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a b s t r a c t 

Provision of accurate location information is an important task in the Internet of Things 

(IoT) applications and scenarios. This need has boosted the research and development of 

fingerprint based, indoor localization systems, since GPS information is not available in in- 

door environments. Performance evaluation of such systems and their related localization 

algorithms, is usually based on sampling collection in predetermined test environments. 

The sample size determination and sampling methodology can significantly affect the re- 

liability of the outcome. This work proposes an algorithm that calculates the minimum 

sample size of positioning data required for objective performance evaluation of fingerprint 

based localization systems. The use of a correct, independent, unbiased and representative 

sample size can speed up the training, evaluation and calibration procedures of a finger- 

print based localization system, while ensuring that the system’s true accuracy is achieved. 

The proposed Sample Size Determination Algorithm (SSDA) takes into consideration the 

desired confidence level, the resulting standard deviation of a small size preliminary sam- 

ple as well as the error approximation with respect to the actual error of the system and 

proposes the final sample size for the evaluation and/or calibration and/or training of the 

utilized radio-maps. Additionally, the SSDA, assumes random sample allocation in the area 

of interest in order to avoid biased results. Risks arising from the selection of a sample 

of convenience are also investigated. Finally, the performance of the proposed algorithm is 

tested in both measured and simulated radio-maps. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the Internet of Things (IoT), several applications and

scenarios envision the integration of a great variety of

wireless technologies that will provide services based on

the user behavior [15] . Such services often require the

localization and tracking of the user in indoor environ-
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ments of smart cites (such as malls, hospitals, underground

stations) and smart houses [1,9,14,28] . Fingerprint-based

positioning is one of the mostpopular indoor localization

techniques implemented by Real Time Localization Systems

(RTLS). This technique typically utilizes the Received Signal

Strength (RSS) to perform positioning. Other radio param-

eters can be also used or combined, such as Power Delay

Profile (PDP), Angle of Arrival (AOA) etc. RTLS may also uti-

lize non-radio parameters, such as inertial measurements

or prior knowledge of environment constraints, in an aim

to improve accuracy [11] . Fingerprint-based positioning

requires the generation of a dataset of measurements,
ation Algorithm for fingerprint-based indoor localization 
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usually the RSS, during an off-line phase. This dataset, 

called radio-map, requires calibration before being utilized 

for the estimation of the user location during the on-line 

phase. Calibration is important in order to train and con- 

figure the positioning algorithms to perform better for the 

specific radio-map [17] . The calibration techniques use a 

sample of measurements, which is taken in the area of the 

indoor environment. The sample size, as well as the al- 

location of the samples in the area of interest, influence 

the overall accuracy of the localization system. A similar 

sample of measurements is also used for the performance 

evaluation of the system. The calibration and evaluation 

procedures are two important steps that are influenced by 

the quality of the sample measurements. Selecting a small 

sample size or a biased sample can result in misleading 

calibration parameters and a degraded accuracy during lo- 

cation estimation. On the other hand, large sample sizes 

are more time consuming and more expensive to carry out. 

To the authors best knowledge, no previous work exists for 

selecting the aforementioned sample sizes in fingerprint- 

based indoor localization systems. The main goal of this 

paper is to develop and suggest an algorithm that will de- 

fine the minimum sample size which will ensure correct 

calibration or training of the RTLS, and objective evaluation 

of the system’s performance. 

The rest of the paper is organized as follows: Section 2 

presents related work on fingerprint-based methodologies 

and performance evaluation techniques. Section 3 intro- 

duces and analyses the proposed Sample Size Determina- 

tion Algorithm (SSDA). Sections 4 and 5 describe the evalu- 

ation of SSDA based on an experimental indoor localization 

platform. Finally, Section 6 summarizes the conclusions. 

2. Related work 

Fingerprint-based positioning requires the construction 

of a fingerprint database during an off-line phase, in 

which a number of radio parameters are stored in the 

form of vectors. The aforesaid database is generated ei- 

ther by performing a measurement campaign or through 

simulation procedures. In the latter case, statistical, semi- 

deterministic or fully deterministic models are utilized 

[3,4,6,10,17,18,26] . A calibration/training procedure is then 

implemented, using a measurement sample, in order to 

identify the optimum configuration parameters for the po- 

sitioning algorithms and minimize localization errors. 

