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ABSTRACT

A Radio Frequency IDentification (RFID) reader network is as a collaboration of RFID readers that aim to
cover (i.e., identify, monitor, and track) every RFID tag in a given area. The RFID coverage (RFC) problem is
defined as follows. Given a reader network, assign to each tag t a specific reader v in its proximity such
that v is responsible for covering t (called its owner), while minimizing the number of owner readers.
The problem has applications in energy conservation and in eliminating readers and data redundancy
from the reader networks. We introduce a number of decentralized algorithms for the RFID coverage
problem: 1) algorithms RANDOM, RANDOM*, and MAX-MIN which are randomized algorithms that run
in O(1) write/read rounds, 2) algorithm GDE which is an efficient decentralized implementation of the
greedy set cover algorithm, and 3) an improvement of GDE which is called . Our algorithms assume that
the RFID tags are writeable, where a writeable tag is a passive RFID tag with writeable memory. We show
using simulation experiments that our algorithms outperform major RFID coverage algorithms in various
scenarios with respect to a number of performance metrics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A Radio Frequency I[Dentification (RFID) system generally con-
sists of an RFID reader and an RFID tag. A reader sends a radio
signal to the tag. Upon the reception of the reader’s signal, the tag
replies to the reader with a signal that contains the tag identifier
and other parameters about the tag if possible. This working prin-
ciple allows RFID systems to be used for identifying, tracking, and
monitoring physical objects by simply attaching tags to them. Ad-
vances in hardware manufacturing led to significant improvements
in the cost, size and performance of RFID systems. As a result, the
use of RFID systems became an economically feasible option for
many applications. For instance, RFID is notably used in the logis-
tics, defence, aerospace, health and pharmaceutical sectors.

A main factor contributing to the recent widespread use of
RFID is the low cost and high performance of RFID passive tags.
A passive tag consists of an embedded circuit, a memory, and a
transceiver, but no battery as it is empowered by the energy of
the signals received by readers in its proximity. Its size can be in
the orders of millimetres [1] allowing it to be attached to vari-
ous objects. Some types of passive tags, called writeable tags, con-
tain writeable memory [2]. Readers in proximity may write in the
memory of writeable tags by sending radio signals. We focus in
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this paper on RFID systems that consist of passive writeable tags.
There are other types of RFID tags that contain batteries. Some of
these tags are allowed to initiate communication with the readers,
and hence called active tags, while some others do not have this
feature, and hence called semi-passive tags. These types of tags are
of higher cost compared to passive tags, and thus have limited ap-
plicability.

The large scale of RFID systems is foreseen due to the low cost
and small size of RFID tags and due to the large number of RFID
applications. The main drivers of such networks are: 1) the Inter-
net of Things (IoT), where every identifiable physical object (or,
a thing) is expected to be connected to the Internet by attaching
RFID tags or other uniquely identifiable tags, and 2) large supply
chains such as those of the US Department of Defence, WalMart,
Toyota, and others. The main problem in large scale RFID systems
is the coverage of tags (i.e. identifying, monitoring, and tracking).
The basic approach to overcome this problem is the use of collab-
orations of readers, called reader network, in order to cover all tags
in a given area. Each reader in a reader network is responsible for
covering a subset of the tags and report its readings to a special
server that collects and processes the data gathered by all readers.
An example of a reader network that consists of three readers and
five tags is illustrated in Fig. 1(a). The coverage relationships be-
tween readers and tags are usually modeled as a bipartite graph
as shown in Fig. 1(b).

We study the problem of optimizing the energy consumption
of a reader network by eliminating unnecessary redundancy at the
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(a) A sample reader network consist-  (b) A bipartite graph model
ing of three readers (black dots) and  for the reader network on
five tags (gray dots). The dashed cir-  the left. A reader is linked
cles represent the covering range of  to a tag if it covers it.
readers.

Fig. 1. Sample reader network illustrating readers redundancy.

readers level. The problem we consider is called the RFID cover-
age (RFC) problem. There are two objectives of the RFID coverage
problem. The first is to assign each tag to a reader in its proximity
called its owner. The owner of a tag is the only reader in the net-
work that is responsible for reporting readings about the tag. The
second objective of the RFID coverage problem is to minimize the
set of owners in a given reader network (also called non-redundant
readers).

A solution to the RFID coverage problem eliminates two types
of redundancies; 1) data redundancy and 2) readers redundancy.
Data redundancy occurs in situations where two readers or more
report the same readings about the same tag. This type of redun-
dancy a) causes problems in processing and mining the data gen-
erated by a reader network [3], and b) causes an increase in net-
work traffic. Eliminating data redundancy can be done by assigning
to each tag an owner reader, since only the owner of a tag is al-
lowed to report readings about it. Note that a tag does not need
to know which reader owns it, however, a reader must be aware
of the tags it owns. This subproblem of the RFID coverage prob-
lem is called the tag reporting problem. Readers redundancy occurs
if a tag or more in the reader network is covered by more than
one reader. Minimizing the number of readers in a given reader
network, while preserving the network coverage, improves the net-
work energy consumption. This subproblem is called the redundant
readers elimination problem. As an example, consider the reader
networks of Fig. 1(a). We can assign v, as the owner of t; and
t; and v as the owner of ty, t; and ts. Reader v; therefore can
be switched off. The negative impact of data and readers redun-
dancies on reader networks become clearer as the reader network
increases in scale.

The RFID coverage problem is similar to some variants of the
sensor coverage problem [4,5]. It was introduced in [6] under the
names of the tag reporting problem and the redundant readers
elimination problem where it is assumed that the only means of
communication to solve the problem is reader-tag communications.
Herein, the readers cannot directly exchange messages, but they
are allowed to write and read the memory contents of the tags in
proximity using what is called write/read rounds. This model was
later used in [7-11], and others. Another version of the RFID cov-
erage problem, introduced in [12], does not allow the use of write-
able tags, but allows direct message exchange between the readers
using wireless communications. We focus on the first type of RFID
coverage; the reader-tag RFID coverage problem.

Write/read rounds. A basic component in reader-tag RFID coverage
algorithms' are write/read rounds. A randomized implementation

T We use the term RFID coverage in this paper to denote reader-tag RFID cover-
age.

of write/read rounds was introduced in [6]. Abstractly, a write/read
round consists of two phases; write phase and read phase. In the
write phase, every reader v writes a set of bits, called the weight
of v and denoted by W(v), in the memory of all (or some) neigh-
bor tags (i.e., tags that are covered by v). The readers wait for a
specific period of time to allow every reader to do the same. In
the read phase, the readers read the content of the memory of
neighbor tags. At that time, the memory of a tag t contains the
weights of all the neighbor readers of t that wrote in it during
the write phase. More details on write/read rounds are given in
Section 2.2.

Contributions. An RFID coverage algorithm is evaluated by the
number of non-redundant readers it generates and the num-
ber of write/read rounds it executes. Many existing algorithms
aim to achieve this objective by using a single write/read round
but with different, sometimes sophisticated, definitions of the
reader weights. A tag t is owned by the neighbour reader v
that has the maximum weight W(v). In our first set of con-
tributions, we set W(v) for every reader v to be a random
number combined with the unique identifier of v. This intro-
duces a simple single write/read round algorithm called RANDOM,
which should be considered as a benchmark to similar algo-
rithms due to its simplicity. Nevertheless, the simulation ex-
periments in Section 7 show that RANDOM outperforms similar
algorithms in practical scenarios. We also introduce algorithm
RANDOM* and MAX-MIN, which both further improve the perfor-
mance of RANDOM using additional write/read rounds, where each
round is ran with a new randomly generated weight. These al-
gorithms are shown to generate a low number of non-redundant
readers with the cheap cost of one additional round (or few
more).

