
ARTICLE IN PRESS 

JID: COMPNW [m3Gdc; February 23, 2016;11:3 ] 

Computer Networks xxx (2016) xxx–xxx 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Energy efficient power allocation in cognitive radio network 

using coevolution chaotic particle swarm optimization 

Meiqin Tang 

∗, Yalin Xin 

Q1 

Institute of Mathematics and Statistics, Ludong University, Yantai 264025, PR China 

a r t i c l e i n f o 

Article history: 

Received 1 April 2015 

Revised 6 February 2016 

Accepted 8 February 2016 

Available online xxx 

Keywords: 

Cognitive radio (CR) network 

Power allocation 

Large scale global optimization 

Coevolutionary chaotic particle swarm 

optimization (CCPSO) 

a b s t r a c t 

In this paper, the trade-off between utility and energy consumption in orthogonal fre- 

quency division multiplexing (OFDM)-based cognitive radio (CR) network is investigated. 

Energy efficiency problem is very important in the field of CR network, where the util- 

ity is maximized and the energy consumption is minimized in such a CR network. Since 

the trade-off between them has been paying more attentions in literature, this study sum- 

marizes the power allocation as an optimization problem that maximizes the energy effi- 

ciency via a new energy efficiency metric defined by this paper. The formulated problem is 

a large-scale nonconvex problem, which is very difficult to solve. In this paper, we present 

an improved particle swarm optimization (PSO) algorithm to solve the difficult large-scale 

optimization problem directly. Given the weak convergence of the original PSO around lo- 

cal optima, an improved version that combines the chaos theory is proposed in this study, 

where chaos theory can help PSO search for solutions around the personal and global 

bests. In addition, for the purpose of accelerating the convergence process when facing 

with such a large-scale optimization, the original problem is decomposed into a number 

of small ones by employing the coevolutionary methodology, and then divide-and-conquer 

strategy is used to avoid producing infeasible solutions. Simulations demonstrate that the 

proposed coevolution chaotic PSO needs a smaller number of iterations and can achieve 

more energy efficiency than the other algorithms. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 1 

Nowadays almost all wireless spectrum has been li- 2 

censed to existing wireless communications applications. 3 

With the increasing demand for wireless data service, Q2 
4 

spectrum scarcity will become a big problem in future 5 

development of wireless communications networks. One 6 

promising solution to overcome the spectrum scarcity 7 

problem is to use opportunistic spectrum access tech- 8 

niques such as cognitive radio [1] , which lets unlicensed 9 

users (called secondary users or cognitive users) temporar- 10 

ily utilize a licensed spectrum band, if the licensed users 11 
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(called primary users) are idle or the interference received 12 

at primary users from secondary transmissions is tolerable 13 

(in other words, secondary transmissions do not affect the 14 

transmission quality of primary users). Due to its potential 15 

to largely improve the spectrum utilization efficiency, CR 16 

has received much attention from academia, industry, and 17 

spectrum regulation agencies [2] . 18 

In a cognitive radio (CR) network, primary users have 19 

the highest priority to use the spectrum. Secondary users 20 

are aware of the transmission environments, and can 21 

adapt their transmission/reception patterns to the varying 22 

spectrum environments. As an example, consider that 23 

a secondary user uses a licensed spectrum band. If the 24 

corresponding primary user is back (i.e., the primary user 25 

needs to use the spectrum band), the secondary user 26 

needs to stop using the spectrum band, and try to find 27 
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other idle spectrum bands to continue its wireless access 28 