The location estimation is performed by the user during 

the on-line phase, by implementing various deterministic 

or probabilistic localization algorithms. Examples include 

the K-Nearest Neighbor (KNN) and the Weighted K-Nearest 

Neighbor (WKNN) as analyzed in [13] , the Minimum Mean 

Square Error (MMSE) presented in [19] and the Maximum 

A Posteriori (MAP) [27] . 

The evaluation of the Fingerprint-based RTLS is also 

performed by retrieving a measurement sample. The im- 

portance of sampling is highlighted in [23] , where the au- 

thors proposed the development of a benchmark standard. 

They specifically state that samples constitute the core of 

any benchmark for location systems, since they are used 

to compute the position estimates. They proposed that the 

benchmark specification should state the number of sam- 
Please cite this article as: L. Kanaris et al., Sample Size Determi

systems, Computer Networks (2016), http://dx.doi.org/10.1016/j.c
ples recorded per second and the duration of the measure- 

ments per location. 

When trying to review common practices, literature 

suggests that researchers tend to utilize a diverse num- 

ber of sample sizes for the purpose of evaluating their 

research work, without necessarily clarifying the rationale 

behind the sample selection. In [19] , 40 observations were 

recorded for a set of 155 calibration points, that were used 

as training data to eliminate the randomness of human be- 

havior. In [27] , authors measured one sample per second, 

for a period of five minutes (300 samples total), while try- 

ing to investigate wireless channel changes over time. 

Authors in [5] proposed a dynamic hybrid projection 

(DHP) technique for improved 802.11 localization. During 

their experiments they collected 802.11 RSS data at 27 dif- 

ferent reference locations in the area of interest, on differ- 

ent days and at four different user orientations. Out of this 

sample they selected 15 locations with a step of 1.5–2 m, 

which they then used as training data. 

A different sam ple size was used in [25] , where 

different filtering strategies for real life indoor 802.11 

positioning systems were analyzed and compared. The au- 

thors measured the radio distribution at 250 uniformly dis- 

tributed grid points in an area of 15 m x 35 m. 

In [7] , the differences among the received signal 

strengths from a number of 802.11 adapters were inves- 

tigated. The authors of this work conducted system valida- 

tion using a total of 3120 positioning requests. 

In another aspect of indoor positioning, authors of [12] 

introduced several fault models to capture the effect of 

failures in the wireless infrastructure. During the investi- 

gation of fault tolerance of positioning methods and evalu- 

ation in terms of their performance degradation, they con- 

tacted experiments based on a radio-map consisting of 107 

distinct reference locations having a step of 2–3 m. A to- 

tal of 3210 reference fingerprints, corresponding to 30 fin- 

gerprints per reference location, were collected at the rate 

of 1 sample/s. For testing purposes they collected finger- 

prints along a path, consisting of 192 locations. Authors of 

[24] proposed a novel indoor localization scheme based on 

sub-area fingerprint determination and surface fitting. Dur- 

ing the performance evaluation of the proposed technique, 

they performed experiments in an area 16.2 m x 28.5 m by 

setting 25 reference points per room and randomly select- 

ing 200 test points in the environment. 

Finally, authors of [20,21] , worked towards the chal- 

lenge of deployment load reduction in RSS based indoor 

localization systems. In their work, they proposed an in- 

teresting scheme that combines the data retrieved from a 

ray tracing simulator with a limited number of measure- 

ments (15%–30% of the complete fingerprint dataset) and 

performs localization using manifold alignment. The afore- 

mentioned methodology leads to a significant load reduc- 

tion but assumes that the utilized fingerprint datasets have 

stronger correlation among neighboring data points com- 

pared to other points. This assumption is not always valid 

in indoor environments with strong multipath effects in 

Rayleigh channels. 

Summarizing, our literature review suggests that au- 

thors calibrate, train, test and evaluate indoor position- 

ing systems by utilizing a variety of sample sizes and 
nation Algorithm for fingerprint-based indoor localization 
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Fig. 1. Test environment with APs and radiomap as generated in TruNET simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sample patterns. The authors of this paper aim to intro-

duce a generic methodology to calculate a sample size

that will capture a set of predefined accuracy criteria,

within the desired confidence level, for any test environ-

ment. This methodology is expected to contribute towards

the standardization of evaluation procedures for indoor

fingerprint-based positioning systems. 

