
Computer Networks 104 (2016) 43–54 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Entropy-based active learning for wireless scheduling with incomplete 

channel feedback 

� , �� 

Mehmet Karaca 

a , ∗, Ozgur Ercetin 

b , Tansu Alpcan 

c 

a Department of Electrical and Information Technology, Lund University, Lund, Sweden 
b Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey 
c Dept. of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia 

a r t i c l e i n f o 

Article history: 

Received 27 June 2015 

Revised 29 January 2016 

Accepted 2 May 2016 

Available online 3 May 2016 

Keywords: 

Opportunistic scheduling 

Queue stability 

Limited information 

Machine learning 

a b s t r a c t 

Most of the opportunistic scheduling algorithms in literature assume that full wireless channel state 

information (CSI) is available for the scheduler. However, in practice obtaining full CSI may introduce 

a significant overhead. In this paper, we present a learning-based scheduling algorithm which operates 

with partial CSI under general wireless channel conditions. The proposed algorithm predicts the in- 

stantaneous channel rates by employing a Bayesian approach and using Gaussian process regression. It 

quantifies the uncertainty in the predictions by adopting an entropy measure from information theory 

and integrates the uncertainty to the decision-making process. It is analytically proven that the proposed 

algorithm achieves an ε fraction of the full rate region that can be achieved only when full CSI is 

available. Numerical analysis conducted for a CDMA based cellular network operating with high data 

rate (HDR) protocol, demonstrate that the full rate region can be achieved our proposed algorithm by 

probing less than 50% of all user channels. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

A challenging open problem in wireless networks is the ef-

cient allocation of limited and time-varying resources among

ultiple users to satisfy their requirements. The problem is ex-

cerbated by the highly dynamic nature of wireless channels due

o multiple superimposed random effects caused by mobility and

ulti-path fading. In many cases, acquiring extensive information

n wireless channel characteristics is simply infeasible as a result

f prohibitive overhead costs and hard constraints. In yet other

ases, the wireless channel may be highly non-stationary that by

he time the information is obtained, it becomes outdated due to

hannels’ fast-changing nature. Hence, scheduling decisions should

e made based on partial and outdated channel state information. 

One of the main assumptions in prior works [2] is that the

xact and complete channel state information (CSI) of all users is

vailable at every time slot. Under this assumption, the seminal
� A preliminary version of the paper was presented at the International Workshop 

n Smart Communication Protocols and Algorithms (SCPA) co-located with IEEE ICC 

n Ottawa, Canada on June 2012 [1]. 
� This work was in part done when Mehmet Karaca was with Sabanci University, 

stanbul, Turkey. 
∗ Corresponding author. 
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ork by Tassiulas and Ephremides has shown that the oppor-

unistic Max-Weight scheduling algorithm is throughput-optimal,

.e., it can stabilize the network whenever this is possible [2] .

ax-Weight algorithm is a simple index policy which schedules

he user with the largest queue length and rate product at each

ime slot. 

In this paper, we investigate scheduling in a multi-user down-

ink wireless network where only partial channel state information

an be acquired due to the band-limited feedback channel ( Fig. 1 ).

e present a joint CSI acquisition and scheduling algorithm which

perates without any a priori knowledge on the distribution of

hannel states. The proposed algorithm tracks the states of the

hannels by using a learning algorithm and by judiciously probing

 set of users whose channel states may have changed. At each

lot, the algorithm schedules a user among the set of probed

sers, which has the highest queue backlog and transmission rate

roduct. 

Our work relies on a recent learning and optimization frame-

ork developed in [3] , wherein the exploration and exploitation

rade-off is explicitly quantified as a multi-objective meta op-

imization problem. In this paper, we investigate a trade-off

etween scheduling a user with the highest queue-rate product

exploitation), and probing of users with outdated channel ob-

ervations (exploration). The solution of this trade-off problem

equires the prediction of the instantaneous user channel states,

http://dx.doi.org/10.1016/j.comnet.2016.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.05.001&domain=pdf
mailto:mehmet.karaca@eit.lth.se
mailto:mehmetkrc@sabanciuniv.edu
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Fig. 1. Cellular downlink network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W  

 

 

2

 

w  

e  

t  

e  

g  

C  

w  

i  

i  

o  

p  

i

 

f  

t  

w  

c  

a  

c

 

p  

s  

w  

p  

a  

o  

u  

T  

e  

t  

j  

O  

g  

c  

a  

c  

s  

o  

a  

i  

m  

c  

d  

e  

t  

w

 

b  

L  

n  

s  

m  

t  

p  

Q  

b  

t  

p

 

f  

p  

t  

d  
and the measurement of the associated level of uncertainty in

the prediction. We adopt a Bayesian approach, and use Gaussian

processes as a state-of-the-art regression method to predict the

instantaneous user channel states. 

Gaussian process regression is a powerful nonlinear interpola-

tion tool, where the inference of continuous values are made with

respect to a Gaussian process prior [4] . Although the inference of

instantaneous channel gains is with a Gaussian process prior, this

does not assume that the underlying channel model is Gaussian.

In fact, as demonstrated by our numerical experiments, our ap-

proach is applicable to a wide range of channel models including

time-correlated and even non-stationary channels. Another unique

feature of our algorithm is that the uncertainty in the predicted

channel state is quantified explicitly by the entropy measure from

the information theory. Our algorithm weighs the level of uncer-

tainty eliminated by probing a channel against the aspiration to

schedule the user with the maximum weight to determine a set

of users probed at every slot. 

Our contributions are summarized as follows: i-) we first

define a general Max-Weight-like policy which makes scheduling

decisions based on the predicted values of instantaneous chan-

nel rates rather than their exact values. Based on the channel

prediction errors, we define the achievable rate region of this

algorithm as compared to the full rate region achieved by the

Max-Weight algorithm with complete CSI. Specifically, we analyt-

ically show that with this policy, ε fraction of the full rate region

can be obtained. We also explicitly compute ε under certain

conditions; ii-) Next, based on this general policy we investigate a

multi-objective framework where the exploration and exploitation

tradeoff of probing different users is identified. In this framework,

the information obtained by probing a user channel is modeled

with the help of Shannon’s entropy formula according to the past

observations of the channel; iii-) Then, we specify in detail our

channel predictor used to predict instantaneous CSI, and suitable

for both stationary and non-stationary channels based on Gaussian

Process Regression; iv-) Lastly, we perform an extensive number

simulations using High Data Rate (HDR) protocol [5] with a realis-

tic channel model. We compare the performance of our algorithm

with that of the state-of-the-art channel prediction method based

on Autoregression (AR) [6] . 

