
Computer Networks 104 (2016) 1–15 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

A Centrality Entropy Maximization Problem in Shortest Path Routing 

Networks 

Vanniyarajan Chellappan 

1 , ∗, Krishna M. Sivalingam 

1 , Kamala Krithivasan 

Department of Computer Science & Engineering, Indian Institute of Technology Madras, Chennai - 60 0 036, India 

a r t i c l e i n f o 

Article history: 

Received 21 June 2015 

Revised 11 March 2016 

Accepted 17 April 2016 

Available online 30 April 2016 

Keywords: 

Traffic engineering 

Topology design 

Betweenness centrality 

Entropy 

Routing 

OSPF 

a b s t r a c t 

In the context of an IP network, this paper investigates an interesting case of the inverse shortest path 

problem using the concept of network centrality. For a given network, a special probability distribution, 

namely the centrality distribution associated with the links of a network can be determined based on 

the number of the shortest paths passing through each link. An entropy measure for this distribution 

is defined, and the inverse shortest path problem is formulated in terms of maximizing this entropy. 

We then obtain a centrality distribution that is as broadly distributed as possible subject to the topology 

constraints. A maximum entropy distribution signifies the decentralization of the network. An appropriate 

change in the weight of a link alters the number of the shortest paths that pass through it, thereby 

modifying the centrality distribution. The idea is to obtain a centrality distribution that maximizes the 

entropy. This problem is shown to be NP-hard, and a heuristic approach is proposed. An application to 

handling link failure scenarios in Open Shortest Path First routing is discussed. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

In the general context of network design, a well designed topol-

gy is the basis for all stable networks [1] . Two main design con-

iderations for a good network topology design are: (i) reducing

he single point of failures that can occur in the network; and (ii)

educing the hop count between any origin-destination (OD) pair.

e investigate appropriate topology measurements based on the

tructural properties of the network, and study how these can be

tilized to determine the maximally efficient topology. In this con-

ext, it is important to study the influence a node or link may have

n the larger network based on its structural position in the topol-

gy. This will help in the identification of critical nodes and/or

inks in the network. A network is said to be highly centralized

f some of its nodes or links are extremely critical to the operation

f the network. Such a highly critical node or link conflicts with

he design goal of eliminating single points of failure. 

In this paper, we investigate a network-wide measurement

alled network centrality to determine the centralization of a

etwork, as an instance of graph complexity measure [2] . The

entrality distribution associated with the nodes or links of a
∗ Corresponding author. 
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etwork is determined based on the function of betweenness cen-

rality values. A network wide measure is arrived by computing

he entropy of the centrality distribution. We then formulate the

etwork topology design problem as a problem of minimizing the

entralization of the entire network or maximizing the entropy

f the centrality distribution. We present a few interesting use

ases of this proposed measure in the context of determining the

fficiency of routing for a given topology. 

Next, we study the inverse problem of determining the ap-

ropriate centrality distribution using suitable link weight set-

ing techniques that maximize the entropy. This Centrality Entropy

aximization (CEM) problem is inspired by an earlier work called

etwork Entropy Maximization (NEM) [3] , that connects the prin-

iple of maximum entropy with Internet Protocol (IP) routing. The

EM problem is shown to be NP-hard by reducing the known Open

hortest Path First (OSPF) optimal weight setting NP-hard prob-

em [4] . We present a heuristic algorithm for the same. It is then

hown, how this can be useful in handling link failure cases in

SPF networks. This paper consolidates and extends our previous

ork presented in [5,6] . 

The important contributions of this paper are summarized as

ollows: (i) studying the applicability of network centrality mea-

ure for network design problems; (ii) definition, proof of NP-

ardness and a proposed heuristic solution for the centrality en-

ropy maximization (CEM) problem; (iii) discuss various applica-

ions and use cases of the CEM framework including measuring the

fficiency of routing in IP networks and understanding Braess Para-

http://dx.doi.org/10.1016/j.comnet.2016.04.015
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dox in network routing; and (iv) an application of CEM for network

topology design in tactical wireless networks. 

The remainder of the paper is organized as follows.

Section 2 presents the related work on entropy based mea-

sure of graph complexity and various centrality measures.

Section 3 presents definitions along with some notations.

Section 4 introduces the measure of network centrality and its

variants. In Section 5 , we show how the proposed network cen-

trality measure can be applied to measure routing efficiency and

detect Braess’s paradox. Section 6 introduces the CEM problem and

presents a heuristic approach to solve the same. Section 7 presents

a use case of handling OSPF link failure case. Section 8 discusses

the applicability of the proposed measure and the CEM framework

to other interesting networking problems. Section 9 concludes the

paper. 

2. Related work 

Centrality measures are often used in social networks to es-

timate the potential monitoring and control capabilities a person

may have on communication flowing in the network. The concept

of centrality has been extended to communication networks. Var-

ious centrality measures such as degree, closeness, and between-

ness have been studied in the literature in order to analyze the in-

ternal topology of a given network [7] . These measures have been

studied to quantify the influence of nodes or links on the dynamics

of the entire network. 

Betweenness centrality (BC) is one such graph theoretic concept

that measures the degree to which a node or a link acts as an

intermediary in the communication between every pair of nodes

in the graph or topology. This measure of centrality is higher for

certain nodes or links indicating that these nodes or links play a

critical role. More precisely, the betweenness centrality of a node

or link is determined by its occurrence in the shortest paths be-

tween pairs of nodes. There are different contexts in which be-

tweenness centrality measure has been considered in a network [8–

10] . The concept of Routing Betweenness Centrality (RBC) is intro-

duced in [11] , as a measure of the expected number of packets

passing through a given node. A new edge betweenness centrality

called traffic-aware edge betweenness centrality (TEBC) is defined in

[12] . It is shown that TEBC can be used to influence and improve

the performance of the shortest-path routing algorithm with re-

spect to dynamic routing. Note that this metric is based on the

fraction of traffic flow on an edge, and is used to re-balance the

link’s importance and lessen the problem of any bottleneck build-

up on a link. More information on centrality related work can be

found in [13,14] . 

The concept of node or link centrality has been extended fur-

ther to the measurement of network centrality or graph centrality

[7] . There are two distinct views in proposing such a graph- or

network-wide measure. The first view leads to the development of

measures of graph centrality based on the degree that all of its

nodes or links are central. The alternative view leads to the devel-

opment of measures of graph centrality based on the dominance of

one node or link. We consider the first approach since it is more

applicable in the network topology design problem. 

We note that such a network-wide measure of centrality is also

a measure of graph complexity. Graph complexity can be measured

based on different structural features of the graph. For example,

connectivity of a graph is measured based on node connectivity

or link connectivity. The node or link connectivity is the smallest

number of nodes or links whose removal results in a disconnected

graph. This measure has been extended to measure the robustness

of a network [15] . 

A taxonomy and overview of approaches to the measurement of

graph complexity are presented in [2] . The taxonomy distinguishes
etween deterministic and probabilistic approaches. In the proba-

ilistic approach, a probability distribution associated with the ver-

ices or edges of a graph is determined based on the structural

roperties of the graph. Then, an entropy function is applied to

he probability distribution to derive the measure of complexity.

n entropy function measures how close a probability distribution

s to being uniformly distributed or quantifies the unevenness of

he probability distribution. 

Shannon’s entropy function [16] is one of the most commonly

sed entropy functions in measuring the complexity of graphs. In

he context of an entropy function, the Principle of Maximum En-

ropy aims to determine a uniform or as broad a probability distri-

ution as possible subject to the available constraints [17,18] . This

rinciple has been used in solving some interesting networking

roblems [19,20] . The first work connecting the principle of maxi-

um entropy with IP routing is called Network Entropy Maximiza-

ion (NEM) [3] . 

This section summarized the related work. The next section

resents the necessary definitions and notations. 