The second set of contributions consists of two algorithms. The
first is called the Greedy Decentralized Elimination (GDE) algo-
rithm. It is the first decentralized algorithm that gives the same
result of the centralized greedy set-cover algorithm. This algo-
rithm generates the least number of non-redundant readers com-
pared to existing RFID coverage algorithms. However, GDE runs in
at most |R| iterations, where R is the set of readers. Each itera-
tion consists of two write/read rounds. To improve GDE write/read
complexity, we introduce LIMITED-GDE which limits the number
of write/read rounds to O(1) while keeping the number of non-
redundant readers within an acceptable level that is still better
than many other major algorithms.

The RFID coverage problem may appear with additional con-
straints, such as multihop communication connectivity between
readers, k-coverage for improved fault-tolerance [13], handling
faulty communication links, or achieving load balancing between
readers. None of these constraints are considered in this paper be-
cause:

1. There is still room for improvements in the unconstrained ver-
sion of the RFC problem as will be shown later, and

2. Studying the problem without constraints provides a better un-
derstanding of it, which helps later in a better understanding of
its constrained versions.

Paper organization. Section 2 gives a survey of related work.
Section 3 formalizes the problem and the mathematical model
used. Algorithms RANDOM, RANDOM*, MAX-MIN are described in
Section 4. GDE, and LIMITED-GDE are described in sections 5 and
6 respectively. Each algorithm is given with a theoretical proof of
correctness and complexity analysis. In Section 7 we use simula-
tion experiments to study the empirical performance of our algo-
rithms. Section 8 concludes the paper.
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2. Related work

RFID Coverage algorithms are categorized into centralized and
decentralized algorithms. More details about these categories are
given below.

2.1. Centralized algorithms

Centralized RFC algorithms assume the existence of a pro-
grammable centralized node, which can be a dedicated server or
an elected reader. Practically, even if a centralized dedicated server
is available, it may not be possible to program this server for
purposes other than what it was designed for. Other than that,
the use of centralized nodes degrades the scalability of the net-
work, increases its cost, and may lead to inefficient use of avail-
able resources. In these algorithms, each reader is connected to the
centralized node. Most centralized RFC algorithms do not specify
how such connections are made. Each reader v sends its neigh-
bour tags set Ny(v) to the centralized node (a tag t is a neigh-
bor tag of reader v if v can cover it. A detailed definition is given
in Section 3). The centralized node builds a complete view of the
network, and executes a sequential algorithm that assigns to each
reader the tags it owns.

Centralized algorithms reduce the RFC problem to the unit-cost
set cover problem (or the set cover problem for short), defined as
follows. Given a collection of sets S ={Sy,...,S,} and a universe
of elements U = {ey.....ep}, find a subcollection S’ € S such that
Us,es’ Si =U. A minimum sized set cover is called an optimal set
cover. The problem of finding an optimal set cover is known to be
NP Hard [14]. A solution of the set cover problem can be used to
solve the RFC problem. It is sufficient to set U as 7 (where 7T is
the set of all tags in the network), and set S as the collection of
sets {Ny(v) | v € R} (that is, the collection of tag neighbors sets for
all readers).

The Centralized Greedy Approach:. Algorithm GREEDY [6,15] is a
centralized algorithm that uses the reduction given above. The al-
gorithm is equivalent to a well-known greedy set cover algorithm,
which is referred to in the following as the standard greedy set
cover algorithm. This algorithm runs in iterations. The set (i.e., the
reader) that covers the maximum number of not-yet covered ele-
ments (i.e., tags) is included in the solution set C in each iteration.
This procedure continues until all the tags are covered. A reader
included in the solution C owns all its neighbors tags that are not
already in C (i.e.,, not-yet owned tags). This guarantees that every
tag is owned by exactly one reader. GREEDY is frequently used
in this paper given its important properties. For instance, GREEDY
is known to have a O(logn) approximation ratio of the set cover
problem, where n is the number of elements in the universe (or,
the number of tags in this context). 2 Another similar greedy algo-
rithm is NTE [16]. The main difference between GREEDY and NTE
is how the maximum node is defined in each iteration. In NTE, the
maximum node is the node that has the maximum number of cov-
erage neighbor readers® which are also running the same iteration.

2.2. Decentralized algorithms

Decentralized reader-tag RFC algorithms use write/read rounds
to accomplish their objectives. Carbunar et al. introduced in [6] al-
gorithm RRE (Redundant Readers Elimination), which requires only

2 An algorithm A is said to have a p-approximation ratio for a given problem P
if it guarantees that any solution it outputs for P has a cost within p x OPT in the
worst case, where OPT is the optimal cost of solving P.

3 A reader v is said to be a coverage neighbor of a reader u if both readers are
neighbors to at least one common tag t.
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Fig. 2. Example illustrating a write/read round in algorithm RRE. The pairs beside
the readers are the weights of the readers. We assume that id(v5) > id(vy) > id(v7)
according to some total order. For simplicity, we assume id(v) = v. The sets beside
the tags are the memory contents of the tags after the write round. Readers v, and
v5 are the non-redundant readers selected by the algorithm.

one write/read round. The algorithm consists of a single write/read
round. In the write phase, a reader v sets its weight W(v) to
(I[Nt (v)],id(v)), where N7 (v) is the set of neighbor tags of v, id(v)
is the unique identifier of v and |.| is the size of a set. The weight
of v is written in the memory of all neighbor tags of v. The read-
ers read the memories of their neighbor tags. A reader v is able
then to decide whether it is an owner of a tag t by checking if it
has the maximum weight W(v) among all the readers that wrote
in the memory of t. The comparison among the readers weights
is done in lexicographical order. That is, the weight of reader v; is
larger than the weight of reader v;, denoted by W(v;) > W(v;), if
v; has a larger number of neighbor tags [Ny (v;)]. In case both read-
ers have the same number of neighbor tags, then W(v;) > W(v;) if
v; has a larger identifier (see Fig. 2(a) for an example of RRE).

A set of algorithms similar to RRE were later introduced, each
changing how the weight of a reader is defined. Algorithm DRRE
[7] (Density-based Redundant Readers Elimination) sets the reader
weight v to W(v) = (|Ng,(v)|,id(v)) where Ng (v) are the readers
that share at least one common neighbor tag with v. Algorithm
LEQO [8] assumes that a reader owns a tag if it is the first to write
on it. Irfan and Yagoub introduced in [9] a more sophisticated def-
inition of W(v) that requires the involvement of all nodes to be
computed.

Executing RFC algorithms in Sequence:. To reduce the number of
non-redundant readers, Hsu et al. introduced in [8] algorithm
LEO+RRE which consists of two write/read rounds. In the first
round, LEO [8] is executed and generates a set of non-redundant
readers R;. In the second round, RRE [6] is executed over the set
R1 instead of R. This step is expected to reduce the number of
non-redundant readers furthermore. The simulation experiments
results of [8] show that LEO+RRE outperforms LEO and RRE. The
main advantage of LEO+RRE is the introduction of the novel ap-
proach of combining RFC algorithms (that is, executing a sequence
of RFC algorithms to reduce the number of non-redundant read-
ers). A similar algorithm to LEO+RRE is introduced in [17] where
the first round is an execution of LEO [8] and the second round is
an execution of the RFC algorithm introduced in [9].

