DS2. This indicates that either

the blacklist contained many outdated domains or that the

traffic seen by EXPOSURE was significantly different from

DS2. Only 16 of these domains were reported as changes

by DNSMap, and entered the second analysis stage, which

resulted in zero final alerts. We manually checked all 16

domains, and could not find any evidence that they were

related to cybercrime activity. In fact, most of the sites

were still online (2.5 years after the data set was recorded),

which indicates that they are actually benign. Out of the

remaining 462 domains, 426 were first observed during the

initial 2-days training phase of our system, and were there-
10 A few thousand FQDNs in a few tens of groups per week.
11 The blacklist service was not available for the time frame of DS1.
fore correctly classified as representing no DNS change

later on. The remaining 36 domains were seen the first

time afterward . Nevertheless, for 304 out of the 426 we

found the same group of eight IP addresses hosting 103

other domains during our experiments, which were not

found by [11] . Viewing this activity as an agile group en-

abled us later to understand that this was a single clus-

ter of botnet sinkhole IP addresses (see Section 5.3.1). We

checked both the 122 other domains and the remaining 36

domains manually and found no evidence for malicious ac-

tivity. The automated comparison with existing blacklists

can therefore be grossly misleading, in particular for eval-

uating the number of false negatives. In our example, we

detected all malicious-hosting IPs reported by [11] without

any false positives, while a simple comparison of the re-

sults would have yielded 478 false negative FQDN reports.

Consequently, we employ a semi-manual approach for

evaluating our results. We rely on a set of publicly avail-

able blacklists 12 and on online services 13 for getting a first

idea of the true nature of a given domain. If, e.g., we found

a domain on a Spam blacklist and a corresponding report

on phishtank.com , we considered this a true positive. Addi-

tionally, we did manual Google searches for most reported

domains, which typically led us to a variety of malware

analysis sites. Still, for some domains we were not able to

find any information online, despite the fact that their ac-

tivity would definitely deserve a closer look.

Due to lack of ground truth, we cannot reliably quantify

the number of false negatives. However, we do know that

our system guarantees to detect all DNS activity exceeding

the limits imposed by the parameter configuration. Thus,

we choose highly sensitive configurations which leave very

limited room for malicious, agile DNS activity, and show

that even these settings yield extremely few false positives.

5.3.1. Results with limited training

Our system is able to provide valuable results even

with minimal training . To demonstrate that, we analyze the

change events of the third day (ε = 1 day) of our data

set DS1, i.e., after 2 days of initial training. When setting

� = 0 . 35 we received 332,606 change events, out of which

181,822 singles and 17 likely benign FQDNs could immedi-

ately be discarded.

First, we targeted groups of agile FQDNs sharing a

set of IP addresses (Malicious Hosting) and discarded

all components with φ1 < 10, φ2 < 2, and φ3 < 2.

The remaining 199 FQDNs were split in 11 agile groups:

the largest one represented four sinkhole IP addresses

for botnet mitigation, which hosted 51 random-looking

FQDNs. 28 FQDNs hosted on five addresses in three ASes

clearly represented cybercrime, which we call the jailcoach

cluster (see Section 5.3.3). Another group of 10 FQDNs

related to online pharmacy Spam (e.g., bargaincapsules.ru).

The remaining eight groups with 110 FQDNs in total

represented benign sites using a small set of different

hosting providers, which were previously requested not

often enough to be known to the system. More aggressive
12 malwaredomainlist.com , joewein.net , [11] , abuse.ch .
13 phishtank.com , projecthoneypot.org , projecthoneypot.org , virustotal.

com

http://exposure.iseclab.org
http://phishtank.com
http://bargaincapsules.ru
http://malwaredomainlist.com
http://joewein.net
http://abuse.ch
http://phishtank.com
http://projecthoneypot.org
http://projecthoneypot.org
http://virustotal.com

A. Berger et al. / Computer Networks 100 (2016) 28–44 39

Fig. 8. Whitelisting example: the relative node betweenness of rsync.

europe.gentoo.org is 92%, and it is therefore by far the most important

node in this component. Removing it after manual investigation causes

this component to fall apart and lets also www.de.kernel.org disappear

from the final results. Note that we collapse several IP addresses from

the same AS for better visualization (yellow nodes). (For interpretation of

the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Table 4

Whitelist used for experiments.