The organization of our paper is given as follows:

Section 2 summarizes the literature on opportunistic algorithms

scheduling with a partial CSI, and learning methods previously

used for the control of wireless networks. Section 3 presents the

system model used in this paper. In Section 4 , the general Max-

eight type policy and its performance in terms of achievable rate

region are presented. In Section 5 , GPR is explained in detail. The

performance of the proposed algorithm is evaluated numerically

in Section 6 . Finally, we conclude the paper in Section 7 . 
. Related work 

It was shown that Max-Weight algorithm scheduling the user

ith the highest queue backlog and transmission rate product at

very time slot is throughput optimal [2] . An important assump-

ion of Max-Weight algorithm is that it requires complete knowl-

dge of channel states at the beginning of each time slot. Investi-

ating the performance of Max-Weight algorithm with incomplete

SI has been an active research area, and we classify the previous

orks on this area into two main categories: in the first category,

t is assumed that the channel distributions of the users are known

n advance whereas the main assumption of the works in the sec-

nd category is that the channel distributions are not known a

riori but users have only a specific channel distribution such as

id, Markovian or, in general, a stationary channel distribution. 

In [7–9] , the authors proposed joint scheduling and channel

eedback algorithms by considering the problem of stabilizing

he network of queues with incomplete CSI. These algorithms

ere shown to be throughput-optimal under the assumption that

hannel distributions are known a priori and they are independent

nd identically distributed (iid). These works are within the first

ategory in our classification. 

For the case when the channel distributions are not known a

riori but can only have a specific distribution, which refers to the

econd category, several joint scheduling and probing algorithms

ere presented in [10–12] , and [13] . In [10] and [11] , the authors

roposed algorithms that estimate the user channel statistics by

ssuming that the channels are iid. The problem of joint prediction

f channel states and scheduling to optimize a long term metric

nder stability and other resource constraints was studied in [10] .

he work in [11] proposed a probabilistic algorithm which at

very slot decides to either explore a user channel state or exploit

he slot to transmit data. In [12] , the authors have presented a

oint scheduling and channel estimation algorithm for correlated

N/OFF Markovian channels. In [13] , we have developed an al-

orithm which probes only those users with sufficiently good

hannel quality and schedules the user with the maximum weight

t each transmission opportunity. The underlying system model

onsidered in [13] is different than the one used in this paper,

ince in [13] feedback from as many users as needed can be

btained by tolerating a reduction in data transmission rates. The

uthors in [14–19] , studied the problem of scheduling with limited

nformation under various aims and techniques such as utility

aximization, thresholds based policies, distributed solution for

ost reduction, etc. We refer the readers to [20] for a summary of

ifferent techniques used to reduce the overhead of obtaining CSI,

.g., quantization of CSI, beamforming or precoding. It is important

o note that the common assumption of all these works is that the

ireless channel has a well-defined stationary distribution. 

In this work, without making the assumptions in the works in

oth of these categories, a learning based approached is utilized.

earning algorithms been applied to various problems in commu-

ication networks where there is limited information on network

tates such as routing [21] , spectrum allocation [22] , interference

itigation [23] , multi-channel cognitive networks [24] , combina-

orial network optimization [25] , multi-channel access [26] . These

roblems were solved by using reinforcement learning [21,22] ,

-learning [23] techniques, or by modeling them as multi-armed

andit [24,25] , [26] , problems. Furthermore, studies have shown

hat such learning based future channel prediction techniques can

rovide more efficient spectrum utilization [27] . 

The studies which apply various learning techniques, [21–26] ,

ocused on finding a single solution assuming that the stochastic

rocesses underlying the channel characteristics are stationary. Al-

hough these methods may provide provably optimal solutions un-

er some special cases, none of them can adapt to the changes in
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4

he underlying process, if it is non-stationary. The need for track-

ng nonstationary environments via learning, although widely ac-

nowledged, has not been extensively pursued previously. In [28] ,

he authors investigated the performance of Max-Weight algorithm

ver non-stationary channels by assuming that the base station

cquires all CSI at every scheduling time. By employing Gaussian

rocess Regression (GPR) this paper focuses on continuous predic-

ion of the channel process rather than finding a single stationary

olution when only limited CSI is available at the base station. 

Gaussian Process Regression (GPR) is a popular regression

ethod for predicting and tracking of continuous processes, and

t is widely used for practical problems. In [29] , the authors

ddressed the problem of localization in a cellular network via

PR. In [30] , GPR was employed to select a group of sensors in

n environmental sensor network to accurately track the ambient

onditions while minimizing the total energy consumption. Sim-

larly, in [31] the authors employed GPR for efficient deployment

f sensors. In [32] , GPR was used to estimate a Rayleigh channel,

nd it was shown that GPR is a superior estimation technique. 

In this paper, we propose a joint scheduling and channel

eedback algorithm which does not aim to estimate the channel

tatistics, and thus, it is more suitable for realistic non-stationary

hannel models [33] . Unlike all aforementioned approaches, our

roposed approach assumes neither stationarity nor a particular

istribution for channels. Thus, it is practically more applicable.

n our preliminary work [1] , we have applied a similar algorithm

ssuming the same model in [13] without giving any analytical

erformance guarantees. 

. System model 

We consider a multiuser downlink network with N users and a

ingle base station (BS) as shown in Fig. 1 . Time is slotted, and a

on-interference model is adopted, where only one user transmits

t any given time slot, and there is no interference from neighbor-

ng cells. Each user channel experiences independent quasi-static

ayleigh fading, in which the channel gain is constant over the

uration of a time slot 1 , and it is varying continuously from slot

o slot [34] . 2 The gain of the channel between the BS and user

 , n ∈ { 1 , 2 , . . . , N } at time t is denoted by c n ( t ), and its value is

etermined according to an arbitrary probability distribution. As

escribed in the subsequent section, our algorithm which relies on

aussian Process Regression (GPR), does not make any assumption

n the channel distribution. 

The instantaneous channel rate between the BS and user n,

 n ( t ), is defined as the mutual information between the output

ymbols of the base station and the input symbols at user n over

lot t . The maximum value of R n ( t ), is obtained when the input

ymbols are chosen from a Gaussian-distributed input alphabet,

.e., 

 n (t) ≤ BW log 2 
(
1 + P | c n (t) | 2 ) bits , (1) 

here BW is the bandwidth of the channel, and P is the noise

ormalized transmit power. We assume that both BW and P are

xogenous variables over which we have no control, i.e., we do

ot consider bandwidth or power control in this paper. 

The base station does not have the knowledge of the channel

tates of the receivers at the beginning of the slot, but it has to
1 In practice, the channel gain may change during a time slot especially over very 

ast fading channel. In this work, for analytical tractability we assume the gain re- 

ains constant during each time slot. 
2 We consider both stationary and non-stationary behavior of the fading chan- 

els. We call a stationary channel if the statistics such as mean and variance of 

he channel gain remain constant over time. Otherwise, it is considered as non- 

tationary channel. 

