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The Internet of Things (IoT) holds the promise to interconnect any possible object capable of providing

useful information about the physical world for the benefit of humans’ quality of life. The increasing

number of heterogeneous objects that the IoT has to manage introduces crucial scalability issues that

still need appropriate solutions. In this respect, one promising proposal is the Social IoT (SIoT) paradigm,

whose main principle is to enable objects to autonomously establish social links with each other (adher- 

ing to rules set by their owners). “Friend” objects exchange data in a distributed manner and this avoids

centralized solutions to implement major functions, such as: node discovery, information search, and

trustworthiness management. However, the number and types of established friendships affect network

navigability.

This issue is the focus of this paper, which proposes an efficient, distributed and dynamic solution for

the objects to select the right friends for the benefit of the overall network connectivity. The proposed

friendship selection mechanism relies on a game theoretic model and a Shapley-value based algorithm.

Two different utility functions are defined and evaluated based on either a group degree centrality and an

average local clustering parameter. The comparison in terms of global navigability is measured in terms

of average path length for the interconnection of any couple of nodes in the network. Results show that

the group degree centrality brings to an enhanced degree of navigability thanks to the ability to create a

suitable core of hubs.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

With the recent spreading of RFID-tagged objects, smart

evices, augmented every-day life objects, and wireless sen-

or/actuator networks, the distance between physical and virtual

orlds is gradually being shortened, leading to the so-called Inter-

et of Things (IoT) paradigm. According to Das and Harrop [1] , by

015 the RFID devices alone will reach the number of hundreds of

illions; in line with this forecast, Cisco [2] foresees 6.58 connected

mart devices per person by 2020. However, the success of IoT ap-

lications strongly depends on the implementation of satisfactory

olutions to meet key system requirements, such as reliability, scal-

bility, and efficiency. In fact, the large number of heterogeneous

nd pervasive objects continuously generating sensing data [3] and
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onnecting different realms, ranging from transport to education

nd from business to home management, offers opportunities to

eploy manifold applications and services. At the same time, this

alls for effective methodologies for a fast and dynamic discovery

f objects offering the cited services. Searching information, data

nd resources in the IoT emerged as a crucial challenge [4] : in ad-

ition to the size of the searching space, sensors are often required

o produce data in real-time, which corresponds to highly dynamic

eadings, as it may happen when tracking the position of an ob-

ect or sensing humidity/temperature/presence in the surrounding

nvironment. A further complication derives from the shift we are

itnessing in the interaction model. From a paradigm where hu-

ans look for information provided by objects (human-object in-

eraction) IoT is moving towards a model where objects look for

ther objects to provide composite services for the benefit of hu-

an beings (object-object interaction). 

An approach with the potential to properly address the men-

ioned scalability issues, which is recently gaining a high popu-

arity, is based on the exploitation of social networking notions,

s formalized by the Social IoT (SIoT) concept [5] . This is intended
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as a social network where every network object is capable of es-

tablishing social relationships with other things in an autonomous

way with respect to the owner but according to rules set by her.

Every object can then interact with its friends when needing for

some assistance, such as the provisioning of a piece of important

information or a key service. This allows for the implementation of

distributed and scalable procedures to manage object interactions

in the same way as humans do when interacting in the social net-

works. The resulting process has a distributed nature, as each ob-

ject searches for its target peer among its friends, which, if unable

to directly provide the requested service/information, take further

actions by enquiring their friends. 

Clearly, the performance of such a kind of process in the SIoT

network is strictly subject to the capability of the objects to

replicate the human innate behavior in handling social relation-

ships, e.g., select the right friends, consult the appropriate service

provider, evaluate the trustworthiness of the peers and community.

To this aim, each object has to store and manage the information

relevant to its friends: data about past transactions, quality of ser-

vice for past interactions, services that can be provided by friends,

and so on. An important parameter to consider is the number of

relationships that an object establishes, which affects its mem-

ory consumption, the use of computational power and battery, and

the effectiveness of the service discovery operations. Therefore, the

choice of the object to promote as a friend among the potential

candidates becomes also a key factor influencing the overall sys-

tem performance and the computational cost in finding the best

set of friends. 

The above considerations motivate the research in this paper,

whose aim is to define for any object an efficient strategy to select

the right friends in the view of improving the overall network nav-

igability . An important feature to achieve for the benefit of over-

all scalability is a friend selection policy which is distributed and

dynamic in its nature. This avoids the need for central controllers

to set a-priori rules to establish social ties. Additionally, the nav-

igation of the resulting network structure should be independent

from the implemented routing algorithm and from the application

triggering the search operations. An initial study in this direction

has been presented in [6] , where an early analysis assessed the

suitability of the game theoretic model to the problem. In this pa-

per, we extend our previous research work by proposing a novel

utility function for the objects, which reveals to be a better per-

forming solution for our purposes. Additionally, we present the

steps to follow for an approximated computation of the Shapley-

value as a viable approach proposed in the literature to reduce the

computation complexity and guarantee tractability in real prob-

lems. To summarize, the major contributions of the paper are: 

• Modeling of the friendship selection process in the SIoT context

in terms of a cooperative game, where a Shapley-value based

algorithm is proposed to define of the best set of friends for

each object in the network and by this enhance the SIoT net-

work navigability; 

• Proposing and comparing two suitable utility functions that

carefully model the corresponding game and the preferences in

the friendship selection for the objects in the SIoT; 

• Presenting an approximated computation of the Shapley-value

applied to the specific problem to reduce the computational ef-

fort in the management of the relationships; 

• Analyzing the performance of the proposed solutions to eval-

uate the network navigability mainly in terms of the average

number of hops for local peer search operations. 

The remainder of the paper is organized as it follows. In the

next Section, the research background and related works are pre-

sented. In Section 3 the friendship selection approach for the SIoT

is introduced. In Section 4 and 5 the reference game theoretic no-
ions and the utility functions proposed for the problem are de-

cribed. In Section 6 an approximated computation of the Shapley-

alue, which is of utmost importance in the resource-constrained

IoT environment, is given together with a computational complex-

ty analysis. The performance evaluation results are summarized in

ection 7 , while conclusive remarks are given in the last section. 

. Research background and related works 

.1. Social internet of things (SIoT) 

The idea to use social networking notions within the Internet

f Things to allow objects to autonomously establish social rela-

ionships is recently gaining fast popularity. The driving motiva-

ion is that a social-oriented approach is expected to support the

iscovery, selection and composition of services and information

rovided by distributed objects and networks [ 7 , 8 , 9 ] and [10] .

n this paper, without losing generality, we refer to the social IoT

odel proposed in [5] (we use the acronym SIoT to refer to it). Ac-

ording to this model, a set of forms of socialization among objects

xist. The parental object relationship is defined among similar ob-

ects built in the same period by the same manufacturer where the

ole of family is played by the production batch. The objects can

stablish co-location object relationship and co-work object relation-

hip , like humans do when they share personal (e.g., cohabitation)

r public (e.g., work) experiences. A further type of relationship is

efined for objects owned by the same user (mobile phones, game

onsoles, etc.) which is called as ownership object relationship . This

atter relationship is established when objects come into contact,

poradically or continuously, for reasons purely related to relations

mong their owners (e.g., devices/sensors belonging to friends) and

t is named social object relationship . 

