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a b s t r a c t 

The development of a powerful search mechanism to find a good solution is the current 

research direction of studies on metaheuristic algorithms; however, most of the developed 

mechanisms will search and check the possible solutions without knowledge of the over- 

all landscape of the solution space during the convergence process. To make each search 

during the convergence process as effective as possible, this paper presents a new meta- 

heuristic algorithm called search economics (SE) to solve the deployment problem of wire- 

less sensor networks. The main distinguishing features of the SE are twofold: the first is 

its capability to depict the solution space based on the solutions that have been checked 

by the search algorithm, and second is its capability to use the knowledge thus obtained, 

i.e., the “landscape of the solution space,” during the search process. On the basis of these 

concepts, the investment in a search process will be more meaningful and thus less easy 

to fall into a local optimum during early iterations. The experimental results show that the 

proposed algorithm can provide a result for the deployment problem that is significantly 

better than those provided by the state-of-the-art metaheuristic algorithms evaluated in 

this study in terms of the quality. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

It has become a clear and definite goal of various

organizations and companies to apply the internet of

things (IoT) [1–5] to all kinds of systems, approaches, and

environments that are encountered in our daily life. In

addition, the IoT can be applied because its unlimited

possibilities have been illustrated by several successful ap-

plication domains such as smart homes, agriculture farms,

weather reconnaissance, wearable computing, and industry

management [6–10] Among them, the industrial internet

of things (IIoT) [11] is a promising area of research, as

it plays the roles of accelerating production procedures,

creating new hybrid business models to enhance compet-

itive power, and using intelligent technologies to improve

the performance of a company. From the wireless sensor
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network (WSN) to the IoT, and then, to the IIoT, enhancing

the performance of the whole system has been formulated

as complex optimization problems that include coverage,

lifetime, and deployment problems (DPs). The DP [12] is

very important because its planning strategy will affect

not only the coverage and lifetime of the whole system

but also the transmission rate of the sensors. It is typically

assumed that the solution to the DP is to place a given

set of sensors in a certain area that would either max-

imize the sensing coverage and network connectivity or

minimize the energy consumption [13,14] . 

A high-performance method for solving the DP of a

WSN [15–19] is an important research issue because it will

also be the foundation of the IoT and the IIoT. However,

although random, grid-based, and deterministic methods

have been widely applied to DPs [20] , they cannot find

an approximate or optimal solution within a reasonable

time through using limited computation resources, as

most DPs are NP-hard [21] . An alternative way to deal

with such problems is to use a metaheuristic algorithm
ent algorithm via search economics, Computer Networks 
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because it is able to find an approximate solution within 

a reasonable time compared to exhaustive search and 

deterministic algorithms. Several recent studies [12] have 

shown that simulated annealing (SA), tabu search (TS), 

and genetic algorithms (GAs) can be used to find a better 

result than rule-based algorithms for the DP of a WSN 

and the IoT. One of the important reasons is that the 

metaheuristic algorithm uses some stochastic procedures 

during the convergence process; thus, it can avoid falling 

into a local optimum during early iterations, i.e., the early 

stages of the search. However, in most cases, a meta- 

heuristic algorithm may get stuck in the same region or 

on particular solutions for a long time when the search 

process approaches the convergence state, i.e., later stages 

of the search. These redundant searches will degrade the 

performance of the metaheuristic algorithm by wasting 

a large amount of invested computing resources. A good 

example is searching the same region several times. 

According to our observation, most studies on meta- 

heuristics are focused on how to enhance the performance 

of a search algorithm (e.g., reducing the computation time 

of the search or increasing the accuracy of the result); few 

are focused on how to depict the solution space. As a re- 

sult, most metaheuristics have only short-term memory for 

the searched solution space, thus making them easily fall 

into a local optimum when the search diversity degrades 

to a certain degree. To make each search as meaningful as 

possible and not easily fall into a local optimum, this study 

presents a novel metaheuristic algorithm by using the in- 

formation of the solution space, computing resources, and 

current solution to enhance the value of each search . The 

main contributions of this paper can be summarized as 

follows: 

(1) The main search process is designed from scratch for 

distributed computing; thus, no global information 

needs to be kept. Such a design makes it easy to 

apply a metaheuristic algorithm to cloud computing. 

By using the information related to the computing 

resources and solution space, the search algorithm 

can then determine the direction or region that is 

worth being searched later, just like we have to un- 

derstand the market circumstances before we invest. 

To achieve this goal, a new search algorithm, called 

vision search (VS), is presented in Section 2.4 . 

(2) The proposed algorithm will survey the solution 

space during the search process to provide infor- 

mation about the solution space that it has already 

checked for the search algorithm. To achieve this 

goal, a new mechanism for metaheuristics called 

marketing research (MR) is discussed in Section 2.5 . 

(3) A detailed description of how the proposed algo- 

rithm works for a DP is given in Section 3 to show 

the possibility of SE for real optimization problems. 

The remainder of the paper is organized as follows. 

Section 2 presents the basic idea and details of the pro- 

posed algorithm. In addition, a simple example is pre- 

sented in this section to explain how to use the proposed 

algorithm. Section 3 begins with a description of the simu- 

lation environment. Then, two different optimization prob- 

lems are used to evaluate the performance of SE and other 
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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algorithms. Section 4 gives a brief review of metaheuristics 

to show the differences between the proposed algorithm 

and other metaheuristics. Finally, Section 5 draws the con- 

clusions and gives some future research directions for this 

research. 