4

 

p  

a  

e  

c  
cquire this information by probing the users. At the beginning

f each time slot, t , the base station broadcasts a pilot signal

ith a fixed and known power. Each user n determines its CSI,

 n ( t ), by measuring its received Signal-to-Noise-Ratio. The base

tation has a dedicated and band-limited feedback control channel

hat allows receiving channel state feedback from at most L < N

sers and L is upper bounded by the bandwidth of the feedback

hannel. We also assume that L is fixed and remains constant

hroughout the system operation. Such a feedback channel model

losely represents practical systems such as HDR [5] and LTE [35] .

or instance, in a LTE system [35] , CSI is quantized with 4 bits,

nd physical uplink control channel (PUCCH) with format 2 can be

onfigured for transmission of CSI, which can carry up to 20 bits

f feedback information. Let S(t) be the set of users for which

he channel state information is acquired at time slot t . Then, the

ardinality of set S(t) is L or |S(t) | = L, for all t. 

The base station maintains a separate queue for each user n .

ackets arrive according to a stationary arrival process that is

ndependent across users and time slots. Let A n ( t ) be the amount

f data arriving into the queue of user n at time slot t with an

verage arrival rate λn = E [ A n (t)] . There is a departure from the

ueue of user n , whenever that user is selected for transmission.

et J n (t) represent the scheduler decision, where J n (t) = 1 if

ser n ∈ S(t) is scheduled for transmission in slot t , and J n (t) = 0

therwise. By definition, at most one user can be served at a time

lot, i.e., 
∑ N 

n =1 J n (t) = 1 , for all t . 

The dynamics of the queue length process at user n is given as

ollows: 

 n (t + 1) = [ Q n (t) + A n (t) − R n (t) J n (t)] + , (2) 

here [ x ] + = max (x, 0) . Let Q (t) = [ Q 1 (t) , Q 2 (t ) , . . . , Q N (t )] denote

he vector of user queue lengths. The objective is to schedule a

ser at every time slot, so that all of the user queues remain stable

t the given arrival rates. A queue is stable if its mean length is

nite. 

At a given slot, Max-Weight algorithm [2] schedules the user

 

∗ for which the transmission rate weighted by the queue length

s the maximum, i.e., 

 

∗ = argmax 
n 

W n (t) = argmax 
n 

Q n (t) R n (t) , (3) 

ccording to (3) , Max-Weight scheduler requires the transmission

ates R n ( t ) for all users. Instead, we investigate the case where

he scheduler only has this information for a subset S ( t ) of users

t a given slot. We denote by π ∈ F , a joint scheduling and

hannel probing policy which selects the pair (n, S(t)) at every

lot t , where F is the set of all feasible policies. Given S(t) , n is

etermined in a way similar to Max-Weight rule, i.e., 

 = argmax 
i ∈S(t) 

Q i (t) R i (t) . (4) 

Note that in previous studies such as [7–9] , S(t) was de-

ermined given the knowledge of the stationary distribution of

he wireless channels. However, in practice, it is not possible to

now the exact channel distributions a priori to system operation.

oreover, if the channel distributions are non-stationary, then the

nowledge of channel distribution becomes obsolete. 

. Scheduling with incomplete CSI 

.1. A General result 

In this section, we study the scheduling problem with incom-

lete CSI over general fading channel model without assuming

 priori channel distribution. Let π ( η) be a joint policy which

mploys an arbitrary channel prediction algorithm η to predict the

hannel states at each slot. The quantity ˆ c 
(η) 
n (t) is the estimated
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CSI of user n at the beginning of time t under policy η. Let ˆ R 
(η) 
n (t)

denote the predicted transmission rate of user n at time t which is

defined according to (1) by replacing c n ( t ) by ˆ c 
(η) 
n (t) . The predic-

tion error is defined as e 
(η) 
n (t) = | ̂  R 

(η) 
n (t) − R n (t) | . We assume that

R min < 

ˆ R 
(η) 
n (t) < R max , and e 

(η) 
n (t) < e max for all n , and t . 

Under policy π ( η), S(t) and n are determined as follows: Based

on the predicted channel states by prediction algorithm η, L users

with the highest estimated transmission rate and queue length

product are added to S(t) . After acquiring CSI from users in S(t) ,

a user in S(t) is scheduled according to (4) . Policy π ( η) is given

in Algorithm 1 . 

Algorithm 1: Policy π ( η) 

(1) probing decision : 

• Step 1: Sort 

W n � Q n (t) ̂  R 

(η) 
n (t) , 

in a descending order. Tie is broken randomly. 
• Step 2: Construct S(t) by selecting the first L users in this 

order. 

(2) scheduling decision : 

The base station acquires CSI of each user in S(t) and user 

n ∗ ∈ S(t) is scheduled to transmit, 

n 

∗ = argmax 
n ∈S(t) 

Q n (t) R n (t) . ( 5) 

i.e., J n ∗ (t) = 1 , and updates queue lengths according to(2). 

For stationary and ergodic time-varying channels, we define

achievable rate region as the convex hull of the set of arrival rate

vectors � = (λ1 , . . . , λN ) for which there exists an appropriate

scheduling policy that stabilizes the network. When the exact

channel information for all users is known, i.e., L = N, the achiev-

able rate region is the largest. Let �h denote this hypothetical

rate region , the boundary of which can never be achieved in real

systems [36] . It was shown that Max-Weight algorithm with full

CSI stabilizes the network for all arrival rate vectors in �h [2] . 

We next analyze the performance of policy π ( η). Note that

depending on the quality of employed prediction method, and

the choice of users probed at each slot, policy π ( η) may or may

not schedule the user with the actual highest weight at each slot.

Given the backlog process, Q ( t ), we need to determine how often

a policy π ( η) chooses the user with the actual maximum queue

backlog-rate product. Let ρπ ( η) ( Q ( t )) be this probability which is

defined as: 

ρπ(η) (Q (t)) = Pr 

[ 
argmax 

n 
Q n (t) R n (t) = k 

∣∣∣
argmax 

n 
Q n (t) ̂  R 

(η) 
n (t) = k, Q (t) 

] 
. 

The following theorem characterizes the achievable rate region of

policy π(η) ∈ F , i.e., �π ( η) , as compared to that of Max-Weight

algorithm, �h . 

Theorem 1. For all Q ( t ) and some given 0 < ε < 1, if 

ρπ(η) (Q (t)) ≥ ε

then, an ε fraction of the full rate region can be achieved, i.e.,

�π ( η) ⊆ ε · �h . 