All of the above mentioned relationships within the SIoT plat-

orm are created and updated on the basis of the objects fea-

ures (such as: object type, computational power, mobility capa-

ilities, brand) and activity (frequency in meeting the other ob-

ects). The parental and ownership relationships are determined

y the static characteristics of the object (or slowly varying char-

cteristics): type, brand, ownership. The other kinds of relation-

hip are determined by the movement of the object and by the

ther objects it comes across. To manage the resulting network

nd relationships, the SIoT architecture foresees four major com-

onents [5] . The relationship management introduces into the SIoT

he intelligence that allows objects to start, update, and termi-

ate relationships. This is implemented in the Cloud, in the ob-

ect gateways, and in the objects themselves when capable of im-

lementing the relevant logic. Clearly, the configuration of these

unctions is controlled by the object owner; accordingly, the re-

ulting links are asymmetrical. The second component in the SIoT

rchitecture is the service discovery that has the purpose to find

hich objects can provide the required service in the same way

umans seek for friendships and information. The third component

s the service composition , which enables the interaction among ob-

ects, and the fourth component is the trustworthiness management

10] which aims at understanding how the information provided

y other members has to be processed. 

In [11] , an implementation of a SIoT architecture is described

and its open source version is available at the URL http://www.

ocial-iot.org ). The platform introduces a central server which im-

lements the functions needed to register an object, to config-

re information about the objects, to enable the users to spec-

fy the object’s behavior and to create and manage the relation-

hips of every object. The server pushes these information to the

bjects when needed, for example to activate the discovery of a

articular service. This solution allows even an object with limited

omputation capabilities to be able to create and manage its own

http://www.social-iot.org
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elationships. This implementation is taken as a reference in this

aper as it transfers the burden of handling an indefinite num-

er of relationships in the objects to the server. In particular, we

oresee that the external server will compute the Shapley-value

or the right friendship selection in order to maximize the net-

ork navigability. The final information about the selections will

hen be pushed to the objects. Regardless of the possible imple-

entation, objects with low computation capabilities can benefit

rom the support of other nodes, friends or dedicated gateway, to

omplete demanding tasks, following the Fog Computing paradigm

12] . 

.2. Node and service discovery in IoT 

Searching for objects, data and services in the IoT is a cru-

ial challenge especially in real-time environments [4] . Several ap-

roaches for real-time search have been proposed in the literature,

ut none of them is still offering a complete and satisfactory solu-

ion. For instance Snoogle/Microsearch [13,14] and MAX [15] only

erform local searches without taking into account the global do-

ain; Global Sensor Networks (GSN) [16] supports searches on

tatic metadata, whereas Dyser [17] considers only keywords as a

uery language and does not consider the object contexts. More-

ver, a common feature of all these search engines is that they

re based on a centralized architecture and, as such, cannot scale

roperly with the expected rapidly increasing number of devices

nd the relevant number of queries. Node discovery through social

ools has been proposed in [18] and in [19] where node discovery

nd global resource discovery protocols for the IoT are proposed.

n particular, a resolution infrastructure called digcovery is defined

or maximizing efficiency and sustainability of deployments. 

The belief that objects would be able to navigate the SIoT net-

ork with only local information is founded on the works of the

ociologist Stanley Milgram [20] and the computer scientist Jon

leinberg [21] . Milgram studied the small-world phenomenon and

emonstrated that people are tied by short chains of acquain-

ances, whereas Kleinberg concluded that there are structural clues

n a social network that help people to efficiently find a short path

ven without a global knowledge of the network. Simple propos-

ls to address these issues have been recently introduced, but the

ollowed strategies are simple and the performance has only been

nalyzed in terms of global [22] or local [23] network navigability. 

.3. Game theory in networking 

Game theory is an analytical framework that attempts to an-

lyze the behavior of rational entities with their own interests

n reciprocal interactions [24] . Starting from the economic field

25] , during the last decades game theory has found success-

ul applications to several other areas. A large number of contri-

utions in the literature can be found, dealing with models for

ired and wireless communications [26] . Just to mention some

elds of application we can list radio resource management [27] ,

reen networking [28] , cooperation in wireless ad hoc networks

29] , pricing schemes in cognitive wireless networks [30] or in

eterogeneous wireless networks [31] . Among cooperative game

ased contributions, the so-called coalitional games [32] are ap-

lied in several fields, such as to study fairness and cooperation

ains in virtual MIMO systems in [33] , packet forwarding issues

n ad-hoc networks in [34] , task allocation problems in a software

ystem in [35] , whereas in [36] it is applied to introduce a fair

ost-distribution in a wireless cooperative cluster. 

In value or cost-sharing game theoretic applications, one of the

ost used solution concepts is the Shapley-value [37–39] . Thanks

o its intrinsic capability to capture the contribution of the sin-

le players to different coalitions of players, the Shapley-value has
ound several applications both in networking and social analy-

is. For instance in [36] it is adopted for a monetary cost analysis

or a fair content sharing by both network/service providers and

he end-users. An interesting application of the Shapley-value is in

he domain of social networks and networks in general, where it

s adopted as a measure of the relative importance of the single

odes. For instance, in [40] the authors propose a solution to un-

erstand which individual is more important than others in com-

on problems like scientists who collaborate in published articles,

r employees of a company who participate in projects. Closer to

he contribution of this paper, the Shapley-value has been applied

o social networking problems in [41,42] and [43] . In particular,

41] a set of new centrality measures are proposed based on co-

perative game theoretic notions. An analysis of the Shapley-value

or network centrality has been presented also in [42] , with results

emonstrating the opportunities for efficiency gains. In [43] the

ocus is on the information diffusion problem in social networks

ith particular focus on the target set selection issue. The pro-

osed solution is to select a subset of influential players in a social

etwork with a Shapley-value based algorithm. The promising re-

ults obtained for the information diffusion problem in social net-

orking suggest that the Shapley-value has interesting features so

hat it can also be applied for the friendship selection problem in

he SIoT studied in this paper. 

. The proposed friendship selection in the SIoT 

The problem of how to select an effective set of friendship re-

ationships among the possible candidates has been addressed in

he past in the context of information diffusion in social network-

ng problems. Usually, a score is assigned to each member of the

et of potential devices [42] , where the selected score somehow

orresponds to the importance of that device for the application

t hand. However, such a conventional approach suffers from the

ain intrinsic limitation that it only considers the relative impor-

ance of objects as stand-alone entities. Contrarily, a key require-

ent in the SIoT is to understand the importance of each object in

erms of its contribution to a certain utility when combined with

ther nodes [44,45] . The flexibility, which comes from the ability to

ake into account the contributions of all possible combinations of

bjects (rather than considering just one node at a time), is lacking

n conventional centrality measures. This is a crucial limitation in

any applications and represents the reason why game theoretic

etwork centrality measures have been proposed in research activ-

ties relevant to social networks of humans. The promising results

btained in this field, suggest that the Shapley-value has interest-

ng features that can also be exploited for the friendship selection

roblem in the SIoT studied in this paper. The approach we pro-

ose maps the friendship selection process in the SIoT onto the

oalition formation problem in a corresponding cooperative game.

he Shapley-value of the objects in the game represents the im-

ortance of an object and is used to set the friendship preferences.