. Definitions and notations 

This section provides necessary technical background, defini-

ions and preliminaries of this paper. A network in its simplest

orm is a set of nodes or vertices joined together in pairs by

dges or links. It can be represented as a directed graph G = (V, E) ,

here V is the set of vertices and E is the set of edges. An edge is

abeled as ( u, v ) or simply uv , where u, v ∈ V . In a directed graph,

v � = vu . For routing purpose, we assume that there are no self-

oops, and the paths connecting any pair of vertices are loop-free.

 graph is said to be weighted when we assign weight to each of

ts edges. Let w : E → R ≥0 be the weight function. If G is not pro-

ided with a weight function on the edges, we assume that each

dge has unit weight. The weight is represented by w u, v for the

ink ( u, v ) ∈ E . A path in a graph is a finite sequence of edges

hich connect a sequence of vertices which are all distinct from

ne another. A graph is said to be connected when every pair of

ertices is joined by a path. 

efinition 1 ( Geodesic or Shortest Path ) . Given a connected

eighted directed graph G ( V, E, w ), associated with each edge

 u, v 〉 ∈ E , there is a weight w ( u, v ). The length of a path p =
 v 0 , v 1 , . . . , v k 〉 is the sum of the weights of its constituent edges: 

 (p) = 

k ∑ 

i =1 

w (v i −1 , v i ) . 

he length of the shortest path from u to v is defined by δ(u, v ) =
in { w (p) : p is a path from u to v }. δ( u, v ) is called the distance

etween u and v . The path that realizes this distance is called the

hortest path or geodesic. 

There can be more than one shortest path between a pair of

odes. 

efinition 2 (( 〈 s, t 〉 induced subgraph )) . A sub-graph induced by

he set of paths that connects the given source-destination pair 〈 s,

 〉 . The union of paths that begin with s and end with t is called as

he 〈 s, t 〉 induced subgraph, and is denoted by G st . 

Degree is a count of the number of edges incident upon a given

ode. The degree of a node is the simplest centrality measure of a

ode. It implies that the node with a higher degree has more in-

oming or outgoing paths, and hence critical to the entire network.

ividing it by the maximum possible degree n − 1 gives us a nor-

alized measure. 

efinition 3 ( Closeness Centrality ) . As defined in [21] , a node’s

loseness centrality is defined as the sum of the distances from



V. Chellappan et al. / Computer Networks 104 (2016) 1–15 3 

a  

a

 

i  

A  

l  

n

 

b  

t  

t  

v

D  

p  

b  

b  

v  

t

η

D  

s  

s  

t  

t  

t

η

 

d  

p

s

H  

e

 

n  

t  

p  

〈
η

T

η

w  

e  

v

 

f

D  

fi  

T

H  

3

 

a

 

t  

c  

n  

d

 

t  

w  

W  

v  

≤  

t

H  

 

m

−

a

 

S  

t  

g

−

T

M  

(  

i  

H  

u  

s  

i  

a  

o  

t  

i  

m

 

s  

N  

t  

t  

m

4

 

t  

t  

c  

i  

v  

p  

o  
ll other nodes in the graph, where the distance from a node to

nother is the length of the shortest path. 

Since the number of nodes is fixed in a network, the measure

s equivalent to the mean distance of a node to the other nodes.

pparently, this measure is an inverse measure of centrality since

arger values indicate less centrality. So, technically it measures far-

ess rather than closeness [10] . 

The intuitive conception of centrality in communication was

ased upon the structural property of betweenness . According to

his view, a node or a link in a communication network is central

o the extent that it falls on the shortest path between pairs of

ertices. 

efinition 4 ( (Betweenness Centrality with respect to 〈 s, t 〉
air) ) . Let σ s, t represent the total number of the shortest paths

etween a pair 〈 s, t 〉 : s and t ∈ V . Let σ s, t ( v ) represent the num-

er of shortest paths between 〈 s, t 〉 pair that pass through v . The

ertex betweenness centrality of a node v with respect to a pair 〈 s,

 〉 is denoted by 

s,t (v ) = 

σs,t (v ) 
σs,t 

efinition 5 ( Shortest Path Betweenness Centrality ) . Let σ • , • repre-

ent the total number of shortest paths between every pair of

ource-destination nodes 〈 s, t 〉 : s and t ∈ V . Let σ • , • ( v ) represent

he number of shortest paths between every pair of nodes 〈 s, t 〉
hat pass through v . We define the Shortest Path Betweenness Cen-

rality (SPBC) of a node v as 

•, •(v ) = 

σ•, •(v ) 
σ•, •

(1) 

Note that this is different from the definition in [11] , where it is

efined as the sum of fractions of all shortest paths between each

air of nodes in a network which traverse a given node ∑ 

 � = v � = t 

σs,t (v ) 
σs,t 

owever, we define it as a fraction of all shortest paths connecting

very pair of nodes which traverse a given node. 

The above definition can be considered for links in the place of

odes. Let σ s, t ( u, v ) represent the number of shortest paths be-

ween 〈 s, t 〉 pair that pass through a link ( u, v ) ∈ E . The shortest

ath betweenness centrality of a link ( u, v ) with respect to a pair

 s, t 〉 is denoted by 

s,t (u, v ) = 

σs,t (u, v ) 
σs,t 

he SPBC of a link ( u, v ) is defined as: 

•, •(u, v ) = 

σ•, •(u, v ) 
σ•, •

(2) 

here σ • , • ( u, v ) represent the number of shortest paths between

very pair of source-destination nodes 〈 s, t 〉 that pass through ( u,

 ). 

In the article [16] , Shannon suggested the following entropy

unction. 

efinition 6 ( Shannon Entropy ) . Let α be a random variable with a

nite range a 1 , . . . , a n . Let p i be the probability of the event α = a i .

hen the Shannon entropy of α is defined as 

 n (α) = −
n ∑ 

i =1 

p i log p i (3)
w  
.1. Entropy properties 

We are mentioning a few of the well known entropy properties

s we will be using them in subsequent proofs. 

Using the concavity of the function p 	→ −p log p, one can prove

hat the Shannon entropy of every random variable does not ex-

eed its max-entropy , ˆ H n (α) , defined as the logarithm of the cardi-

ality of the range of α (and is equal to ˆ H n (α) only for uniformly

istributed variables). All logarithms in the paper are base 2. 

H ( α) is seen to be a function of p 1 , p 2 , . . . , p n . It is also a con-

inuous function and is a symmetric function. It does not change

hen an impossible outcome is added to the probability scheme.

hen one of the probabilities is unity and the others are zero, its

alue is zero and this is its minimum value, since H ≥ 0 when 0

p i ≤ 1. It does not change if an impossible outcome is added to

he probability scheme i.e. 

 n +1 (p 1 , p 2 , . . . , p n , 0) = H n (p 1 , p 2 , . . . , p n ) (4)

To find its maximum value, we can use Lagrange’s method to

aximize 

n ∑ 

i =1 

p i log p i − λ

[ 

n ∑ 

i =1 

p i − 1 

] 

(5) 

nd this gives us 

p 1 = p 2 = · · · = p n = 

1 

n 

(6)

ince x log x is a convex function, 
∑ n 

i =1 p i log p i is a convex func-

ion, −∑ n 
i =1 p i log p i is a concave function. Its local maximum is a

lobal maximum. The maximum value of H n is 

n ∑ 

i =1 

1 

n 

log 

(
1 

n 

)
= log n (7) 

he maximum value of H n increases as n increases. 

aximum Entropy Principle. The Maximum Entropy Principle

MEP) is a technique that can be used to estimate input probabil-

ties [18] . The result is a probability distribution that maximizes

 n . Basically, the Maximum Entropy Principle aims to give us a

niform or as broad a distribution as possible, subject to the con-

traints being satisfied. For example, this is helpful in formulat-

ng optimization problems which need a maximum entropy prob-

bility distribution function given the mathematical expectations

f random variables. This principle is used by Penalized Exponen-

ial Flow-spliTting (PEFT) [3] to prove that hop-by-hop forward-

ng achieves optimal traffic engineering by splitting the traffic over

ultiple paths with an exponential penalty on longer paths. 