Proof. The proof relies on a theorem given in [37] , and the calcu-

lation of expected weighted rates obtained by full CSI Max-Weight

algorithm and π(η) ∈ F for any given Q ( t ). The details of the

proof are given in Appendix Appendix A . �
We note that the largest value of ε that can be supported

y a prediction policy depends on the channel statistics, and it

annot be obtained for a general case. However, to demonstrate

he typical structure of ε, we consider a simple example where

here are two users with identical channel distributions receiving

ervice from the same base station. 

xample. The channel gain between the base station and a user is

ssumed to be iid Rayleigh fading channel with parameter μ. We

ssume that at most one user can be probed at each slot, i.e., L = 1 .

emma 2. Under high SNR assumption, ε is given by, 

= exp 

(
−μ

P 

[
1 − e 

−e max 

(
1+ R max 

R min 

)]
e 

(R max ) 
2 

R min 

)
roof. The proof is provided in Appendix Appendix B . �

Note that ε increases, (which in turn increases achievable rate

egion according to Theorem 1 ), as the maximum prediction error

 max decreases. 

.2. Exploration-exploitation tradeoff

Under policy π ( η) given in Algorithm 1 , the quality of pre-

iction depends on both the prediction method and the set of

sers probed at each slot, S(t) . It is possible that under policy

( η) some channels may not be probed for a long time if users

ave small queue backlogs. The states of such channels may

ot be predicted accurately, especially if they exhibit fast-fading

haracteristics. Therefore, a good policy should acquire the channel

tates of not only users with high queue backlog-rate products but

lso users whose channel states may have changed significantly

ince the last probing. 

We define the information of an unexplored channel as the

eduction of uncertainty in the channel state given its past obser-

ations. Let I 
π(η) 
n (t) denote the information of channel state of user

 under policy π ( η) at the beginning of time slot t given past ob-

ervations. The value of I 
π(η) 
n (t) depends on the channel prediction

lgorithm, and it is defined using the Shannon’s entropy formula

38] as explained in Section 5 . The information obtained by prob-

ng a channel whose state was observed recently and many times

efore is less than the channel which has not been probed for a

ong time, since the uncertainty in the state of the latter is higher.

Hence, we have two inter-related objectives: 

• objective 1: max 
∑ N 

n =1 Q n (t) ̂  R 
π(η) 
n (t) , 

making a scheduling decision that stabilizes a network with the

largest possible achievable region 

• objective 2: max 
∑ N 

n =1 I 
π(η) 
n (t) , 

probing the set of users that minimizes the channel prediction

error. 

We seek a modified version of policy π ( η), which determines

 subset of users probed by considering both objectives, and

chedules a user out of this subset according to Max-Weight

lgorithm. The most common approach to find the solution of

 multi-objective optimization problems is the weighted sum

ethod [39] . The problem is stated as follows: 

max 
(η) ∈F 

N ∑ 

n =1 

α1 Q n (t) ̂  R 

π(η) 
n (t) + α2 I 

π(η) 
n (t) , (6)

here α1 and α2 are the weights assigned to each objective

ccording to their relative importance. 

The scheduling and probing decisions depend not only on the

ueue sizes and the estimated channel rates as was the case in

he original Max-Weight algorithm, but also on the uncertainty

n each channel state given its past observations. The problem
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3 The hyperparameters of the kernel function can be optimized to further in- 

crease the performance of GPR in terms of prediction quality. 
6) exhibits the well-known “Exploration vs. Exploitation ” trade-off

y exploiting the users with high backlog-rate product and ex-

loring the current state of the channels with outdated CSI. In

he following sections, we deal with a modified version of this

roblem, where we divide the objective function in (6) by α1 , and

efine a single weight ξ = α2 /α1 . Note that when ξ is tuned to

igher (lower) values, we track the channels more (less) closely. 

.3. Multi-objective scheduling and CSI feedback 

Multi-Objective Scheduling and Feedback (MOSF) algorithm is

iven in Algorithm 2 . The algorithm takes into account both the

Algorithm 2: MOSF Algorithm 

(1) probing decision : 

• Step 1: Sort 

W n � Q n (t) ̂  R 

π(η) 
n (t) + ξ I n (t) , 

in a descending order. Tie is broken randomly. 
• Step 2: Construct S(t) by selecting the first L users in this 

order. 

(2) scheduling decision : 

The base station acquires CSI of each user in S(t) and user 

n ∗ ∈ S(t) is scheduled to transmit, 

n 

∗ = argmax 
n ∈S(t) 

Q n (t) R n (t) . ( 7) 

i.e., J n ∗ (t) = 1 , and updates queue lengths according to(2). 

stimated transmission rates of users and the information acquired

rom each user. 

emma 3. Given L, ξ , Q ( t ), ˆ R 
π(η) 
n (t) and I n ( t ) for each user at time

lot t, MOSF algorithm solves (6) . 

roof. The proof is straightforward, and it is omitted for

revity. �

Next, we analyze the performance of MOSF algorithm. Let n ∗ be

he user scheduled by Max-Weight algorithm with complete CSI at

ime t . Under the worst case scenario, i.e., L = 1 , MOSF algorithm

chedules user n ∗ if the maximum prediction error is below a cer-

ain threshold as given by the following Lemma. 

emma 4. For L = 1 , MOSF algorithm schedules user n ∗ at time t, if

he maximum prediction error e max satisfies the following inequality

or all n � = n ∗, 

 max ≤
Q n ∗ (t) R n ∗ (t) − Q n (t) R n (t) + ξ (I n ∗ (t) − I n (t)) 

Q n ∗ (t) + Q n (t) 
, (8) 

roof. The proof is provided in Appendix Appendix C . �

emark. Lemma 4 gives the sufficient condition for the same user

o be scheduled by MOSF and Max-Weight algorithms. Note that

his condition always holds when I n ∗ (t) ≥ I n (t) for all n � = n ∗, and

→ ∞ since in this case the user which has the maximum weight

nd the maximum information is scheduled. On the other hand,

he condition does not hold if there is at least one user such that

 n ∗ (t) ≤ I n (t) and if ξ is high. This is because, as ξ increases MOSF

lgorithm emphasizes the information rather than the backlog-rate

roduct. 

Note that as long as MOSF schedules the user with the actual

aximum weight correctly at each slot (i.e., the condition in (8) is
atisfied), then the rate region achieved by MOSF approaches that

f the maximum achievable rate region, �h . The achievable rate re-

ion of MOSF can be obtained based on Theorem 1 , and Lemma 4 .

et p min be the probability that (8) holds for all t . Then, we have

he following theorem. 

heorem 5. MOSF algorithm can achieve a fraction ε of the full rate

egion, �h , where ε = p min . 

roof. The proof follows the same lines as the proof of

heorem 1 and relies on the calculation of expected weighted rates

btained by Max-Weight algorithm with complete CSI and MOSF

lgorithm for any given Q ( t ). The sketch of the proof is given in

ppendix Appendix D . �

The exact value of p min depends on the channel characteristics,

nd it can be calculated in a similar fashion for a given system as

as done in Lemma 2 . As the number of probed users increases,

.e., as L increases, the prediction error decreases. This is due to

he fact that channels are more frequently probed, which in turn

elps track the channel states more closely. On the other hand,

ince the channel states are tracked more closely, the uncertainty

n the states of the channels decrease. As a result, the information

cquired from an unexplored channel decreases as well, i.e., I n ( t )

ecreases. 