Before going into the details of the game theoretic modeling,

e give details on the friendship selection algorithm proposed for

he SIoT, reported in Algorithm 1 . For simplicity in the analysis, we

ssume that the objects in the SIoT have a commonly shared cri-

erion to decide whether to consider another object as a candidate

bject for a friendship relation; this criterion is symmetric . For in-

tance, if an object i meets the given criterion with another object

 , then also node j meets the criterion w.r.t. node i . As described in

ection 2.1 , a friendship request is triggered when some conditions

re satisfied and these conditions depend on the friendship type;

.g. new OORs will be formed when a user registers a new object

n the SIoT, while a SOR will be requested when two objects have

et for a certain number of times. 
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Algorithm 1: Proposed friendship selection algorithm. 

1 A new candidate friend y is encountered 

2 if N max is reached then 

3 Compute marginal contribution for existing friends and y 

4 Rank the nodes in a list L in a decreasing order 

5 if y is among the first N max nodes then 

6 Send a friendship request to y 

7 if the request is accepted then 

8 Create a new friendship 

9 Terminate the relationship with the node in the 

lowest position of L 

10 end 

11 else 

12 Discard node y 

13 end 

14 else 

15 Send a friendship request to y 

16 if the request is accepted then 

17 Create a new friendship 

18 end 

19 end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

w  

�  

t
 

d  

c  

a  

d  

b  

i

p  

s  

i

 

o  

b  

m  

s  

a  

i

 

c  

g  

v  

a  

i  

o  

s  

s  

o  

f  

e  

m  

t  

c  

a

D  

G  

i

φ

 

b  

a  

t

 

t  

e  

c  

i

 

p

φ  

 

N  

p

 

t  

i  

d  

φ  
We assume that each object can establish up to a maximum

number of friendships N max according to its resources. When two

nodes met the criterion to establish a new friendship, then a new

friendship is directly established if the list of friends for the two

objects is less than N max . If this is not the case, then a friendship

selection algorithm is triggered to choose the most influential N max 

friends among the candidate objects. This procedure is illustrated

in the flowchart in Fig. 1 . 

The proposed friendship selection algorithm aims at select-

ing the objects that offer the maximum marginal contribution to

the global services in the SIoT. To this aim, the candidate friend

and the old ones are considered at the same level. Accordingly, a

marginal contributions for each one is computed by making use of

a cooperative coalitional game modeling, as it will be described

in the remainder of the paper. The set of candidate objects are

the players in the cooperative game and the Shapley-value is used

to compute the marginal contributions of the individual players to

the overall value achieved. At the beginning, based on the Shapley-

value, a ranking list of the candidate objects is computed, and then

the top N max objects are selected. If nodes i and j are mutually

in the top N max objects of the respectively computed ranking lists,

then the friendship is established. In some cases, the establishment

of a new friendship may require an old one to be removed. When

this happens, the choice of the friendship to be removed is again

driven by the Shapley-value based ranking list, with the only con-

straint that a node cannot refuse or discard relationships if this

action is going to isolate a node. 

4. Game-theoretic notions for network navigability 

The process of assigning a value to each node/object in a

network can be naturally modeled as a coalitional game G = <

N , v (·) > with transferable utilities (TU), where N is the set of N

players and v ( · ) is a value function. A value function v (S) is a

mapping from a nonempty coalition S ⊆ N to a real number. Thus,

given a subset S of N , we call v (S) the value of the coalition S .

It represents the maximum aggregated payoff available for divi-

sion among players who are members of S when working together

without the help of players in N \S . The set of players N is called

the grand coalition and v (N ) is called the value of the grand coali-

tion. 
Given a value definition for a coalition, the challenge is to al-

ocate the value among the players forming the coalition. In other

ords, finding a solution for the game means to find a vector x ∈
 

N that represents the value allocation to each player in the coali-

ion. In particular, an allocation is a vector x = (x 1 , . . . , x n ) where x i
enotes the value associated with player i ∈ N . Whenever, the allo-

ated value is greater or equal than the value for the player staying

lone in the singleton coalition, i.e., x i ≥ v ({ i }), we say that the in-

ividual rationality is satisfied. For any coalition S ⊆ N we denote

y x (S) the value 
∑ 

i ∈S x i . An allocation x = (x 1 , . . . , x n ) that sat-

sfies the efficiency property, i.e., x (N ) = v (N ) , is a feasible payoff

rofile , also called pre-imputation , of G . If a feasible payoff profile

atisfies also the individual rationality property it is said to be an

mputation . 

The set of all imputations of the game G is denoted by X ( G ). An

utcome for G is an imputation from X ( G ) that specifies the distri-

ution of the value to any player of the game. A typical require-

ent of a good outcome is to be “stable” with respect to the pos-

ibility that subsets of players find convenient to deviate from it

nd to form alternative coalitions. The set of such stable outcomes

s known as the core of the game. 

In general, the core of a game may be empty as well as it may

ontain an infinite number of imputations. An important class of

ames where the core is always non-empty is the class of con-

ex games. A game is said convex if, for every pair of coalitions S

nd T , v (S ∪ T ) + v (S ∩ T ) ≥ v (S) + v (T ) . However, even if the core

s not empty, it remains the problem of choosing an outcome out

f possibly infinite many candidates belonging to the core. Thus,

olution concepts associated with unique profiles are usually de-

irable in applications. Among these, the Shapley-value [37] is one

f the most used [38,39] . Indeed, it is an effective approach to the

air allocation of gains obtained from the cooperation among play-

rs of a cooperative game [46] . Since some players may contribute

ore to the total value than others, an important requirement is

o fairly distribute gains among the players. To this purpose, in de-

iding the payoff to be allocated to the players, the Shapley-value

ccounts for the relative importance of each player to the game. 

efinition 1 (Shapley-value [37] ) . The Shapley-value of a TU game

 = 〈N , v (·) 〉 is the pre-imputation of G assigning to every player

 ∈ N the following value 

i (G ) = 

1 

|N | ! 
∑ 

S⊆N\{ i } 
|S| !(|N | − |S| − 1)![ v (S ∪ { i } ) − v (S)] . 

Accordingly, the Shapley-value assigns a value to each player i

y taking into account its average marginal contribution , where the

verage is computed over all different sequences of the players so

hat the grand coalition can be built up from the empty coalition. 

It is known that, in any convex game, the Shapley value belongs

o the core and thus it is a stable imputation. However, in the gen-

ral case the Shapley-value may fall outside the core, even if the

ore is not empty. Thus, the Shapley-value is not necessarily an

mputation and it may violate the individual rationality condition. 

An alternative equivalent formulation of the Shapley-value for a

layer i is the following: 

i (G ) = 

1 

N! 

∑ 

π∈ �
[ v (P (π, i ) ∪ { i } ) − v (P (π, i )] (1)

where π is a permutation of the N players, � is the set of all

 ! permutations of the players, and P ( π , i ) is the set of players

receding player i in permutation π . 

This solution concept has also a nice axiomatic characteriza-

ion supporting its notion of fairness, i.e., it is the unique pre-

mputation that satisfies the Symmetry, Dummy Player, and Ad-

itivity axioms [37] . A natural way to interpret the Shapley-value

( G ) of player i is in terms of the average marginal contribution
i 
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Fig. 1. Flowchart of the proposed friendship selection algorithm. 
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Fig. 2. Friendship selection sample scenario. 
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that player i makes to any sub-coalition of N assuming all order-

ings are equally likely. The Shapley-value takes into account all

possible coalitional dynamics and negotiation scenarios among the

players and comes up with a single unique way of distributing the

value v (N ) of the grand coalition among all the players. Thus, the

Shapley-value of a player accurately reflects the bargaining power

of the player and the marginal value it brings to the game. 