service. Dynamic spectrum allocation is a main challenge 29 

in the design of cognitive radio networks, which enables 30 

wireless devices to opportunistically access portions of the 31 

spectrum as they become available. 32 

In this paper, we consider an orthogonal frequency 33 

division multiplexing (OFDM)-based CR network, and we 34 

focus on the network utility (to be defined in Section 3 ). 35 

We define “utility per Joule ” as the energy efficiency 36 

metric, which can effectively characterize the trade-off37 

between utility and energy. A power allocation problem is 38 

formulated, which maximizes the energy efficiency. Since 39 

there are base stations (BSs) in the system, the optimiza- 40 

tion problem is centralized and nonconvex, and is hard 41 

to be transformed to a convex problem. So in this paper, 42 

we adopt PSO (particle swarm optimization) algorithm , 43 

which can solve the nonconvex optimization efficiently. 44 

PSO algorithms are modern heuristic algorithms based on 45 

bird flocking, there is no theory proof for PSO to get the 46 

global optimum, but they have demonstrated their poten- 47 

tial in solving complicated optimization problems [3–6] 48 

and network optimization problems [7–9] . The advantages 49 

of PSO algorithms include: they have simple theoretical 50 

structure with good convergence properties; they are easy 51 

to implement; they do not require the objective functions 52 

to be continuous. PSO methods have been popularly used 53 

in wireless networks. For example, Zhao et al. [7] uses 54 

PSO to optimize CR parameters based on the spectrum 55 

environments and user needs; a PSO-based distributed 56 

resource allocation algorithm in wireless mesh networks is 57 

proposed in Ref . [8] ; and Lin [9] applies PSO to deal with 58 

router node placement problem in a dynamic wireless 59 

mesh network such that the network connectivity and 60 

client coverage are maximized. 61 

However, it is very likely that traditional PSO algo- Q3 
62 

rithms may be trapped into local optimal solutions (which 63 

are not global optimal). Therefore, in the literature, chaos, 64 

which has the features of randomness, ergodicity and 65 

regularity, has been used in PSO algorithms recently 66 

[10–14] . Chaotic PSO algorithms can maintain the popu- 67 

lation diversity, which is a nice property. Liu et al. [10] 68 

e 69 
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84 
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88 

tion of cooperative coevolution theory in PSO can be found 89 

in [15] , in which PSO position update rule relies on Cauchy 90 

and Gaussian distributions. And in our recent paper [16] , 91 

chaos theory is combined into cooperative coevolving PSO, 92 

as chaos theory can help PSO search for solutions around 93 

the personal and global bests, thus avoiding being trapped 94 

into local optimal points. And a belief space is used to 95 

store the experiences for individuals to learn from each 96 

other indirectly. In this paper for CR networks, coevolution 97 

and chaos theory are all combined with PSO, referred to 98 

as CCPSO. But there is no need to set a belief space. Two 99 

populations of PSO are included in the CCPSO, and the 100 

problem is solved by using max –min approach. 101 

The rest of the paper is organized as follows. Related 102 

work is given in Section 2 . The system model and problem 103 

description are presented in Section 3 The proposed CCPSO 104 

algorithm is given in Section 4 . Numerical results are pro- 105 

vided in Section 5 , followed by conclusions in Section 6 . 106 

2. Related work 107 

The utility maximization in a multi-cell CR network un- 108 

der a total transmit power constraint is considered in [17] . 109 

A cooperative secure resource allocation in CR Networks 110 

was considered in [18] , since the problem is NP hard, 111 

the problem is transformed into a generalized geometric 112 

program ing model. Since secondary users are usually 113 

powered by battery, energy consumption in their wireless 114 

transmissions is an important issue. Further, large energy 115 

consumption is often due to large transmission power, 116 

which actually generates large interference to users in the 117 

vicinity and degrades service of those users. Accordingly, 118 

in this paper, we consider energy efficient CR networks 119 

that employ orthogonal frequency division multiplexing 120 

(OFDM) technology [19] . The reason we consider OFDM 121 

is that OFDM is very suitable for high speed broadband 122 

wireless access due to its immunity to inter-symbol- 123 

interference (ISI). 124 

Energy efficiency has been well-investigated in tradi- 125 

tional wireless networks [20,21] . Code division multiple ac- 126 

cess (CDMA) networks are considered in [22] , which de- 127 

s 128 

n 129 

 130 

- 131 

d 132 

r 133 

134 

y Q4 
135 

- 136 

, 137 

y 138 

- 139 
applies chaotic dynamic in PSO algorithms, using th

chaotic local searching behavior. Coelho and Herrera [11

considers fuzzy identification, which enhances PSO algo

rithms with chaotic Zaslavskii map sequences and efficien

Gustafson –Kessel clustering. The chaotic PSO algorithm i

shown to be effective in building a good TS fuzzy mode

In [12] , the authors consider prediction of silicon conten

in hot metal, in which PSO algorithms are enhanced with

chaotic under the logistic equation. A binary PSO is use

in [13] to predict operon in bacterial genomes, and chaoti

sequence is introduced when updating inertia weight

In [14] , the authors apply a PSO algorithm to estimat
the unknown parameters for a hybrid-forecasting model, 

in which initial values of unknown constants in particle 

velocity and position equations are generated by chaotic 

mapping. Due to the nice features of chaos theory in PSO 

algorithms, we adopt a chaotic PSO algorithm in this paper. 

Besides the chaos, we also apply the cooperative coevo- 

lution theory, since cooperative coevolution theory is very 

suitable for large scale optimization problems. An applica- 

y 140 

o 141 

d 142 

s 143 

Please cite this article as: M. Tang, Y. Xin, Energy efficient pow

chaotic particle swarm optimization, Computer Networks (2016
velops a cross-layer algorithm for energy efficiency. It i

proved that the algorithm is Pareto-optimal under certai

conditions. Meshkati et al. [23] also considers a CDMA

network, which studies the trade-off between energy effi

ciency and delay. A game theoretical approach is presente

to maximize the utility by selecting the transmit powe

under a delay requirement. 