More constraints:. Two randomized algorithms are introduced
in [10] with the objective of balancing the coverage load among
non-redundant readers. The first algorithm runs in two write/read
rounds. The second algorithm runs in multiple write/read rounds.
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The load balancing performance of the solution of the second al-
gorithm is improved as the number of executed write/read rounds
increases. Algorithm RANDOM®, introduced in Section 4, uses a
similar approach to improve its quality. Dhas et al. introduced in
[11] an interesting load balancing RFC algorithm that takes into
consideration tags mobility. Each reader writes a time-stamp in its
neighbor tags. The reader writes other weights as well. The times-
tamp is rewritten continuously. The readers use their neighbor tags
timestamps to change the ownership of a tag. Some factors that
lead to ownership changes in a reader network are failure of a
non-redundant reader or tag mobility (that is, a tag changed its
location such that it is not covered by its owner any more).

Why not using the reader-reader communication model instead?. The
reader-reader communication model is neither equivalent to, nor
more powerful, than the reader-tag model. It is shown in [12] that
the RFID coverage problem requires Q2 (|R|log|R|) exchanged mes-
sages to be solved in the reader-reader model in the general case.
This an expensive cost compared to the single write/read round re-
quired to solve the problem in the reader-tag model. This is caused
by the fact that a pair of readers u and v may cover the same tag t
but cannot necessarily exchange messages using a direct link (i.e.,
u and v are not neighbors). Ultimately, our objective is to com-
bine both models. However, we think that in order to achieve this
objective we will need to understand both models rigorously (for
example, by studying the problem under more constraints such as
fading, interference). There is still room for improvements for the
non-constrained version of this problem as it is shown in this pa-
per.

3. Problem formulation

A reader network consists of a set of readers R and a set of
tags 7. A reader v is said to cover a tag t if v can read the mem-
ory content of t, and write in the memory of t, denoted M(t), if
t is writeable. The coverage relationships are modelled as a bipar-
tite graph Gg = (R, T, Es), where E; is a set of coverage edges (or,
coverage relationships). The set of neighbor tags of a reader v, de-
noted Nr(v), is defined as the set of tags covered by v (that is,
Nr(v) = {t | (v,t) € Es}). The set of neighbor readers of a tag t, de-
noted Ng(t), is defined as the set of readers that cover t (that is,
Nr(t) ={v| (v,t) € Es}). A reader v is said to be a coverage neigh-
bor of a reader u if both readers cover at least one common tag t
(that is, if Ny (v) NNy (u) # @). The set of all coverage neighbors of
a reader v is denoted by Ng (v). We assume that an edge (v.t) is
in E; if the Euclidean distance between v and t, denoted d(v, t), is
within a constant distance r; (called the interrogation range and is
common to all readers and tags). We assume that:

1. There are no communication links between the readers.

2. The readers are assumed to be able to write in the memory
contents of their neighbor tags. However, a tag cannot transmit
any message to a reader without first being interrogated by that
reader.

3. The readers have no previous knowledge of the reader network
topology, have no knowledge of their positions, nor their neigh-
bor tags positions.

4, There are no centralized nodes.

5. Each reader v is assumed to have a unique comparable iden-
tifier, denoted id(v). Each tag t is assumed to have a unique
identifier, denoted id(t).*

Problem definition:. a reader v owns a tag t if v is delegated to read
tag t. The set of tags owned by a reader v is denoted by S(v) (i.e.,

4 Such feature can be guaranteed by the EPCglobal standards in [18].

Table 1
Terminologies used in this paper.

Term Definition

R The set of readers

T The set of tags

Nr(v) The set of neighbor tags of reader v
Ng(t) The set of neighbor readers of tag t

Ng,(v)  The set of coverage neighbor readers of v

S(v) The set of tags owned by reader v

id(v) The unique identifier of reader v

C The set of readers which owns at least one tag

(non-redundant readers)
M(t) The memory content of tag t
T The interrogation range of the readers

slaves of v). The readers that own at least one tag are called non-
redundant readers and denoted by C (that is, C = {v | S(v) # ¢}). If
every tag is covered by at least one reader in C, then C is called a
cover.

The RFID coverage (RFC) problem consists of the following sub-
problems:

1. Tag reporting: for each reader v, find a set S(v) € Nr(v) such
that J,erS(W) =T and M,cx S(W) =¥ (pairwise disjoint). That
is, each tag has exactly one owner.

2. Redundant readers elimination: minimize the size of the set
C. That is, minimize the number of non-redundant readers in
the network.

Minimizing the number of non-redundant readers turns the
problem into an NP Hard problem, as the minimum disk cover-
age problem may be reduced from it [6]. This leads to the follow-
ing definition.

Definition 1. An algorithm A solves the the RFC problem if A cor-
rectly solves the tag reporting problem?®.

Lastly, the main terminologies used in this paper are summa-
rized in Table 1.

4. Algorithms RANDOM, RANDOM', and MAX-MIN

This section introduces the decentralized algorithms RANDOM
and RANDOM*, which are randomized decentralized RFC algo-
rithms that use reader-tag communications. RANDOM consists of
a single write/read round, whereas RANDOM* consists of 1 iter-
ations, where 1 is a constant greater or equal than 1. Each itera-
tion of RANDOM" is an execution of algorithm RANDOM over the
set of non-redundant readers generated in the previous iteration.
A variant of RANDOM* is MAX-MIN, which runs in two iterations
only. Before introducing the details of our algorithms, we present a
generalized sequential single-round RFC algorithm, called SEQ, that
will help in providing the motivation and analysing the algorithms
of this section. We also give an efficient decentralized version of
SEQ.

4.1. SEQ: generalized sequential single-round RFC algorithm

Single-round decentralized RFC algorithms, such as RRE and
DRRE, can be described as the following sequential algorithm. First,
the readers R are sorted by a ranking function w(R), where the
output of 7 (R) is the set {v(),...,Vy} and vy is the reader
with the ith rank according to m(R). For instance, 7 (R) may
order the readers according to their weights. That is, a reader

5 This is because of the requirement of eliminating all redundant readers turns
the problem into an NP Hard problem
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Algorithm 1 Algorithm SEQ.

Algorithm 2 Algorithm RANDOM at reader v.

1:C <0

22U <«T

3: sort R according to a ranking function 7 (R), as v, ..

4: fori: 1 to k do

5. if {Nr(v;) NU} # ¢ (that is, if v(; covers at least one not-yet
covered tag) then

Vi

6: c «<{cu U(i)}
7: U < {U\NT(U,)}
8: return C

Ve > vy if W) > W(vg)). As an example, a reader v > ()
if (INr(v)|,id(v;)) > (INr(v))].id(v;)) according to the ranking
function of RRE. The sequential algorithm, called SEQ, passes the
readers in order from the highest ranked to the lowest. A reader
is included in the solution C if it covers at least one not-yet cov-
ered tag. The algorithm continues until C is a cover. A reader not
included in C is redundant. The pseudocode of SEQ is given in
Algorithm 1.