Whitelist

NTP * .ntp.org; de.pool.ntp.arcor-ip.net

time.mk.cc ; ntp.pch.at

CoralCDN * .nyud.net; * .nyucd.net

Other cf. www.directadserver.com ;

grey-area.mailhostingserver.com

cf. www.forwardizm.com ; pool.sks-keyservers.net

* . f iles.wordpress.com ;

liveupdate.symantecliveupdate.com

safebrowsing-cache.google.com ; www.apple.com

rsync.europe.gentoo.org

thresholds for φ1 , φ2 , φ3 would have removed all false

positives, without missing any true positive.

Second, we targeted sites which quickly jump from one

IP address to the next (Fast-Flux) and required that φ1 ≥ 1,

φ2 ≥ 20, and φ3 ≥ 5. After filtering the original graph, only

eight FQDNs in three groups were left. The first one con-

tained the malicious Fast-Flux domain ttcuhdwk.biz (map-

ping to 38 IP addresses in 28 ASes). Another group of six

malicious FQDNs mapped to 39 IP addresses in 32 ASes.

The remaining FQDN irc.efnet.org on 21 IP addresses in 20

ASes was a false positive. A manual investigation revealed

that this FQDN was not requested at all during the first

2 days. Although this represented no malicious activity, it

therefore still represents the kind of agile DNS which we

aim to detect.

5.3.2. Targeted whitelisting

The case of http://irc.efnet.org irc.efnet.org showed that

certain benign DNS activity is indistinguishable from cy-

bercrime. This is an intrinsic limitation of DNS analy-

sis, which also affects other approaches. We explicitly ac-

knowledge this, and integrate a fine-grained procedure for

targeted whitelisting in our system. That is, in contrast to

other approaches which remove large numbers of domains

a priori [5,8,11,12] , we identify those which are truly indis-

tinguishable from cybercrime, and remove only them.

We take advantage of the representation of DNS map-

pings as a graph: some agile groups may be large and

contain, e.g., thousands of FQDNs and IP addresses, and

therefore it is not immediately clear which of these FQDNs

should be checked for potentially being whitelisted. For

every agile group, we find the FQDN node with the max-

imum normalized node betweenness [23] . This indicates

that it lies on many shortest paths between two other

nodes, and is therefore important for the component’s

connectivity. After checking manually that the FQDN is ac-

tually benign, we create a new whitelist entry, which often

causes the group to fall apart. Subsequently, we rebuild

the graph without considering this FQDN. The remaining

parts of the former component are then typically removed

when applying the parameter thresholds. Fig. 8 shows a

simple example.

In other cases, there is no single FQDN responsible

for a group of sites being reported. One such service is
NTP, which involves a large number of different IP ad-

dresses around the globe, which are used for many FQDN

aliases (see also [12]). Another example is CoralCDN, which

uses FQDNs like PREFIX.nyud.net , where PREFIX is

an FQDN of an existing website. A cached copy of PREFIX
is located in a large peer-to-peer network, and the ad-

dress of the allocated server is returned to the requesting

host. In other words, a large number of addresses serves

an ever changing set of FQDNs, which resembles cyber-

crime activity. In this case, there exists an FQDN pattern

which we should whitelist. Therefore, we find the popular-

ity of FQDN suffixes for each group, and can quickly iden-

tify the dominant one, which we then whitelist eventually.

Table 4 shows the entire set of highly specific whitelist pat-

terns we derived during our experiments, and which we

use throughout the remainder of this paper.

5.3.3. Cybercrime detection scenarios

As discussed in Section 4.3 , the agile group parameters

allow us to encode queries to target specific cybercrime

hosting strategies. For brevity, we limit ourselves here to

two main scenarios. First, we address Fast-Flux (FF) activity

by requiring that φ1 ≥ 1, φ2 ≥ 20, and φ3 ≥ 5. This con-

figuration resembles the goals of [12] , but is more sensi-

tive and allows for much quicker detection (see Section 2).

Second, we find Malicious Hosting (MH) patterns by re-

quiring that φ1 ≥ 50, φ2 ≥ 4, and φ3 ≥ 2. For our ex-

periments, we consider the change events of the last week

of DS1 (i.e., ε = 1 week), and of the last 4 days of DS2

(i.e., ε = 4 days). For each data set and each detection sce-

nario, we investigate the agile groups which are reported

for � = [0 . 25 , 0 . 30 , 0 . 35 , 0 . 4 , 0 . 45] . Table 5 shows the over-

all results, which demonstrate that even for low settings

of � and large ε the absolute number of false positives

is still small. Certainly, we could have whitelisted a limited

number of further FQDNs, up to the point where we would

have received no false positives at all, for this particular

data set. However, as benign DNS activity is dynamically

changing over time, some false positives are always to be

expected. Therefore, we rather show these realistic results.