Due to the popularity of CR research, energy efficienc

in CR has also received a lot of attention. Buzzi and Sat

urnino [24] consider a cognitive CDMA wireless network

and presents a game-theoretic algorithm to achieve energ

efficiency in a one-shot fashion. Wu and Tsang [25] investi

gates the sensing and transmission durations of secondar

users. A nonconvex optimization problem is formulated t

achieve energy-efficient power allocation, which is solve

by analyzing three special cases. In [26] , the author
develop an energy efficient power control algorithm for 144 

OFDM-based CR networks. The objective function is based 145 

on the “throughput per Joule ” metric. The formulated 146 

optimization problem, which is nonconvex, is transformed 147 

er allocation in cognitive radio network using coevolution 
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Fig. 1. The network system. 

to a convex problem based on parametric program ing. 

ao et al. [27] considers multiple-input multiple-output 

gnitive systems and achieves energy efficient spectrum 

ptimization under three constraints (on the total power, 

e interference power, and the minimum system through- 

ut). The formulated optimization problem, which is also 

onconvex, is transformed to a one-dimension problem 

at has a quasi-concave objective function. Zhong and 

ang [28] uses “rate per Joule ” as the energy efficiency 

etric, which stands for the number of information bits 

at are successfully transmitted per Joule of energy over 

 normalized bandwidth. 

We consider network utility as sigmoid form, which is 

ore suitable for a practical network. Accordingly, we de- 

ne energy efficiency as “utility per Joule ”, to characterize 

e trade-off between the utility and the energy consump- 

on. The formulated optimization problem is nonconvex 

nd has a large scale, which is difficult to solve. Previous 

ptimization works usually try to transform nonconvex 

roblems to convex ones based on some assumptions or 

y to get suboptimal solutions. In this paper, we develop 

ower allocation algorithms based on an improved CCPSO. 

e solve the difficult large-scale optimization problem 

irectly, without any assumptions or transforms. In this 

aper, chaos technique is combined into PSO, whose 

ndomizing and erogeneity characteristics can help avoid 

eing trapped into local optimal points. Coevolution idea 

 used as well to PSO, to exploit its nice feature in dealing 

ith large scale problems. The proposed algorithm has two 

opulations, and we solve the problem by using max –min 

pproach. Simulation results show that the proposed algo- 

thm can solve the large scale nonconvex power allocation 

roblem effectively and efficiently. The chaotic initializa- 

on and search can help the algorithm jump out of local 

ptima and the divide-and-conquer strategy used in the 

evolution theory can help the algorithm avoid producing 

feasible solutions, the statistical test results reveal that 

e proposed method outperforms other existing methods 

nd has stronger robustness than other methods. 

. System model and problem description 

.1. System model 

As shown in Fig. 1 , consider a CR network consisting of 

 secondary users (SUs) as transmitters and one secondary 

ase station (BS) as the common secondary receiver. Here 
lease cite this article as: M. Tang, Y. Xin, Energy efficient power

haotic particle swarm optimization, Computer Networks (2016), 
plink communication is considered (downlink communi- 

ation can be treated similarly). The secondary transmit- 

rs are allowed to use the licensed spectrum band of a 

rimary transceiver pair: a primary user (PU) as the trans- 

itter and a primary BS as the receiver. OFDM technology 

 used in both secondary and primary transmissions. To 

void degrading the transmission quality of primary users, 

 is required that the interference from secondary trans- 

itters to the primary BS is below a threshold denoted I th . 

The licensed spectrum band is divided into K sub- 

annels using OFDM [19] . For the wireless links (desired 

ommunication links and interference links), block fading 

odel is assumed. In specific, for each wireless link over 

ach subchannel, its link gain is fixed for a time slot, and 

anges independently in the next time slot. For each link, 

e link gains over different subchannels are independent 

om each other. In this paper, we consider power alloca- 

on of the secondary transmitters in each time slot. 

For a specific time slot, denote P i 
k 

as the transmit 

ower of SU i over subcarrier k (k = 1 , 2 , . . . , K) , and G 

ii 
k 
(i = 

 , 2 , . . . , N) as the link gain from SU i to the secondary BS. 

hen the signal to interference ratio (SINR) for SU i ’s com- 

unication over subchannel k , denoted γ i 
k 
, is given as 

i 
k = 

G 

ii 
k 
P i 

k ∑ 

j � = i G 

j j 

k 
P j 

k 
+ σ 2 

, (1) 

here σ is the background noise. 

.2. Utility function 

For SU i ’s communication over subchannel k , next we 

efine a utility function denoted as U 

i 
k 
. The utility function 

 expected to reflect the satisfaction level of the service 

uality. In this paper, we adopt the sigmoidal form utility 

troduced in [30] , which means that the user is more and 

ore satisfied with the service as the quality improves. 

he sigmoidal function can capture the value of the service 

 the user quite naturally, and be defined as 

 

i 
k = 

1 

1 + e −a i (γ
i 

k 
−b i ) 

(2) 

here a i is slope parameter (a large a i means that the ap- 

lication has a soft quality-of-service requirement) and b i 
 a shift parameter that is actually the required average 

ata rate of the application. 