There is a strong relationship between SEQ and GREEDY. As-
sume that the readers weights in SEQ are the same weights used
in GREEDY. Both algorithms are greedy and terminate as soon as
a cover C is created. GREEDY sorts the readers at each iteration
and selects the reader with maximum weight in each iteration
(i.e., the reader with maximum updated weight after eliminating
all readers already included in C). SEQ, on the other hand, sorts
the readers only once. Such continuous re-sorting performed by
GREEDY decreases the size of the cover C. The problem of this
approach is that it is expensive to implement by a decentralized
algorithm. SEQ follows the other extreme of this approach, which
is sorting the readers only once. This does not guarantee that at
every iteration the reader with maximum weight is chosen, but
it requires less computation. An approach that comes in between
both extremes is to select readers randomly at each iteration. This
approach, as will be shown next, is easy to implement by a de-
centralized algorithm and it generates covers with small sizes in
several practical scenarios. This approach is implemented by algo-
rithm RANDOM, described in the following.

The sequential version of algorithm RANDOM assumes that the
ranking function & (R) shuffles the readers according to a uniform
probability. That is, a reader v; is ranked as the ith reader with
a uniform probability % Therefore, algorithm RANDOM selects,
in each iteration, a random reader v with uniform probability and
inserts it into C if it covers at least one not-yet covered tag. This
procedure is repeated until C is a cover.

RANDOM as a benchmark:. Given the simplicity of its approach and
its ranking function, RANDOM can be considered as a benchmark
for other reader-tag RFC algorithms that aim to reduce the number
of non-redundant readers. To outperform RANDOM, some reader-
tag RFC algorithms apply simple heuristics which can be seen as
different definitions of ranking functions 7 (R). For instance, RRE
orders the readers according to the number of their neighbor tags,
whereas DRRE orders the readers according to the number of
their coverage neighbor readers.

Another approach to outperform RANDOM is to run multiple ex-
ecutions of SEQ but with a different ranking of readers in each
execution. This approach was used in [8] and [17]. Algorithm
RANDOM* follows this approach as well. It runs in v iterations, for
¥ > 1. A new cover set C; is generated in each iteration i, for 1
< i < ¢, by running algorithm RANDOM over the set C;_;, where
Co = R. As a result, C; is equivalent to the set of non-redundant
readers generated by RANDOM. An execution of a RANDOM in a
RANDOM* iteration is called a shuffling of R. This is because in

1: W) < (a(v),id(v));

2: for each t € Nr(v) do

3 write(vt, W());

4: for each t € Nr(v) do

5 read(v, t);

6: if W(v) is maximum in M(t) then
7 v owns t

8: if v does not own any tag then

9: v is redundant;

each RANDOM" iteration the readers are rearranged in a different
random order. The shuffling procedure decreases the number of
non-redundant readers generated by RANDOM. This improvement
can be significant in practice as shown in the simulation experi-
ments results in Section 7.

The intuition behind the shuffling of the readers in RANDOM*
is the following. Consider an execution of algorithm RANDOM that
generates the set C with size m. According to the sequential ver-
sion of RANDOM (line 5 in Algorithm 1), a reader is included in C
only if it covers at least one tag that is not yet covered. This means
that the last reader to be included in ¢, denoted by v,y and m’" >
m 6, covers at least one tag, denoted t(n), that is not covered by any
other reader in C. On the other hand, it is possible that a reader
V' e {C \ vy} has all its tags covered by other readers in {C \ v'}.
Therefore, v may be considered redundant if the readers are shuf-
fled in a new RANDOM* iteration. The shuffling procedure reduces
the size of C by at least one if 1) there is a reader v’ that has all
its tag neighbors covered by other readers, and 2) v/ is ranked by
the ranking function as the last ranked reader after the shuffling
procedure.

4.2. Decentralized implementation of RANDOM and RANDOM*

The next step is to implement RANDOM and RANDOM* on an
RFID reader network in a decentralized manner with minimum
amount of write/read rounds. To emulate the random selections of
readers in RANDOM, each reader v draws a random number o (v)
from a uniform distribution. Each reader v writes («(v),id(v)) in
M(t) for each neighbor tag t. The unique identifier id(v) guaran-
tees the uniqueness of the readers weights. Each tag is owned by
the neighbor reader v with the maximum pair («(v),id(v)). This
gives an emulation of SEQ with the ranking function 7 (R) of
RANDOM. This is a decentralized implementation of RANDOM in
RFID reader networks that is executed in a single write/read round.

To implement the ith iteration of RANDOM* for i > 1, every
reader v that finds itself non-redundant in the previous iteration
i—1 draws a new random number «;(v) from a uniform distribu-
tion and creates the pair («;(v),id(v)). A tag t is owned by the
reader v with maximum (e;(v),id(v)), where v € Ni(t). Note that
a tag may have a new owner in each iteration of RANDOM*. The
last owner of a tag t is its actual owner.

The pseudocodes of RANDOM and RANDOM* are given in
Algorithms 2 and 3. The write(v,t) procedure (line 3) indicates
that reader v writes in the memory of a tag t. The for loop in
lines (2-3) is a write phase of a write/read round. The read(v,t)
procedure (line 5) indicates that reader v reads the memory of a
tag t. The for loop in lines (4-7) represents the read phase of the
write/read round. The waiting period spent by readers after a write
phase is omitted from the algorithm description to simplify the al-

6 m’ > m because some readers in Way. .- V(my) are not necessarily included in
C.
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Algorithm 3 Algorithm RANDOM" (/) at reader v.
1: for i: 1toyr do
2:  Run algorithm RANDOM with W (V) = (¢;(v), id(v))
3: If v is redundant, then v terminates the algorithm.
4: Reader v is non-redundant if it is a non-redundant reader in all
Y iterations.

VI @-__ 12,v1) : vy .\
It -2 h
v @7 (10,v2) v, @2 .-~
///‘\\ %) ,’/ SR %)
V3 ‘\\/// (7,v3) : v3 ‘\’/}
I B R <)
v @ Qvy) v, @

(a) Initial network. (b) The first execution of RANDOM.

Note that W(vy) > W(v2) > W(v3) >

W(vg).

Vi @ __ Gy v @ __

| ~sh
V2 .:::,’/ (20,V2)IV2 ,’/

A ! - 5

v @ __ (18,v3) : v3

S ‘\ .
V4 . V4.

(¢) The second iteration
network

(d) The second execution of RANDOM.
Note that W(v2) > W(v3) > W(vy).

Fig. 3. Example of RANDOM* with v/ = 2. The pairs beside the readers are the
weights of the readers. Assume that id(v4) > id(v3) > id(v,) > id(v;). The non-
redundant readers in the first iteration are vy, v, and vs;. These non-redundant
readers execute the second iterations with new weights. The readers that are non-
redundant in the second iteration are v, and vs. The algorithm terminates with v,
and v3 as non-redundant readers.

gorithm description. An illustrative example of RANDOM is given
in Fig. 3.

4.3. MAX-MIN: a variation of RANDOM*

A different version of RANDOM*, called MAX-MIN, consists of
two iterations only. This algorithm generates fewer non-redundant
readers compared to RANDOM* with two iterations on average. This
algorithm requires that the weight of a reader is computed only
once. In the first iteration, each tag is owned by the reader v with
the maximum weight W(v) = («¢(v), id(v)). The second iteration is
executed by the non-redundant readers that survived the first it-
eration. In the second iteration, each tag is owned by the reader
with the minimum weight W(v) = (@ (v), id(v)). a(v) remains the
same in both iterations.