2. Search economics 

2.1. Notation 

To simplify the discussion that follows, the following 

notation is used throughout the rest of the paper. 

s, s i a set of investments (solutions) for the optimization 

problem in question, i.e., s = { s 1 , s 2 , . . . , s n } , where s i is 

the investment of the i -th searcher, and n is the 

number of searchers and investments. 

r, r j a set of regions in the market (solution space), i.e., 

r = { r 1 , r 2 , . . . , r h } , where r j is the j-th region of the 

market, and h is the number of regions. 

r b 
j 

the best-so-far good (solution) of the region r j . 

m, m jk a set of goods (sampling nodes) in all regions in the 

market, i.e., m = { m 11 , . . . , m 1 w , . . . , m h 1 , . . . , m hw } , 
where m jk is the k -th good in the j-th region, and w is 

the number of goods in each region. 

v i , v i 
jk 

a set of possible investments of the i -th searcher, 

which is defined as the crossover of s i and all goods in 

m, i.e., v i = { v i 
jk 
} , where v i 

jk 
= s i ⊗ m jk , and ⊗ is the 

crossover operator. 

e, e i 
j 

a set of expected values; that is, e i 
j 

is the expected 

value for the i -th investment in the j-th region. 

t a 
j 

the number of times that the j-th region has been 

invested in (searched). Initially, t a 
j 

= 1 ; its value will be 

increased by 1 every time the j-th region is searched. 

t b 
j 

the number of times the j-th region has not been 

invested in (searched). Initially, t b 
j 

= 1 ; its value will be 

increased by 1 for every iteration that the j-th region 

is not searched but will be reset to 1 if it is searched. 

Note that the solution space in this study is called the 

market, and the result of a search (i.e., the solution of a 

search) is referred to as an investment. Moreover, the solu- 

tion space is divided into a set of subspaces called regions. 

On the basis of the concept of an investment, a searcher 

is an agent who determines which region is worth being 

invested in, i.e., worth being searched. 

2.2. Concept 

Most of the metaheuristics search for a solution with- 

out the information about the solution space, i.e., in a way 

similar to a traveler who does not carry a map. However, 

even without a map to guide the traveler in the right di- 

rection, he or she may still have a chance to reach the 

destination. However, the traveler may have a “very small 

chance” to reach the destination, especially when the ge- 

ographical environment is complicated and large. A “very 

small chance” means that the event of reaching the desti- 

nation is incredibly unlikely to happen. In a very rare case, 

the traveler may still reach the destination after many tri- 

als and errors. Nevertheless, we just do not know “how 

much of an unnecessary long way” the traveler has trav- 

eled. The traveler may never find the right way to reach 

the destination until he or she gives up. Similarly, we still 

have a chance to make money from a haphazard invest- 

ment, even if we do not understand the market. The bot- 

tom line is that we do not waste too much money on an 
ent algorithm via search economics, Computer Networks 
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Fig. 1. The basic idea of SE. 

Fig. 2. Outline of the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

investment, which can be regarded as the computing re-

source that has to be invested in the right region in the

solution space to find the optimal solution of the optimiza-

tion problem in question. 

The basic idea of the proposed algorithm is that you

get whatever solution for which you actually pay . In other

words, the idea is to reduce the number of redundant

searches in the search process, thus making each search of

metaheuristics as meaningful as possible, instead of just a

wild guess in the traditional way of searching. This is why

a search of metaheuristics in the solution space is regarded

as an investment in this study. This concept implies that

how the search of metaheuristics is performed and how

the candidate solutions are measured will be very differ-

ent. Here are some of the concerns. The first is the im-

portant information for the search—the number of times

a region is searched. This means that if the objective val-

ues of the solutions of two different regions are the same,

their potentials may still be different because one region

may have been searched many more times than other re-

gions. This is just like mining. Spending 100 days finding

gold that is worth 100 U.S. dollars in a region is very dif-

ferent from spending 1 h finding gold that is also worth

100 U.S. dollars in the same region. The second is that

the regions that have not been searched for a long time

will have a higher chance to find better solutions than the

other regions that have been searched frequently. The third

is how to make metaheuristics work in a parallel com-

puting environment. Therefore, the parameters and infor-

mation of the proposed algorithm cannot be centralized.

In response to a parallel computing environment, where

the computing resources (nodes) may be dynamically in-

creased or decreased, the design of the proposed algorithm
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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also takes into account this implementation issue. Each

computer node will be assigned a searcher and region so

that each computer node can be used to search for can-

didate solutions and record the searched information. This

means that the proposed algorithm can increase the num-

ber of search directions and record more searched informa-

tion as the number of computer nodes increases. By using

this design, even though each computer node of SE does

not have global information, the proposed algorithm can

still be used to search for a solution, just like it has the

global information because the searched information will

be exchanged between searchers and regions. 

As shown in Fig. 1 , we assume that there are four com-

puter nodes (resources), and the proposed algorithm will

create four searchers, each of which are associated with an

investment s i (i.e., a solution). The solution space (called

the market in this study) will then be divided into four

regions, each of which have two goods m jk (i.e., candi-

date solutions) to depict the geography of the region to

which they belong. On the basis of this concept, when the

proposed algorithm gets one more computer node, it can

split one of the regions that has a high potential to find

a better result into two regions to effectively use the ad-

ditional computing resources. On the other hand, SE can

merge two regions into one region if there is a shortage

of computing resources. These two strategies mean that

the proposed algorithm is very suitable for the environ-

ments of parallel computing and cloud computing. More-

over, the goods of SE are used to draw the geography

of the subsolution space, just like the sampling points.

With the information of goods (e.g., the sampling nodes

of each region), the searchers of SE own more informa-

tion than other metaheuristics for solving the optimization

problem. 

Fig. 2 shows that the proposed algorithm consists of

three main operators. The ResourceArrangement (RA) op-

erator plays the role of assigning the searchers to the re-

gions of the market, the VisionSearch (VS) operator plays

the role of searching, and the MarketingResearch (MR) op-

erator plays the role of keeping track of the information of

each region for the search operators. 

2.3. Resource arrangement 

As shown in Fig. 3 , the RA operator) divides the mar-

ket (the solution space) into h regions. After that, RA will
ent algorithm via search economics, Computer Networks 
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Fig. 3. Outline of the resource arrangement operator. 

Fig. 4. Outline of the vision search operator. 
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first create w possible goods (candidate solutions) for each 

region r j —all randomly—and then find the best good r b 
j 

of 

each region r j . The i -th searcher will randomly choose a 

good in the i -th region to invest in, which means that the 

i -th searcher will be assigned to the i -th region if n = h at 

the very beginning of the search; otherwise, some of the 

regions may be randomly assigned either more than one 

searcher or none at all. 