In the following, we discuss the results for � = 0.35 in

detail. We checked manually that this setting consistently

revealed all malicious agile groups that were found using

lower �, and returned fewer false positives (cf. Table 5).

Fast-Flux . For DS1, we retrieve 291 FQDNs in 13 agile

groups, which we sort according to the number of IP

http://rsync.europe.gentoo.org
http://www.de.kernel.org
http://ttcuhdwk.biz
http://irc.efnet.org
http://irc.efnet.org
http://*.ntp.org
http://de.pool.ntp.arcor-ip.net
http://time.mk.cc
http://ntp.pch.at
http://*.nyud.net
http://*.nyucd.net
http://www.directadserver.com
http://grey-area.mailhostingserver.com
http://www.forwardizm.com
http://pool.sks-keyservers.net
http://*.files.wordpress.com
http://liveupdate.symantecliveupdate.com
http://safebrowsing-cache.google.com
http://www.apple.com
http://rsync.europe.gentoo.org

40 A. Berger et al. / Computer Networks 100 (2016) 28–44

Table 5

Results for different values of � and two detection scenarios (FF, MH). Shown is the preci-

sion of the analysis, i.e., the ratio of confirmed malicious agile groups and the total number

of reported agile groups. We show absolute numbers as well as the calculated ratio (in

brackets).

� = 0.25 � = 0.30 � = 0.35 � = 0.40 � = 0.45

DS1 FF 4/14 (0 .29) 4/13 (0 .31) 4/13 (0 .31) 3/10 (0 .3) 2/9 (0 .22)

MH 9/42 (0 .21) 9/33 (0 .27) 9/29 (0 .31) 7/27 (0 .26) 6/26 (0 .23)

DS2 FF 9/21 (0 .43) 9/21 (0 .43) 9/20 (0 .45) 9/19 (0 .47) 9/18 (0 .50)

MH 4/19 (0 .21) 4/16 (0 .25) 4/14 (0 .29) 4/10 (0 .4) 3/8 (0 .375)

Fig. 9. Group of Fast-Flux sites.

addresses per group. The top four groups include three

confirmed malicious ones, and none of them contained

less than 50 IPs. The largest group contains the mali-

cious FQDNs xsushvcg.biz , geebuhkc.biz , and ttcuhdwk.biz

(which we found already in Section 5.3.1), and 365 IP ad-

dresses in 155 ASes (see Fig. 9). The three other malicious

groups contained 16/86/152 FQDNs and 136/50/23 IP ad-

dresses, respectively. The remaining nine groups with 34

FQDNs in total were misclassified benign, yet highly agile,

sites (e.g., connect.facebook.net).

For DS2, we retrieve 321 FQDNs in 20 agile groups. A

group with two FQDNs on 288 IP addresses in 125 ASes

represented malicious Fast-Flux. Less obviously, a group of

12 FQDNs (34 addresses/12 ASes) was used for hosting

malware (e.g., the Cycbot Trojan on fdg45e.nl.ai). Interest-

ingly, seven other groups contained only one FQDN and

exactly 20 IP addresses in 15–20 different ASes each. All

these FQDNs were subdomains of syringemexican.com , and

used domain prefixes which appeared to be randomly gen-

erated. We were unable to find any indication that these

highly suspicious domains are actually benign. The remain-

ing ten agile groups represented benign activity. Note that

the initial training period for DS2 was only 2 days and ε =

4 days, which was the reason for misclassifying some pop-

ular services. However, even in this case, such low num-

bers of false positives—10 groups for 4 days of data—can

be quickly sorted out manually.

Malicious hosting . For DS1, we find 29 agile groups with

3409 FQDNs, of which nine groups with 892 domains in

total represented malicious hosting activity. One partic-
ularly interesting group is shown in Fig. 10 . It contains

147 FQDNs (eight addresses, five ASes), out of which we

found 76 FQDNs in blacklists which were derived from

Email Spam. Note that neither the number of IP addresses

per FQDN nor the number of ASes is excessively high.