The intuition behind MAX-MIN is the following. We
use algorithm SEQ and the reader weights of RANDOM. Let
the non-redundant readers selected in sequence by SEQ be
VaysV@2ys -+ Viky- That is, for any 1 <j<i< k, W(U(i)) > W(U(j)).
Given this sequence, each reader v, covers at least one tag that is
not covered by any reader v;, but the opposite is not true. Thus,
it is possible that the non-redundant readers V(jys -+ V() COVer all
the tags already covered by vy, ..., V(j_1). As a result, following
the opposite order of readers (i.e., , V(). - - ., V(2), (1)), Which is fol-
lowed by the second round of MAX-MIN, may generate fewer non-
redundant readers than if a random order of readers is followed
(i.e., another round of RANDOM as it is case with RANDOM* with
two iterations).

Example:. We give an illustrative example of MAX-MIN being ex-
ecuted over the network given in Fig. 3(a). The output of the first
iteration is the same as that in Fig. 3(b). In the second iteration,
the readers keep their weights of the first iteration. That is, the

Table 2
Terminologies introduced in Section 5.

Term Definition

T The set of active tags
T%v)  The set of active neighbor tags of reader v
RI(v)  The set of active neighbor readers of reader v

weights of the non-redundant readers in the second iteration are
(12,v7), (10,15) and (7,v3). Reader v3 owns tags t; and t3 since
its weight, (7,v3), is the minimum weight written in these tags.
Reader v, owns ;.

5. GDE: Greedy decentralized elimination

The execution of multiple shuffling procedures by RANDOM" re-
duces the number of non-redundant readers generated by RANDOM
using randomization. On the other hand, GREEDY always gener-
ates non-redundant readers sets of expected size that are less or
equal to what RANDOM generates. This is because GREEDY inserts
into the cover C the reader that covers the maximum of not-yet
covered tags in every iteration, and thus it outperforms RANDOM
on average. Algorithm GREEDY orders the readers according to
the number of their active neighbor tags, defined as the number of
neighbor tags that are not owned yet. This order may change ev-
ery time a new reader is included into the cover C, or basically
in every iteration of GREEDY. The continuous change of the read-
ers order guarantees that the size of the cover set C generated by
GREEDY is less or equal to what RANDOM generates on average
(see the conditional probabilities method [19,20] for more details).

The main issue of GREEDY is that it requires a central-
ized node. Furthermore, the naive decentralized implementation
of GREEDY suffers from a high communication cost, since it re-
quires that a maximum reader (i.e., leader election) is repeatedly
found until a cover is formed. The objective of algorithm GDE is to
overcome this issue by introducing an efficient decentralized im-
plementation of GREEDY.

5.1. Algorithm description

We start introducing the details of GDE by giving the follow-
ing definitions. The new mathematical terms are summarized in
Table 2.

Definition 2. A reader deactivates itself if it terminates the execu-
tion of the algorithm. Readers that do not deactivate themselves
are called active readers.

Definition 3. A tag is deactivated if it terminates the execution of
the algorithm. The set of active tags is denoted by 7 The set of
active neighbor tags of a reader v is denoted by 79(v).

Definition 4. At an iteration i of GDE, a pair of active readers v
and u are called active neighbor readers if they share the cover-
age of at least one active tag t at iteration i. The set of active
neighbor readers of reader v is denoted by R%(v). That is, R4(v) =
T W) nT(V)} # 0}

Algorithm GDE runs in iterations. At least one reader and one
tag are deactivated in each iteration. Each iteration is executed by
the set of active readers and active tags at that iteration. A tag is
deactivated only after being owned by a neighbor reader. The al-
gorithm terminates when all readers and tags are deactivated.

In each iteration, every active reader v writes its weight W(v)
in the memory M(t) for each active neighbor tag t € 7(v). The
weight W(v) of a reader v is set to (|7%(v)|,id(v)) in each itera-
tion v is active in.



102 A. Jedda et al./Computer Networks 102 (2016) 96-108

Algorithm 4 Algorithm GDE at reader v.
1: T9) < Nr(v);
2: while reader v is active do
3 W) < (IT*(v)],id())
4: for each t € 7T9(v) do
5 write(v,t, W (1))
6: foreachte7%v) do
7.
8

read(v, t)
if v has the maximum W(v) in each t € 7%(v) (i.e. local max-
imum) then
9: v owns and deactivates each t € T9(v)
10:  update 79(v) by eliminating all deactivated tags
11:  if 79(v) = ¢ then
12: v is deactivated
13: if v owns no tag then
14: v is redundant and deactivated

Definition 5 (Local maximum). A reader v is called a local maxi-
mum at iteration i if it is the reader with maximum W (v) among
all its active neighbor readers at the same iteration. That is, v is a
local maximum if W(v) = W(V') for each v/ € R9(v) in iteration i.

A reader that recognizes that it is a local maximum reader
owns all its active neighbor tags 7%(v). A tag is deactivated by its
owner once it is owned. A reader v/ that has no active tags deac-
tivates itself. This may occur either because v’ owned and deacti-
vated all its active neighbor tags 7%(v'), or because all the neigh-
bor tags Ny (1) of v/ are owned by other readers. As a result, a
tag is owned by exactly one reader. This is because the tags are
owned by local maximum readers and are deactivated as soon as
they are owned. Note that according to the definition of local max-
imum readers, it is not possible for a pair of local maximum read-
ers to own the same tag during the execution of the algorithm.

The implementation of the rules given above requires two
write/read rounds per iteration. Each active reader v writes its
weight W(v) in M(t) for every active neighbor tag t in 79(v).
Then, an active reader v checks if it has the maximum weight
W(v) at each tag t € T9(v). If this is the case, then v is a local
maximum reader. A local maximum reader owns and deactivates
its active neighbor tags by writing a special flag in their memories.
The pseudocode of algorithm GDE, executed at reader v, is given
in Algorithm 4. An example illustrating how GDE works is given in
Fig. 4.

5.2. Theoretical analysis

Theorems 5.2 and 5.3, given below, prove the correctness of
GDE. Theorem 5.2 proves that the non-redundant readers gener-
ated by GDE are exactly the same as those generated by GREEDY.
Theorem 5.3 proves that GDE terminates in at most |R| iterations,
each of which consists of two write/read rounds. Before proving
Theorem 5.2, we prove the following Lemma.

Lemma 5.1. The local maximum readers in any reader network do
not share any neighboring tags. That is, if Rjpnax iS the set of local
maximum readers in a given network, then N (v) N Ny (u) = @ for ev-
ery pair v and u in Ryyg. This means that a pair of local maximum
readers cannot also be coverage neighbor readers.

Proof. By contradiction, if there is a tag t shared between two lo-
cal maximum reader v and u, then by the uniqueness of the reader
weights only one of v and u can be the maximum reader for ¢ (let
it be v). As a result, the other reader u is not a maximum of t and
hence is not a local maximum reader. O

B h h
@ - nh v '4 f
vi @F- - W o - B
V@t @ u
V4 ‘: - ts s ts

(a) First iteration

w.i t

Vi@ i@ V@B

VQ.//

(b) Second iteration (c) Final result

Fig. 4. Example of GDE. Initially the network consists of four readers and four tags.
The set R = {v4, V3, 5, 11} where id(v4) > id(v3) > id(v,) > id(vq). In the first it-
eration, the set of local maximum readers is {v4, v3}. Reader v4 deactivates all its
neighbor tags, which are t4 and ts. Reader v3 also deactivates all its neighbor tags,
which are t; and t,. At this point, the readers v4 and v5 find that all their neighbor
tags are deactivated, and hence terminate the execution of the algorithm. Reader v,
and v, find that one of their neighbor tags, namely t5, is not yet deactivated. There-
fore, both readers move to the second iteration of GDE. In the second iteration, the
network consists of v, and v, and the only active tag is t3 as shown in 4(b). Reader
v, is the only local maximum reader since id(v,) > id(v;) and both have only one
active neighbor tag (that is, 79(v,) = 7%(v4) = {t3}). Therefore, v, owns and de-
activates t3. The algorithm terminates since all readers are deactivated. The set of
non-redundant readers is {vy4, V3, 1,}, as every one of these readers owned at least
one neighbor tag.