. Predicting channel states using Gaussian process regression 

The implementation of MOSF algorithm involves predicting

 n ( t ) by employing a particular prediction algorithm η, and mea-

uring I n ( t ) for each channel. The prediction of a variable such

s R n ( t ) is known as the regression problem in pattern recognition

iterature. In this work, we employ Gaussian Process Regression

GPR) to track the variation of channel states. 

Let D n (t) = ( c n , τn ) denote the set of observations of chan-

el n at the beginning of time slot t , where c n = { c 1 n , c 
2 
n , . . . , c 

w 

n }
enotes the set of the latest w CSI values taken at times, τn =
 τ 1 

n , τ
2 
n , . . . , τ

w 

n } , and τ i 
n < t, for all τ i 

n ∈ τn , i ∈ { 1 , 2 , . . . , w } . Let

ˆ  n (t) be the predicted state of the channel n at the beginning of

ime slot t . The value of ˆ c n (t) is predicted by GPR given D n (t) , as

escribed next. 

Let p(c n (t ) | t , D n (t )) be a posterior distribution of channel n .

ote that the foundation of the approach adopted in GPR is

ayesian inference, where the idea is to choose an a priori model

nd update it with actual experimental data observed. According

o GPR, a posteriori distribution is Gaussian with mean ˆ c n (t) and

ariance v n ( t ). Specifically, Gaussian process is specified by the ker-

el function, k n (τ i 
n , τ

j 
n ) , that describes the correlation of channel n

etween two of its measurements taken at times τ i 
n and τ j 

n . Defin-

ng a valid class of kernel functions play a key role for Gaussian

rocesses, as it assures consistency of the model specification. To

nsure the validity, kernel function has to be positive definite ker-

el function. 

The squared exponential kernel function or the Gaussian kernel

unction, 

 n (τ
i 
n , τ

j 
n ) = σ 2 

n, f exp 

[
− (τ i 

n − τ j 
n ) 

2 

2 l 2 n 

]
. (9) 

s widely used when the underlying model function is smooth.

owever, it is possible that the smoothness of channel state may

ary due to obstacles or moving objects etc. In this case, it is more

uitable to use a non-stationary covariance function to adapt to

his change [40] . We define θn = (σ 2 
n, f 

, l n ) as the hyperparameter 3 
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w  
set for user n . Given D n (t) , the estimated channel state ˆ c n (t) and

variance v n ( t ) are determined as follows: 

ˆ c n (t) = k 

T 
n (t) K 

−1 
n c n , (10)

v n (t) = k n (t , t ) − k 

T 
n (t ) K 

−1 
n k n (t ) , (11)

where K n is a w × w matrix composed of elements k n (τ i 
n , τ

j 
n ) for

1 ≤ i, j ≤ w and k n (t) is a vector with elements k n (τ i 
n , t) for ∀ τ i 

n ∈
τn . The network scheduler can easily predict the CSI of users at

time t by using (10) . The variance v n ( t ) is used as a representative

of the level of uncertainty in the predictions, I n ( t ). The calculation

of ˆ c n (t) in (10) requires the inversion of a w × w matrix, which is

the basic complexity of GPR. In general, the complexity of GPR is

O(w 

3 ) , where w is the number of recent channel observations [4] .

We note that using a fewer number of recent CSI may result in a

higher prediction error. Therefore, one can conclude that there is

a trade-off between the complexity and the prediction quality. In

our simulations, we observe that the prediction error is sufficiently

low even for a small value of w (e.g. w = 3 ) so the complexity can

be easily handled. 

Shannon’s entropy of a discrete random variable A is defined

as H(A ) = 

∑ 

s p s log s ( 
1 
p s 

) , where p (.) is the probability distribution

function of A [38] . Shannon entropy is often used as a measure of

uncertainty of a quantity. In our context, the current realization of

CSI, c n ( t ), is a random variable. Accordingly, let H 

0 
n (c n (t ) | t , D n (t ))

and H 

1 
n (c n (t ) | t , D n (t )) denote the entropy of the random vari-

able c n ( t ) before and after time slot t , respectively when D n (t) is

given. If channel n is probed at time t , then H 

1 
n (c n (t ) | t , D n (t )) will

be zero since the channel state is known exactly. Otherwise, the

uncertainty increases, i.e., H 

1 
n (c n (t ) | t , D n (t )) > H 

0 
n (c n (t ) | t , D n (t )) .

Hence, the information acquired by probing channel of user n is

the reduction in its uncertainty, which is simply the difference be-

tween its entropies before and after the probing: 

I n (t) = H 

0 
n (c n (t ) | t , D n (t )) − H 

1 
n (c n (t ) | t , D n (t )) . 

The following lemma is similar to the one given in [3] , and estab-

lishes that the information obtained by probing a channel is equal

to the variance of the estimate of the state of that channel. 

Lemma 6. Given D n (t) , ∀ n = 1 , . . . , N, finding the channel that has

the highest information at time slot t is equal to finding the channel

which has the highest variance at that time slot, i.e., 

i ∗ = argmax 
1 ≤n ≤N 

I n (t) = argmax 
1 ≤n ≤N 

v n (t) . (12)

Proof. Since H 

1 
n (c n (t ) | t , D n (t )) = 0 after probing, I n ( t ) is simply 

I n (t) = H 

0 
n (c n (t ) | t , D n (t )) . (13)

Note that according to GPR a posterior distribution of state of

channel given D n is 

p(c n (t ) | t , D n ) ∼ N ( ̂  c n (t) ; v n (t)) . (14)

Then, the entropy of this Gaussian distribution is given by, 

H 

0 
n (c n (t ) | t , D n ) = 

1 

2 

log (2 πe v n (t)) . (15)

Hence, i ∗ = argmax 1 ≤n ≤N I n (t) = argmax n ∈N v n (t) . �

6. Numerical analysis 

In our simulations, we model a single cell CDMA downlink

transmission utilizing high data rate (HDR) [5] . The base station

serves 16 users and keeps a separate queue for each user. Time is

slotted with length T s = 1 . 67 ms as defined in HDR specifications.