Rather, the overall agility of the FQDNs and IP addresses

as a group stands out, which made them detectable. The

fact that a subset of these FQDNs were found also by the

analysis of Spam emails underlines the complementarity

of these approaches. Spam-based blacklists are typically

highly accurate, but are limited in scope. Conversely, DNS-

based analysis is less precise, but is able to provide the big

picture for cybercrime activity, which goes beyond the de-

tection of network resources hosting Spam content.

Another particularly interesting example is a group of

86 FQDNs (50 addresses, 28 ASes). Most of the FQDNs

have the format < PREFIX > .youngand < WORD > 1.com
where 〈 PREFIX 〉 was a random string and 〈 WORD 〉 an En-

glish word (e.g., girls). Many of these FQDNs were found

in Spam emails, and therefore appear in several blacklists.

Other sites hosted on the same IP addresses do not appear

in any blacklists, though (e.g., ulqsibydur.com). We suspect

that these domains were used for a different purpose, and

were therefore not seen by the Spam analyzers.

For DS2 we find 14 groups with 1399 FQDNs, of which

408 domains in four groups were indeed malicious. Note

that the vast majority of non-malicious groups we found

related to adult content offerings, which use a highly ag-

ile set of domain name aliases to attract more customers.

False positives can hardly be avoided in this case, this

should be addressed by custom whitelisting.

6. Discussion

In our experiments we found various kinds of malicious

activity, ranging from Fast-Flux (probably used for Botnet

Command-and-Control), over Phishing and exploit sites, to

domains used in Email spam. Even moderate agility pat-

terns are detected, and many of them relate to malware

activity. Our parameter settings force cybercrime to sig-

nificantly reduce its agility patterns for going undetected.

However, this highly sensitive configuration comes at the

cost of misclassifying certain benign activity as malicious.

We argue that such activity should be reported though, as

DNS analysis alone is not able to differentiate it from ma-

licious services, when both show similar levels of agility. A

targeted, in-depth analysis is enabled by the low number

of misclassified domains, and supported by the structural

representation of our approach (see Section 5.3.2). As the

http://xsushvcg.biz
http://geebuhkc.biz
http://ttcuhdwk.biz
http://connect.facebook.net
http://fdg45e.nl.ai
http://syringemexican.com
http://ulqsibydur.com

A. Berger et al. / Computer Networks 100 (2016) 28–44 41

Fig. 10. The jailcoach cluster: a group of cybercrime sites, most of which seem to be generated by concatenating two English words (e.g., jailcoach.ru).

Few sites relate to selling of fake watches (e.g., www.rolex.com.SUFFIX); others follow a different naming pattern (e.g., hjuhefs.ru). We removed about two

thirds of the original graph for better visualization.

14 archive.farsightsecurity.com
graph analysis step in our methodology is computationally

inexpensive, one can run many queries using different pa-

rameter settings (i.e., φ1 , φ2 , φ3) in short time and thereby

interactively explore the DNS data at hand.

We consider the graph representation of the system’s

output as highly valuable. Many times we were able to

understand immediately whether an agile group is indeed

involved in malicious activity. Often, well-known domains

(e.g., reddit.com) were connecting several benign sites, and

whitelisting them caused an entire misclassified group to

disappear from the results. Conversely, for some groups,

only the existence of a small number of obviously dubi-

ous sites raised our suspicion about a group of domains

which by themselves mostly appeared inconspicuous. We

believe that it is essential to keep the human analyst in

the loop, as many patterns are difficult to reveal in an au-

tomatic manner.

An important feature of our system is its ability to iden-

tify malware domains independently of the number of re-

quests. This allows us to detect new outbreaks early, and

enables timely reactions (e.g., blocking). In a real-world

deployment, the number of requests may be used as an

additional feature, to quantify the popularity of a partic-

ular detected site. However, it is not strictly required by

the system. Likewise, one would construct more complex

graph queries than we used in our experimental evalua-

tion, by logically combining settings for different scenarios

(e.g., Fast-Flux OR malware hosting).

Our approach is based on the high stability in DNS

mappings of benign services (see Fig. 7). Popular sites re-

quire more hosting resources (i.e., IP addresses), and ap-

pear therefore more agile, thus requiring more training

data for being properly modeled. An interesting property

of this essential modeling step results from the fact that

sites which are requested often are better modeled than

less popular ones. We emphasize that DNSMap by design
reports all DNS mappings which involve a new IP address,

and such activity is therefore guaranteed to be detected if

sufficiently many addresses (in our trials: 4–20 per week)

are being used. We can detect such moderate fast flux ac-

tivity due to the thorough understanding of the activity

of benign sites. Large services may use many more IP ad-

dresses, but they use the same ones over time, and they

do not constantly change the FQDN patterns.