G G G,
f V3 V4 V3
V3 ‘: - 12}
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Fig. 5. Example for the directed graph used in the proof of Theorem 5.2. G; is
formed from the readers {vy4,v3,v,,11} and the tags {ts, ts, t3, t3, t;} in G. Every
coverage neighbor reader in G shares an edge in G;. G, is formed from the removal
of vy, since it is the first to be picked by GREEDY, and its neighbor tags ts and t4.

Theorem 5.2. Let Cs, C4 be the set of non-redundant readers found
by GREEDY and GDE respectively, then Cs = Cy.

Proof. Let us create a graph Gy = (R, &ow[R, T]) where R is the
set of readers and &qy[R, 7| are the coverage relationships be-
tween the readers such that (u,v) e &o[R,T] if both readers
share the coverage of at least one tag in 7 (i.e., coverage neighbor
readers). We orient the edges of G; such that an edge (u,v) indi-
cates that W(u) = W(v) (see Fig. 5 for an example). In the oriented
graph Gy, the local maximum readers are the sources and are de-
noted by R (G1). The first reader to be selected by GREEDY, de-
noted vq), is necessarily in R;mq(Gy). We create then a new ori-
ented graph G, induced from the set of readers {R/{v)}} and the
set of tags {7/{Nr(v(1)}}. According to Lemma 5.1, the local maxi-
mum readers in Gy except v(;, have to be local maximum readers
in G,. As a result, the second reader to be picked by GREEDY, de-
noted vyy, is 1) in {Rymax(G1)/{v(1y}} (since their weights will not
change according to Lemma 5.1), or 2) in a directed path from vy,
to a sink in the graph G;. For the second case, this happens be-
cause if vy was in a directed path starting from reader w # v(y)
to a sink node, then w is necessarily a local maximum reader (i.e.,
W(w) > W(v(,)) and hence w should be picked first by GREEDY
instead of v(,). This shows that there is an independence between
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the maximum readers R ., (G1). Thus, all of them can be selected
by GREEDY in the same iteration and this is what GDE does. 0J

Theorem 5.3. Algorithm GDE terminates correctly in at most 2|R|
write/read rounds.

Proof. There must be at least one local maximum reader in each
iteration of GDE, which is essentially the maximum reader among
all active readers. This is guaranteed by the uniqueness of the
weights. Therefore, GDE requires at most |R| iterations. Each deac-
tivated reader v deactivates all its active neighbors tags. Each itera-
tion consists of two write/read rounds as defined in the algorithm
description.

The upper bound |R| is shown to be tight by building the fol-
lowing scenario. For simplicity, let R = {vq, ..., vn} and let id(v;) >
id(v(_qy) for 1 < i < m. We define the following line graph £(m).
Each reader v; covers a set of tags T; that are not covered by any
other reader, and |T;| = i. The readers are placed on a line, such
that each pair of readers v; and v;,, share the coverage of a tag
tiir1) for 1 < i < m. This is depicted in Fig. 6. Note that vpm
and v,,_1 cover the maximum number of tags, which is equal to
m. Since id(vpy) > id(vy,_1), then vy, is the only local maximum
at this configuration. The elimination of v, generates the graph
L£(m —1). The same procedure is repeated m = |R| times. Every
reader v; is a local maximum in iteration i. O

6. LIMITED-GDE: Limiting the number of iterations of GDE

The main issue in GDE is that it may require a large number of
write/read rounds. Algorithm LIMITED-GDE reduces the number
of iterations of GDE by limiting the number of its iterations to
a constant integer ¥ > 1. The constant ¥ is a design parameter
used to balance the number of iterations and the number of non-
redundant readers.

The algorithm exploits similarities between GDE and RRE. Al-
gorithm LIMITED-GDE executes GDE for i —1 iterations at
most. If GDE is found to terminate in one of the ¢ — 1 iterations,
then LIMITED-GDE terminates. Otherwise, every active tag t at
iteration ¥ is owned by its active neighbor reader v with the max-
imum weight W (v) among all active neighbors readers of t, where
W) = (|T%()|,id(v)). Note that this is similar to algorithm RRE,
since every tag is owned by the reader v that wrote in M(t) and
has the maximum weight W (v).

Example:. Consider the reader network given in Fig. 4. Let ¢ be
set to 2. GDE does not terminate in i —1 iterations. At the
Y th iteration, the set of active readers are {vy,v,}, while the
only active tag is t3. Readers vy and v, write their weights in t3.
Reader v, owns tag t3 since its weight is the largest according
to tag t3. The non-redundant readers are {vg4, v3, v}, which is the
same result found by executing GDE. However, only 2 x (¢ — 1) +
1 = 3 write/read rounds were executed, whereas GDE executed 4
write/read rounds. The difference between the two algorithms is
clearer in larger reader networks.

Theorem 6.1. Algorithm LIMITED-GDE terminates correctly in at
most 2(y — 1) + 1 write/read rounds.

We show in the following that RRE, LIMITED-GDE, and GDE
all belong to the same family of algorithms. LIMITED-GDE is
the generalization of these algorithms. The weight of a reader is
decided by the number of the tags it covers. Knowing the re-
lationship between these algorithms, we can design other simi-
lar algorithms but with different definitions of readers weights.
Theorem 6.2 below shows the relationship between:

1. The set of non-redundant readers generated by GDE (denoted
by Cg),

2. The set of non-redundant readers generated by LIMITED-GDE
after i iterations (denoted by C;(i) for 1 < i < ¥), and

3. The set of non-redundant readers generated by RRE (denoted
by Cr).

Theorem 6.2. For an integer ¥ > 1, |Ce| < |C;(Y)| < |C (Y —1)| <
- =lgMl=lel

Proof. Let the set of active tags at iteration i be Ti“. Let Rmax (i) be
the set of readers that are maximum in at least one of their neigh-
bor tags at iteration i. Let Ry, (i) be the set of local maximum
readers at iteration i. Then:

Cl(l) = Rmax(l) =Cr
CI (i)i>l = Rmax(i) U {leax(i - 1) U---u leax(o)}

Note that Cg¢ = |UJ;-j-; Rimax (1), Where z is the number of iter-
ations required by GDE to terminate. Also note that Rpey(i) =
Rmax (i) = 0 for all i > z since all tags and readers are deactivated
after z iterations. From the definition of LIMITED-GDE, C;(z) = Cg,
and the same applies for all C;(i) such that i > z.

Lastly, note that Rypg(i) € Rmax(i). This leads to Rmax(i) <
Rmax (i — 1) since, in each iteration i, the readers of Rjyqx(i—1)
are already in C;(i) and Ryqx(i — 1) € Rmax(i — 1). Therefore:

Gz+1)cC@)cCiz-1)---cC(2) <a(1)

which completes the proof. O
7. Simulation results

This section studies the performance of the reader-tag RFC
algorithms introduced in this paper using simulation experi-
ments. We compare our algorithms, namely RANDOM, RANDOM",
MAX-MIN, GDE and LIMITED-GDE, against algorithms RRE [6],
DRRE [7], and NTE [16]. LEO [8] is excluded from these compar-
isons since its description in [8] lacks some important implemen-
tation details (e.g., the readers write/read scheduling algorithm).
GREEDY [6] is also excluded since it forms the exact same set of
non-redundant readers that is formed by GDE (see Theorem 5.2).