Packets arrive at each slot according to Bernoulli distribution: The

size of a packet is 128 bytes which corresponds to the size of an

HDR packet. The wireless channel is modeled as correlated Rayleigh
ading channel according to Jakes’ model [41] . The bandwidth of

he system is BW = 1 . 25 MHz and transmission power of the base

tation is P = 10 dB. The transmission rate of the user channel is

aken as the maximum value given in (1). Doppler frequency of

ach channel is randomly chosen in the range f d = [5 , 20] Hz. We

ivide the users into two groups with eight users in each by con-

idering the effect of both slow and fast fading. Note that the chan-

el gain of a user with fast fading changes considerable from slot

o slot. On the other hand, for a slow fading channel the varia-

ions in the channel gain changes slowly with time. For more rig-

rous approach, we characterize a channel based on its normalized

oppler frequency i,e. f d T s by following the work in [42] . Specifi-

ally, we consider that if the normalized Doppler frequency is less

han 0.02 then that channel is slow fading. Otherwise, the chan-

el exhibits a fast fading. Hence, the users in the first group ex-

erience slow fading, i.e., f d / f s ≤ 0.02, and the users in the second

roup experience fast fading, i.e., f d / f s ≥ 0.02, where f s = 600 Hz is

he sampling rate of the channel. We set σn, f = 1 and l n = 1 for all

sers. The simulation is run for 10 5 slots, which is sufficiently long

or the average queue sizes to reach their steady-state values 

Auto-regression (AR) models were previously used in the liter-

ture to estimate the future values of the fading coefficients. We

ompare MOSF with an algorithm named LAR in [6] , which also

dopts an AR model. According to the AR model, the current CSI

f a user can be predicted when p previous CSIs of that user are

iven, where p is the order of AR model. After predicting the cur-

ent channel states of all users, LAR algorithm probes L users with

he highest backlog-estimated rate product and schedules the user

ith the maximum weight in the set of probed users at every slot.

ecall that MOSF algorithm employs GPR for channel state predic-

ion based on w most recent observations. We empirically observe

hat the minimum prediction error by GPR is achieved when p = 2

ith AR and w = 3 , and thus, these values are taken throughout

ll experiments. The performance of the algorithms are measured

n terms of their average queue sizes and average estimation er-

ors. Note that the average queue size is an indicator to the aver-

ge delay experienced by the users. Also note that by inspecting

he average rate of change of queue sizes, we can approximately

etermine the maximum arrival rates that can be supported by

ifferent algorithms. The lower bound for average queue sizes is

iven by Max-Weight algorithm which has full CSI at every time

lot. The estimation error in LAR and MOSF is measured as average

bsolute error (AAE): 

AE = lim 

t→∞ 

1 

T 

T ∑ 

t=0 

N ∑ 

n =1 

∣∣c n (t) − ˆ c πn (t) 
∣∣. 

.1. Effect of information 

We first conduct an experiment to show the effect of taking

nto account the uncertainty in the channel states while making

robing decisions. In order to keep the plots simple we only de-

ict results for L = 4 . Fig. 2 a shows the average total queue sizes

ith respect to arrival rates. When the information is not taken

nto account, i.e., ξ = 0 , the network can be stabilized for small ar-

ival rates. For instance, for ξ = 0 the stabilizable arrival rate is ap-

roximately 5 packets/slot, whereas for ξ = 10 3 , the network can

e stabilized for arrival rates up to 7.5 packets/slot. Fig. 2 b depicts

he average error in channel estimation. Clearly, as ξ increases, the

stimation error decreases since the channels are tracked more ac-

urately for higher values of ξ . 

.2. Achievable rate region 

Fig. 3 depicts the average total queue sizes of MOSF and LAR

ith respect to arrival rates. The exploitation factor is set to be
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Fig. 2. Average total queue backlogs (Fig. 2a) and absolute channel estimation error 

(Fig. 2b) vs. arrival rate for varying ξ when L = 4. 
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= 10 5 . As shown in Fig. 3 , for L = 1 MOSF algorithm is not

hroughput-optimal since it cannot to stabilize the network for all

rrival rates. For instance, when the arrival rate is around 3 pack-

ts/slot, the average total queue size suddenly increases, which

hows the instability of the network. This is because the learn-

ng algorithm does not have sufficiently frequent observations to

ccurately predict the channel state. However, as L is increased to

 = 3 the network is stabilized for higher arrival rates (i.e., it stabi-

izes the network for 6.5 packets/slot), but MOSF still does not sta-

ilize the network for all arrival rates. When we further increase

he feedback to L = 5 , then MOSF algorithm has a comparable per-

ormance as that of Max-Weight algorithm with full CSI. On the

ther hand, LAR algorithm also achieves its best performance when

 = 5 , however, even in that case it cannot stabilize the network

or all arrival rates. Hence, we conjecture that LAR achieves ap-

roximately smaller rate region as compared to MOSF algorithm.

ext, we investigate the performance of MOSF and LAR algorithms

n terms of their average absolute error (AAE). As depicted in Fig. 4 ,

s the queue sizes increase, the estimation error increases with

AR. The increase in the error with MOSF algorithm is small and it

s more robust to changes in queue sizes than LAR. Moreover, the

est error performance for both prediction algorithms is achieved

ith L = 5 and when the arrival rate is at its lowest value. In that

ase, the average absolute error with MOSF is 0.03 whereas it is
qual to 0.23 with LAR. Then, we determine the minimum num-

er of channels, L min , required to stabilize the network for a given

rrival rate and to achieve the similar delay performance as with

ax-Weight algorithm with full CSI. We set the average total ar-

ival to the network 5 packets/slot. As depicted in Fig. 5 , when

f d = 10 Hz for all channels, the base station has to probe at least

 min = 5 channels to achieve the same rate region and the aver-

ge delay performance. As f d increases L min increases as well. This

s due to the fact that at a higher Doppler frequency the chan-

el states vary faster, which in turn necessitates more observa-

ions for the learning algorithm to accurately predict the current

hannel state. Hence, the base station should collect CSI more fre-

uently as f d increases. Finally, we compare the performance of the

sers with slow and fast fading when MOSF is employed. The nor-

alized Doppler frequency for slow fading users is set to 0.003

hereas the fast fading users have a normalized Doppler frequency

f 0.03. Fig. 6 depicts the performance of those users in terms of

verage total queue sizes with respect to the average total arrival

ate for different values of L . Interestingly, when L = 1 the aver-

ge queue size of the users with slow fading is higher than that of

he users with fast fading. This is due to the fact that MOSF algo-

ithm does not only take into account the channel state informa-

ion but also the estimation variance. Since the variance is higher

or the users with fast fading MOSF algorithm gives higher priority
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to these users for channel access. Thus, their average queue sizes

are less then that of slow fading users. From Fig. 6 , similar re-

sults can be observed when L = 2 . However, when L = 3 and L = 4 ,

the estimation error is sufficiently low for both type of users, and

hence the average queue sizes for all users become the same. 