Targeting at higher utility function with less energy 

onsumption, we define an energy efficiency metric as the 

tio of the utility to the transmission power, given as 

 = 

∑ N 
i =1 U 

i 
k ∑ N 

i =1 P 
i 
k 
+ P c 

(3) 

here P c is static power consumption other than wireless 

ansmissions (for example, circuit power consumption). In 

ther words, the energy efficiency metric is actually “utility 

er Joule ”. 

.3. Constraints 

Recall that over each subchannel, the interference re- 

eived by the primary BS from all secondary transmis- 

ons should be bounded by a threshold I . Denote G 

0 i (k = 
th k 

 allocation in cognitive radio network using coevolution 
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1 , . . . , K) as the link gain from the SU i to the primary BS. 240 

Thus, the interference power constraint is given as 241 

N ∑ 

i =1 

G 

0 i 
k P 

i 
k ≤ I th . (4) 

It is also required that the total transmission power 242 

over each subchannel is bounded by P max . So we also have 243 

a total transmit power constraint, given as 244 

N ∑ 

i =1 

P i k ≤ P max . (5) 

3.4. Problem description 245 
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In this work, we consider the maximal energy effi

ciency, subject to the interference power constraint an

the total transmit power constraint. An optimization prob

lem can be formulated as follows: 

maximize E = 

∑ N 
i =1 U 

i 
k ∑ N 

i =1 P 
i 
k 
+ P c 

subject to 

N ∑ 

i =1 

G 

0 i 
k P 

i 
k ≤ I th 

N ∑ 

i =1 

P i k ≤ P max , 

P i k ≥ 0 . (6

For the objective function of problem (6) , the followin

theorem is in order. 

Theorem 1. The objective function E = 

∑ N 
i =1 U 

i 
k ∑ N 

i =1 P 
i 
k 
+ P c 

, where U

is given in (2) , is a nonconvex function of P i 
k 
. 

Proof. See Appendix . �

Theorem 1 indicates that problem (6) is nonconvex

Since it is hard to transform the problem to a convex prob

lem, we resort to PSO methods to solve it. 

4. The proposed optimization algorithm 

4.1. Standard particle swarm optimization 

Similar to genetic algorithm (GA) [31,32] and differen

tial evolution (DE) [33] , PSO is a population-based opti

mization method which was first proposed by Kenned

and Eberhart [29] . The system is initialized with a popu

lation of random solutions and it searches for optima b

updating generations. There are two learning processes in

the generation of PSO: cognitive learning process base

on individuals history, and social learning process base

on a swarm’s history accumulated by sharing information

among all the particles in the swarm. Particles fly aroun

in multidimensional search space. 

During flight, each particle adjusts its position accord

ing to its own experience and the experience of neighbor

ing particles, making use of the best position encountere

by itself and its neighbors. The direction of movement o

a particle is defined by the set of particles in the targe
Please cite this article as: M. Tang, Y. Xin, Energy efficient pow

chaotic particle swarm optimization, Computer Networks (2016
particle’s vicinity and the target particle’s history experi

ence. Each particle keeps track of its coordinates in th

problem space, which are associated with the best solu

tion achieved so far, denoted as pbest . Another best valu

tracked by the global version of the optimizer is the overa

best value, and its location, obtained so far by any particl

in the population, denoted as gbest . At each time step, th

particle swarm optimization consists of velocity changes o

each particle toward pbest and gbest locations. Acceleratio

is weighted by a random term, which separates random

numbers being generated for acceleration toward pbest an

gbest locations. 

The a th particle’s coordinates (position) is denoted a

X a = (x a 1 , . . . , x ad ) , d = 1 , 2 , . . . , D , where D is the dimen

sion of the optimal solution, and V a = (v a 1 , . . . , v ad ) denote

the corresponding flight speed (velocity). Let pbest a =
(x 

pbest 
a 1 

, . . . , x 
pbest 

ad 
) and gbest = (x 

gbest 
1 

, . . . , x 
gbest 

d 
) be the bes

position of individual a and its neighbors’ best position s

far, respectively. Using the information, the updated veloc

ity of individual a is modified under the following equatio

in PSO: 

V 

t+1 
a = ωV 

t 
a + c 1 (pbest t a − X 

t 
a ) + c 2 (gbest t − X 

t 
a ) (7

X 

t+1 
a = X 

t 
a + V 

t+1 
a (8

where t is the iteration number, c 1 and c 2 are constants

which represent the weighting of the stochastic accelera

tion terms that pull each particle toward pbest and gbes

positions, and ω is the inertia weight parameter. 

PSO is very efficient in solving complex optimizatio

problems. But it is easy to fall into local optimal solutions

Then the inertia weight parameter is adjusted and chao

theory is combined to PSO. 