6.1. Limitations

The evaluation of our system’s output is heavily based

on the concept of guilt by association, i.e., if one FQDN or

IP address in a graph component is found to be malicious,

then we consider all of them malicious. The advantage of

being able to reveal malware activity which does not stand

out by itself, comes with the drawback that also legiti-

mate sites may wrongly be classified as malicious. In fact,

in our experiments we occasionally found sites which ap-

peared benign, but happened to map to IP addresses used

by malware. We consider this tradeoff to be inherent to

DNS-based analysis, though, which is unable to observe the

actual data transfer between IP addresses. A focused in-

depth analysis (e.g., using deep packet inspection) is rec-

ommended in these cases.

Note that the DNSMap representation is valid for a sin-

gle vantage point only, and cannot be trivially transferred

to other networks. This is because the mappings between

FQDNs and IP addresses often depend on the geograph-

ical location of the requesting host, so to optimize the

data transfer performance between server and client. Data

sources like SIE 14 which provide aggregated DNS data from

http://www.rolex.com.SUFFIX
http://reddit.com
http://archive.farsightsecurity.com

42 A. Berger et al. / Computer Networks 100 (2016) 28–44

multiple vantage points and therefore omit this additional

information, have not yet been evaluated for our system.

6.2. Evasion strategies

In general, an adversary has two main options for evad-

ing our system: either escaping DNSMap’s change detec-

tion, or going unnoticed w.r.t. the corresponding graph fea-

tures, i.e., using only few FQDNs, IP addresses, and ASes

per agile group. This comes at a cost, as fewer IP addresses

being used per FQDN impacts the reliability of the mal-

ware service. Knysz et al. discuss fast-flux evasion strate-

gies in [24] , and derive models describing the relation be-

tween the number of online malware IP addresses and the

availability of the corresponding malware sites. They con-

sider a minimum number of 100 unique IP addresses per

week and FQDN, which results (according to their model)

in an average of 2.89 online IP addresses and a connec-

tion loss probability of 71.1%. Although this would already

result in poor malware connectivity, this kind of activity

is still comfortably within the sensitivity limits of our sys-

tem. In fact, we would have revealed any Fast-Flux activity

which involves ≥ 20 IP addresses per week and agile group

(as opposed to a single FQDN). Therefore, we can easily de-

tect malware activity even when all the proposed evasion

techniques are implemented, and the overall malware util-

ity is already considered poor.

Therefore, the adversary might try the second option,

i.e., avoid that malware activity results in DNS change

events in the first place. All new IP addresses being used

are reported always, therefore the challenge lies in using

only IP addresses which are known to DNSMap, and use

FQDNs which are similar (i.e., DD < �) to the correspond-

ing IPBlocks’ cluster labels. Less than φ1 new FQDN “fam-

ilies” (i.e., clusters) on < φ2 IP addresses in < φ3 ASes

can be introduced per epoch ε for going undetected. As

shown in Section 4.1 , our selection for � leaves only lim-

ited degrees of freedom, and forces the adversary to use

stable patterns for constructing FQDNs which appear sim-

ilar (e.g., by using a common suffix). This strategy cannot

be changed for at least ε, i.e., 1 week in our case. In other

words, the adversary is forced to use a less agile mapping

procedure, which is the opposite of what was originally in-

tended. This leaves significant time for other detection ap-

proaches (e.g., malware binary analysis) for identifying this

pattern, and deriving a corresponding blacklist entry (e.g.,

∗〈 SUFFIX 〉). Furthermore, these restrictions have a severe

impact on malware activity which requires flexibility in the

choice of FQDNs for various reasons, e.g., Phishing FQDNs

which often mimic the FQDN of the currently targeted site

(e.g., www.example-bankk.com), or sites which use certain

FQDN patterns for appearing benign (see, e.g., Fig. 10).

7. Conclusion

We proposed and discussed a cybercrime detection sys-

tem which is based on DNS FQDN-to-IP-address mappings.