2.4. Vision search 

As shown in Fig. 4 , the VS operator consists of three 

suboperators to transit, evaluate, and determine the solu- 

tion. Basically, this operator is similar to a traditional meta- 

heuristic algorithm, implying that it can be replaced by a 

traditional metaheuristic algorithm as long as the evalua- 

tion and determination operators of the traditional meta- 

heuristic algorithm can be adapted to fit with the spirit of 

the proposed algorithm. The transition operator is similar 

to that of the genetic algorithm for exchanging informa- 

tion between solutions; that is, in this study, the transition 

operator consists of the crossover and mutation operators 

of the GA. Unlike the genetic algorithm, in which the in- 

formation exchange is between chromosomes in the same 

population, the information exchange in the proposed al- 

gorithm is between the “investment” of the searchers and 

the “goods” of the regions. Since there are n searchers in 

total and w goods (candidate solutions) in each region, the 

transition operator will create a set of temporary candidate 

solutions v , where v i 
jk 

is obtained by exchanging the in- 

formation between the investment of the i -th searcher s i 
and the goods in all regions m , i.e., all of the goods in the 

market. 

For the evaluation operator of SE, the fitness of the 

good of the i -th searcher at the j -th region is evaluated 

in terms of the expected value e i 
j 

by using the Expected- 

Value operator, unlike traditional metaheuristics, in which 

the fitness of a solution is evaluated in terms of the fitness 
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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or objective value. The main difference between the eval- 

uation operator of SE and the evaluation operator of other 

metaheuristics is that it uses information about the num- 

ber of iterations to search for the same region, how long 

the region has not been searched, the objective values of 

the solutions, and the objective values of the possible so- 

lutions to evaluate the relative quality of the solutions. The 

expected value of the ExpectedValue operator is defined by 

e i j = T j V 

i 
j M j . (1) 

In brief, Eq. (1) says that the expected value e i 
j 

consists 

of three pieces of information, each of which is described 

below. 

1) The status of the investment in the j -th region is de- 

fined as 

T j = 

t b 
j 

t a 
j 

, (2) 

which is a measure of the return of an investment in a 

particular region of the market. In other words, it aims 

to reduce the number of redundant searches in a region 

or to avoid falling into a local optimum for a long time. 

2) The objective value of the i -th searcher is defined as 

V 

i 
j = 

∑ w 

k =1 f (v i jk ) 
w 

, (3) 

which is a measure of the potential of the investment 

of the i -th searcher in the j -th region based on the tem-

porary candidate solutions in v . 
3) The proportion or weight of the objective value of the 

best-so-far solution in each region of the market is de- 

fined as 

M j = 

f (r b 
j 
) ∑ h 

j=1 f (m j ) 
, (4) 

where r b 
j 

is the best-so-far solution of the j -th region, 

as defined in Section 2.1 . 

The determination operator of SE is the tournament op- 

erator of the GA but with a minor change. That is, the i -th

searcher has to decide which region to invest in, although 

it is initially associated with the i -th region. Since the pro- 

posed algorithm is designed from scratch to not centralize 

all of the information, in addition to v ii , the determina- 

tion operator will also randomly choose some of the val- 

ues of v i j for i � = j to enter the tournament process and

then choose the best one to be the investment of the i -th 

searcher. 

2.5. Marketing research 

As shown in Fig. 5 , the Marketing Research (MR) oper- 

ator contains two kinds of operations: (1) update the mar- 

ket, i.e., keep the information of the solutions that have 

been checked, and (2) accumulate the values of t a and t b . 

For the Update( s , m ) operator, the main idea is to record

everything about the solutions that have been checked to 

improve the search performance. However, there is simply 

no way to save all of the searched solutions, i.e., the search 
ent algorithm via search economics, Computer Networks 
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Fig. 5. Outline of the marketing research operator. 
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Fig. 6. A simple example illustrating how SE works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

history, because no matter how large it is, memory space

is limited. The trade-off of the update operator is to save

as much of the information of the searched solutions (in-

vestments) as it can to achieve this goal. In this study, we

try to keep k goods (candidate solutions) in each region.

When finding a better good in region r j (i.e., there exists

a v i 
jk 

such that v i 
jk 

> r b 
j 
), the update operator will use this

good to replace one of the current goods in the same re-

gion. One possible solution to this problem is to compress

the searched solutions into a single solution, e.g., use the

mean of the searched solutions to represent the searched

solutions. For example, pattern reduction [22] can be used

to detect and use the common structure of the subsolu-

tions in a region to represent a set of searched solutions. In

addition to relying on compression or geoinformatics tech-

niques to keep track of the information of searched solu-

tions, random sampling is a makeshift method to use be-

fore we find a novel method to keep track of all of the

information of the search process of SE. 

The other important operation of MR is the accumula-

tion operator. As shown in Fig. 5 , t a 
j 

denotes how many

times the j -th region has been invested in (searched),

whereas t b 
j 

denotes how many times the j -th region has

not been invested in. If a searcher invests in the j -th re-

gion, then t b 
j 

will be set to 1, and t a 
j 

is set to t a 
j 
+ 1 (i.e.,

 

a 
j 

= t a 
j 
+ 1 ). Then, SE can use Eq. (2) to measure the po-

tential of each region. For example, if the objective value

of good (solution) m 11 is equal to the objective value of

good m 21 but T 1 > T 2 , then it implies that good m 11 has

a higher potential than good m 21 because either SE invests

more computing resources searching region 2 than search-

ing region 1 (i.e., t a 
1 

< t a 
2 

) or SE invests fewer computing

resources searching region 1 than searching region 2 (i.e.,

 

b 
1 

> t b 
2 

). On the basis of this concept, SE can avoid search-

ing a particular region in the search space; rather, it will

search more regions that have a higher potential to find a

better solution. 