4.2. Adaptive inertia weight factor(AIWF) 

It is clear that Eq. (7) represents the influence of pre

vious velocity, which provides the necessary momentum

for particles to roam across the search space. The inerti

weight ω is the modulus that controls the impact of pre

vious velocity on the current one. So, the balance betwee

exploration and exploitation in PSO is dictated by the valu

of ω. Shi and Eberhart in [34,35] made a significant im

provement in the performance of the PSO with a linearl

varying inertia weight over the generations. ω varies adap

tively in response to the objective values of the particles

In particular, AIWF is determined as follows. 

ω = 

{
ω min + 

(ω max −ω min )( f− f min ) 
f a v g − f min 

f ≤ f a v g , 

ω max otherwise, 
(9

where ω max and ω min denote the maximum and mini

mum of ω, respectively, f is the current objective valu

of the particle, and f a v g and f min are the average an

minimum objective values of all particles, respectively

Under the guidance of Eq. (9) , ω varies depending on th

objective value of the particle so that particles with low

objective values can be protected. AIWF provides a goo

way to maintain population diversity and to sustain fas

convergence. 
er allocation in cognitive radio network using coevolution 
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.3. Chaos 

Chaos theory demonstrates sensitive dependence on 

itial conditions and also includes infinite unstable peri- 

dic motions. Due to non-repetitive nature of chaos, it can 

rry out overall searches at higher speeds than stochas- 

c esodic searches. The combination of optimization meth- 

ds and chaotic systems is an important issue in non-linear 

ience. Here, logistic equation is employed to obtain chaos 

ueues, denoted as z 1 , z 2 , …, as follows: 

 +1 = μz n (1 − z n ) , n = 0 , 1 , 2 , . . . (10) 

 which 0 ≤ z 0 ≤ 1, and μ is the control parameter. When 

= 4 , the system of (9) has been proved to be entirely 

aotic. 

The essential procedure of chaotic particle swarm opti- 

ization (CPSO) is as follows: 

Step 1: Chaos initialization for particle. 

Step 2: Evaluate the fitness function of each particle. 

Step 3: Update each particle’s velocity and position. 

Step 4: Optimize the global best value by chaos search. 

Step 5: If the stopping criteria satisfied, then output the 

ptimum solution, otherwise, loop to Step 2. 

.4. The large scale optimal algorithm using coevolution 

aotic particle swarm optimization (CCPSO) 

Since the large scale and nonconvex nature makes our 

rmulated problem very complex, cooperative coevolu- 

on is applied, which has been proposed as a promising 

amework for tackling large scale optimization problems 

6,37] . It can be regarded as an automatic approach to im- 

lement the divide-and-conquer strategy. The detailed pro- 

dure of the proposed coevolution chaotic particle swarm 

ptimization (CCPSO) is as follows. 

Particles’ positions within the population in the CCPSO 

present the candidate solutions for solving the control 

roblem. That’s to say, the procedure of particle searching 

r the best position is to search for the power of prob- 

m (6) . The CCPSO runs at the secondary base station 

 the SU network, which is a centralized one. The sec- 

ndary base station collects the necessary powers’ infor- 

ation from the secondary uses and updates the memory 

 perform the calculation, and then broadcasts the solu- 

on to the secondary users. 

The objective is to maximize aggregate source net util- 

y per power consumption subject to the constraints in 

R networks. Constraints are handled based on the penalty 

nctions in the search space [38] . 

 (P i k , μi , κi , νi ) = E + μi (P max − P i k ) + κi 

( 

P th 
k −

N ∑ 

i =1 

G 

0 i 
k P 

i 
k 

) 

+ νi (γ
itar 

k − γ i 
k ) + G (P i k ) (11) 

here μi , κ i and γ i are the Lagrange multipliers for the 

nstraints. Since the optimization problem is nonconvex, 

 (P i 
k 
) is the penalty term added to the Lagrangian, which 

n assure the max –min problem and the original problem 

 be equal [38] . 

The optimization problem in CR is now in the form of 

ugmented lagrangian. Therefore, the problem is solved by 
lease cite this article as: M. Tang, Y. Xin, Energy efficient power

haotic particle swarm optimization, Computer Networks (2016), 
sing max –min approach. Two populations of PSO are in- 

luded in the CCPSO. In the first PSO, the variable is P i 
k 
, 

nd μi , κ i and γ i are set to be constant. The fitness de- 

nes how well the position vector of each particle satisfies 

e requirements of the optimization problem. The fitness 

nction for P i 
k 

is represented as 

 

(P i k ) = max (L (P i k , μi , κi , γi )) . (12) 

And in the second PSO, P i 
k 

is set to be constant, while 

i , κ i and γ i are all set to be variables. The fitness function 

r μi , κ i and γ i is given as 

 

(μi , κi , γi ) = min (L (P i k , μi , κi , γi )) . (13) 

The cooperation among particles is established through 

e “history ” pbest a and gbest , which are updated if better 

tness is obtained. The general procedure of CCPSO algo- 

thm can now be described by the following pseudocode: 

rocedure of CCPSO 

1: Initialization of two PSOs 

2: Run the first PSO for generation 1 

3: Re-evaluate the pbest a values for the second PSO if it is 

not in the first cycle 

4: Run the second PSO for generation 2 

5: Re-evaluate the pbest a values for the first PSO 

6: If the termination condition is not met, go to Step 2; 

7: Otherwise, output gbest . 