Network complexity provides a quantitative framework to mea-

ure the information content of a given topology of the network.

etwork analysis, on the other hand, provides formal ways of in-

erpreting the network complexity measurement. MEP is used in

his paper in the context of building a resilient network topology,

easuring network complexity, and network analysis. 

. Network centrality 

In this section, we review the existing results that apply en-

ropy measures to graph complexity, and derive the network cen-

rality as an entropy measure of a graph based on betweenness

entrality of edges. The main idea is inspired from graph complex-

ty measure [2] , and can be summarized as follows. A probability

alue is assigned to each individual vertex or edge in a graph. This

robability value is determined based on certain structural features

f the graph. This generates a probability distribution associated

ith the graph. A measure of graph complexity is then arrived at,
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Fig. 1. The Abilene network topology. 
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by applying Shannon’s entropy function to this probability distri-

bution. In what follows, we present important definitions and re-

sults of our proposed measure. 

In [2] , the parametric graph entropy is defined as follows. 

Definition 7 ( Parametric Graph Entropy ) . Let G = (V, E) be a graph

and let f be an information function representing a positive func-

tion that maps vertices to the positive reals using structural fea-

tures of a graph. Then, the parametric graph entropy is 

I f (G ) = −
| V | ∑ 

i =1 

( 

f (v i ) ∑ | V | 
j=1 

f (v j ) 
log 

( 

f (v i ) ∑ | V | 
j=1 

f (v j ) 

) ) 

(8)

The vertex probabilities are defined by 

p(v i ) = 

f (v i ) ∑ | V | 
j=1 

f (v j ) 
(9)

In this paper, we extend this definition to consider edges in

place of vertices. The edge probabilities are defined by 

p(u, v ) = 

f (u, v ) ∑ 

(x,y ) ∈ E f (x, y ) 
(10)

for every ( u, v ) ∈ E . The parametric graph entropy is defined by 

I f (G ) = −
∑ 

(u, v ) ∈ E 
p(u, v ) log p(u, v ) (11)

We extend the concept of node or link betweenness centrality

further to the measurement of network centrality . More precisely,

we define the measure of network centrality based on the extent

that all of its nodes or links are central. In this paper, the network

centrality is defined in the context of shortest path betweenness

centrality of a node or link. 

Definition 8 ( Network Centrality ) . We define the network central-

ity or the entropy of SPBC by setting the information function f in

Eq. (10) to the shortest path defined in Eq. (2) . The edge probabil-

ities based on SPBC are defined by 

p(u, v ) = 

η•, •(u, v ) ∑ 

(x,y ) ∈ E η•, •(x, y ) 
(12)

for every ( u, v ) ∈ E . We obtain the entropy of SPBC when Eq. (12) is

applied in Eq. (11) . 

Note that the information function f can be defined based on

other structural properties of a graph, and used for solving differ-

ent problems. The above entropy definitions can also be applied to

a sub-graph induced by the set of paths that connects the given

source-destination pair 〈 s, t 〉 . The union of paths that begin with

s and end with t is called as the 〈 s, t 〉 induced subgraph, and is

denoted by G st . 

Let �G represent the random variable associated with the prob-

ability distribution formed from Eq. (12) . Let �st represent the ran-

dom variable associated with the probability distribution associ-

ated with the graph G st . Now, the entropy of SPBC is denoted by

H ( �G ) and the entropy of 〈 s, t 〉 SPBC is denoted by H ( �st ). Intu-

itively, the entropy function is used here in the context of how

measures between nodes or links in the whole network are uni-

formly distributed. The topology with maximal entropy should be

chosen so that the network is not centralized. Now, it leads to

the question: how close is H ( �G ) to the maximum entropy log

(| E |)). The concept of relative entropy is introduced as a normalized

entropy measure with respect to the maximum entropy, allowing

comparison of networks of arbitrary size. 

Definition 9 ( Relative Entropy ) . Relative entropy is defined by 

h G = 

H(�G ) 

log (| E| ) , and 0 ≤ h G ≤ 1 (13)
efinition 10 ( Diversity Index ) . Diversity index is relative entropy

n 〈 s, t 〉 induced sub-graph G st , and denoted by h st . 

The idea is to address some of the interesting network design

nd topology related problems by combining the MEP and para-

etric graph entropy with betweenness centrality as one of the

arameters. It is important to note that the measures are not lim-

ted to shortest paths or paths in general. They can be extended

nd generalized for other structural features of a graph or network

uch as number of flows or packets, etc. Intuitively, these central-

ty measures can be regarded as the potential of a node or edge to

ontrol or influence communications in the network. Table 1 sum-

arizes the major notations and symbols used in this paper. 

. Network centrality and routing 

In this section, we present two important use cases of our pro-

osed measure. The first use case is related to measuring the effi-

iency of routing in IP networks. The second use case is related to

n interesting issue in the distribution of traffic flow called Braess’s

aradox in a network. 

opology studied 

In our evaluation, we deal with the topology structure of the

etwork, and use our proposed measure to determine the rout-

ng efficiency of the network. We considered the Abilene network

opology as shown in Fig. 1 , which has 11 core nodes in back-

one and 14 bidirectional links connecting them. The core nodes

re labeled from 0 to 10. These core nodes have multiple egress

odes, and the number of corresponding egress nodes are men-

ioned near each core node. These egress points serve to join the

bilene network with other Internet networks. The egress nodes

re numbered, and given in Table 2 . The traffic demands are ex-

racted from the sampled Netflow data, and provided by Dahai Xu

3] . The network had 29 distinct egress points. 

.1. Routing efficiency 

Traffic Engineering (TE) is considered as solving an optimiza-

ion problem with an objective function that generally minimizes

he congestion of the most utilized link. Optimal TE is realized by

hree important factors: (i) the topology structure, (ii) the traf-

c split decisions based on considerations of the internal struc-

ure of the routing topology and (iii) the traffic demands. Rout-

ng in a network deals with determining the best possible path

or forwarding the traffic demands from sources to destinations.

he routing architecture is generally a distributed one, where each

outer assumes the responsibility of determining the next best hop

o forward the traffic towards its destination. All packets travel

cross the network along routes that are decided by routing pro-

ocols. Routing protocols maintain routing tables at each com-

unication node or router to store the best possible paths to
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Table 1 

Table of notations 

w ( u, v ) � Weight of link ( u, v ) 

δ( u, v ) � Distance from u to v 

σ s, t � Number of shortest paths between 〈 s, t 〉 pair 

σ s, t ( u, v ) � Number of shortest paths between 〈 s, t 〉 pair that pass through the link ( u, v ) 

σ • , • � Total number of shortest paths between every 〈 s, t 〉 pair in graph G 

σ • , • ( u, v ) � Total number of shortest paths between every 〈 s, t 〉 pair that pass through the link ( u, v ) 

ηs, t ( u, v ) � Shortest path betweenness centrality of the link ( u, v ) in 〈 s, t 〉 induced sub-graph 

η• , • ( u, v ) � Shortest path betweenness centrality of the link ( u, v ) in the graph G 

H n ( α) � Entropy of a discrete random variable α with n values 

�G � Random variable associated with betweenness centrality probabilities of graph G 

h G � Relative entropy or normalized entropy 

Table 2 

The egress set associated with each backbone node. 

Core Egress set 

0 {12, 20, 29} 

1 {14, 16, 17, 18, 20, 21, 23, 26, 32, 35, 38, 39} 

2 {31} 

3 {24, 25, 37} 

4 {28} 

5 {21, 30} 

6 {13, 18, 23, 24, 29, 33, 34, 37} 

7 {15, 20, 22, 23, 26, 33, 34, 39} 

8 {11, 17, 32, 39} 

9 {14, 20, 27, 35, 36} 

10 {14, 15, 19, 32, 33, 36, 37, 38} 
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arious destinations. Routing convergence is the process of up-

ating the routing tables in each router such that each router

as the same topological information. Any link or node failure

auses re-convergence of the routing tables based on the modified

opology. 