2.6. Summary 

It can be easily understood that the basic idea of SE is

to use the “limited computing resources” to search for a

solution in a “huge solution space.” Since the computing

resources we have are generally less than the computation

costs we have to spend if we want to check every possible

solution in the solution space, the priority is then to make

each search as meaningful as possible. This means that

although the basic idea of a metaheuristic algorithm is

a strategic guess, we have to figure out how to avoid

duplicate and irrelevant guesses (i.e., searches). This is

something similar to good marketing research that can
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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help us increase the successful rate of investment. Further,

this means that SE has to know the reasons for searching

a particular region. In summary, SE will first map the

solution space (i.e., the marketing research of SE) and

then search regions in the solution space that have a

higher potential than the other regions to make a search

as meaningful as possible. This is the main idea of the

proposed algorithm, which aims to find a solution with

limited resources. If SE gets more computation resources

during the convergence process, it will invest the resources

to search regions that have a higher potential than the

other regions by using Eq. (1) . 

A simple example is shown in Fig. 6 to illustrate how

SE, which consists of the initialization, RA, VS, and MR op-

erators, works. In this example, the parameters n , h , and w

are set to 2; the parameters t a 
1 
, t a 

2 
, t b 

1 
, and t b 

2 
are set to 1

initially. Because h and w are set to 2 (i.e., two searchers,

each of which have two goods), eight temporary solutions

are created, but only four v i 
jk 

will be retained to represent

the possible investments of each searcher s i of the tran-

sition operator. More precisely, each searcher s i will per-

form the crossover operator four times; the first two times

are with m 11 and m 12 , whereas the other two times are

with m 21 and m 22 . This will create eight temporary solu-

tions. In order to reduce the number of solutions that has

to be kept in memory, the proposed algorithm only retains

the better ones from each crossover procedure. This means
ent algorithm via search economics, Computer Networks 
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Table 1 

Dataset for the OneMax problem. 

Dataset # of bits N 

DSO-1 10 

DSO-2 50 

DSO-3 100 

DSO-4 500 

DSO-5 10 0 0 

111 0 0 00

0/1

N

x1

x

Fig. 7. How the OneMax problem is represented in SE. 

 

 

 

 

 

 

 

 

that SE will keep only the best solution for each crossover 

or information exchange procedure. This is why there are 

only four occurrences of v 1 
jk 

in the rectangle of the transi- 

tion operator in Fig. 6 . In addition to using the crossover 

operator to create the temporary solutions, the mutation 

operator will then be used to perturb these temporary so- 

lutions. The expected value e i 
j 

of each searcher s i for the 

j -th region will be computed and then used by the deter- 

mination operator of SE to estimate the potentials of the 

possible search directions. For example, the proposed al- 

gorithm will then try to find the best of v 2 
21 

and v 2 
22 

to re- 

place s 2 if e 
2 
2 ≥ e 2 1 . In brief, s 1 and s 2 will be updated by the 

determination operator. This example shows that VS con- 

sists of the transition, expected value, and determination 

operators, whereas MR consists of the update and accu- 

mulation operators. VS and MR will be performed at each 

iteration of SE. After performing VS, SE will then update 

m 11 , m 12 , m 21 , and m 22 if a better result than m ik is found 

by s i as well as t a 
1 
, t a 

2 
, t b 

1 
, and t b 

2 
. In summary, VS plays the

role of “searching” for the solution while MR plays the role 

of “surveying” the solution space during the convergence 

process. 

3. Results 

An empirical analysis is conducted on an IBM X3400 

machine with a 2.0 GHz Xeon CPU and 8GB of mem- 

ory running CentOS 5.0 with Linux 2.6.18, and the pro- 

grams are written in C++ and compiled using g++. The 

OneMax and deployment problems are used to show the 

performance of the proposed algorithm. The solution rep- 

resentation and the objective function of these two prob- 

lems will also be given to show how to apply the pro- 

posed algorithm to optimization problems. The source 

code of SE will be available at https://sites.google.com/site/ 

cwtsai0807/search-economics . 

3.1. OneMax problem 

The problem used to evaluate the performance of the 

proposed algorithm is the OneMax problem [23] . It is an 

optimization problem with the goal of maximizing the 

number of ones in a bit string. That is, it is defined as fol- 

lows: 

Definition 1. Given a string x = 〈 x 1 , x 2 , . . . , x N 〉 , where N is

the length of the string x , and x i ∈ {0, 1}, the goal is to 

maximize 

F (x ) = 

N ∑ 

i =1 

x i . (5) 

Apparently, the optimal solution of this problem is a bit 

string with all ones. For instance, if N = 5 , then the opti- 

mal solution is x = 〈 1 , 1 , 1 , 1 , 1 〉 . The OneMax problem is

used as the touchstone of the proposed algorithm SE, as 

it can be easily transformed into other optimization prob- 

lems. For example, for the bin-packing and OneMax prob- 

lems, the main difference is F ( x ). Thus, all we have to do is 

to change F ( x ) to compute the profit of a bin. This is why 

we choose the OneMax problem—to make the description 

of SE as easy to understand as we can. 
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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3.1.1. Data sets and parameter settings 

As shown in Table 1 , five datasets with N = 10 up to

N = 10 0 0 are used to evaluate the performance of the pro-

posed algorithm for the OneMax problem. 

In this study, we compare the performance of SA [24] , 

a GA [25] , and SE. The parameter settings of SA are as fol-

lows. The number of neighbors is set to 7. The parameter 

settings of the GA are as follows. The population size is set 

to 8, the crossover rate is set to 0.8, and the mutation rate 

is set to 0.001. Tournament selection and the one-point 

crossover are used as the determination and transition 

operators. The parameter settings of SE are as follows. The 

number of searchers n is set to 4, the population size h 

is set to 4, the number of possible goods (the number of 

samples of each region) w is set to 2, t a 
j 

= 1 , and t b 
j 

= 1 ,

initially, i.e., at the first iteration. Note that for the OneMax 

problem, we assume that n = h in this study. Note that 

because the OneMax problem is not NP-hard, random 

sampling is used as the update operator of the MR of the 

proposed algorithm. Further, some additional checks are 

added to the determination of the VS; that is, the searcher 

chooses the new investment if it is better than the current 

investment. Each experiment is carried out for 30 runs, 

and the number of iterations for each run is set to 10 0 0.