8: End procedure 

And the detailed improved PSO procedure is as follows. 

Step 1: Chaos initialization is adopted to locate the 

ositions of particles and to increase the diversity of the 

opulation and the ergodicity in the course of searching 

ithout changing the randomicity of algorithm when 

itializing the particles. Some initial population with good 

erformances is chosen from the initial group with a large 

umber of population. Initialize a vector z 1 , z 2 , … each 

omponent of which is set as a random value in the range 

, 1], and generate chaos queues z 1 , z 2 , … , z a by the itera- 

on of logistic Eq. (10) . Transfer the chaos queues into the 

nge of the parameters according to following equation: 

 

t 
a = s a + (t a − s a ) z 

t 
a (14) 

here [ s a , t a ] is the value range of each particle. 

Step 2: Compute the fitness values of the vectors and 

oose the best M solutions as the initial solutions of M 

articles. Randomly initialize the velocity of M particles. 

Step 3: Using the global best and the individual best 

f each particle, each particle’s velocity and position are 

pdated according to Eq. (7) . 

Step 4: Evaluate the fitness of each particle and com- 

are the evaluated fitness value of each particle to its in- 

ividual best pbest a . If pbest a is better than current value, 

pdate pbest a as current position. 

Step 5: If current value of the fitness function is bet- 

r than the global best gbest , update gbest as the current 

osition. 

Step 6: Optimize gbest by chaos search. Firstly, scale 

best into [0,1] according to 

 a = (Gbest − s a ) / (t a − s a ) (15) 
 allocation in cognitive radio network using coevolution 
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Table 1 

Parameters of PSO. 

Algorithm Parameter settings

SA T 0 = 500 ◦C , C = 0 . 9

GA CRA = 0 . 55 , MR = 

DE F = 0 . 5 , CR = 0 . 9 

PSO ω = 0 . 57 , c 1 = c 2 =
CPSO ω = 0 . 9 , c 1 = c 2 = 

CCPSO ω: [0.4, 0.9], c 1 = c

and generate chaos queues x t a by iteration of logistic equa

tion, then transfer the chaos queues into the optimization

variable gbest t according to the following equation 

gbest t = s a + (t a − s a ) x 
t 
a (16

based on which the solution set is obtained: gbest t . Com

pute the fitness value of each feasible solution gbest t in th

problem space during chaotic search, and get the best so

lution P i ∗
k 

. 

Step 7: When the constraints are violated, we pay an

extra charge proportional to the amount of violation with

the penalty value. And when the maximum iteration i

reached, then stop, we can get the global optimum P i ∗
k 

tha

are the solutions of the power allocation problem. Other

wise, loop to Step 3. 

5. Numerical results 

In this section, we present numerical results for th

proposed power allocation algorithm in a network a

shown in Fig. 1 . The purpose of the simulations is to show

that CCPSO can solve the large scale nonconvex optimiza

tion problem. The total number of secondary users N i

set to 200. Without loss of generality, 100 tested user

are randomly selected for the simulations by 20 times. Ac

cordingly, the numerical results are averaging results, an

the number of the decision variables for the optimization

problem is 100. Packet size is 10 0 0 bytes and nodes ar

equipped with a single transmitter/receiver, which has 

radio range of 500 m. An area of size 10 0 0 m × 10 0 0 m i

considered. The maximum total transmit power is set a

P max = 800 mW. The background noise is set as σ 2 = 5 ×
10 −13 dB . No forward error correction is considered. Th

link gains follow the path loss model: G ii = K/d 
� 
ii 
, and G 0 i =

K/d 
� 
0 i 

, where d ii and d 0 i are the distance from SU i to th

secondary BS and primary BS, respectively, ϱ is a path los

exponent and set as 4, and K = 0 . 097 . The performance o

the proposed algorithm is compared with simulated an

nealing (SA) [40,41] , genetic algorithms (GA) [32] , differ

ential evolution (DE) [33] , the standard PSO [29] and CPSO

[39] . All empirical experiments are conducted with a popu

lation of 50, except for SA. The parameters of all the meth

ods are all selected optimally in the simulations in Table 

as selected in corresponding reference For SA method, T 0
C and � are the initial temperature, cooling rate and stop

ping parameter, respectively. For GA method, CRA , MR , CO

and MO are the crossover rate, mutation rate, crossover op

erator, and mutation operator, respectively. For DE method

F is the weighting factor and CR is the crossover constan

Simulations were implemented on a PC with Intel Core TM
Please cite this article as: M. Tang, Y. Xin, Energy efficient pow

chaotic particle swarm optimization, Computer Networks (2016
References 

9 [41] 

O = 0 . 35 , MO = 0 . 25 [32] 

[33] 

= 4 [29] 

 4 [39] 

ax = 4 –

Q5 

i7-5820 CPU and memory capacity of 16G(8G 

∗2) runnin

Matlab 7.12.0. 