6.3. Performance over Non-stationary channels 

As a non-stationary scenario, we assume that the velocity of

users (i.e., in turn their Doppler frequencies) vary in time, and the

base station does not have any knowledge about these changes. In

our numerical experiment, the normalized Doppler frequency f d / f s 
is increased at a constant rate from 0.003 to 0.03 until t = 5 × 10 4 .

After 5 × 10 4 , it is decreased again at a constant rate. This model

approximately represents the movement of a mobile user such that

the user velocity is increasing from t = 0 to t = 5 × 10 4 and it is

slowing from t = 5 × 10 4 to t = 10 5 . Fig. 7 depicts that MOSF al-

gorithm outperforms LAR in terms of rate region even in the dy-

namically changing channels. This is due to the fact that the pre-

diction of GPR depends on the most recent channel observations

and how fast the channels change rather than the distribution of

channels. 

7. Conclusion 

In this paper, we considered scheduling in a downlink multi-

user setting, where the base station can only probe a limited num-

ber of users due to the limited bandwidth on the uplink feedback

channel. We have presented a joint scheduling and channel prob-

ing algorithm that can operate in a stationary and non-stationary

network scenarios. The algorithm is based on an active learning

framework that quantifies the reward of learning the current state

of the system by using the entropy measure. Based on this mea-

sure, the scheduler makes an intelligent trade off between having

a more up-to-date picture of the system and maximizing the over-

all system throughput. The proposed algorithm first decides the set

of channels that should be probed at the beginning of each time

slot. The set of channels is determined by considering not only the

queue sizes and the estimated transmission rates but also the in-

formation to be obtained by probing a channel. We apply Gaussian

Process Regression technique to predict CSI at each time slot based

on the previously observed CSI. In numerical results, we show that

the base station using MOSF can stabilize the network and achieve

a similar delay performance as compared to full CSI Max-Weight
lgorithm by probing less than half of the users at every slot. Pos-

ible directions for future work include the investigation of the

ase where the channel gain changes within a time slot. Another

ossible future direction is to investigate the scheduling problem

ith incomplete CSI when interference from neighboring cells is

resent. 

ppendix A. Proof of Theorem 1 

We consider the worst case in which at most one user is probed

t every slot, i.e., L = 1 . In this case, the probed user is always the

cheduled user. Note that when L > 1, we may achieve a larger

ate region. We also drop η in π ( η) for notational simplicity. Let

 

f (t) = 1 if user n is scheduled when full CSI available, otherwise

 

f (t) = 0 . Similarly, J 

π
n (t) = 1 if user n is scheduled with policy

. Otherwise, J 

π
n (t) = 0 . 

Consider also the following functions : 

 f (Q (t)) = E 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

f 
n (t ) | Q (t ) 

] 

, (A.1)

 π (Q (t)) = E 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

π
n (t ) | Q (t ) 

] 

. (A.2)

he function (A.1) gives the expected weighted-sum rate accord-

ng to Max-Weight algorithm with full CSI, whereas (A.2) is the

xpected-sum rate when at most L = 1 channel is probed with pol-

cy π . Our aim is to determine J 

π
n (t) at every time slot so that

 f ( Q ( t )) is close to g π ( Q ( t )). We define the event χ such that χ oc-

urs if policy π and full CSI Max-Weight algorithm schedule the

ame user at a time slot, i.e., 

rgmax 
n 

Q n (t) R n (t) = argmax 
n 

Q n (t ) ̂  R 

π
n (t ) . 

e denote the probability of event χ as ρπ ( Q ( t )). We use the fol-

owing theorem given in [37] to prove our main result Theorem 1 . 

heorem 7. [37] If for some ε > 0 policy π guarantees 

 π (Q (t)) ≥ εg f (Q (t)) (A.3)

or all Q ( t ), then policy π can achieve a fraction ε of hypothetical rate

egion, �h . 
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Note that g π ( Q ( t )) can be rewritten as follows, 

 π (Q (t)) = E 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

π
n (t ) | Q (t ) , χ

] 

ρπ (Q (t)) 

+ E 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

π
n (t ) | Q (t ) , χ ′ 

] 

(1 − ρπ (Q (t))) . 

ote that when event χ occurs, the following equality is true, 

 f ( Q (t)) = E 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

π
n (t ) | Q (t ) , χ

] 

. 

hus, we have 

 π (Q (t)) = g f (Q (t)) ρπ (Q (t)) 

+ E 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

π
n (t ) | Q (t ) , χ ′ 

] 

(1 − ρπ (Q (t))) . 

ote that, 

 

[ 

N ∑ 

n =1 

Q n (t) R n (t ) J 

π
n (t ) | Q (t ) , χ ′ 

] 

(1 − ρπ (Q (t))) ≥ 0 

ence, 

 π (Q (t)) ≥ g f (Q (t)) ρπ (Q (t)) (A.4) 

y dividing both sides of (A.4) by g f ( Q ( t )), we obtain, 

g π (Q (t)) 

g f (Q (t)) 
≥ ρπ (Q (t)) (A.5) 

hus, if ρπ ( Q ( t )) ≥ ε, then g π ( Q ( t ))/ g f ( Q ( t )) ≥ ε. Hence, accord-

ng to theorem [37] , the scheduling policy with estimated channel

ates can achieve as least ε fraction of �h . 

ppendix B. Proof of Lemma 2 

Let transmission rates of users be defined as R 1 ( t ) and R 2 ( t ), and

heir queue sizes be defined as Q 1 ( t ), Q 2 ( t ), respectively. For ana-

ytical simplicity, we assume high SNR approximation, i.e., R n ( t ) ≈
n ( P | c n ( t )| 

2 ) and we drop η in π ( η) and time index for notational

implicity. Then, we determine the probability that the same user

s scheduled by policy π and full CSI Max-Weight algorithm. For-

ulary: 

p π = Pr 
(
Q 1 R 1 ≥ Q 2 R 2 | Q 1 ̂

 R 

π
1 ≥ Q 2 ̂

 R 

π
2 , Q 1 , Q 2 

)
e assume the worst case scenario in which the estimation error

s e max and R 1 is overestimated whereas R 2 is underestimated. In

his scenario we have, 

 1 ̂
 R 

π
1 ≥ Q 2 ̂

 R 

π
2 

 1 (R 1 + e max ) ≥ Q 2 (R 2 − e max ) 

 1 R 1 − Q 2 R 2 ≥ −e max (Q 1 + Q 2 ) 

et us define K � e max (Q 1 + Q 2 ) . Now, p π can be rewritten as fol-

ows: 

p π = Pr ( Q 1 R 1 ≥ Q 2 R 2 | Q 1 R 1 − Q 2 R 2 ≥ −K, Q 1 , Q 2 ) 

= 

Pr ( Q 1 R 1 ≥ Q 2 R 2 and Q 1 R 1 − Q 2 R 2 ≥ −K| Q 1 , Q 2 ) 