SPF. Dijkstra’s shortest path algorithm is used widely in the Open

hortest Path First (OSPF) routing protocol. The OSPF protocol

ramework uses shortest-path algorithms to compute the shortest

ath tree rooted at a given node. In OSPF, traffic is routed along the

hortest paths to the destination, where the path distance is deter-

ined by the link weights. The weights of the links, and thereby

he shortest path routes, can be set by the network operator to

eet the desired objectives. It supports destination-based hop-by-

op forwarding and Equal Cost Multi-path (ECMP) to evenly split

he traffic over all available equal cost paths. Optimization of TE

bjectives, such as minimizing the maximum link utilization, can

e accomplished by manipulating the link weight settings. Com-

uting the optimal link weights ensuring even split of flows over

qual cost multi-paths has been known to be an NP-hard problem

4] . The simplicity and distributed nature of OSPF allows it to scale

or very large networks, but the network resource utilization may

e sub-optimal. 

It is important to study the performance of OSPF in com-

arison with the optimal routing. So, we consider routing be-

weenness centrality (RBC) [11] in the place of SPBC. This defines

 new probability distribution based on the number of packets

r the amount of flow realized on a link. In RBC, the informa-

ion function f in Eqs. (8 , [9,10] ) represents the number of pack-

ts that pass through a node or link using the chosen routing

cheme. 

To illustrate this, on the example network, we computed the

ntropy of centrality values based on the number of packets that

ow on a given link. The link cost function used is a piecewise-
inear approximation of the M/M/1 queue’s delay formula [22] : 

( f u v , c u v ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f u v 
f u v 
c u v 

≤ 1 
3 

3 f u v − 2 
3 

c u v 
1 
3 

≤ f u v 
c u v 

≤ 2 
3 

10 f u v − 16 
3 

c u v 
2 
3 

≤ f u v 
c u v 

≤ 9 
10 

70 f u v − 178 
3 

c u v 
9 

10 
≤ f u v 

c u v 
≤ 1 

500 f u v − 1468 
3 

c u v 1 ≤ f u v 
c u v 

≤ 11 
10 

50 0 0 f u v − 16318 
3 

c u v 
11 
10 

≤ f u v 
c u v 

(14)

nd the objective is to minimize 	( uv ) ∈ E �( f uv , c uv ) subject to the

ink capacity constraints and flow conservation. 

On the given network, the optimal flow values f uv for the above

bjective function, given the traffic demand, are computed using

PLEX on AMPL. The edge or link probabilities based on the opti-

al flow values are computed by 

p(u, v ) = 

f u v ∑ 

(x,y ) ∈ E f xy 
(15) 

Eq. (15) is applied in Eq. (11) to obtain the entropy of flow dis-

ribution. The value of entropy of flow based distribution for the

iven network is H 28 = 4 . 453392 , and the relative entropy h G =
 . 926371 . 

Let ˆ f u v denote the flow realized by the OSPF ECMP routing for

he same demand on the same network. The entropy function on

he flow distribution 

ˆ f u v is H 28 = 4 . 137584 , and the associated rel-

tive entropy h G = 0 . 86 . This shows that OSPF ECMP routing strat-

gy is sub-optimal not only in terms of the cost function, but

lso in terms of the flow centrality values of links. It provides a

ood handle in analyzing the efficiency of each link in the con-

ext of the chosen routing strategy and the topology design. As

oted earlier, this also leads to the mechanism of a routing pro-

ocol that considers non-shortest paths and associated traffic split-

ing to achieve optimal Traffic Engineering [3] . The reader is re-

erred to Appendix B for an interesting use case in Tactical Com-

unication Systems. 

.2. Braess’ paradox 

Braess’ Paradox [23] states that removing links from a network

an improve its performance or adding a new link to a congested

etwork can make it worse. In the case of OSPF routing, the short-

st paths are computed based on the link weights. Hence, the

outing patterns are easily predictable to occur along the shortest

aths. The links with high betweenness centrality values are the

nes that have the maximum shortest paths passing through them.

ence, when a new link is added to the given network, it induces

everal paths between various origin-destination pairs, and in turn

nduces the shortest paths between them based on the weight as-

igned to it. These newly created paths will alter the betweenness

entrality probability distribution based on the structural position

f the new link in the network. A reduction in the entropy of be-

weenness centrality distribution indicates that the new link has
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Table 3 

Remove links in the Abilene net- 

work. 

Link H ( �G ) h G 

(2, 9) 4 .590392 0 .976588 

(0 ,4) 4 .591638 0 .976853 

(3, 5) ↑ 4 .617480 0 .971102 

(4, 0) ↑ 4 .624594 0 .972598 

(0, 4) ↑ 4 .626161 0 .972928 

(9, 2) ↑ 4 .639608 0 .975756 
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created imbalance in the role of each node or link. If the entropy

is maintained or increased, then it shows that the new link has

indeed created a better, decentralized network. A formal proof on

why the entropy increases when the network imbalance decreases

is given in Section 6.4 . 

In a network, Braess’ paradox occurs because, under the com-

mon approach to pricing the link utilization, traffic flows attempt

to minimize their delay while ignoring the effect of their decisions

on other flows. In the context of cloud networks elasticity and en-

ergy aware routing, it is possible for the total system to experience

delays following an expansion or reduction of the network due to

Braess’ paradox. It is also common to have redundant paths be-

tween several nodes for achieving fault tolerance in networks. In

such case, it is possible that the network may experience Braess’

paradox due such redundant paths. To illustrate this, a few links,

both unidirectional (marked ↑ ) and bidirectional, are removed, and

the corresponding entropy values are given in Table 3 . For example,

when links (2, 9) and (9, 2) are removed, the relative entropy has

increased. Note that the actual entropy has decreased to 4.590392

from 4.6 6220 6. This is because of the reduction in the total num-

ber of links (from 28 to 26). When the link (0, 4) is removed, a

broader SPBC distribution is realized with increased relative en-

tropy. 

Flow. We also computed the entropy function on the actual flow

values after removing the link (0, 4), and found that the relative

entropy h G has increased to 0.867383 (from 0.860681) in OSPF

ECMP routing, and to 0.933951 (from 0.926371) in optimal rout-

ing. This concurs with the presence of such a paradox. 

6. Centrality entropy maximization (CEM) 

In this section, we model the SPBC Entropy Maximization prob-

lem, and present an approach for finding the weight assignment

to each link that results in a shortest path betweenness centrality

distribution that maximizes the entropy. The link weights deter-

mine the shortest paths between every origin-destination pair. The

shortest paths in turn determine the betweenness centrality of a

node or link, which in turn determine the associated probability

value of a node or link. The problem of Centrality Entropy Max-

imization (CEM) can be regarded as a problem of entropy maxi-

mization based on the maximum entropy principle. The problem

aims to obtain a uniform or as broad a shortest path between-

ness centrality distribution as possible subject to the topology con-

straints. 

The shortest path problem is: given the network and link

weights, determine the shortest paths. Conceptually, the inverse

shortest path problem is just the other way around. The problem is

to determine the link weights such that the given sets of paths be-

come the sets of the shortest paths. In the case of CEM, the prob-

lem is to determine the appropriate link weights that produce the

desired betweenness centrality values that maximize the entropy.