All of the experimental results shown are the average of 

30 runs. 

3.1.2. Representation of SE for the OneMax problem 

Since OneMax is a simple optimization problem, most 

of the search procedure of SE can be referred to in 

Section 2 . The most important things we need to take into 

account are nothing more than how to encode each solu- 

tion of search economics, how to divide the solution space 

into regions, and what attention the searchers of SE have 

to pay for. 

As shown in Fig. 7 , for the OneMax problem, the encod- 

ing allows each solution x of SE to be divided into N sub- 

solutions, each of which assume a value of 0 or 1. In this 

study, h is set to 4, meaning that the solution space will be 

divided into four different subspaces. One way to do this 

is to fix the value of the first two bits (i.e., 2 = log 2 (4) )

for each solution. For N = 7 , this means that the first re-

gion r will be {00 XXXXX }, r will be {01 XXXXX }, r will be
1 2 3 
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Table 2 

Comparison of the quality. 

Dataset SA GA1 GA2 SE 

DSO-1 100.0% 100.0% 100.0% 10 0.0% (0.0 0) 

DSO-2 99.2% 97.9% 99.3% 10 0.0% (0.0 0) 

DSO-3 96.5% 93.7% 96.3% 10 0.0% (0.0 0) 

DSO-4 91.6% 72.6% 80.9% 98.6% (0.70) 

DSO-5 89.8% 63.3% 70.2% 93.8% (1.63) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{10 XXXXX }, and r 4 will be {11 XXXXX }, where X is assumed

to take a value of 0 or 1. Each search of r j can only change

the last five bits to find the possible solutions. When the

searchers in different regions want to exchange their solu-

tions, only the last five bits will be touched. That is, the

first two bits will remain intact. The only exception is that

the first two bits will be changed during the convergence

process when a searcher moves to another region to search

for a possible solution. In this case, the first two bits of its

searched solutions (investments) will be updated accord-

ingly, i.e., to the particular value of the first two bits of the

new region. 

3.1.3. Experimental results 

As shown in Table 2 , SE provides better results than the

other metaheuristics compared in this study. The results of

the simple GA are denoted GA1 and GA2 in Table 2 . For

GA1, the number of chromosomes is set to 8, the crossover

rate is set to 0.8, and the mutation rate is set to 0.1.

For GA2, the number of chromosomes is set to 20, the

crossover rate is set to 0.8, and the mutation rate is set

to 0.2. Although SA gives better results than GA1, it does

not mean that the performance of GA is worse than that of

SA. According to our observation, this is because the per-

formance of the GA might be affected by several factors.

In addition to the population size, crossover rate, mutation

rate, crossover operator, mutation operator, and selection

operators, even the way the fitness value is computed will

have an impact on the final results of the GA. These re-

sults demonstrate that the fine-tuning ability (i.e., the local
Fig. 8. The convergence of SE fo
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search ability) of SA for a simple optimization problem is

better than that of a simple GA. 

The results in Table 2 show that the proposed algorithm

can provide better results than the other two metaheuris-

tics compared in this study. Note that the values in paren-

theses in this table represent the standard deviation of the

results of 30 runs when applying SE to the dataset. Ac-

cording to our observations, the proposed algorithm can

prevent the search diversity from decreasing or moving to-

wards particular search directions because the search di-

rections depend not only on the objective or fitness values

but also on the information of the solution space that is

also taken into account by SE. The results in Table 2 also

show that the proposed algorithm provides results that are

close to the optimal solution using only a simple transi-

tion operator to exchange information. This means that the

search performance of the proposed algorithm can be en-

hanced by using the transition and determination opera-

tors of different metaheuristics. 

Fig. 8 shows the convergence of SE for three OneMax

problems (problems with N = 10 , 100, and 10 0 0 ). Because

the initial solutions are randomly generated, the distance

between the solution found by SE to the optimal solution

starts at about 0.5, whereas 1.0 indicates that the solution

found by SE is exactly the same as the optimal solution

(i.e., 100%). From these results, it can be easily seen that

the proposed algorithm can find an approximate solution

or even the optimal solution if we invest enough comput-

ing resources. For example, for the OneMax problems with

N = 10 and N = 100 , the proposed algorithm can find the

optimal solutions at iterations 20 and 570, respectively. Al-

though SE cannot find the optimal solution of the prob-

lem with N = 10 0 0 within 10 0 0 iterations, the trends show

that the results might be improved with further iterations.

This is why we conducted another simulation to better

understand the performance of SE. Fig. 9 shows that

the proposed algorithm is almost capable of finding the

optimal solution after 4895 iterations on average. As a

matter of fact, there is no guarantee that SE will find the

optimal solution in every run, but the results show that it
r the OneMax problem. 
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Fig. 9. The convergence of SE for the OneMax problem. 

 

 

 

 

Table 3 

Dataset for the DP. 

Dataset ϕ ε 

DSD-1 30 100 

DSD-2 30 250 

DSD-3 30 500 

DSD-4 10 100 

DSD-5 20 100 

DSD-6 40 100 

DSD-7 50 100 

 

 

 

outperforms the other metaheuristics compared in this 

study. These results also show a distinguishing feature 

of SE; that is, SE does not quickly converge to a local 

optimum. The reason is that the search diversity will 

not quickly degrade, even at the later iterations of the 

convergence process. That is, each region still has a good 

chance to be searched, whereas the other metaheuristics 

may have already converged to particular regions. How- 

ever, this does not mean that SE can use only this kind 

of transition operator; rather, SE can actually use other 

transition operators to enhance its search performance for 

the optimization problem. 

3.2. Deployment problem 

To evaluate the performance of the SE for a DP, a sim- 

ple definition of a DP is to maximize the coverage of all 

sensors, which can be defined as follows: 

Definition 2. Given a set of wireless sensors x = 

{ x 1 , x 2 , . . . , x ϕ } , a set of targets g = { t 1 , t 2 , . . . , t ε } , and

a set of candidate positions p = { p 1 , p 2 , . . . , p ω } , where

ϕ ≤ ω, each sensor x i will be deployed to a candidate 

position p j . A solution to the DP is a set of positions 

y = { y 1 , y 2 , . . . , y ϕ } to which the set of given sensors are

deployed. The overall coverage rate of a sensor for the 

targets is defined as 

c = 

∑ ε 
i =1 c i 
ε 

× 100% , (6) 

and 

c i = 

{
1 , if there exists y j such that d(y j , t i ) < r , 

0 , otherwise , 
(7) 

where d ( a , b ) is the distance between a and b , and r is the

radius of coverage of a sensor. 