An additional simplifying assumption usually made when mod-

eling a TU coalitional game, is that the game is superadditive . A

game is superadditive if the value function of the game is such

that for any S and T disjoint coalitions ( S ∩ T = ∅ ) subsets of

N , we have that v (S ∪ T ) ≥ v (S) + v (T ) . It means that a coalition

that is a merger of two or more coalitions will realize a value at

least as great as the sum of the values of the coalitions merged.

This seems a reasonable assumption for coalitional games and the

proposed Shapley-value is usually applied in superadditive games.

However, the Shapley-value can also be computed for games with

a non superadditivite characteristic function [47] . In these cases the

Shapley-value will lack the property of individual rationality , thus,

some players may have values lower than the players they can

generate as a singleton coalition. Noteworthy, in this paper the

game model does not foresee a value to be shared among play-

ers, but it is used to find the most influential objects among a set

of candidate friend objects. Therefore, also non superadditive char-

acteristic functions are acceptable for our scope. 

5. Utility functions for the friendship selection 

A key aspect for the success of the proposed algorithm is the

definition of the utility function, which measures the contribution

of the candidate objects. By focusing on an object i , which has to

determine its N max friendships, in the following we present two

possible solutions that meet the system requirements. 

5.1. Average local clustering based model 

The first utility function we consider for the model is the

average local clustering coefficient [48] . This is defined as: C =
1 
n 

∑ n 
j=1 Clocal j where n is the number of players in a coalition

and Clocal j is the local clustering coefficient defined as: Clocal j =
2 ·e j 

k j ·(k j −1) 
, where k j is the number of neighbors for node j and e j 

is the number of edges among them. 

The TU (Transferable Utility)-game G = 〈N , v (·) 〉 is modeled on

the set of N max + 1 candidate friends for node i plus the node i it-

self, thus we have that N = N max + 2 . This number derives from the

consideration that the selection algorithm is triggered only when a

new object meets a given criterion to become a friend of object i

and this additional object would make the number of friends go

beyond the threshold N max . Moreover, also node i must be consid-

ered, as the utility function is directly influenced by the presence

of node i in any of the coalitions of objects. In details, we define

the value function as: 

v (S) = 

( 

1 − 1 

|S| 
∑ 

i ∈S 
Clocal i 

) 

∀S ⊆ N , and v (∅ ) = 0 . (2)

The driving motivation for this utility function to be considered

comes from Kleinberg’s findings [21] . In particular, a high value

of the average local cluster coefficient allows the nodes to quickly

reach the nodes with many connections in the network. However,

if the nodes are connected to friends with high value of Clocal ,

then clusters of friends are created in the network and, in the ex-

treme case, they can form an isolated subnet. In such a network, a

small number of nodes is fully connected, leading to a value C̄ = 1 ,

which disrupts the navigability of the network. Navigability is thus
ssured by the ability to reach nodes with low values of local clus-

ering, i.e., by adopting the complementary value, since they are

ardly reachable through other paths. Adopting such a solutions,

ives us the possibility to perform local choices that will guaran-

ee the global navigability of the network to be kept at acceptable

evels. 

Noteworthy, this utility function is non superadditive as in some

opology configurations some nodes, which join a pre-existing set

f friends, may actually adversely affect the local clustering coef-

cient value. A high Shapley-value is assigned to players giving a

igh average marginal contribution to all possible permutations of

oalitions among the players. Cases may occur where a negative

hapley-value is obtained when the utility function is non super-

dditive . This may happen whenever the presence of the specific

layer in a coalition actually reduces, on average, the utility of the

oalitions built on the possible permutations of the players. How-

ver, this is not an issue in our problem and the use we make of

he Shapley-value for the best friendship selection problem. Based

n the value function defined in Eq. (2) , we compute the Shapley-

alue for all the objects in the game and sort the players in de-

reasing order of their Shapley-value. From the so-constructed rank

ist, the candidate objects are selected one at the time by scrolling

he list in a top-down order (clearly, node i itself will not be con-

idered as a candidate friend). If the friendship with an object is

lready active, then nothing happens and the subsequent node in

he list is selected until N max nodes are selected from the list. If the

elected object has not been considered as a friend yet, then the

ode tries to form a new friendship relationship. If the new friend-

hip request is accepted, then an old friendship must be closed to

eet the constraint on the N max number of friendships of node i .

lso for this choice the Shapley-based rank list is used, and the

ess influential node is selected as the one to be removed. 

To better understand the behavior of the proposed solution, let

s consider the sample study case shown in Fig. 2 . In particular,

bjects 1 and 5 meet the criterion for a new potential friendship

see dashed line in the Figure) and the proposed algorithm is trig-

ered to possibly update the friendships for the involved objects.

s an example, let us focus the attention on object 1 and the com-

utation of its list of preferences for the friendships (a similar anal-

sis can be repeated for object 5) in the case where the maximum

umber of friends per object 1 is set to N max = 3 . This means that

he three objects with the highest Shapley-value shall be selected

s its friends. In the scenario of the figure we can model the game

s shown in Table 1 . 

By computing the marginal contributions of the players based

n the Shapley-value we obtain the results in Table 2 (note that

ot only a subset of the 120 permutations are listed due to length

onstraints). We observe that the order of preferred friendships for

bject 1 are respectively, object 2, object 4 and object 5. Since

 max = 3 , object 1 will try to form a new friendship with object

, since it is already friend with object 2 and 4, and consider ob-

ect 3 only if any of the preferred friendships is not accepted by

he inquired object otherwise it will terminate this friendship. 
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Table 1 

Game for sample scenario in Fig. 2 and average local clustering as utility function. 

N = { 1 , 2 , 3 , 4 , 5 } v (1) = 1 − 0 . 167 = 0 . 833 

v (2) = 1 v (12) = 1 − 1 / 2 · (0 . 167 + 0) = 0 . 917 

v (3) = 1 − 0 . 333 = 0 . 667 v (13) = 1 − 1 / 2 · (0 . 167 + 0 . 333) = 0 . 75 

v (23) = 1 − 1 / 2 · (0 + 0 . 333) = 0 . 833 v (123) = 1 − 1 / 3 · (0 . 167 + 0 + 0 . 333) = 0 . 833 

v (4) = 1 v (14) = 1 − 1 / 2 · (0 . 167 + 0) = 0 . 917 

v (24) = 1 v (124) = 1 − 1 / 3 · (0 + 0 + 0 . 167) = 0 . 944 

v (34) = 1 − 1 / 2 · (0 + 0 . 333) = 0 . 833 v (134) = 1 − 1 / 3 · (0 . 167 + 0 + 0 . 333) = 0 . 833 

v (234) = 1 − 1 / 3 · (0 + 0 . 333 + 0) = 0 . 889 v (1234) = 1 − 1 / 4 · (0 . 167 + 0 + 0 . 333 + 0) = 0 . 875 

v (5) = 1 − 0 . 167 = 0 . 833 v (15) = 1 − 1 / 2 · (0 . 167 + 0 . 167) = 0 . 833 

v (25) = 1 − 1 / 2 · (0 . 167 + 0) = 0 . 917 v (125) = 1 − 1 / 3 · (0 . 167 + 0 + 0 . 167) = 0 . 889 