5.1. Performance comparisons 

5.1.1. Convergence comparisons 

In this example, the performance of the proposed algo

rithm is compared with those of CPSO and PSO. The utilit

function is considered as U 

i 
k 

= 

1 

1+ e −a i (γ
i 
k 
−b i ) 

, which is mor

reasonable for real networks. In this case, the maximum

number of iterations of the algorithms is set to be 10 0 0. N

is set to be 100, so the energy consumption is fixed wit

the fixed number of N . Fig. 2 shows the average conver

gence of the best individuals of each iteration for the sys

tem with different methods, where the system parameter

a i is varied and b i is fixed. In this case from the figur

we can find that the proposed algorithm based on CCPSO

converges less than 100 iterations. Compared to CPSO pro

posed in [39] , which just uses the logistic mapping, th

proposed algorithm in this paper can get better perfor

mance. It is because of the coevolutionary theory, whic

is more suitable for the large-scale-global characteristic o

the problem. And the system is more stable when the pa

rameter a i is large with fixed b i . Fig. 3 shows the conver

gence of the system with fixed a i and varying b i , and i

this case a large b i corresponds to a high total utility. A

seen from Figs. 2 and 3 , we can see that the parameters a

and b i can be used to tune the steepness and the center o

the utility, respectively. And the proposed approach base

on CCPSO shows better performance in the process of th

algorithm and has faster convergence speed than othe

approaches. 

In order to verify the trade-off of utility vs energy. I

this case, the energy efficiency with the increase of th

value of N is given in Fig. 4 . The utility function is con

sidered as U 

i 
k 

= 

1 

1+ e −a i (γ
i 
k 
−b i ) 

with a = 5, b = 20. It is ob

served that energy efficiency initially increases due to th

node number increases. This is because that the utility o

the system increases relatively higher than the consump

tion of power increases. It indicates a trade-off betwee

system utility and total energy consumption. From the fig

ure, we can find that N is found to be 80 that identifie

the minimum energy consumption and the maximum util

ity function. 

5.1.2. Performance comparisons with different methods 

Tables 2 –5 list the best, worst, mean value of the op

timal energy efficiency solved by GA, SA, DE, PSO, CPSO

and CCPSO in the 10 0 0 runs with different a and b wit
er allocation in cognitive radio network using coevolution 
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Table 2 

Energy efficiency when a = 1 , b = 1 wit

Algorithms Best Worst Av

SA 1.9699 1.1084 1.

GA 2.1014 1.209 1.

DE 5.6148 4.8811 5.

PSO 2.3611 1.3408 1.

CPSO 7.045 7.4876 7.1

CCPSO 7.8652 7.8652 7.

Table 3 

Energy efficiency when a = 20 , b = 1 wit

Algorithms Best Worst A

SA 12 .3072 9 .7767 

GA 16 .4327 10 .6643 

DE 22 .3606 19 .3033 2

PSO 17 .5826 11 .9132 

CPSO 24 .5542 22 .323 2

CCPSO 27 .6501 27 .3951 2

 = 100 . In order to verify the statistical performance of 

e proposed algorithm, we also give the standard devia- 

on (SD) in the tables. It can be seen that the CCPSO algo- 

thm can provide better “Best ”, “Worst ”,“Mean ”, “SD ” and 

verage CPU time ” results for the test functions. SD means 

e volatility of the data, from the tables we can see that 
lease cite this article as: M. Tang, Y. Xin, Energy efficient power

haotic particle swarm optimization, Computer Networks (2016), 
 0
 0  200  400  600  800  1000

Iteration Number

( b )   a=20, b=1 

 when (a) a = 1, b = 1 (b) a = 20, b = 1. 

 0

10

20

30

40

50

 0  200  400  600  800  1000

Iteration Number

( b )  a=5, b=20

CCPSO
CPSO

PSO

when (a) a = 5, b = 1 (b) a = 5, b = 20. 

b . 

SD Average CPU time (s) 

0.1694 10 .04 

0.1911 10 .69 

0.0694 11 .46 

0.1999 7 .24 

0.0102 10 .36 

0 12 .47 

b . 