3. Proposed approach 

In this paper, the Sample Size Determination Algorithm

(SSDA) is proposed, for calculating the minimum, indepen-

dent, unbiased, representative sample size of positioning

data, as this applies to fingerprint-based indoor localiza-

tion systems. Minimum in the sense that, it is large enough

to ensure that, the estimated mean positioning error of the

system lies within the desired confidence level, hence the

evaluation and/or calibration results are within the set re-

liability criteria. Independent, unbiased and representative in

the sense that the sample positions need to be selected

randomly within the area of interest, in order to avoid con-

venient patterns or specific samples that may cause bi-

ased results which can be questioned. The first step of

the methodology requires the selection of a small prelim-

inary sample of size n sps , the identification of the desired

confidence interval ci and the Error Bound EB . The small

size preliminary sample is required in order to initially es-

timate a mean positioning error x e for the positioning al-

gorithm and the radio-map under examination. The confi-

dence interval ci , indicates the probability that the calcu-

lated mean positioning error provided by the distribution

of samples, describes the true radio-map positioning error

and lies within the distribution spread. In other words, ci

represents the desired confidence that the evaluator would

like to have, and for this reason it is set by the evalua-

tor himself at the beginning of the process. The same ap-

plies to the Error Bound EB , which refers to the acceptable

– in the evaluators’ opinion – error that may occur, rela-

tive to the calculated mean positioning error x e of the small

size preliminary sample , always within the selected ci . These
Please cite this article as: L. Kanaris et al., Sample Size Determin

systems, Computer Networks (2016), http://dx.doi.org/10.1016/j.c
parameters are used as initial input to the algorithm, as-

suming that the mean positioning error of the distribution

of samples has a normal distribution (bell-curved). Based

on the Central Limit Theorem , the aforementioned assump-

tion is considered valid if the sample size is sufficiently

large. The population of all possible sample means can

then be considered approximately normally distributed, no

matter what probability distribution describes the sam-

pled population [16] . The SSDA algorithm is presented in

the form of pseudo-code 3.1 and explained in more detail

below. 

Algorithm 3.1: SSDA ( n sps , ci, EB, A ) 

procedure InitialPositioning ( Positioning Algo , n sps ) 

for i ← 1 to n sps 

do x e , s x e ← Positioning Algo 

return ( x e , s x e ) 

main 

comment: Step 1: Calculate df , t ci 
2 

df ← (n sps − 1) 

t ci 
2 

← t-table 

comment: Step 2: Estimate preliminary values of x e , s x e 

for i ← 1 to n sps 

do InitialPositioning ( WKNN, MMSE etc. , n sps ) 

comment: Step 3: Calculate n SSS 

n SSS ← 

(
t ci 

2 

s x e 

EB 

)2 

comment: Step 4: Calculate GS min 

P ← (100 ∗ n SSS ) 

GS min ← 

√ 

A √ 

P +1 

comment: Step 5: Select Random Samples 

for i ← 1 to n SSS 

do Sample i ← Random x , y ∈ A , step GS min 

Initially, a small preliminary sample of size n sps that is

randomly selected, is used for the initial rough estimation
ation Algorithm for fingerprint-based indoor localization 
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Table 1 

Material constitutive parameters of the test environ- 

ment. 

Material El. perm. (F/m) Loss tang. 

Concrete 3.9 0.23 

Wood 2 0.025 

Brick 5.5 0.03 

Metal 1 1,0 0 0,0 0 0 

Plasterboard 3 0.067 

Glass 4.5 0.007 

Fig. 2. Positioning error vectors-sample of convenience con 5 with n con = 

10 – WKNN. 

Fig. 3. Positioning error vectors-sample of convenience con 5 with n con = 

10 – MMSE. 

Table 2 

Mean error and standard deviation of 

preliminary samples – radio-map gener- 

ated through measurements. 