CEM combines the Maximum Entropy Principle with the inverse

shortest path problem. 
.1. The CEM problem 

We assume a weighted graph G = (V, E, w ) , where V is the

et of nodes, E is the set of edges and w is a weight function

 : E → R ≥0 . w uv denotes the weight assigned to link ( u, v ) ∈ E .

he problem is to determine the weights { w uv } uv ∈ E such that we

btain a uniform or as broad a shortest path betweenness central-

ty distribution as possible that maximizes the entropy function.

ecall the probability distribution obtained from the Eq. 12 . We

efine the Centrality Entropy Maximization (CEM) problem as fol-

ows. 

Max H(�G ) = − ∑ 

(u, v ) ∈ E 
p u, v log p u, v 

subject to the constraints 

p u, v ≥ 0 , 
∑ 

(u, v ) ∈ E 
p u, v = 1 , 

and w u, v ≥ 0 

(16)

For the CEM problem stated above, we have 

heorem 1. It is NP-hard to maximize the entropy of the shortest

ath betweenness centrality distribution 

The proof of NP-hardness is by using a reduction from the well

nown NP-hard problem of finding an optimal setting of the OSPF

eights [4] . The detailed proof is given in Appendix A . 

A local search heuristic Algorithm 1 (Centrality Entropy Max-

mization) is proposed to find the weight settings that maximize

he entropy of the shortest path betweenness centrality distribu-

ion. The working details of the algorithm are presented in the fol-

owing section. 

lgorithm 1 Centrality Entropy Maximization 

1: Input G = (V, E, W 0 ) {Network with initial weight vector} 

2: Output W {New Weight Assignment Vector} 

3: P 0 ← Initial Entropy of SPBC 

4: P ← {} 
5: for each link (u, v ) ∈ E do 

6: S ← Set of OD pairs that have SPs pass through (u, v ) 
7: k ← | S| 

8: D ← Path distance of k OD pairs 

9: w ← w u, v 
10: w u, v ← ∞ 

11: D ′ ← Path distance of k OD pairs 

12: d i ← D ′ i − D i i = 1 , 2 , ..., k 

13: δ1 ← first smallest d i 
14: δ2 ← second smallest d i 

15: w u, v ← w + 

δ1 + δ2 
2 {Increment the weight} 

16: P ← P ∪ H(�G ) (Neighborhood of P 0 ) 

17: end for 

18: P max ← Max( P ){Increased Entropy over P 0 } 

19: if no improvement over P 0 then return W 

0: else W ← modified weight vector corresponding to P max 

21: P 0 ← P max 

2: repeat from step 4 

.2. Solving CEM using local search 

We consider the optimal shortest-path routing algorithm dis-

ussed in [24] to solve the CEM problem. Let W 0 denote the initial

eight assignment vector. Let P 0 denote the value of entropy in Eq.

16) obtained from the weight assignment vector W . We define a
0 
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Table 4 

CEM - The Abilene network. 

Link Weight Entropy σ • , • 

Initial N.A 4 .662206 404 

(4, 1) ↑ 1 .5 4 .6 884 95 374 

(3, 0) ↑ 1 .25 4 .705924 352 

(4, 0) ↑ 1 .125 4 .712875 342 

(0, 10) ↑ 1 .125 4 .716082 339 

(2, 9) ↑ 1 .0625 4 .716538 336 

(1, 4) ↑ 1 .9375 4 .717794 336 

0 5 10 15 20 25 30

20

40

60

Links

σ
••

Shortest Paths in the Abilene Network

Before CEM After CEM

Fig. 2. Shortest Paths Distribution before and after CEM is shown. X axis represents 

the link numbers, and Y axis represents the number of the shortest paths that pass 

through a given link. After CEM, the number of the shortest paths is reduced for 

the highly centralized links. This is due to the CEM. 
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eighborhood of P 0 as { P }, where { P } is a set of points with cardi-

ality | E |. Each member in { P } is a value of entropy function in Eq.

16) , such that only a minimum number of paths are changed with

espect to P 0 as a consequence of an increase in a single weight

f W 0 . From the neighborhood solution set { P }, we chose the max-

mum value called P max such that P max > P 0 , and also P max ≥ P i ,

 i ∈ P . Let W denote the corresponding weight assignment vector.

ow, W 0 is set to W , and P 0 is set to P max . We repeat this proce-

ure with the newly discovered neighborhood until we do not find

uch a P max . 

eighborhood discovery. The neighborhood discovery is also simi-

ar to [24] . Let us consider a link ( u, v ) ∈ E . Let σ 0 •, •(u, v ) represent

he number of the shortest paths that pass through the link ( u, v )

or the weight assignment vector W 0 . The idea is to divert a few

aths from this link by increasing the weight w u, v appropriately.

his will in turn affect the value of σ • , • ( u, v ), and in turn, the en-

ropy. 

Let k denote the number of origin-destination (OD) pairs that

ave the shortest paths pass through ( u, v ). Let S i denote the set

f the shortest paths between i th OD pair that pass through ( u, v ),

 ≤ i ≤ k . The choice of incremental value to w u, v is determined

uch that the number of the shortest paths diverted from ( u, v )

s minimum. The link ( u, v ) is removed by setting w u, v to ∞ . The

hortest paths are recomputed for these k OD pairs. In effect, we

ave diverted all paths that go through the link ( u, v ). Let d i denote

he difference between the path distances after and before remov-

ng the link ( u, v ) for an OD pair i , 1 ≤ i ≤ k . This difference list is

orted, and the following observations are made on the sorted list.

If any d i is 0, it means that the i th OD pair has at least one

ore shortest path of same distance that does not pass through

he link ( u, v ). In this case, we increment the value of w u, v by

he mid-point between 0 and the first smallest non-zero differ-

nce, and recompute the shortest paths between these OD pairs.

his eventually reduces the number of the shortest paths connect-

ng an OD pair, without modifying the distances of other OD pairs

hat have the shortest paths passing through the link ( u, v ). In this

ase, the path distance of any OD pair is not affected, however, the

umber of the shortest paths is minimized between the OD pairs

hat have zero difference in their path distance after and before

emoving the link. 

If there is no d i with value 0, then we increment the value of

 u, v by the mid-point between the first smallest difference and

he second smallest difference. This will ensure that we divert only

hose paths that have the smallest difference in their distance af-

er and before removing the link. In this case, a few OD pairs will

ave an increase in their path distance. So, while we distribute the

aths between OD pairs to improve the entropy, we also increase

he path lengths of some OD pairs. This may lead to more hop

ounts for some OD pairs. 

This condition conflicts with the design goal of reducing the

op count or path distance between OD pairs. We can balance

hese design goals, by having an additional constraint such that we

on’t divert any paths if the difference is beyond a specified limit.

n our experiments, we have noted that in certain cases, diverting

hortest paths from a link also results in the increase in the num-

er of the shortest paths between some OD pairs. This approach

as the same convergence properties and run time complexity is

xactly as discussed in [24] . 

More precisely, the appropriate increase in the weight w u, v 

aximizes the entropy of SPBC distribution, and minimizes the

umber of the shortest paths throughout the network. This ap-

roach can also be extended for achieving maximum entropy of

he shortest path betweenness centrality of nodes . It is one of the

esign goals to minimize the number of paths used for routing un-

er certain design considerations [25] . Maximizing the entropy bal-
nces two important goals of network design. At one end, it tries

o minimize the number of shortest paths in the network, which in

urn helps in resolving Braess’ paradox, quick routing convergence

26] and the overhead of reassembly when multiple paths are cho-

en for routing. At the other end, the shortest paths are distributed

etween the links as even as possible. 

.3. Evaluation 

We illustrate the procedure for maximizing the entropy of SPBC

ith two sample networks. The first one is the Abilene network

hown in Fig. 1 . We assume that all links have equal capacity,

nd each edge has unit weight. The progress of the algorithm is

resented in Table 4 . Column Link specifies the link for which

he weight has been modified. Column Weight specifies the actual

eight that has been set. Column Entropy specifies the entropy of

PBC distribution, and it can be seen that it steadily increases at

ach step. 