We extract these mappings from traffic data, and find pro-

files describing typical FQDN patterns for arbitrary-length

IP ranges. Cybercrime uses DNS for combining high service

availability with resilience to countermeasures. This agile
DNS activity results in changes to the DNS profiles, which

we further investigate using graph analysis. In a number of

experiments we showed how to target different malware

activity and discussed the difficulties of evading our detec-

tion system.

Further improvements are possible, which we consider

for future work. We proposed a very small set of graph

query parameters, which of course can be extended. For

example, we conducted early experiments using a database

for retrieving the total number of DNS queries for a certain

suspicious FQDN. Typically, one would especially be inter-

ested in groups of malware sites which are looked up by

many different hosts, and we expect a further reduction in

the number of false alarms by introducing a corresponding

feature. Furthermore, additional graph analysis measures

(e.g., degree distribution) may yield interesting results. An-

other promising direction for future work is the integra-

tion of additional data. In particular, we will consider the

inclusion of information describing the authoritative name

servers for the domains represented in our graph. This is

related to the ideas presented in [8,13] and is expected to

link suspicious domains from different agile groups, and

thus provide even better detection performance.

Acknowledgments

The work of Antonio Pescapé is partially funded by the

Italian Ministry of Education, Universities and Research in

the context of Art. 11 DM 593/20 0 0 for NM2 SRL. We

would like to thank Eduard Natale and Mirko Schiavone

for supporting us with the software implementation. This

work has been supported by the Austrian Government and

by the City of Vienna within the competence center pro-

gram COMET.

Appendix A. Complexity analysis

Space. IPBlocks are stored in a set of RBTrees. Each IP-

Block holds a set of clusters of domains. We limit the num-

ber of clusters per IPBlock to Mcl and the number of do-

mains per cluster to Msz (see Table 1). In the worst case,

each IPBlock represents a single IP address only, thus max-

imizing the number of required IPBlocks.. Therefore, in the

worst case, the space complexity for storing DNS mappings

for n observed IP addresses is O(Mcl · Msz · n) .

The analyzed graphs require O(V + E) space, where the

number of nodes V = n ∗ + d ∗ for n ∗ ≤ n suspicious IP ad-

dresses and d ∗ suspicious domains. The number of edges

E depends on the actual DNS mappings and is bounded

above by E max = n ∗ · d ∗. In practice, the number of edges

is significantly lower (see Section 3.2).

Time. DNSMap consists of three central operations,

namely adding domains (see Algorithm 1) as well as merg-

ing and splitting IPBlocks (see Section 3.1.3). While adding

domains is highly efficient, merging and splitting are more

costly operations (see also Section 5.1).

Adding domains to an existing cluster and adding a new

cluster to an IPBlock correspond to simple set operations

and have a time complexity of O(1) . Visiting all stored IP-

Blocks corresponds to traversing the RBTree and requires

http://www.example-bankk.com
http://dx.doi.org/10.13039/501100003407

A. Berger et al. / Computer Networks 100 (2016) 28–44 43

O(n) time in the worst case [22] . We focus on the more

significant operations in the following.

Given a DNS mapping of domain d to IP address a ,

the lookup of the IPBlock containing a in the RBTree has

a worst-case time complexity of O(nlogn) [22] . Assum-

ing that no IPBlock is found, a new IPBlock is created in

O(logn) time. If an IPBlock b is found, the DD between

d and all cluster labels of b needs to be computed. The

computation of DD is based on computing the Levenshtein

distance, which has a complexity of O(j · k) for process-

ing two strings with length j and k , respectively [20] . Let

m be the maximum length of a cluster label and | d | the

length of d . As there are at most Mcl clusters per IP-

Block, the computation of all DDs has a time complexity of

O(Mcl · m | d|) .
Merging and splitting IPBlocks is based on the similar-

ity score σ defined in Section 3.1.3 . It requires the com-

putation of DD for all pairs of clusters of two IPBlocks. As

DD is symmetric, the computation of σ has a worst-case

time complexity of O(Mcl
2 · m

2) . In the (highly unlikely)

worst case where σ A , B ≤ γ for all A , B (see Section 3.1.3),

each IPBlock needs to be merged (split) after each inter-

val 	Mg (Ma). The cluster labels represent the string me-

dians of the set of domains in the corresponding cluster

and are recomputed when IPBlocks are merged or split.

Computing the string median is an NP-hard problem [25] .