In short, the search algorithm is used to find an approx- 

imate solution to deploy the sensors to the appropriate po- 

sitions to cover as many targets as it can. The solution s 
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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found by the search algorithm can be regarded as the so- 

lution y of the DP. Therefore, we can easily evaluate the 

results of the search algorithm. 

3.2.1. Data sets and parameter settings 

As shown in Table 3 , seven datasets are used to evalu- 

ate the performance of the proposed algorithm for the DP. 

Each dataset has ϕ sensors to be deployed for ε targets 

spread in an area with a size of 10 by 10. This area is di-

vided into a grid of squares, each of which has a size of 

1 by 1, and the possible sensor deployment positions are 

the corners of each square. This implies that there are total 

of 11 × 11 = 121 possible positions (i.e., ω = 11 × 11 = 121 ).

Moreover, the radius of coverage of each sensor is set to 

1. Fig. 10 shows the three kinds of distributions of targets 

to be used in this study. More precisely, Fig. 10 (a) shows 

the distribution to be used for DSD-1, DSD-4, DSD-5, DSD- 

6, and DSD-7; Fig. 10 (b) shows the distribution to be used 

for DSD-2; and Fig. 10 (c) shows the distribution to be used 

for DSD-3. 

In this section, we compare the performance of a 

simple genetic algorithm (GA) [25] and SE for the DP. The 

parameter settings of the GA are as follows. The popula- 

tion size is set to 8, the crossover rate is set to 0.8, and

the mutation rate is set to 0.2. Tournament selection and 

the one-point crossover are used as the determination and 

transition operators. The parameter settings of SE are as 

follows. The number of searchers n is set to 8, the number 
ent algorithm via search economics, Computer Networks 
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a b c

Fig. 10. The distribution of targets. (a) 100 targets, (b) 250 targets, and (c) 500 targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Results of the coverage rate of the GA and SE for the DP. 

Dataset # of targets GA (8) GA (16) SE 

DSD-1 100 87.9% 88.5% 94.1 % (1.31) 

DSD-2 250 81.5% 82.2% 87.7 % (1.64) 

DSD-3 500 79.1% 79.1% 84.2 % (1.26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Note that the OneMax problem uses Eq. (5) as the objective function, 

whereas the deployment problems uses Eq. (6) as the objective function. 
of possible goods w is set to 2, t a 
j 

= 1 , and t b 
j 

= 1 initially.

Note that for the DP in this study, we further assume that

n = h . The main search procedure of SE for the DP is essen-

tially the same as that for the OneMax problem, except for

the representation and objective function to be discussed

in Section 3.2.2 . Similar to the simulation of OneMax

problem, each experiment is carried out for 30 runs, but

the number of iterations for each run is set to 500. All of

the experimental results shown are the average of 30 runs.

3.2.2. Representation of SE for the DP 

For the DP, the encoding of each solution x of SE can be

divided into ω subsolutions, each of which assumes a value

of 0 or 1, which is similar to SE for the OneMax problem.

As shown in Fig. 12 , h is set to 3, meaning that the so-

lution space will be divided into three disjoint subspaces,

and ω is set to 9. The value of each subsolution p i indicates

whether or not a sensor will be deployed at this position,

with 1 meaning that a sensor will be deployed at this posi-

tion and 0 meaning that no sensor will be deployed at this

position. In this example, a sensor will be deployed at po-

sitions p 1 , p 4 , p 5 , and p 9 , but no sensors will be deployed

at positions p 2 , p 3 , p 6 , p 7 , and p 8 . 

For the RA operator, SE will use a different way to di-

vide the solution space into subspaces, which is different

from that of SE for the OneMax problem. As shown in

Fig. 12 , SE will first divide the candidate positions into

a certain number of subsets, e.g., 
 log 2 (ω) � = 3 subsets,

each of which correspond to a region. In this example, the

subsets of the candidate solutions (the regions) are r 1 =
{ p 1 , p 2 , p 3 , X , X , X , X , X , X} , r 2 = { X , X , X , p 4 , p 5 , p 6 , X , X , X} ,
and r3 = { X , X , X , X , X , X , p 7 , p 8 , p 9 } , where X takes a value

of 0 or 1. At the initialization step, at least one sensor

will be randomly deployed to a position in the j -th subset

of the candidate positions (i.e., to a position in the r j re-

gion) first, and then, SE will randomly deploy the remain-

ing sensors to the other candidate positions of this region

at which no sensor has been deployed. 

By using this concept, we can make each searcher

search the possibilities of its region. To ensure that each

region is searched by at least a searcher, the double-check
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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procedure has to make sure that at least one sensor is de-

ployed in each region (i.e., each subset of candidate posi-

tions). For illustration, let us assume that the goal of the

DP is to search for an optimal solution for the deployment

of four sensors in a predefined space. For region r 1 , SE will

first deploy a sensor at p 1 , p 2 , or p 3 and then deploy the

remaining three sensors to the other positions at which

no sensor has been deployed. For region r 1 , SE will use

the double-check procedure to avoid the case of no sen-

sors being deployed at the positions in the subset { p 1 , p 2 ,

p 3 }. Except for the representation of the solution, solution-

space division method, double-check procedure, and objec-

tive function, 1 the search procedure of SE for the DP is

similar to that for the OneMax problem, meaning that the

only things that need to be changed are those mentioned

above. 