v (35) = 1 − 1 / 2 · (0 . 167 + 0 . 333) = 0 . 75 v (135) = 1 − 1 / 3 · (0 . 167 + 0 . 333 + 0 . 167) = 0 . 778 

v (235) = 1 − 1 / 3 · (0 . 167 + 0 + 0 . 333) = 0 . 833 v (1235) = 1 − 1 / 4 · (0 . 167 + 0 + 0 . 333 + 0 . 167) = 0 . 833 

v (45) = 1 − 1 / 2 · (0 . 167 + 0) = 0 . 917 v (145) = 1 − 1 / 3 · (0 . 167 + 0 + 0 . 167) = 0 . 889 

v (245) = 1 − 1 / 3 · (0 + 0 + 0 . 167) = 0 . 944 v (1245) = 1 − 1 / 4 · (0 . 167 + 0 + 0 + 0 . 167) = 0 . 917 

v (345) = 1 − 1 / 3 · (0 . 167 + 0 + 0 . 333) = 0 . 833 v (1345) = 1 − 1 / 4 · (0 . 167 + 0 + 0 . 333 + 0 . 167) = 0 . 833 

v (2345) = 1 − 1 / 4 · (0 . 167 + 0 + 0 . 333 + 0) = 0 . 875 v (12345) = 1 − 1 / 5 · (0 . 167 + 0 + 0 . 333 + 0 + 0 . 167) = 0 . 867 

Table 2 

Shapley-value computation for sample scenario in Fig. 2 and average local clustering as utility function. 

Case Object 2 Object 3 Object 4 Object 5 

12345 v(12)-v(1) = 0.084 v(123)-v(12) = -0.083 v(1234)-v(123) = 0.042 v( N )-v(1234) = -0.008 

12354 v(12)-v(1) = 0.084 v(123)-v(12) = -0.083 v( N )-v(1235) = 0.034 v(1235)-v(123) = 0 

12435 v(12)-v(1) = 0.084 v(1234)-v(124) = -0.069 v(124)-v(12) = 0.028 v( N )-v(1234) = -0.008 

12453 v(12)-v(1) = 0.084 v( N )-v(1245) = -0.05 v(124)-v(12) = 0.028 v(1245)-v(124) = -0.027 

12534 v(12)-v(1) = 0.084 v(1235)-v(125) = -0.056 v( N )-v(1235) = 0.034 v(125)-v(12) = -0.028 

· · ·
21345 v(2)-v( ∅ ) = 1 v(123)-v(12) = -0.083 v(1234)-v(123) = 0.042 v( N )-v(1234) = -0.008 

21354 v(2)-v( ∅ ) = 1 v(123)-v(12) = -0.083 v( N )-v(1235) = 0.034 v(1235)-v(123) = 0 

21435 v(2)-v( ∅ ) = 1 v(1234)-v(124) = -0.069 v(124)-v(12) = 0.028 v( N )-v(1234) = -0.008 

21453 v(2)-v( ∅ ) = 1 v( N )-v(1245) = -0.05 v(124)-v(12) = 0.028 v(1245)-v(124) = -0.027 

21534 v(2)-v( ∅ ) = 1 v(1235)-v(125) = -0.056 v( N )-v(1235) = 0.034 v(125)-v(12) = -0.028 

· · ·
31245 v(123)-v(13) = 0.083 v(3)-v( ∅ ) = 0.667 v(1234)-v(123) = 0.042 v( N )-v(1234) = -0.008 

31254 v(123)-v(13) = 0.083 v(3)-v( ∅ ) = 0.667 v( N )-v(1235) = 0.034 v(1235)-v(123) = 0 

31425 v(1234)-v(134) = 0.042 v(3)-v( ∅ ) = 0.667 v(134)-v(13) = 0.083 v( N )-v(1234) = -0.008 

31452 v( N )-v(1345) = 0.033 v(3)-v( ∅ ) = 0.667 v(134)-v(13) = 0.083 v(1345)-v(134) = 0 

31524 v(1235)-v(135) = 0.056 v(3)-v( ∅ ) = 0.667 v( N )-v(1235) = 0.034 v(135)-v(13) = 0.028 

· · ·
41235 v(124)-v(14) = 0.028 v(1234)-v(124) = -0.069 v(4)-v( ∅ ) = 1 v( N )-v(1234) = -0.008 

41253 v(124)-v(14) = 0.028 v( N )-v(1245) = -0.05 v(4)-v( ∅ ) = 1 v(1245)-v(124) = -0.027 

41325 v(1234)-v(134) = 0.042 v(134)-v(14) = -0.083 v(4)-v( ∅ ) = 1 v( N )-v(1234) = -0.008 

41352 v( N )-v(1345) = 0.033 v(134)-v(14) = -0.083 v(4)-v( ∅ ) = 1 v(1345)-v(134) = 0 

41523 v(1245)-v(145) = 0.028 v( N )-v(1245) = -0.05 v(4)-v( ∅ ) = 1 v(145)-v(14) = -0.028 

· · ·
51234 v(125)-v(15) = 0.056 v(1235)-v(125) = -0.056 v( N )-v(1235) = 0.034 v(5)-v( ∅ ) = 0.833 

51243 v(125)-v(15) = 0.056 v( N )-v(1245) = -0.05 v(1245)-v(125) = 0.028 v(5)-v( ∅ ) = 0.833 

51324 v(1235)-v(135) = 0.056 v(135)-v(15) = -0.056 v( N )-v(1235) = 0.034 v(5)-v( ∅ ) = 0.833 

51342 v( N )-v(1345) = 0.033 v(135)-v(15) = -0.056 v(1345)-v(135) = 0.056 v(5)-v( ∅ ) = 0.833 

51423 v(1245)-v(145) = 0.028 v( N )-v(1245) = -0.05 v(145)-v(15) = 0.056 v(5)-v( ∅ ) = 0.833 

φi 0.243 0.069 0.243 0.156 
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.2. Group degree centrality based model 

The second utility function we consider is the degree centrality

49] of the objects in the considered coalition, i.e., the union of all

he distinct friends of the objects in the coalition. Also in this case,

he TU-game G = 〈N , v (·) 〉 is modeled by considering N = N max + 2

s given by the set of candidate friends plus the node i itself. In

etails, we define the value function as: 

 (S) = 

∣∣∣∣∣⋃ 

i ∈ S 
F i 

∣∣∣∣∣ ∀ S ⊆ N, and v (∅ ) = 0 

where F i is the set of friends for node i . in coalition S . Note-

orthy, this utility function is readily superadditive as having larger

ets of friends will in no case reduce the number of objects that

an be reached. Based on the value function defined above, the

hapley-value is then computed for the players (also in this case
ode i itself is not considered) and their values are sorted in a de-

reasing order to select the N max most influential objects according

o the procedure explained in the previous section. 

Let us consider again the sample scenario in Fig. 2 to compute

hapley-value according to the group degree centrality as utility

unction. Let the attention be again on object 1 and consider its list

f preferences for the friendships with N max = 3 . With reference to

he plotted scenario, we can model the game as shown in Table 3 . 