Algorithm Sample x e (m ) s x e 

WKNN sps 1 1.73 1.227 

sps 2 1.78 1.268 

sps 3 1.82 1.264 

sps 4 1.59 1.078 

con 5 1.49 0.763 

MMSE sps 1 1.72 1.307 

sps 2 1.68 1.371 

sps 3 1.74 1.378 

sps 4 1.54 1.178 

con 5 1.50 0.798 
of the mean positioning error. The table of the standard 

normal curve cannot apply due to inefficient sample size, 

hence the t-distribution is implemented, which requires 

the estimation of degrees of freedom df . From n sps , df can 

be calculated using the Eq. (1) : 

df = n sps − 1 (1) 

The t-distribution, given by Eq. (2) , in combination with 

the desired ci are used to estimate the t-value t ci 
2 

for any 

small preliminary sample: 

f (t c i ) = 

�( df+1 
2 

) √ 

df π�( df 
2 
) 

(
1 + 

t 2 

df 

)− df+1 
2 

(2) 

where � is the gamma function. 

A more convenient way is to directly use the t- 

distribution table, available in most probability and statis- 

tics books, based on which the t ci value is given for several 

df s. The next step, involves an initial position estimation 

procedure based on the preliminary sample data, in order 

to calculate the preliminary sample mean positioning error 

x e , and the respective standard deviation s x e . 

Assuming a normal distribution, as discussed earlier, 

the spread of the positioning error, for the desired ci , is 

given by the following formula: 

x e ± t ci 
2 

(
s x e √ 

n 

)
(3) 
Please cite this article as: L. Kanaris et al., Sample Size Determi

systems, Computer Networks (2016), http://dx.doi.org/10.1016/j.c
where t ci 
2 
( 

s x e √ 

n 
) is the maximum deviation from the mean 

value, hence the error bound. 

Having set the desired EB as the basic evaluation crite- 

rion, the suggested sample size ( SSS ) can be calculated by 

solving Eq. (3) with respect to n : 

n SSS = 

(
t ci 

2 
s x e 

EB 

)2 

(4) 

In order to select an independent random sample of 

n SSS locations within the test environment, the population 

of the locations should be converted from an infinite num- 

ber (continuous) to discrete, in such a way that it fulfills 

the statistical criteria that the population P should be at 

least 100 times more than the sample size [2] . Hence, 

P = 100 n SSS (5) 

Using Eq. (5) and the dimensions of the test environ- 

ment (width w x height h ), the minimum grid size GS min 

can be determined: 

GS min = 

√ 

A √ 

P + 1 

(6) 

where A is the area of the test environment in m 

2 . 
nation Algorithm for fingerprint-based indoor localization 
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Fig. 4. Positioning error distribution-sample of convenience con 5 with n sps = 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed methodology concludes with the selec-

tion of n SSS simple random locations within A , using the

grid size GS min as a step. The simple random selection is per-

formed by a method in which each collection of n SSS loca-

tions is equally likely to comprise the sample. In any other

case, where the selection of the sample may involve a pre-

defined pattern ( sample of convenience ), e.g. selection of all

n SSS samples from a specific room in the area of interest,

the calculated mean positioning error, may differ system-

atically from the actual error of the RTLS [16] . 

SSDA implementation ensures that the selected sam-

ple will reflect the overall system performance and charac-

teristics, within the desired confidence level and the pre-

defined acceptable mean localization error bound, for the

utilized positioning algorithm. In case of evaluating more

than one positioning algorithms, then the SSDA should be

applied to each one of them and the common suggested

sample size n SSS should be the largest extracted from all

algorithms, in order to ensure consistency and reliability

of the performance results for all testing scenarios. 

4. Test environment 

The proposed algorithm was tested using two RSS fin-

gerprint data sets, also known as radio-maps. The first

radio-map was generated through measurements and the

second through simulation. The SSDA was implemented

initially on the first radio-map and the performance was

tested for several sample sizes, up to 40 samples. The

second-simulated – radio-map – was generated and uti-

lized extensively for much larger sample sizes (up to 500),

in order to further investigate the reliability and conver-

gence of the proposed algorithm. The test environment

was an indoor area of 169 m 

2 . The wireless network con-

sisted of 6 D-Link 802.11 APs, as shown in Fig. 1 . 

The first radio-map was generated through measure-

ments using an Android-based MS device (HTC Desire HD).

Fingerprints were collected at 110 locations at a step of
Please cite this article as: L. Kanaris et al., Sample Size Determin

systems, Computer Networks (2016), http://dx.doi.org/10.1016/j.c
1 m, at a height of 90 cm. The device orientation was

kept constant throughout the measurement positions. Ad-

ditionally, during the measurement procedure no human

or machine motion was allowed in the whole test envi-

ronment, in order to minimize any dynamic fluctuations

that may have affected the quality of the generated radio-

map. At every measurement point, 30 district RSS samples

(1 sample/s) were recorded and the mean RSS value for

each location was extracted to formulate the radio-map.