3.2.3. Experimental results 

As summarized in Table 4 , the deployment results of

the GA and SE after 500 iterations can cover most of the

targets. More precisely, GA (8) and GA (16) in Table 4 indi-

cate that the population sizes of the GA are equal to 8 and

16, respectively. The main difference between DSD-1, DSD-

2, and DSD-3 is the number of targets (i.e, 100, 250, and

500, respectively). The results in Table 4 show that SE can

find better results than the GA. Even after increasing the

population size of the GA from 8 to 16, the proposed al-

gorithm still provides a better result than the GA, and the

difference is more than 5.1%. These results show that the
ent algorithm via search economics, Computer Networks 
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a b c

Fig. 11. The deployment results of SE after 10 0 0 iterations. (a) 100 targets, (b) 250 targets, and (c) 500 targets. 

Fig. 12. Representation of SE for the DP. 

Table 5 

Coverage rate of SE for the DP for different numbers of sensors. 

Dataset # of sensors SE 

DSD-4 10 53.9% (1.19) 

DSD-5 20 80.5% (1.80) 

DSD-1 30 94.1% (1.31) 

DSD-6 40 10 0.0% (0.0 0) 

DSD-7 50 10 0.0% (0.0 0) 

Table 6 

Results of the GA and SE for the DP for different numbers of iterations. 

Dataset # of iterations GA (8) GA (16) SE 

DSD-1 500 87.9% 88.5% 94.1% (1.31) 

DSD-1 10,0 0 0 92.4% 92.6% 96.7% (1.00) 

DSD-3 500 79.1% 79.1% 84.2% (1.26) 

DSD-3 10,0 0 0 82.7% 82.9% 87.8% (0.70) 
proposed algorithm possibly provides better results than 

the GA or other metaheuristics. The results in Fig. 11 show 

that some of the targets cannot be covered by increasing 

the number of targets; that is, not all of the holes and cor- 

ners are covered by all the sensors. Two possible solutions 

for increasing the coverage rate of the targets are by (a) in- 

creasing the number of sensors so that much more space 

can be covered and (b) improving the deployment results 

of the search algorithm by using the same number of 

sensors. 

The results in Table 5 for the use of 10–50 sensors to 

cover 100 targets further show that the number of sensors 

has a strong impact on the coverage rate. By using DSD-1 

as the baseline, the coverage rate normally can be signifi- 

cantly improved if additional sensors are deployed for the 

same number of targets, as the results of DSD-6 and DSD- 

7 show. On the contrary, the coverage rate will decrease 

as the number of sensors decreases. These results demon- 

strate that increasing the number of sensors is an effective 

way to increase the coverage rate of a WSN, the IoT, and 

even the IIoT. 
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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Although the results in Table 5 show that the coverage 

rate can be improved by increasing the number of sensors, 

it will also increase the overall investment costs. A solu- 

tion to this problem is to make the search algorithm find 

a better deployment result. Typically, the final results of 

most metaheuristics cannot be improved once the search 

process approaches a stable state (i.e., converges to a lo- 

cal optimum), even though more computing resources are 

invested. 

The results in Table 6 show that the proposed algo- 

rithm is able to improve the final deployment results by 

investing more computing resources. For example, the 

coverage rate of SE is 94.1% after 500 iterations, but it 

can be improved to 96.7% by increasing the number of 

iterations, i.e., 10,0 0 0 iterations in the case. These results 

show that the proposed algorithm can also provide a 

better result than the GA, as the number of iterations is 

increased to 10,0 0 0. These results imply that the proposed 

algorithm will not easily fall into a local optimum, even if 

the search result is quite close to the global optimum, and 

more computing resources will be useful for improving the 

final results. Unlike other metaheuristics that may easily 
ent algorithm via search economics, Computer Networks 
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a b

Fig. 13. The deployment results of SE after 10,0 0 0 iterations. (a) 100 targets and (b) 500 targets. 

Fig. 14. The convergence of SE by using different numbers of sensors (i.e., 10–50 sensors) for the 100 targets of the DP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

get stuck at some solution (e.g., an approximate solution),

SE will continue to improve the search result if more

computing resources are invested. With this search tool at

hand, we can then easily determine how many computing

resources to invest to find the “appropriate result.”

The deployment results in Fig. 13 for 100 and 500 tar-

gets after 500 and 10,000 iterations show that the de-

ployed sensors will attempt to fit the distribution of the

targets; thus, the total overlap in coverage between differ-

ent sensors is less compared to the results in Fig. 11 (a)

and (c). It can be easily seen from these results that SE

is able to find a “good solution” to the DP for different

target distributions. Fig. 14 shows the convergence of SE

using different numbers of sensors for 30 targets, which

illustrates that the search performance of the proposed al-

gorithm is quite stable for different situations or problems.

Fig. 15 shows the convergence results of the proposed

algorithm when deploying 30 sensors to cover 100 and 500

targets. It can be easily seen from these results that if we

can invest more computing resources, e.g., performing SE

for more iterations, the search results can typically be im-
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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proved. For example, the blue line in Fig. 15 shows that

the search result of SE for 100 targets can be continuously

improved if additional iterations are invested. These results

are similar to those of SE for the OneMax problem in the

sense that before the optimal solution is found, better re-

sults are obtained after additional iterations. These results

also demonstrate that the assumption of this study, “You

get whatever solution for which you actually pay,” can be

realized by using SE to solve the DP. 

4. Related work 

The development of metaheuristics can be dated back

to the 1950s or even earlier; the year 20 0 0 can be imag-

ined as a watershed of these search algorithms. Until now,

finding an approximate or optimal solution within an rea-

sonable time by using limited computing resources is still

vital for metaheuristic algorithms. Some discussions of

the variety of developmental trajectories for state-of-the-

art metaheuristics presented before the year 20 0 0 can be

found in [26,27] . These algorithms can be divided into two
ent algorithm via search economics, Computer Networks 
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Fig. 15. The convergence of SE by using 30 sensors for 100 and 500 targets of the DP with 10,000 iterations. 
groups by a well-known method, namely, single-solution- 

based algorithms (SSBAs) versus population-based algo- 

rithms (PBAs). The main difference is in the number of 

candidate solutions (directions) that is used at a time dur- 

ing the search process. SA [24] and TS [28] fall into the 

SSBA group, whereas the GA [25] , ant colony optimization 

(ACO) [29] , particle swarm optimization (PSO) [30] , and 

differential evolution (DE) [31] are in the PBA group. 