The performance of these algorithms is studied using the fol-
lowing performance metrics:

1. The number of non-redundant readers,
2. The number of write operations.

The selection of the best combinations of the number of read-
ers and tags is a difficult task since applications of RFC algorithms
can fit in small-scale indoor or large-scale outdoor environments.
The positioning of the readers and tags forms another challenging
task for the same reason. Thus, RFC algorithms are studied under
different network topologies; each of which simulates certain sce-
narios where reader networks may be used. This would enrich the
understanding of the studied algorithms behavior. These topologies
are called:

1. Uniform geometric topologies; defined in Section 7.1.1,
2. Arbitrary topologies (or, non-geometric topologies); defined in
Section 7.1.2.

The superiority of GDE is clear in all the experiments of this
chapter. RANDOM outperforms RRE and DRRE in most experi-
ments, whereas MAX-MIN has an even better performance as it
outperforms RANDOM (2) and RANDOM (3) (i.e, RANDOM" with
2 and 3 iterations respectively) in most experiments. These re-
sults, however, occur in geometric topologies. The experiments of
this chapter show that RANDOM, MAX-MIN, and LIMITED-GDE (1)
(that is, LIMITED-GDE with ¥ — 1 = 1) are shown to have a bal-
ance between the number of non-redundant readers, number of
write/read rounds and the number of read and write operations.
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Fig. 7. Impact of the number of tags on the number of non-redundant readers in
uniform geometric topologies with 100 readers.

In the following, each experiment consists of 50 trials. The fig-
ures in this section show the averages of these trials. More detailed
simulation results can be found in [21]. This includes the numer-
ical results tables, the impact of different types of topologies, and
the impact of the number of write/read rounds on LIMITED-GDE
and RANDOM®.

7.1. Number of non-redundant readers

7.1.1. Uniform geometric topologies

This section studies the performance of the reader-tag RFC al-
gorithms under uniform geometric topologies. These topologies are
constructed as follows; a set of readers and tags are spread uni-
formly randomly in a rectangular plane with an area of 200 m x
200 m. A reader covers a tag if the Euclidean distance between
them is at most 5 m, which is the interrogation range of readers
(i.e., ;). The experiments consider only the networks that guaran-
tee that every tag is covered by at least one reader.

The number of tags impact:. At first, the impact of the number
of tags on the number of non-redundant readers is studied. The
following experiments fix the number of readers to 100 readers,
while the number of tags is in {100, 250, 500, 750}. The results of
these experiments are shown in Fig. 7. GDE outperforms all the
other algorithms, even the centralized algorithm NTE which uses
more complex rules. Nevertheless, NTE outperforms the algorithms
except GDE. This is an expected superiority since all the other algo-
rithms are decentralized, and hence, use less resources compared
to centralized algorithms.

Fig. 7 shows that RRE outperforms DRRE despite the fact
that DRRE executes two write/read rounds whereas RRE exe-
cutes only one write/read round. To elaborate more on this point,
note that the weight W(v) of a reader v in RRE is (|[N7(v)[,id(v)),
where Ny (v) is the number of neighbor tags of reader v, whereas
the weight W(v) of a reader v in DRRE is (|Ng,(v)|.id(v)),
where Ng (v) is the number of coverage neighbor readers of v. To
know their coverage neighbor readers, the readers must execute a

write/read round in which each reader appends its identifier to all
its neighbor tags memory contents. After that, each reader v reads
the memory of all its neighbor tags and computes N (V). As a re-
sult, a DRRE reader makes a decision of whether it is redundant
or not at the end of the second write/read round. This issue, how-
ever, is not found in RRE.

Using SE to understand reader-tag RFC algorithms:. Fig. 7 shows
that RANDOM forms fewer non-redundant readers compared to
RRE in the uniform geometric topologies. The outperformance is
more significant as the number of tags increases. For instance, RRE
generates 25% more redundant readers than RANDOM in networks
with 750 tags.”. This is an improvement of about 10 readers on
average. This result is related to the increase in the average tags
counts as the number of tags increases (that is, as |7 increases,
the average size of Ny (v) for each v e R increases as well). This
result is explained informally in the following using the general-
ized sequential algorithm SEQ of Section 4.1.

Recall first that SEQ is a generalization of DRRE, RRE, and
RANDOM. That it, the set of non-redundant readers C formed by
the sequential versions of DRRE, RRE, and RANDOM are exactly the
same as that of the decentralized versions. According to its de-
scription, SEQ passes the readers in a descending order accord-
ing to their weights, where a weight of a reader v is W(v).® The
sorted list of readers is denoted by {v(q). ..., vy}, where vy in-
dicates that v; is the it" ranked reader by the algorithm (that
is, W(v;)) > W(y;) if i < j). A reader vg; is added to the solu-
tion C only if it covers at least one not-yet owned tag. The sorted
set of readers that are included in the solution C is denoted by
{Vety. -+ Ve ). Where k is size of C (that is, v, is the i reader
to be included in C by SEQ).

According to the definitions given above, it is necessary that
V@) = V). Thus, RRE must include vy in its solution C, where
reader v(;y is the reader that covers the maximum number of
tags (since |Nr(v(p))| is the maximum among all other readers
in R). However, the main issue of RRE is caused by the fact that
its sequential version sorts the readers only once. Thus, a reader
Ve, for i > 1, is not necessarily the reader that covers the max-
imum number of tags in iteration i. In fact, the inclusion of v,
in C at iteration i may lead to unnecessary increase in the size
of C. As an example, a possible scenario is when v, owns a
small number of tags although [Ny (v(y))| is large. This happens if
{N7(v(1)) NNr(v2y)}| = B where 0 < B < [N (v(2y)|. Given that
B > 0, vy must be included in C according to SEQ (that is,
Ve2) = V(2y) although v(,) would own only a small subset of its
neighbor tags. The tags that would be owned by v, can be owned
by other readers given that they are few in quantity. If there are
many readers having the same characteristic of v,y (i.e, own a
small set of tags that could have been owned by other readers),

7 This is calculated as 1 — |Crre| \ |Crawoou|. Where |Cag| is the number of non-
redundant readers generated by RRE in this set of experiments. |Cranpou| is defined
similarly

8 Note that the definition of the reader weights is different in each algorithm.
For instance, in RRE the weight W(v) is set to (|Ny(v)[,id(v)), whereas it is set to
(a(v),id(v)) in RANDOM.
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Fig. 8. Impact of the edge probability on the number of non-redundant readers in
arbitrary topologies.

then the number of non-redundant readers increases unnecessar-
ily. In the studied geometric topologies, the readers are located in
proximity of each other. Thus, the number of tags shared between
the readers increases. This increases the number of readers which
have the same characteristic of v, in the example above. This
high level of intersection between readers becomes clearer as the
average tag count increases in geometric topologies. This explains
the weaknesses of RRE.

GREEDY, and hence GDE, solves the issue of RRE (described
above) by resorting the set of readers every time a new reader is
included in C. That is, the reader that covers the maximum number
of not-yet owned tags is included in C in each iteration. RANDOM,
on the other hand, solves this issue by random selection of read-
ers. This random strategy explains the superiority of RANDOM over
RRE in this type of geometric topologies.