As we can see from Table 4 , the number of the shortest paths

hroughout the network has come down. The distribution on the

umber of shortest paths that pass through each link before and

fter CEM is given in Fig. 2 . We can observe that some highly cen-

ralized links are decentralized to the extent possible. This results

n a broader SPBC probability distribution, which in turn results in

ncreased entropy value. Intuitively, we have made the role of each

ink as uniform as possible, subject to topology constraints. 

This experiment has been done on Hier50a Network. It consists

f 50 nodes and 148 links. We assume that each edge has unit
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Shortest Paths in the Hier50a Network

Before CEM After CEM

Fig. 3. Shortest Paths Distribution before and after CEM on Hier50a Network. Es- 

sentially CEM decentralizes some of the critical links, and makes the distribution as 

broad as possible. 
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weight. The summarized result is as follows. The initial entropy

of SPBC distribution is 6.937850. After running the algorithm, the

maximum entropy is 6.971319. The total number of initial shortest

paths throughout the network is 3466, and after maximizing the

entropy, the number of the shortest paths becomes 2811. The algo-

rithm modified weights of 20 links. Figure 3 shows the test results

mentioned above. 

This approach of weight setting in combination with the addi-

tion of new links or removal of existing links can assist in measur-

ing and meeting the goals of network design. This approach can be

extended considering the capacity of each link too. The centrality

measure for a link ( u, v ) will then be 
σ•, •(u, v ) 

c u, v 
, where c u, v rep-

resents the capacity. This will ensure that the centrality values are

normalized with respect to the capacity of each link. 

6.4. Entropy and network imbalance 

We formally prove how entropy is viewed as a measure of

network imbalance represented by a centrality distribution, with

higher entropy corresponding to a more balanced network and

lower entropy corresponding to a more imbalanced network. More

precisely, we need to show that the centrality distribution with

maximum entropy, satisfying whatever constraints we impose, is

the one that should be chosen in terms of the shortest paths dis-

tributed over the network. We present and prove the following

theorem on network imbalance and entropy measure. The proof is

based on the well known theorem on the upper bound of entropy

that is presented and proved in [27] . 

Theorem 2 (Centrality entropy and network imbalance are in-

versely proportional) . The entropy H ( �G ) increases as the network

imbalance decreases, where �G represents the shortest path between-

ness centrality distribution for the given graph G. 

Proof. We prove this theorem based on the proof given for Theo-

rem 3.1 in [27] . The distribution �G is defined on the set of edges

{ e 1 , e 2 , . . . , e m 

} with the corresponding probabilities p 1 , p 2 , . . . , p m 

.

The probabilities are computed from Eq. 12 that add up to 1. En-

tropy is a function of the m −tuples. We want to show that when
e decrease the network imbalance, the entropy increases. Let us

ssume that �G is not a uniform distribution, and hence the p j are

ot all equal. Let us say p 1 < p 2 . It implies that the number of the

hortest paths passing through the edge e 1 is less than the number

f the shortest paths passing through e 2 . 

When we try to decrease the network imbalance, we try to ei-

her increase the number of the shortest paths passing through e 1 
ith respect to e 2 or decrease the number of the shortest paths

assing through e 2 with respect to e 1 . More precisely, it adds

 small value ε to p 1 , and reduces ε from p 2 so that the sum

f probabilities add up to 1. So, the new probabilities after our

ct of balancing (adjusting weights) will be p 1 + ε, p 2 − ε, . . . , p m 

.

t is enough to show that the entropy of { p 1 + ε, p 2 − ε, . . . , p m 

}
s greater than the entropy of { p 1 , p 2 , . . . , p m 

} . In other words,

(p 1 + ε, p 2 − ε, . . . , p m 

) minus H(p 1 , p 2 , . . . , p m 

) should be pos-

tive. 

Since p 1 < p 2 , for small positive ε we have p 1 + ε < p 2 + ε.

(p 1 + ε, p 2 − ε, . . . , p m 

) minus H(p 1 , p 2 , . . . , p m 

) equals 

−p 1 log 
(

p 1 + ε
p 1 

)
− ε log ( p 1 + ε) 

−p 2 log 
(

p 2 −ε
p 2 

)
+ ε log ( p 2 − ε) 

(17)

−p 1 log 
(

p 1 + ε
p 1 

)
− ε log 

(
p 1 

(
1 + 

ε
p 1 

))
−p 2 log 

(
p 2 −ε

p 2 

)
+ ε log 

(
p 2 

(
1 − ε

p 2 

)) (18)

−p 1 log 
(
1 + 

ε
p 1 

)
− ε

(
log p 1 + log 

(
1 + 

ε
p 1 

))
−p 2 log 

(
1 − ε

p 2 

)
+ ε

(
log p 2 + log 

(
1 − ε

p 2 

)) (19)

Since log (1 + x ) = x + O (x 2 ) for small x , Eq. 19 can be written

s: 

ε − ε log p 1 + ε + ε log p 2 + O (ε2 ) = ε log ( 
p 2 
p 1 

) + O (ε2 ) (20)

This value is positive when ε is small enough since p 1 <

 2 . Therefore, the entropy increases when the network imbalance

ecreases. �

. OSPF single link failure 

In this section, we present another important use of the CEM

roblem. It is an important goal of network and routing protocol

esign to quickly react to the changes in the network topology

uch as link or node failures. Also, as noted in [9] , in the context

f network resilience, a link or node failure may have varying im-

act on the entire network. It implies that the failure of a link with

inimum centrality may imbalance the centrality distribution to a

reater extent. In an earlier section, we have seen how the entropy

f centrality distribution is affected when a link goes down. In this

ection, we will show how the entropy measure is useful in han-

ling such single link failure cases. 

Note that when a link goes down, the shortest paths that pass

hrough the link are diverted through other links. This results in

n increase in the path distance between the OD pairs, and also

outing re-convergence. In such cases, the original weight setting

or optimal shortest path routing may not be efficient for a net-

ork with link failures. One option is to arrive a different set of

eights that maximizes the entropy of centrality distribution with

ink failure. It is not a practical approach to assign new weights for

 single link failure. In [28] , the problem of single link failure issue

n OSPF is well motivated, and it investigates the problem with an

bjective to find a weight setting which results in efficient short-

st path first routing in normal and failure cases. The basic idea is

o minimize the average cost of both cases, with and without link

ailure. 
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Table 5 

Entropy maximization for link failure (4 , 1) . 

Link Weight h G h G 41 σ • , • 

Initial N.A 0 .969807 0 .812987 404 

(5, 4) ↑ 1 .5 0 .974439 0 .825250 370 

(4, 0) ↑ 1 .5 0 .971615 0 .833669 356 

(7, 1) ↑ 1 .5 0 .970589 0 .838221 351 

(0, 10) ↑ 1 .75 0 .972575 0 .844789 347 

(4, 0) ↑ 2 .5 0 .970564 0 .848350 339 

(4, 5) ↑ 1 .25 0 .970161 0 .848722 338 

(10, 7) ↑ 1 .125 0 .969888 0 .848751 338 

(0, 3) ↑ 1 .125 0 .969887 0 .848751 338 

0 5 10 15 20 25 30

0

20

40

60

Links

σ
••

Initial Normal Condition Link Failure

Fig. 4. The number of the shortest paths that pass through each link under three 

conditions for link (4,1) failure.(For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Table 6 

Entropy maximization for link failure (0, 10) 

Link Weight h G h G 0 −10 σ • , • 

Initial N.A 0 .969807 0 .830578 404 

(0, 4) ↑ 1 .5 0 .967054 0 .851834 363 

(7, 10) ↑ 3 .0 0 .959042 0 .865836 363 

(0, 3) ↑ 1 .25 0 .958441 0 .872296 352 

(0, 4) ↑ 2 .625 0 .954229 0 .874558 352 

(4, 1) ↑ 1 .5 0 .956530 0 .881265 339 

(0, 3) ↑ 2 .3125 0 .950855 0 .882863 338 
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.1. Proposed algorithm 

We extend the principle of maximum entropy to find the ap-

ropriate weight setting for both cases. Let G = (V, E) represent

he network under normal condition. Recall the technique we used

n CEM to improve the entropy of SPBC. We set the link weight

 u, v to infinity, ( u, v ) ∈ E , and divert all paths that go through

he link. Let us assume that there are k OD pairs that have the

hortest paths pass through the link ( u, v ). Now we find a suitable

ncrement in the weight w u, v such that the paths that suffered the

east increase in distance are diverted. We recompute the SPBC of

ach link, and then compute the entropy of SPBC of G . Let H n ( �G )

epresent the entropy of SPBC, where n is the number of links in

 . Let h G represent the relative entropy of SPBC as specified in

q. (13) . W i denotes the weight vector assignment at the i th it-

ration. 