By computing the marginal contributions of the players based

n the Shapley-value we obtain the results in Table 4 (note that

ot only a subset of the 120 permutations are listed due to length

onstraints). Observe that the order of preferred friendships for

bject 1 are respectively, object 5, object 2 and object 3. Since

 max = 3 , object 1 will try to form a friendship with object 5, since

t is already friend with object 2 and 3, and consider object 4 only

f any of the preferred friendships is not accepted by the inquired

bject otherwise it will terminate this friendship. 



8 L. Militano et al. / Computer Networks 103 (2016) 1–14 

Table 3 

Game for sample scenario in Fig. 2 and group degree centrality as utility function. 

N = { 1 , 2 , 3 , 4 , 5 } v (1) = 5 v (2) = 4 v (12) = 7 v (3) = 4 v (13) = 6 

v (23) = 7 v (123) = 8 v (4) = 3 v (14) = 6 v (24) = 6 v (124) = 8 

v (34) = 5 v (134) = 6 v (234) = 8 v (1234) = 8 v (5) = 5 v (15) = 7 

v (25) = 8 v (125) = 9 v (35) = 6 v (135) = 8 v (235) = 9 v (1235) = 10 

v (45) = 7 v (145) = 8 v (245) = 10 v (1245) = 10 v (345) = 7 v (1345) = 8 

v (2345) = 10 v (12345) = 10 

Table 4 

Shapley-value for sample scenario in Fig. 2 and group degree centrality as utility function. 

Case Object 2 Object 3 Object 4 Object 5 

12345 v(12)-v(1) = 2 v(123)-v(12) = 1 v(1234)-v(123) = 0 v( N )-v(1234) = 2 

12354 v(12)-v(1) = 2 v(123)-v(12) = 1 v( N )-v(1235) = 0 v(1235)-v(123) = 2 

12435 v(12)-v(1) = 2 v(1234)-v(124) = 0 v(124)-v(12) = 1 v( N )-v(1234) = 2 

12453 v(12)-v(1) = 2 v( N )-v(1245) = 0 v(124)-v(12) = 1 v(1245)-v(124) = 2 

12534 v(12)-v(1) = 2 v(1235)-v(125) = 1 v( N )-v(1235) = 0 v(125)-v(12) = 2 

· · ·
21345 v(2)-v( ∅ ) = 4 v(123)-v(12) = 1 v(1234)-v(123) = 0 v( N )-v(1234) = 2 

21354 v(2)-v( ∅ ) = 4 v(123)-v(12) = 1 v( N )-v(1235) = 0 v(1235)-v(123) = 2 

21435 v(2)-v( ∅ ) = 4 v(1234)-v(124) = 0 v(124)-v(12) = 1 v( N )-v(1234) = 2 

21453 v(2)-v( ∅ ) = 4 v( N )-v(1245) = 0 v(124)-v(12) = 1 v(1245)-v(124) = 2 

21534 v(2)-v( ∅ ) = 4 v(1235)-v(125) = 1 v( N )-v(1235) = 0 v(125)-v(12) = 2 

· · ·
31245 v(123)-v(13) = 2 v(3)-v( ∅ ) = 4 v(1234)-v(123) = 0 v( N )-v(1234) = 2 

31254 v(123)-v(13) = 2 v(3)-v( ∅ ) = 4 v( N )-v(1235) = 0 v(1235)-v(123) = 2 

31425 v(1234)-v(134) = 2 v(3)-v( ∅ ) = 4 v(134)-v(13) = 0 v( N )-v(1234) = 2 

31452 v( N )-v(1345) = 2 v(3)-v( ∅ ) = 4 v(134)-v(13) = 0 v(1345)-v(134) = 2 

31524 v(1235)-v(135) = 2 v(3)-v( ∅ ) = 4 v( N )-v(1235) = 0 v(135)-v(13) = 2 

· · ·
41235 v(124)-v(14) = 2 v(1234)-v(124) = 0 v(4)-v( ∅ ) = 3 v( N )-v(1234) = 2 

41253 v(124)-v(14) = 2 v( N )-v(1245) = 0 v(4)-v( ∅ ) = 3 v(1245)-v(124) = 2 

41325 v(1234)-v(134) = 2 v(134)-v(14) = 0 v(4)-v( ∅ ) = 3 v( N )-v(1234) = 2 

41352 v( N )-v(1345) = 2 v(134)-v(14) = 0 v(4)-v( ∅ ) = 3 v(1345)-v(134) = 2 

41523 v(1245)-v(145) = 2 v( N )-v(1245) = 0 v(4)-v( ∅ ) = 3 v(145)-v(14) = 2 

· · ·
51234 v(125)-v(15) = 2 v(1235)-v(125) = 1 v( N )-v(1235) = 0 v(5)-v( ∅ ) = 5 

51243 v(125)-v(15) = 2 v( N )-v(1245) = 0 v(1245)-v(125) = 1 v(5)-v( ∅ ) = 5 

51324 v(1235)-v(135) = 2 v(135)-v(15) = 1 v( N )-v(1235) = 0 v(5)-v( ∅ ) = 5 

51342 v( N )-v(1345) = 2 v(135)-v(15) = 1 v(1345)-v(135) = 0 v(5)-v( ∅ ) = 5 

51423 v(1245)-v(145) = 2 v( N )-v(1245) = 0 v(145)-v(15) = 1 v(5)-v( ∅ ) = 5 

φi 2.7 1.367 1.2 2.867 
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6. An approximated computation for the Shapley-value 

The Shapley-value is known to be a computationally heavy so-

lution as all the N ! permutations of the players have to be consid-

ered to evaluate the average marginal contribution of a player and

thus, its importance. In particular, the computational complexity

of the Shapley-value computation in (1) is O 

((
n 
e 

)n 
)
, where n is

the number of objects involved in the friendship selection process

(not the whole network). This computational complexity is high,

but the platform implementation is based on a central server tak-

ing care, among other functions, of the creation and management

for the relationships of every object. 

Still, to reduce the complexity, an alternative approximated so-

lution can be introduced to reduce the computational burden to

a polynomial time computation, while not losing the benefits of

the proposed solution. The approach followed in this paper is a

sampling based approach that works in polynomial time [43] . In

particular, instead of considering all possible N ! permutations, a

randomly sample set ˜ � of t permutations is considered so that

 = O (n ) . To this, the following steps are implemented: 

1. Randomly generate t = | ̃  �| permutations of the players, with

π j a single permutation from the set ˜ �; 

2. for each permutation π j in 

˜ � follow the order of nodes in π j 

and compute the contribution of each node i ∈ π j to the utility

of the coalition; 
3. determine the average contribution of each node to the utility

computed on all t permutations in 

˜ �. 