However, as we limit the number of domains per IPBlock

(by limiting the number of clusters as well as the num-

ber of domains per cluster), this poses no significant prob-

lem for real-world applications (see the empirical evalua-

tion in Section 5.1).

Finally, graph analysis is based on finding the graph’s

components in O(V + E) time [23] .

References

[1] Norton Cybercrime Report , Technical Report, Norton, 2013 .

[2] G. O’Gorman , G. McDonald , Ransomware: A Growing Menace, Tech-
nical Report, 2012 .

[3] C. Grier , L. Ballard , J. Caballero , N. Chachra , C.J. Dietrich ,
K. Levchenko , P. Mavrommatis , D. McCoy , A . Nappa , A . Pitsil-

lidis , N. Provos , M.Z. Rafique , M.A. Rajab , C. Rossow , K. Thomas ,

V. Paxson , S. Savage , G.M. Voelker , Manufacturing compromise:
the emergence of exploit-as-a-service., in: Proceedings of ACM

Conference on Computer and Communications Security, 2012 .
[4] J. Caballero , C. Grier , C. Kreibich , V. Paxson , Measuring pay-per-

install: the commoditization of malware distribution, in: Proceedings
of USENIX Security, 2011 .

[5] E. Passerini , R. Paleari , L. Martignoni , D. Bruschi , FluXOR: detecting

and monitoring fast-flux service networks, in: Proceedings of the
Fifth International Conference on Detection of Intrusions and Mal-

ware, and Vulnerability Assessment (DIMVA), Paris, France, 2008 .
[6] S. Yadav , A.K.K. Reddy , A.N. Reddy , S. Ranjan , Detecting algorithmi-

cally generated malicious domain names, in: Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement (IMC), New

York, NY, 2010 .

[7] J. Aycock , What’s in a name... generator? J. Comput. Virol. 8 (1–2)
(2012) 53–60 .

[8] M. Antonakakis , R. Perdisci , W. Lee , N. Vasiloglou , D. Dagon , Detect-
ing malware domains at the upper DNS hierarchy, in: Proceedings of

USENIX Security, Berkeley, CA, 2011 .
[9] A. Berger , E. Natale , Assessing the real-world dynamics of DNS, in:

Proceedings of the Fourth International Workshop on Traffic Moni-
toring and Analysis (TMA), Vienna, Austria, 2012 .
[10] A. Berger , W.N. Gansterer , Modeling DNS agility with DNSMap, in:
Proceedings of IEEE INFOCOM Workshop on Traffic Monitoring and

Analysis, Turin, Italy, 2013 .
[11] L. Bilge , E. Kirda , C. Kruegel , M. Balduzzi , EXPOSURE: finding ma-

licious domains using passive DNS analysis, in: Proceedings of the
18th Annual Network and Distributed System Security Symposium

(NDSS), San Diego, CA, 2011 .

[12] R. Perdisci , I. Corona , G. Giacinto , Early detection of malicious flux
networks via large-scale passive DNS traffic analysis, IEEE Trans. De-

pendable Secure Comput. 9 (5) (2012) 714–726 .
[13] M. Antonakakis , R. Perdisci , D. Dagon , W. Lee , N. Feamster , Building

a dynamic reputation system for DNS, in: Proceedings of USENIX Se-
curity, Berkeley, CA, 2010 .

[14] M. Kührer , C. Rossow , T. Holz , Paint it black: evaluating the effective-
ness of malware blacklists, in: Proceedings of RAID, 2014 .

[15] R. Sommer , V. Paxson , Outside the closed world: on using machine

learning for network intrusion detection, in: Proceedings of IEEE
Symposium on Security and Privacy, Oakland, CA, 2010, pp. 305–316 .

[16] H. Choi , H. Lee , H. Kim , BotGAD: detecting botnets by capturing
group activities in network traffic, in: Proceedings of the Interna-

tional ICST Conference on Communication System Software and Mid-
dleware (COMSWARE), New York, NY, 2009 .

[17] X. Hu , M. Knysz , K.G. Shin , Measurement and analysis of global IP-

usage patterns of fast-flux botnets, in: Proceedings of the Annual
IEEE International Conference on Computer Communications (INFO-

COM), Shanghai, China, 2011 .
[18] R. Villamarin-Salomon , J. Brustoloni , Identifying botnets using

anomaly detection techniques applied to DNS traffic, in: Proceed-
ings of IEEE Consumer Communications & Networking Conference

(CCNC), Las Vegas, NV, 2008 .