The RSS values in the radio-map ranged from −99 dBm to

−34 dBm. 

The second radio-map was created using TruNET , a 3D

ray tracing polarimetric simulator, as shown in Fig. 1 . The

same building structure and large furniture were imported

and configured using material constitutive parameters ob-

tained from literature [22] , as shown in Table 1 . A calibra-

tion procedure was carried out as described in [8] . A high

density receiver location layout was used in the simulated

scenario, by defining the receiver step distance to 10 cm.

This resulted in the generation of 16,900 fingerprints in the

data-set, allowing the selection and testing of a wide range

of sample sizes. 

5. Performance evaluation 

5.1. Implementing SSDA 

A number of sample sizes was calculated by imple-

menting SSDA in the test environment, for different ac-

ceptable Error Bounds, maintaining the desired confidence

interval at 95% ( ci 
2 = 0 . 025 ). Four small size preliminary

samples of n sps = 10 were randomly chosen within the

test environment ( df = 9 , and t 0 . 025 = 2 . 262 ). Additionally,

a fifth sample of convenience of the same size ( n con = 10 )

was selected, in order to observe the probable differences

and highlight the importance of selecting a simple ran-

dom sample. This specific sample consisted of measure-

ments taken explicitly from the southern area of the test
ation Algorithm for fingerprint-based indoor localization 
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Fig. 5. Positioning error vectors-random sample sps 3 with n sps = 10 –

WKNN. 
Fig. 6. Positioning error vectors-random sample sps 3 with n sps = 10 –

MMSE. 
environment as shown in Figs. 2 and 3 . The southern area 

was selected based on the observation that the estimated 

local positioning error in this specific area was consistently 

less than the average of the test environment, offering the 

opportunity to highlight the risk of selecting such type of 

samples. All five small size preliminary samples were uti- 

lized, as defined by the SSDA algorithm, for an initial po- 

sitioning procedure, using a deterministic (WKNN) and a 

statistical positioning algorithm (MMSE) on the generated 

through measurements radio-map. The results of x e and 

s x e , which are necessary for the estimation of n SSS , are de- 

picted in Table 2 . A representative example of the position- 

ing error vectors for both WKNN and MMSE referring to 

simple random sample sps 3 is shown in Figs. 5 and 6 . 

The respective positioning error distribution is pre- 

sented in Fig. 7 . The suggested sample size n SSS and the 

recommended minimum grid size GS min per case, provided 

by SSDA, are depicted in Table 4 . 
Fig. 7. Positioning error distribution-ran

Please cite this article as: L. Kanaris et al., Sample Size Determi

systems, Computer Networks (2016), http://dx.doi.org/10.1016/j.c
5.2. Simple random sample vs sample of convenience 

Based on the test results presented in Table 2 , it is ob- 

served that both x e and s x e values of the sample of con- 

venience differ noticeably from the respective values of all 

measured simple random samples. The mean positioning 

error recorded in the case of the sample of convenience is 

x e con = 1 . 49 m which is less than the minimum recorded 

positioning error of all other samples. Although the dif- 

ference is relatively small, when combined with the calcu- 

lated standard deviation s x e con = 0 . 76 , may clearly mislead 

the evaluator to select smaller sample sizes (see Table 3 ), 

since it designates an RTLS with a small positioning er- 

ror distribution. This observation is reflected in Fig. 4 vs 

Fig. 7 . In the aforementioned figures, one can observe a 

positioning distribution error range between 0.5 m and 

3.2 m in the case of the sample of convenience, while in 

the simple random sample case ( sps 3) the recorded range 
dom sample sps 3 with n sps = 10 . 

nation Algorithm for fingerprint-based indoor localization 
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Table 3 

Suggested sample size for different desired EB 

values using sample of convenience – radio-map 

generated through measurements. 

Algorithm EB (m) n SSS GS min (m) 

WKNN ±0.25 48 0.185 

±0.40 19 0.290 

±0.50 12 0.0.360 

MMSE ±0.25 53 0.176 

±0.40 21 0.280 

±0.50 14 0.340 

Table 4 

Suggested sample size for different desired EB 

values using simple random sps – radio-map gen- 

erated through measurements. 