The resulting approximated computation of the Shapley-value

or player i can be given in this form 

i (G ) = 

1 

t 

∑ 

π j ∈ ̃ �

[
v (P (π j , i ) ∪ { i } ) − v (P (π j , i )) 

]
(3)

In the following, we will discuss how to determine the value

or the permutations t to consider. In particular, the price to pay

or the polynomial time complexity is the introduction of an er-

or in the exact computation of the preference index, that can be

omputed based on statistical techniques [43] . Let { X 1 
i 
, X 2 

i 
, · · · , X t 

i 
}

e the random sample of marginal contributions for node i , when

onsidering all the randomly sampled t permutations in 

˜ �. Let

¯
 i = 

∑ t 
j=1 X 

j 
i 

t be an estimator for the Shapley-value for node i . To

nderstand how close the estimator is to the original Shapley-

alue, we first need to compute the variance of the random vari-

ble X̄ i , i.e., Var ( ̄X i ) = 

t ∑ 

j=1 

{ X j 
i 
−X̄ i } 2 

t (t −1) 
. To evaluate the quality of the

stimator, we need to consider the confidence interval so that

e have a certain level of confidence that the considered inter-

al contains the real Shapley-value. In particular, if we have that

 ( ̄X i − δ < φi < X̄ i + δ) = γ , we can say that the probability, or

onfidence, is γ that the interval ( ̄X i − δ, X̄ i + δ) will contain the

eal Shapley-value φ . 
i 
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Fig. 3. Approximated vs. exact Shapley-value computation in a sample network. 
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Given these notions, it is possible to construct (1 − α)100 % con-

dence intervals of the form 

(
X̄ i − z α

2 

[
s 

t 0 . 5 

]
, X̄ i + z α

2 

[
s 

t 0 . 5 

])
. Where

 is the standard deviation of the random sample and z is the stan-

ard normal random variable. For instance, for α = 0 . 05 we obtain

 95% confidence interval. Moreover, the random sample size t is a

urther parameter to be properly set. From the definition of confi-

ence interval, we have (1 − α)100 % probability that the estimator
¯
 i deviates from the real Shapley-value by less than z α

2 

s 
t 0 . 5 

which

s called as error e . The value for the error e is important as we

an find the sample size t required to obtain a (1 − α)100 % con-

dence interval of width 2 e , ( ̄X i − e, X̄ i + e ) , for the Shapley-value

hich is: t ≈
( z α

2 
s 

e 

)2 

. 

For a correct evaluation, the parameters for the approximated

omputation should be properly set. In particular, we set α = 0 . 1

o that we get a 90% confidence interval. The error value e is in-

tead computed as the average value of an initial t ′ marginal con-

ribution, multiplied by α. For the initial setting for the value of

 

′ , we are in line with the observation obtained in [43] . In particu-

ar, it is possible to obtain a good approximation for the marginal

ontributions of the nodes even with a moderate size of t ′ (i.e.,

 

′ = 60 ). Based on this initial set of permutations, we can deter-

ine sample size t required to obtain the wished 90% confidence

nterval of width 2 e as we defined earlier in this section. 

For a clearer view on the effectiveness of the approximated

hapley-value computation, we analyze a sample study case for a

mall network where N max = 5 so that the exact Shapley-value can

lso be computed. With reference to Fig. 3 , we present the anal-

sis of the situation where an object has to select its best set of

 max friends among six possible choices (i.e., objects with iden-

ifier 3, 4, 6, 7, 9, 10). In the plotted results, we report the ap-

roximated Shapley-value computation considering the two pro-

osed utility functions (the bars), their confidence interval (note

hat α was set to 0.1 for a 90% confidence interval) and the exact

hapley-value for the objects (marked with a ‘ ∗’). From the plots,

e observe that in some cases the approximated and the exact

hapley-values actually match, whereas in the other cases the ex-

ct Shapley-value falls within the confidence interval for the ap-

roximated value. However, the most important observation to the

cope of our work, is that the object will perform the selection of

he same set of friends as for the exact Shapley-value computation.

n particular, with the average local clustering utility function the

elected friends are objects with ID 7, 10, 6, 3, 9 excluding object

ith ID 4, whereas for the group degree centrality the preference

rder for the objects is 6, 10, 7, 3, 9, 4. Noteworthy, even if this is a

ample case, the same results yield for any value of N max and net-
ork configuration. In fact, the proposed approximated computa-

ion is applied to the single objects separately with similar results

s those reported in this sample study case. 

Considering the proposed approximated Shapley-value compu- 

ation, the overall computational complexity for the algorithm in-

ludes the construction of the preference list (which includes the

pproximated Shapley-value computation) and the selection of the

est nodes from the list. In particular, the marginal contribution

or each object is computed in O ( t ( n 2 )) for the average local clus-

ering model and in O ( t ( n )) for the group degree centrality model.

hen the sorting algorithm to order the list of marginal contribu-

ions for each object has a complexity of O ( nlog 2 ( n )), whereas the

election of the best nodes from the ordered vector has a constant

ost K equal to N max . Thus, the overall computational complex-

ty for the Shapley-based scheme is O (t(n 2 )) + nlog 2 (n ) + K) and

 (t(n )) + nlog 2 (n ) + K) for the average local clustering model and

he group degree centrality model respectively, where t is a poly-

omial in n . This shows how the second utility function introduces

 lower computationally burden to the solution. 

. Performance evaluation 

A numerical evaluation has been conducted by using the

atlab 
® tool for a wide set of scenarios, to observe the perfor-

ance of the proposed strategies in terms of network navigabil-

ty. To perform the simulations we had to generate synthetic data

bout social networks of objects as no real data is available for

ignificant numbers of nodes. The approach used to construct the

ynthetic network is based on the following main steps: 

1. a social network among humans is analyzed; 

2. the social activities of the objects are derived from the previ-

ous analysis by considering that objects encounter each other

on the basis of the activities of the human owners; 

3. characteristics of the resulting network are analyzed; 

4. a model is then used to create a synthetic network with prop-

erties similar to those observed in the previous step. 

We thus rely on the Barabási–Albert model [50] , which is

ble to generate scale-free (independently from the size) networks

ased on preferential attachment with the same characteristics of

esired target social networks. Preferential attachment means that

he more connected a node is, the more likely it is to receive new

inks. The model starts with a small number of nodes and, at each

tep, it adds a new node with m edges ( m is a parameter for the

odel set to m = 4 in our simulations) linked to nodes which are

lready part of the system. The probability p i that a new node is

onnected to an existing node i depends on its degree k i and on

he sum made over all pre-existing nodes j , so that p i = k i / ( 
∑ 

j k j )

eading to the name preferential attachment. The model is used

o create a network of the desired size. In our simulations, we

tarted from the data set of the location-based online social net-

ork Brightkite obtained from the Stanford Large Network Dataset

ollection [51] . We terminated the generation of the network when

5k nodes and 60k edges have been obtained. 

As already discussed in [23] , the maximum number of friend-

hip relationships N max for each node is dynamically changed to

eep under control the number of hubs in the network. Indeed,

 constant value for N max would bring to a flat network with-

ut hubs, which would adversely affect the network navigability.

pecifically, N max has been increased by a value of 10% whenever 

there are x% of N nodes in the network with at least y% of N max 

friends, 

where x represents the maximum percentage of hubs in the

etwork, and y represents the threshold for a node to become a

ub. 
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On the basis of these preliminaries, we proceeded with evalu-

ating the effectiveness of the proposed strategies in terms of net-

work navigability by making use of local routing rules. To this we

selected a simple routing rule which works as it follows. Consider

a scenario where a given object A wishes to communicate with

node B. The first task to perform is to check whether it has a di-

rect connection with object B, that is, B is among its friends. If not,

A asks to the friend object with the highest connectivity degree , let

say X, to find a route to reach B. Then, object X repeats the same

procedure until object B is finally reached. 