SD Average CPU time (s) 

 0 .4630 22 .32 

 0 .5495 23 .65 

 0 .5665 26 .74 

0 .6009 16 .53 

0 .4604 22 .46 

0 .0355 29 .38 

me SD of the proposed algorithm are 0, which shows 

at the proposed algorithm is more stable. Because the 

oevolution theory solve the proposed large and complex 

roblem using a divide-and-conquer strategy, which avoids 

roducing infeasible solutions, so these statistical test re- 

lts reveal that the proposed method outperforms other 
 allocation in cognitive radio network using coevolution 
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Table 4 

Energy efficiency when a = 5 , b = 1 with fixed a . 

Algorithms Best Worst Average SD Average CPU time (s) 

SA 2 .5152 1 .9473 2 .3087 0 .0888 6 .34 

GA 3 .1082 2 .3675 2 .6652 0 .1280 7 .02 

DE 4 .1462 4 .0615 4 .1028 0 .0178 8 .64 

PSO 3 .6724 2 .5032 2 .9659 0 .1989 5 .19 

CPSO 4 .654 4 .112 4 .2978 0 .2821 6 .89 

CCPSO 5 .7209 5 .7143 5 .7189 0 .0 0 09 9 .65 

Table 5 

Energy efficiency when a = 5 , b = 20 with fixed a . 

Algorithms Best Worst Average SD Average CPU time (s) 

SA 18 .6461 10 .9909 13 .2166 0 .9567 23 .98 

GA 23 .6888 14 .0908 18 .6109 1 .9430 24 .66 

DE 32 .0232 28 .7112 31 .0655 0 .4117 33 .04 

PSO 29 .1253 17 .2218 22 .2320 1 .0890 22 .07 

CPSO 39 .099 37 .20878 38 .627 0 .4694 24 .47 

CCPSO 41 .0927 41 .0927 41 .0927 0 35 .68 
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Fig. 4. Energy efficiency with the increase of node number. 

existing methods and has stronger robustness than other 523 

methods. Since the proposed algorithm is a dual-swarm 524 

one, the convergence time of the proposed algorithm is 525 

more than the other algorithms, but the results are com- 526 

parable. The chaotic initialization and search have strong 527 

ability to jump out of local optima, which can help the al- 528 

gorithm reduce the search time. 529 

5.2. Influence of population size 530 

The population size is an important factor which influ- 531 

ences the performance of the stochastic search algorithm. 532 

Too small population may not be able to reach the max- 533 

imum value and achieve an optimum, while too large 534 

population makes the proposed algorithm slow and com- 535 

putationally inefficient. Tests are carried out for population 536 
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s 543 

 , 544 

e 545 

. 546 

, 547 
of 20, 80, and 160. We consider the utility function in th

case of a = 5 , b = 20 . As shown from Fig. 5 , we can see tha

the convergence to the optimum is hardly achieved for th

proposed optimization algorithm when the population i

set as 20, and the convergence speed is slower when th

population is set as 160. The size 80 is found to be optima
Please cite this article as: M. Tang, Y. Xin, Energy efficient pow
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And the relationship between the number of node

and particles is studied in this case. As shown from Fig. 6

when the number of nodes varies from 10 to 100, th

number of particles needs to increase from 40 to 120

This is because when the network is in a large scale
er allocation in cognitive radio network using coevolution 
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the particles need to be vectors with higher dimensions, 548 

which leads to a larger search space. 549 

6. Conclusion 550 

In this paper, a new metric that reflects the trade-off551 

between the utility and energy consumption is defined in 552 

CR networks. Since the optimization problem is a large 553 

scale and nonconvex one, our proposed algorithm exploits 554 

the coevolutionary and chaotic ideas for the dynamic 555 

power allocation problem in CR networks. Strict assump- 556 

tions such as continuity, differentiability, and convexity 557 

of the objective function are not necessary. The formu- 558 

lated optimization problem is solved by using max –min 559 

approach, where two populations of PSO are included. The 560 
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erformance of the proposed algorithm is compared with 

ose of related methods in the literature. It is observed 

at the proposed algorithm is indeed capable of quickly 

chieving energy-efficient solutions. Future research topics 

ay include dynamic PSO algorithms for cooperative CR 

etworks in which one SU may help relay other SUs’ signal 

 the secondary BS such that cooperative diversity can be 

chieved. Then each SU may need to distribute its power 

udget in transmitting its own signal and in relaying other 

Us’ signals. The problem is much more complex, and 

eserves further investigation. 

ppendix. Proof of Theorem 1 

roof. We use proof by contradiction. Suppose that E = ∑ N 
i =1 U 

i 
k 

 N 
i =1 P 

i 
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+ P c 

is a convex function of P i 
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∂P i 
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≤ 0 (17) 

nd Eq. (17) is a necessary condition. For convenience, we 

t e −a i (γ
i 
k 
−b i ) as Q , thus: 
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When Q > 2, b 2 − 4 ac < 0 ; when Q < 2, b 2 − 4 ac > 0

which cannot assurance that ∂ 2 E 
(∂P i 

k 
) 2 

≤ 0 . So E is a noncon

vex function. �
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