After the year 20 0 0, many new metaheuristics were 

presented to solve complex optimization problems. Swarm 

intelligence has become an important research field be- 

cause several new metaheuristics are inspired by the be- 

havior of swarms [32–34] . In addition to the behavior of 

swarms, natural phenomena inspire other ways of think- 

ing in the development of new metaheuristics, such as har- 

mony search [35] , the gravitational search algorithm [36] , 

and coral-reef optimization [37] . In addition to the in- 

put and output operators, most metaheuristics contain four 

important operators [38] : 

• Initialization : This operator is typically used to ran- 

domly create the initial solution for the convergence 

process. To enhance the search performance of a meta- 

heuristic algorithm, some studies [39,40] have used a 

refinement procedure to get a better initial solution to 

start with. 

• Transition : This operator usually plays the role of per- 

turbing the current solution or exchanging subsolutions 

(information) between searched solutions. 

• Evaluation : After the transition operator is performed, 

metaheuristics need to use an evaluation operator to 

evaluate the new solution. 

• Determination : On the basis of the results of the evalu- 

ation operator, the determination operator can then be 

used to choose the search directions that would allow 

a good solution to be found at later iterations. 

Except for the initialization operator that will be per- 

formed only once, transition, evaluation, and determina- 

tion are the main operators that will be performed at each 

iteration. By using these operators to search for the so- 

lution, most metaheuristics will possess great intelligence, 

just like the observations of the convergence of a GA by 

the authors in [25,41] , who say that 
Please cite this article as: C.-W. Tsai, An effective WSN deploym
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short, low-order, above-average schemata receive expo- 

nentially increasing trials in subsequent generations of a 

genetic algorithm . 

These observations can also be used to say that most 

metaheuristics will have a chance to find a better solution 

gradually during the convergence process. Because the 

basic idea of metaheuristics is not to search for every 

possible solution in the solution space to find the global 

optimum, they may fall into a local optimum at early 

iterations for some optimization problems, which is usu- 

ally referred to as the premature problem. To prevent the 

search process from getting stuck in a particular region of 

the solution space owing to a local optimum, a large num- 

ber of studies attempted to develop an efficient method to 

deal with this problem. For example, allowing the search 

process to probe worse directions intermittently to avoid 

falling into a local optimum is used in SA, whereas the 

use of the mutation operator to perturb subsolutions (i.e., 

genes) is adopted by GAs to avoid searching for the same 

solutions. 

In addition, some studies [28–30,35,42] attempted to 

use a different way to enhance the search performance 

of metaheuristics by keeping the search results for a 

certain number of iterations instead of just the solution of 

the current iteration. Two advantages can thus be easily 

imagined: the first one is that metaheuristics can avoid 

the premature problem, and the second one is that meta- 

heuristics can use a better searched result to accelerate 

the convergence process. Now, let us look back on the 

study of Glover and Laguna [28] ; the basic idea of TS is 

to keep some searched solutions to prevent the search 

process from searching the same solutions again and again 

in the near future. The way to keep the searched solutions 

to develop a high-performance metaheuristic algorithm, of 

course, can also be found in swarm intelligence [29,30] . 

For instance, ACO [29] uses the so-called pheromone table 

to accumulate and share the information of searched 

solutions along the way (i.e., from the initialization step 

to the current iteration), and PSO [30] uses the global 

best and personal best to keep the best-so-far solution 

of all of the particles and the best-so-far solution of each 

particle, respectively. In addition to the TS, ACO, and PSO, 

recent studies attempted to keep the structure of better 

searched solutions (e.g., promising candidate solutions) 
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such as the estimation of distribution algorithm (EDA)

[42] and harmony search (HS) [35] . Both the EDA and

HS attempted to build a probabilistic model to keep the

structure of the better solutions they searched before

and then use this probabilistic model to create a new

solution. 

Most metaheuristics can only keep some of the

searched solutions because of the limited computing re-

sources and memory space. This is why the length of the

tabu list is usually set to a small number to keep only

some searched solutions, and the EDA and HS use a proba-

bilistic model to keep promising searched solutions. How-

ever, as we mentioned in Section 2.2 , without knowledge

of the solution space, the search process of a metaheuris-

tic may converge to a local optimum, e.g., search the same

regions again and again. This is why we need a new meta-

heuristic algorithm that is able to keep track of all of the

searched solutions to avoid searching for redundant solu-

tions (thus degrading the search diversity) and to search

for solutions that have not been searched before to in-

crease the search diversity. 

5. Conclusion 

This paper presents an effective method called SE to

enhance the performance of metaheuristic algorithms by

keeping track of the information collected from the search

process, which includes not only the objective values of

the candidate solutions but also the parts of the solution

space that have been explored. The solution presented in

this study is to depict the solution on the basis of the in-

formation we have in hand so that the search algorithm

can dynamically invest computing resources in a region in

the solution space that has a higher potential to find a bet-

ter solution, meaning that SE will do its best to invest the

computing resources it has in the regions where a bet-

ter solution can be found. With the addition of comput-

ing resources (computer nodes) to the search process, the

proposed algorithm will divide a region into two new re-

gions by design and then assign the searcher belonging to

the original region and a new searcher to these two new

regions to achieve the goal of parallel computing on the

fly. 

The simulation results of the OneMax problem and DP

show that the proposed algorithm is able to find better

results than the other metaheuristics compared in this

paper. Some of the simulations further show that the

proposed algorithm is able to find the global optimum if

we invest enough computing resources, which implies that

SE will not easily fall into a local optimum. Although it is

unable to store all of the searched solutions for the time

being, SE now uses lossy compression to keep track of

all of the searched solutions (i.e., not just the best-so-far

solution but also the others). However, the ultimate goal

of SE is to use lossless compression to keep track of all

of the searched solutions. This is why this paper can be

regarded as the starting point of this study. In addition to

developing a better way to depict the solution space, the

goal is to apply SE to other optimization problems in the

future to demonstrate the performance of the proposed

algorithm. 
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