Fig. 7 shows that algorithm MAX-MIN outperforms
LIMITED-GDE (1). The out-performance can be explained using
the same argument used to explain the superiority of RANDOM
over RRE. This is because MAX-MIN can be considered as a
two-iteration version of RANDOM (see Section 4.3). Similarly,
LIMITED-GDE (1) can be considered as a two-iteration version of
RRE (see Theorem 6.2).

7.12. Arbitrary topologies

The results observed above are related to the geometric nature
of the studied topologies. To enforce the previous arguments, the
following experiments study the performance of the algorithms
in non-geometric topologies. These topologies are called arbitrary
topologies. An arbitrary topology is a random bipartite graph G =
(R, T,Es), where R is the set of readers and 7 is the set of tags.
An edge (v,t) € Es represents a coverage relationship between a
reader and a tag. The probability that an edge exists in Es is fixed
to a constant p, where 0 < p < 1. Each of the topologies studied
in the following experiments consists of 100 readers and 750 tags.
The edge probability is in {0.2, 0.4, 0.6, 0.8}.

The impact of the edge probability on the number of non-
redundant readers is shown in Fig. 8. Most of the results in these
experiments are repetitions of previous results. However, note that
RRE outperforms RANDOM in these experiments. This is contrary
to previous experiments. This confirms further the argument used
previously to explain the superiority of RANDOM over RRE in ge-
ometric topologies.

A mixture of arbitrary and uniform geometric topologies:. Previous
experiments show that the behavior of RRE and RANDOM de-
pends on whether the network is geometric or arbitrary (i.e., non-
geometric). Thus, it shall be natural to study the behavior of these

DSRE — RANDOM
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Fig. 9. Impact of the number of tags on the number of non-redundant readers in
uniform geometric topologies with probabilistic edges (p = 0.9, 150 readers).
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Fig. 10. Impact of the number of tags on the total number of overwrite operations
in uniform geometric topologies.
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Fig. 11. Impact of the number of tags on the total number of overwrite operations
in uniform geometric topologies.

algorithms in topologies that have characteristics of geometric
and arbitrary topologies. These topologies are uniform geometric
topologies in which an edge between a reader v and a tag t can be
removed with a probability 1 — p for 0 < p < 1. That is, each reader
connects to a tag within its interrogation range with probability p.
This construction method can be used to emulate the inaccuracy of
the tag discovery procedure, and hence it adds more practicality to
uniform geometric topologies and arbitrary topologies. The perfor-
mance of RFC algorithms is studied under this type of topologies.
The number of readers is set to 150 readers, while p is set to 0.9.
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Table 3
Summary of the advantages and disadvantages of the algorithms presented in this paper.

Algorithm Advantages Disadvantages

RANDOM Serves as a benchmark to RFID Can generate a large number
coverage algorithms that use the of non-redundant readers.
reader-tag communication model.
It also outperforms major algorithms
in practical scenarios even if it
should be considered as a
benchmark.
Requires only write/read round.
Reader weight W(v) is easy to
compute.

RANDOM* Improves the performance of RANDOM by Can generate a large
simply running multiple RANDOM number of non-redundant readers.
write/read rounds.

MAX-MIN Improves the performance of RANDOM by Can generate a large
simply running two write/read rounds. number of non-redundant readers.
Does not require to compute the reader
weight W(v) more than once.

GDE Generates the exact set of non-redundant May require a large number

readers generated by GREEDY but in a

decentralized fashion.

Generates a very low number of

of write/read rounds to
terminate

non-redundant readers; the best in

the literature so far.
LIMITED-GDE
rounds to a constant.

Generates a low number of non-redundant

readers even with a small

Reduces the maximum number of write/read

Every iteration requires two
write/read rounds except the
last. This may be expensive

in some scenarios. RANDOM*
and MAX-MIN are more suitable
in such cases.

The impact of the number of tags on the number of non-redundant
readers is shown in Fig. 9. All algorithms are observed to gener-
ates a larger number of non-redundant readers if compared against
the case where uniform geometric topologies are used (see Fig. 7).
This is because the number of non-redundant readers in the net-
works of Fig. 9 is smaller compared to the networks of Fig. 7. The
results show that the out-performance of RANDOM over RRE be-
comes clearer as the number of tags increases; whereas the perfor-
mance of both algorithms is approximately the same in networks
with smaller number of tags. This result suggests, as the density of
the network increases, the effect of the uniform removing of edges
becomes neglected.

7.2. Number of write operations

This section compares the RFC algorithms with respect to the
number of write operations they execute. Two important issues re-
garding the write operations must be elaborated before analyzing
the results of this section:

1. For a reader v to write a sequence of bits B in the memory of
a neighbor tag ¢, the reader 1) reads the memory content M((t)
of t and locally stores it in M;, where M, is in the memory of v,
2) appends to B to M, (that is, create M, where M, = {M; UB}),
and 3) overwrites My in the memory of tag t. Therefore, a write
operation is also called an overwrite operation in this section.

2. Most of the studied algorithms do not necessitate that a reader
writes a value in each write/read round it is active in. For in-
stance, the readers in RRE and RANDOM are interested only
in the maximum weight already written in the memories of
their neighbor tags. Therefore, a reader v overwrites its weight
W(v) in the memory M (t) of a neighbor tag t only if it finds
that W(v) is larger than what is already written in t. The same
concept applies to GDE and LIMITED-GDE. Write operations
are slightly different in DRRE. The first iteration of DRRE re-
quires that a reader overwrites all its active neighbor tags in
each write round. This is because each reader must write its

identifier in the memory of all its neighbor tags. These writ-
ten identifiers are then used by each reader in order to find
its neighbor readers. This causes an increase in the number of
write operations in DRRE.

The total number of overwrite operations executed by the stud-
ied RFC algorithms are shown in Figs. 10 and 11 (separated into
two figures for clarity). The total number of overwrite operations
is computed similarly. Note that the number of read and over-
write operations depends mainly on the number of the reader-tag
cover relationships in the studied networks, and the number of
write/read rounds executed by the algorithm. Note that MAX-MIN
executes significantly more overwrites compared to RANDOM (2).
This is despite that MAX-MIN and RANDOM (2) execute the same
number of read operations. This is a direct result of using the
inverse order of readers when executing the second iteration of
MAX-MIN. This also explains the smaller number of non-redundant
readers generated by MAX-MIN compared to RANDOM (2). Note
as well that the rate of decrease in the number of overwrites in
LIMITED-GDE decreases as we increase the number of iterations.
This is because there are fewer non-redundant readers in each new
iteration.

8. Summary and Conclusions

A summary of the algorithms introduced in this paper is given
in Table 3. We introduced in this paper two sets of algorithms that
solve the RFID coverage problem using writeable tags. The first set
consists of randomized algorithms, called RANDOM and RANDOM*.
It also consists of a variant of these algorithms, called MAX-MIN.
The second set of algorithms consists of deterministic algorithms,
called GDE and LIMITED-GDE. Our algorithms were shown to
outperform major existing algorithms in different scenarios. There
are still more variations of this problem (e.g., adding load balanc-
ing constraints, or others). A promising direction is fault tolerance.
That is, how to solve the RFID coverage problem if it is assumed
that the links between readers and tags may fail (e.g., a reader is
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not able to write in a tag in its proximity). Another direction is the
problem of optimizing write/read rounds. Lastly, we see that the
reader-tag RFID coverage problem still requires future research for
two main reasons; the novelty of the reader-tag communication
model, and the various and promising applications of the problem.
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