Consider a link ( x, y ) ∈ E . Let G 

xy represent the network without

he link ( x, y ). It is equivalent to setting w xy to infinity in G . The

emaining weights of the links are kept intact. Now, we compute

he entropy of SPBC of G 

xy . Let H m 

(�G xy ) represent the entropy of

PBC, where m denotes the number of links in G 

xy . Let h G xy repre-

ent the relative entropy of SPBC as specified in Eq. (13) . Our goal

s to find the appropriate weights assignment vector that balances

nd improves both h G and h G xy . 

The idea is to apply entropy function on the relative entropy

alues and attempt to improve it. We normalize h G and h G xy such

hat ˆ h G = 

h G 
h G + h G xy 

, ˆ h G xy = 

h G xy 

h G + h G xy 
. The relative entropy values

 ̂

 h G , ̂  h G xy } form a probability distribution. Now, we maximize the

bjective function 

 = −ˆ h G log ˆ h G − ˆ h G xy log ˆ h G xy (21) 

The maximum value of z is log 2 = 1 . The relative entropy value

s a normalized measure with respect to the maximum entropy.

aximizing Eq. (21) results in a uniform distribution of relative

ntropy values. More precisely, the weights of the links are cho-

en such a way that the centrality distribution before and after link

ailure is as close as possible. This helps us maintain the same set

f weights under certain link failure. This approach has one draw-

ack, in that the relative entropy of normal network may come

own significantly to match the relative entropy of failure case. To

void this condition, we add one more condition such that the rel-

tive entropy of normal network should not come down below a

iven threshold value. This condition will ensure the relative en-

ropy of normal network is always maintained greater than the

hreshold value, while the entropy of failure case is maximized at

ach iteration. 

.2. Evaluation 

We illustrate the procedure for maximizing the entropy of SPBC

or single link failure on the Abilene network shown in Fig. 1 . We

onsider the failure of link (4, 1). The progress of the algorithm

s shown in Table 5 . In this example, we have added the condi-

ion that the relative entropy of normal network should not be less

han the initial relative entropy value of 0.969807. The number of

he shortest paths that pass through each link for the three cases

re given in Fig. 4 . Blue line represents the number of the shortest

aths that pass through each link at the initial stage. Red line rep-

esents the number of the shortest paths that pass through each

ink under normal network condition when the relative entropy h G 
eaches the maximum value of 0.969887. Brown line represents the

umber of the shortest paths that pass through each link under a

ink (4, 1) failure condition when the relative entropy h G 41 reaches

.848751. 
Though this approach balances both entropy values, it also pro-

uces some undesired effect on select links. For example, the link

0, 10) will have 60 shortest paths passing through it when the

ink (4, 1) goes down. This is higher than the initial and normal

ondition of the network. This also illustrates the point that failure

f a link could make some other link highly central. This justifies

he claim made in [9] that the criticality of a link is also deter-

ined based on the back up quality of the link or alternate path

entrality of the link. 

The experiment has been repeated on the same network with

he failure of link (0, 10). Table 6 represents the progress of the

roposed algorithm. Fig. 5 represents the shortest paths distribu-

ion under different conditions stated above. The minimum relative

ntropy for the network under normal condition is set to 0.95. In

his case, we also note that a few links experience very low cen-

rality. For example, there is only one shortest path, which passes

hrough the link (0, 4) under normal network condition. 
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Fig. 5. The number of the shortest paths that pass through each link under three 

conditions for link (0,10) failure. 

Table 7 

Entropy of flows betweenness centrality - link down 

Link H ( �G ) Cost Link H ( �G ) Cost 

(0, 3) 4 .07677 71 ,830 (0, 4) 4 .13694 69 ,411 

(0, 10) 3 .99211 75 ,734 (1, 4) 4 .27560 73 ,913 

(1, 7) 4 .04998 74 ,023 (10, 7) 4 .13189 70 ,423 

(2, 5) 4 .14413 72 ,318 (2, 8) 4 .09053 85 ,244 

(2, 9) 4 .13029 70 ,963 (3, 0) 4 .04982 71 ,552 

(3, 5) 4 .13375 69 ,552 (3, 6) 4 .06995 73 ,775 

(4, 0) 4 .07474 70 ,795 (4, 1) 4 .08642 74 ,568 

(4 ,5) 4 .30861 74 ,375 (5, 2) 4 .218387 85 ,048 

(5, 3) 4 .08700 69 ,871 (5, 4) 4 .08722 72 ,405 

(6, 3) 4 .11653 71 ,191 (6, 9) 4 .11116 70 ,565 

(7, 1) 4 .17431 70 ,525 (7, 10) 4 .08910 71 ,021 

(8, 2) 4 .14992 69 ,844 (8, 9) 4 .12591 69 ,582 

(9, 2) 4 .13951 69 ,807 (9, 6) 4 .09230 70 ,808 

(9, 8) 4 .11609 71 ,116 (10, 0) 4 .08462 71 ,397 
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7.3. OSPF weights 

The CEM leads to some interesting observations in OSPF traffic

engineering. A simple and intuitive method in OSPF weight setting

is inverse capacity weight setting. In this method, the weight of

each link is the inverse of the link capacity. Intuitively, the short-

est paths will have links with higher capacities, and hence a better

utilization can be considered. This method does not consider traf-

fic demands. Using CEM, we can consider the same approach, but

improve the performance of OSPF routing for the given traffic de-

mand. 

For the Abilene network shown in Fig. 1 with a given traffic

demand, we used the inverse capacity weight setting, and the en-

tropy of flow centrality for OSPF routing is 4.137584. The cost is

69568. Instead of computing weights for optimal performance, we

simply turned off each link, and computed the entropy of flow cen-

trality. Table 7 represents the entropy values and the cost in the

absence of each link. When the link (4, 5) is shut down, and with

inverse capacity weight setting, the entropy is increased consider-

ably with marginal increase in the routing cost. This helps network

operators use inverse weight setting with an option of turning off a

link to improve the routing performance. Several such what-if sce-

narios can be experimented based on different traffic demands and

other conditions, and a suitable network topology and link weights

can be identified to improve the OSPF routing performance. More
recisely, determining appropriate centrality distribution subject to

aximum entropy helps us solve several network design problems.

. Discussion 

In this section, we present some interesting applications of CEM

ramework. We note that the problem of robust network design

an be transformed to a problem of determining appropriate max-

mum entropy betweenness centrality distribution subject to cer-

ain constraints. We can also consider other distributions based

n the structural features of the graph or network other than be-

weenness centrality as discussed below. 

.1. MPLS 

MultiPath Label Switching (MPLS) works on tunnel based tech-

ology, and packet forwarding is based on the labels. The primary

bjective is to optimize the bandwidth utilization and fast re-route

rotection in case of any link or node failures. It uses the topology

nformation, traffic demands along with link metrics information

or path computation. Once an admissible path between a pair of

odes is found, based on various constraints, a tunnel will be cre-

ted. This is also called Label-Switched Path (LSP). 