In Fig. 4 the average path length is reported, for different val-

ues in the range [0 . 05 − 0 . 4]% of the maximum percentage of hubs

x in the network and by considering either y = 50% , y = 80% or

y = 90% . The proposed solutions are compared to the case where

no limit is set for the number of friends and then no selection

strategy is needed (labeled as “no limit” in the plots), and to a

dummy strategy whereby a node refuses any new request of friend-

ship after reaching N max friends and the connections are static (la-

beled as “FIFS” in the plots, i.e., First In First Served). 

As we can observe from the plots in Fig. 4 , a reduction in the

number of hubs in the network (lower values for x ) allows for an

improvement in the performance as the average path length is re-

duced for all the tested solutions, but the “no limit” case. This re-

sult is in line with what was suggested by the output of Klein-

berg’s studies. A similar effect is also obtained when decreasing

the threshold for a node to become a hub, i.e., the y -value. In

fact, this makes it “easier” to happen that x % of nodes in the net-

work have at least y % of N max friends; thus, N max increases more

rapidly. However, if we relax too much the control parameters, we

fall again in the “no limit” scenario; this is the case of x = 0 . 05%

and y = 50% . In fact, for this combination of parameters, no matter

the strategy adopted, all of them converge to a performance level

equal to the “no limit” case. Theoretically, if x is set to 1 
N % , then

for every node reaching a number of friends equal to y % of N max ,

the value of N max increases. On the other hand, if we set y = 0% ,

every node is considered as an hub and N max increases no matter

what the value for x is. 

When comparing the Shapley-based algorithms to the FIFS

strategy, we observe how both utility functions outperform the

FIFS solution performing up to 50% better. Additionally, the solu-

tion based on the group degree utility performs better than the

solution based on the average local clustering coefficient utility.

This is true independently from the y threshold being set to 80% or

90%. This result is important as it shows that the ability to reach

a larger number of nodes in the network, as the average degree
ased utility pursues, is more important than the ability to reach

odes with low values of local clustering, as pursued by the sec-

nd utility function we considered. As was expected, the best per-

ormance are always reached with the “not limit” approach, which

owever has the major drawback that the number of friends man-

ged by each object becomes significantly high, as it is discussed

n the following. 

The second important result we investigated, is the maximum

umber of friendships established by a node, which is plotted in

ig. 5 . We can observe how this number is mostly influenced by

he value of y rather than the particular strategy implemented

e.g., for y = 90% the plots are overlapping in many of the tested

oints). However, it is important to point out how the proposed

lgorithm is able to drastically decrease the number of friends that

 node has to manage with respect to to the “no limit” case. This

s an interesting result, as it has a positive effect on the computa-

ional burden for the objects. 

By comparing Figs. 4 and 5 , an important observation is that if

he number of hubs in the network is low, then each hub has to

anage many friends. This feature also means that by using more

tringent values for x and y parameters, it is possible to achieve

etter performance in terms of local navigability, but this goes at

he cost of an increase in the memory consumption, computational

ower, and battery life. To limit this problem, an enhancement for

he solution could be to adjust the maximum number of friend-

hips N max based on the node features and then allow only nodes

ith high computation capabilities, such as vehicles or smart de-

ices, to become hubs. 

.1. Influence of the utility function on the approximated 

hapley-value computational cost 

The computational burden for the approximated Shapley-value

s the focus of the next set of plots. In particular, in Figs. 6 and

 , we report the number of permutations needed to compute the

hapley-value during the simulations (blue line) and the corre-

ponding value for the maximum number of friends N max (green

ine) when considering respectively the average local clustering

nd the group degree centrality as utility function for the algo-

ithm. In particular, a single study case is presented where low

estrictive control parameter values are adopted, namely x = 0 . 4%

nd y = 80% , so that more computations are considered. The first

bservation is that the maximum value reached by the N max pa-

ameter is the same in the two cases (this is consistent with the

esults in Fig. 5 ). 
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Further interesting observations derive from the careful obser-

ation of these plots. First of all, when considering the group de-

ree centrality in Fig. 7 , we observe that the computational burden

expressed in number of permutations to consider) is influenced

y the N max value. In fact, the number of permutations needed to

ompute the approximated Shapley-value increases every time the

aximum number of friends for the nodes is increased. This fea-

ure is not observed instead when adopting average local cluster-

ng as utility function in Fig. 6 , where a more constant trend is

bserved independently from the N max value. This behavior can be

ustified with reference to the high variance of the utility values

n the first t samples computed (please refer to Section 6 for the

efinition of the t -value). This results in a high number of samples

o consider for a correct approximation of the Shapley-value (i.e.,

he t -value). Differently, in the group degree centrality a change in

he value of N max will have a lower impact on the variation of util-

ty. Another observation is related to the number of permutations

eduction shown with the group degree centrality model during a

ingle simulation. It is important to remind that the model starts

ith a small number of nodes and, in consecutive steps, it adds

 new node with m links to nodes that are already part of the

ystem. According to the approximated Shapley-value computation,

hen a new friendship request triggers the friendship selection al-
 n  
orithm, the variance of the initial samples of marginal contribu-

ions determines the total number of permutations t needed to ob-

ain the wished confidence interval (see Section 6 for the details).

n the other hand, when a new node joins a pre-existing set of

riends, the variance is influenced by the strength of the marginal

ontributions of the original set of friends. Adopting the group de-

ree centrality model, which forms a set of friends so that as much

odes as possible are reached, the perturbation of a new node

oining a pre-existing set of friends is relatively low in terms of

he utility function variance. This again leads to a moderate value

or the number of samples to consider for a correct approximation

f the Shapley-value, the t -value. Instead, in the average cluster-

ng model a new node can potentially affect the local clustering

oefficient value of every other node in the coalition, so that, on

verage, the variance on the initial set of permutations leads to a

igh number of total marginal contributions. 

. Conclusion 

In this paper we defined the problem of friendship selection in

he Social Network of Things, highlighting that if a SIoT is prop-

rly created then it can show the characteristics of a small world

etwork and comply with the condition for network navigability.
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Based on this knowledge, we proposed a model for a distributed

friendship selection that relies on the Shapley-value. To this aim,

the friendship selection process in the SIoT is mapped onto the

coalition formation problem for a corresponding cooperative game.

Based on two different utility functions, that meet the constraints

for the system, the Shapley-value nicely models the importance of

an object in the social IoT network and is thus used to set the

friendship preferences. The resulting network navigability, in terms

of average number of hops by using local peer search operations, is

evaluated and compared with a standard solution where no limit

on the friendships is set for the objects. The results showed how

a better management of the number of friendships is obtained, at

the expense of a negligible increase in the number of hops needed

to reach a destination. 

A further extension for the implementation of the proposed so-

lution that will be considered in our future research, is to consider

enhancing aspects referring to the average path length. In partic-

ular, in our simulations we have considered all the possible pairs

of nodes to be uniformly distributed over the network. However,

it has been proven that friends share similar interests (bringing

to the homophily phenomenon [52] ), so that it is highly proba-

ble to find another node in the friends list or in the friend of a

friend (FOAF) list, thus reducing the average path length among all

the pairs of nodes. Node similarity for the routing operations has

not been considered so far; indeed, in our simulations nodes try to

reach their destination by using only information about the degree

of their neighbors. However, external properties could be used to

select the right nodes (among available friends) to which the de-

sired service is requested. One of these properties is the profile of

the friend involved (accounting for its trustworthiness and the type

of relationship that links it to the requester). 
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