[19] T. Holz , C. Gorecki , K. Rieck , F.C. Freiling , Measuring and detect-
ing fast-flux service networks, in: Proceedings of the 16th Annual

Network and Distributed System Security Symposium (NDSS), San
Diego, CA, 2008 .

[20] V. Levenshtein , Binary codes capable of correcting deletions, inser-
tions, and reversals, Sov. Phys. Dokl. 10 (8) (1966) 707–710 .

[21] F. Casacuberta , M. de Antoni , A greedy algorithm for computing ap-

proximate median strings, in: Proceedings of National Symposium
on Pattern Recognition and Image Analysis, Barcelona, Spain, 1997 .

[22] R. Bayer , Symmetric binary b-trees: data structure and maintenance
algorithms, Acta Inf. 1 (1972) 290–306 .

[23] L.d. F. Costa , F. Rodrigues , G. Travieso , P.R.V. Boas , Characterization of
complex networks: a survey of measurements, Adv. Phys. 56 (2007)

167–242 .

[24] M. Knysz , X. Hu , K. Shin , Good guys vs. bot guise: mimicry attacks
against fast-flux detection systems, in: Proceedings of IEEE INFO-

COM, Shanghai, China, 2011 .
[25] C. de la Higuera , F. Casacuberta , Topology of strings: median string

is np-complete, Theor. Comput. Sci. 230 (1–2) (1999) 39–48 .

Andreas Berger received B.Sc. and M.Sc. de-

grees in Information and Communication Tech-
nology from the Technical University Graz, Aus-

tria and a Ph.D. degree in Computer Science

from the University of Vienna, Austria. His re-
search interests include traffic monitoring and

data analysis, with a focus on malware detec-
tion.

Alessandro D’Alconzo received the M.Sc. de-

gree in Electronic Engineering with honors
in 2003, and the Ph.D. in Information and

Telecommunication Engineering in 2007, from
Polytechnic of Bari, Italy. Since 2007 he is a

senior researcher at FTW. His research inter-
ests range from design and implementation of

statistical-based anomaly detection algorithms,

to quality of experience evaluation, and appli-
cation of secure multiparty computation tech-

niques to cross-domain network monitoring.

http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30025-1/sbref0025

44 A. Berger et al. / Computer Networks 100 (2016) 28–44
Wilfried N. Gansterer is an associate profes-

sor at the Faculty of Computer Science of the
University of Vienna. He received M.Sc. degrees

from Vienna University of Technology in Math-

ematics and from Stanford University in Sci-
entific Computing/Computational Mathematics,

respectively, and a Ph.D. degree in Scientific
Computing from Vienna University of Technol-

ogy. His research interests include, among other
topics, distributed computing and efficient algo-

rithms as well as Internet security with a focus

on botnet detection and prevention and e-mail
spam.
Antonio Pescapé is an assistant professor at the

Electrical Engineering and Information Technol-
ogy Department at the University of Napoli Fed-

erico II (Italy) and Honorary Visiting Senior Re-

search Fellow at the School of Computing, In-
formatics and Media of the University of Brad-

ford (UK). He received the M.S. Laurea Degree
in Computer Engineering and the Ph.D. in Com-

puter Engineering and Systems, both at Univer-
sity of Napoli Federico II. His research inter-

ests are in the networking field with focus on

Internet Monitoring, Measurements and Man-
agement and Network Security. He is a senior

member of the IEEE.

	Mining agile DNS traffic using graph analysis for cybercrime detection
	1 Introduction
	1.1 Motivation and contribution

	2 Related work
	3 System design
	3.1 DNSMap-detecting agile DNS
	3.1.1 Measuring FQDN similarity
	3.1.2 Detecting significant DNS changes
	3.1.3 Merging and splitting IPBlocks

	3.2 Graph analysis
	3.2.1 Agile group features

	4 Parameters and tuning
	4.1 Domain divergence threshold
	4.2 Maintenance interval Ma
	4.3 Graph analysis parameters

	5 Experimental evaluation
	5.1 Performance
	5.2 Benign service agility
	5.3 Cybercrime detection
	5.3.1 Results with limited training
	5.3.2 Targeted whitelisting
	5.3.3 Cybercrime detection scenarios

	6 Discussion
	6.1 Limitations
	6.2 Evasion strategies

	7 Conclusion
	 Acknowledgments
	Appendix A Complexity analysis
	 References