Algorithm EB (m) n SSS GS min (m) 

WKNN ±0.25 120 0.120 

±0.40 48 0.185 

±0.50 30 0.235 

MMSE ±0.25 180 0.10 

±0.40 70 0.15 

±0.50 45 0.19 

Fig. 8. Radio-map generated through measurements: Effect of sample 

size on positioning error using WKNN algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Radio-map generated through measurements: Effect of sample 

size on positioning error using MMSE algorithm. 

Fig. 10. Typical simple random sample selection of 48 locations for 

WKNN algorithm – small preliminary sample no 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is approximately between 0.5and 4.0 m with some isolated

position estimations reaching an error between 7.5 m and

10 m. From the above comparison it is understood that by

not selecting an appropriate sample type and size, repre-

sentative of the population, the outcome of the calibration

or evaluation of the RTLS would not be objective. 

5.3. Testing on a measured fingerprint data set 

Initially, the performance of the SSDA was investi-

gated for the radio-map generated through measurements.

WKNN and MMSE positioning algorithms were imple-

mented for different number of sample sizes ranging from

n = 5 to n = 40 . The behavior of the mean and Circular Er-

ror Probability (CEP50%, CEP67% and CEP95%) is shown in

Fig. 8 and Fig. 9 , respectively. 
Please cite this article as: L. Kanaris et al., Sample Size Determin

systems, Computer Networks (2016), http://dx.doi.org/10.1016/j.c
It is observed that, for small sample sizes ( n = 5 to

n = 30 ), the positioning error fluctuates up to 0.5 m for the

mean value, 0 . 7 m for the CEP95% and 1 . 15 m for the max-

imum error for this specific environment. The fluctuation

tends to stabilize in a smaller range ( < 0.4 m) for sample

sizes above 35 in this specific radio-map. The observations

agree with the calculated n SSS which suggest a size of 48

samples in order to achieve an EB = ±0 . 4 m . The recom-

mended n SSS ensures that the performance results can be

reliably verified, if a different sample, of the same or larger

size, is chosen. A typical simple random selection for the

aforementioned scenario is presented in Fig. 10 . 

5.4. Testing on a simulated fingerprint data set 

In order to test SSDA with a larger range of sam-

ple sizes, a high resolution radio-map was generated by

TruNET, a 3D ray tracing simulator. The grid size in this

scenario was set at 10 cm, allowing the utilization of

SSDA for EB values less that 25 cm as extracted from
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Fig. 11. Radio-map generated by a high-resolution simulation: Effect of sample size on positioning error using WKNN algorithm. 

 

 

 

Table 4 . A WKNN positioning algorithm was then im- 

plemented for sample sizes ranging from 5 to 500. The 

mean, CEP50%, CEP67% and CEP95% values are presented in 

Fig. 11 . 

It is noted that, depending on the sample size, the 

mean value may fluctuate up to 1.95 m and 2.62 m for 

CEP95%. It is also observed that the estimated mean sta- 

bilizes within a range of ± 25 cm for sample sizes near 

n � 150. SSDA algorithm recommends the selection of 170 

random locations based on a preliminary sample of only 

10 points, while ensuring the reliability of any presented 

performance results or training procedure. It is also proved 

that any sample size greater than the one suggested, will 

not affect the outcome, hence such an action will only add 

unnecessary load. 

6. Conclusion 

In this paper an algorithm is presented (SSDA) that 

allows the calculation of a safe margin sample size to 

be used during the training, calibration and performance 

evaluation of fingerprint based localization systems. The 

proposed methodology suggests the utilization of an 

initial preliminary sample selection, the definition of an 

acceptable positioning error bound and a predetermined 

confidence interval. The suggested sample size is then 

extracted by converting the locations from infinite to 

discrete and by setting a minimum grid size for the 

area of interest. Additionally, the importance of selecting 

a simple random sample is highlighted and compared 

with a sample of convenience, demonstrating that in the 

latter case, the results can vary systematically, leading 

to unreliable conclusions. Finally, SSDA was tested in 

radio-maps that were generated through measurements 

and simulations. The outcome indicated that the estimated 

data sample size, objectively captures the actual system’s 

positioning accuracy performance. The presented work 

contributes towards the standardization of RTLS evaluation 

procedures. 
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