Pr ( Q 1 R 1 − Q 2 R 2 ≥ −K| Q 1 , Q 2 ) 

= 

Pr ( Q 1 R 1 − Q 2 R 2 ≥ 0 | Q 1 , Q 2 ) 

Pr ( Q 1 R 1 − Q 2 R 2 ≥ −K| Q 1 , Q 2 ) 

e first calculate the following probability, 

p πnum 

= Pr ( Q 1 R 1 − Q 2 R 2 ≥ 0 | Q 1 , Q 2 ) . 
ince | c 1 ( t )| 
2 and | c 2 ( t )| 

2 are identically distributed exponential

andom variables with parameter μ, p πnum 

is determined as fol-

ows: 

p πnum 

= Pr 

(
R 1 ≥ Q 2 R 2 

Q 1 

| Q 1 , Q 2 

)
= Pr 

(
P | c 1 | 2 ≥ e aR 2 

P 
| Q 1 , Q 2 

)

= 

∫ ∞ 

0 

Pr 

(
| c 1 | 2 ≥ e ar 2 

P 
| Q 1 , Q 2 , R 2 = r 2 

)
f R 2 (r 2 ) d r 2 

here a = 

Q 2 
Q 1 

and f R 2 (r 2 ) is the pdf of R 2 which is given by, 

f R 2 (r 2 ) = 

μ

P 
e r 2 e −

μ
P e 

r 2 
, for r 2 ≥ 0 . 

ence, 

Pr 

(
| c 1 | 2 ≥ e ar 2 

P 
| Q 1 , Q 2 , R 2 = r 2 

)

= 

∫ ∞ 

e 
aR 2 
P 

μe −μc 1 dc 1 

= e −
μ
P e 

ar 2 

hen, p πnum 

is given by, 

p πnum 

= 

∫ ∞ 

0 

e −μe 
ar 2 

P f R 2 (r 2 ) d r 2 

= 

∫ ∞ 

0 

μ

P 
e r 2 e −

μ
P e 

r 2 e −
μ
P e 

ar 2 d r 2 

et b = 

K 
Q 1 

. Next, we determine the following probability, 

p πdenum 

= Pr ( Q 1 R 1 − Q 2 R 2 ≥ −K| Q 1 , Q 2 ) . 

y following the same way, p π
denum 

is given as, 

p πdenum 

= 

∫ ∞ 

0 

μ

P 
e r 2 e −

μ
P e 

r 2 e −
μ
P e 

ar 2 −b 

d r 2 

ence, we have, 

p π = 

p πnum 

p π
denum 

= 

∫ ∞ 

0 
μ
P 

e r 2 e −
μ
P e 

r 2 e −
μ
P e 

ar 2 d r 2 ∫ ∞ 

0 
μ
P 

e r 2 e −
μ
P e 

r 2 e −
μ
P e 

ar 2 −b 

d r 2 
(B.1) 

ince R min < r 2 < R max , p 
π can be approximated as follows, 

p π ≈
∫ R max 

R min 
e r 2 e −

μ
P e 

r2 
e −

μ
P e 

ar 2 d r 2 ∫ R max 

R min 
e r 2 e −

μ
P e 

r2 
e −

μ
P e 

−b e ar 2 d r 2 
(B.2) 

ote that the following inequality holds, 

 

− μ
P e 

−b e ar 2 ≤ e −
μ
P e 

ar 2 + μB 

here B = e aR max (1 − e −b ) . Hence, 
 ∞ 

0 

e r 2 e −
μ
P e 

r2 

e −
μ
P e 

−b e ar 2 d r 2 ≤

e μB 

∫ ∞ 

0 

e r 2 e −
μ
P e 

r2 

e −
μ
P e 

ar 2 d r 2 

y applying this result to (B.1) , we have 

p π ≥ e −μB (B.3) 

e know also that 

 2 ≤ Q 1 

ˆ R 

π
1 

ˆ R 

π

2 
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Since R min ≤ ˆ R π
i 

≤ R max , i = 1 , 2 we have, 

Q 2 ≤ Q 1 
R max 

R min 

By applying this result to (B.3) , we have, 

p π ≥ exp 

(
−μ

P 

[
1 − e 

−e max 

(
1+ R max 

R min 

)]
e 

(R max ) 
2 

R min 

)
∀ t. 

Hence, ε = exp 

(
−μ

P 

[
1 − e 

−e max 

(
1+ R max 

R min 

)]
e 

(R max ) 
2 

R min 

)
. Policy π can

achieve ε fraction of rate region of Max-Weight algorithm with full

CSI. 

Appendix C. Proof of Lemma 4 

Since n ∗ is the scheduled user with Max-Weight algorithm with

full CSI, the following inequality is true, 

Q n ∗ (t) R n ∗ (t) ≥ Q n (t) R n (t) ∀ n � = n 

∗

When MOSF algorithm decides to schedule user n ∗ then the fol-

lowing inequality must be satisfied, 

Q n ∗ (t) ̂  R n ∗ (t) + ξ I n ∗ (t) ≥ Q n (t) ̂  R n (t) + ξ I n (t) , ∀ n � = n 

∗

We consider the worst case scenario in which e n (t) = e max , for all

n and GPR underestimates for channel n ∗ whereas it overestimates

for all other channels, i.e., 

ˆ R n ∗ (t) = R n ∗ (t) − e max 

ˆ R n (t) = R n (t) + e max , ∀ n � = n 

∗

Hence, the following inequality must be true so that MOSF algo-

rithm schedules user n ∗ in the worst case, 

Q n ∗ (t)(R n ∗ (t) − e max )+ ξ I n ∗ (t) ≥
Q n (t)(R n (t) + e max ) + ξ I n (t) , ∀ n � = n 

∗

Thus, e max should satisfy the following condition, 

e max ≤
Q n ∗ (t) R n ∗ (t) − Q n (t) R n (t) + ξ (I n ∗ (t) − I n (t)) 

Q n ∗ (t) + Q n (t) 
(C.1)

Appendix D. Proof of Theorem 5 

Let J 

m 

n (t) represent the scheduling decision with MOSF algo-

rithm. J 

m 

n (t) = 1 if user n is scheduled with MOSF. Otherwise,

J 

m 

n (t) = 0 . Let the condition in Lemma 4 hold with probability

ρm ( Q ( t )) at time slot t . We consider the following function: 

g m 

(Q (t)) = E 

[∑ 

n 

Q n (t) R n (t) J 

m 

n (t) | Q (t) 

]
Using arguments similar to those in Theorem 1 , we have 

g m 

(Q (t)) 

g f (Q (t)) 
≥ ρm (Q (t)) 

If ρm ( Q ( t )) ≥ p min for all t , then MOSF can achieve a fraction ε =
p min of rate region �h . 
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