Link or node protection is a technique to ensure that the traffic

ill be carried by pre-provisioning protection tunnels when a link

r node goes down. An important consideration in link or node

rotection is that the protection tunnel or backup path should be

arefully chosen so that it does not create unbalanced link utiliza-

ion. We can extend the concept of SPBC to LSP betweenness cen-

rality. This is defined as the number of LSPs that pass through

 link or a node. This can be normalized over the total number of

SPs throughout the network. When a secondary path is chosen for

ast re-route, the alternate paths are computed and appropriate en-

ry and merger points are identified. The objective is to maximize

he entropy of LSP betweenness centrality distribution so that the

SPs are distributed efficiently. 

.2. Software defined networks 

Software Defined Networking (SDN) [29,30] is an approach to

eparate the control and data planes in the network architecture,

here a central controller can implement a customized control

lane, interacting with the network elements through program-

atic interfaces such as OpenFlow [31] . The controller can modify

he configuration of the network element, and effectively central-

zes the network intelligence and state. This enables the incorpo-

ation of network specific customizations such as modification of

he packet forwarding logic to suit the requirements of applications

unning in the network, and provides for easier implementation of

n-line Traffic Engineering methods. 

The main goal of Software Defined Networks (SDN) is to pro-

ide programming capability to networks, particularly routing. The

ain idea is to provide dynamic programmable controls to achieve

ptimal traffic engineering. Since the demands are not fixed, and

arying under several circumstances, SDNs provide the needed in-

elligence to maximize the network resources utilization. We be-

ieve, the concepts of centrality, its distribution and entropy pro-

ide vital information on significance of network resources or el-

ments for the given traffic demand. For example, topologies can

e modified by the way of adding or removing wired or wireless

inks dynamically to meet the traffic demand, energy constraints

sing this framework. Since these measures are easy to compute,

nd can quickly reflect the state of network, they can be very use-

ul in SDNs. 
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.3. Autonomic networks 

Autonomic Networking aims to create self-managing networks

o overcome the rapidly growing complexity of the Internet and

ther networks and to enable their further growth, far beyond the

ize of today. IP networking with hop-by-hop forwarding, enables

ach router to take an independent routing decision. However, sub-

equent developments have seen more and more intelligence em-

edded into the configuration of the network element by a central

anager or manually, rather than into the protocols. Autonomic

etworking aims to restore the intelligence back into the protocols

nd remove the dependency on central management. 

The concepts and approach presented in this paper fit in into

his autonomic networking framework, where we can model the

ptimization problem based on the proposed entropy function to

olve a class of network synthesis problems where a certain char-

cteristic of the network is specified, and one has to design a net-

ork that satisfies the constraints. This can be an overlay network

esign evolved by the network elements autonomically, indepen-

ent of the physical topology. In the same context of autonomic

omputing, in [32] , a probabilistic routing algorithm is proposed

ith the goal of robustly managing the demands from any source

o any destination and have the minimum service interruption.

his is based on the concepts of Path Criticality metric, in turn

erived from Betweenness Centrality. The paper postulates that in

rder to have a robust system, we need to find the least biased

etting, implying entropy maximization. Maximizing entropy gives

he appropriate capacity of the network elements to maintain the

ighest degree of robustness. 

.4. Network design 

We now consider the significance of this work in the context of

he challenges posed by the complexity of today’s networks which

re growing rapidly at an exponential rate. In [33] , it is argued that

he increasing scale and complexity of emerging networks implies

 transition from human centric network management to more

utonomic and adaptive mechanisms, and proposes an autonomic

opology control approach that builds on concepts of emergence,

elf-organization, and graph theory to evolve and adapt the net-

ork topology to satisfy dynamically changing application require-

ents. This is based on the insight that the topology of a network

s fundamental to its operation, and the lack of control over it has

irect implications on performance, resilience, and security of the

etwork. It also proposes a network entropy metric as a composite

f several graph theoretic metrics, and demonstrate its application

o a specific application of restructuring the topology to a given set

f constraints. 

Note that the formal definition of Traffic Engineering [34] en-

ompasses performance evaluation and performance optimization

f operational networks. As a control system, it has a proactive

erspective, involving capacity planning and augmentation, rout-

ng control, traffic control and resource control. In the reactive

ase, the control system responds correctively and perhaps adap-

ively to events that have already transpired in the network, such

s changes in traffic demand. The packet level processing functions

eact to the real-time statistical behavior of traffic in milliseconds.

ath selection and traffic split across equal or unequal cost paths

an be viewed as a reactive control. 

It is interesting to note that this paper has provided a theoret-

cal approach to address both the short term and long term con-

rol functions. Viewed in another way, in the context of contem-

orary and emerging trends in network management, the concepts

eveloped in this paper can be applied to Autonomic Networking

nd to SDN. Autonomic Networking is also a natural complement

o SDN. For example, an autonomic network needs central input
or consistent network policy. A centrally controlled network, on

he other hand, needs embedded intelligence in order to reroute

uickly enough around a link failure. Re-routing will need to hap-

en in no more than 50 ms, so that the failure is not noticeable.

n the context of this paper, it may be seen that the proposed CEM

lgorithm and the design of a maximally efficient topology design

sing the network wide entropy measure can be embedded into

he SDN controller for the network. The reactive packet processing

or path selection and traffic split in response to dynamic condi-

ions can serve as the autonomic component in this architecture. 

. Conclusions 

The paper presents a new way of measuring the centralization

f the network based on the entropy of the shortest path be-

weenness centrality distribution. We opine that this measurement

akes a strong case for considering betweenness centrality dis-

ribution and its entropy in designing maximally efficient topolo-

ies, and improving the resiliency and quality of routing. The tacti-

al network only serves as a use-case model; however, the idea is

pplicable to other networks too. The CEM framework can be ex-

ended to other centrality measures such as Routing Betweenness

entrality to solve inverse shortest path problems in the areas of

raffic Engineering and Routing optimization. Additionally, there is

 class of multi-layer topology design problems that can synthesize

he optimal topology at both physical and logical layers, that can

e analyzed using this framework. It will be worthwhile to build

 routing strategy that can automatically detect the occurrence of

raess’ paradox in the network based on the entropy of centrality

istribution. 

ppendix A. Proof of NP-hardness of the CEM problem 

In this section, we prove the NP-hardness of the CEM problem

n Eq. 16 . A problem is NP-hard if every problem in the class NP of

roblems, solvable in polynomial time on a non-deterministic Tur-

ng Machine, can be transformed to it. Usually a problem is shown

o be NP-hard by reducing a known NP-complete problem to it. We

rove the hardness result by reducing the problem of optimizing

SPF weight setting with respect to maximum link utilization to

he problem of maximizing the entropy of the shortest path cen-

rality distribution. 

First, we present an overview of the NP-hardness result of the

SPF weight setting problem [4] . Consider a network as a directed

raph G = (V, E) . The traffic demands are represented by a demand

atrix D . Let D st represent the traffic demand between a source-

estination pair 〈 s, t 〉 ; f uv denote the flow on link ( u, v ), and c uv de-

ote the capacity of the link ( u, v ). The link utilization is defined by

( f u v , c u v ) = 

f u v 
c u v 

. The maximum link utilization is max uv ∈ E 
f u v 
c u v 

.

he objective is to distribute the traffic demands to minimize the

aximum link utilization subject to the link capacity constraints

nd flow conservation. The general routing problem can be formu-

ated as follows. 

Min � = Max (x,y ) ∈ E �( f xy , c xy ) 

subject to 

∀ D st : 

f + (x ) = f −(x ) ∀ x ∈ V \ { s, t} 
f + (x ) = 

∑ 

y : xy ∈ E f xy and f −(x ) = 

∑ 

y : yx ∈ E f yx 

0 ≤ f xy ≤ c xy ∀ xy ∈ E 

(A.1) 
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Fig. B.6. Abilene Network - probabilities of links based on shortest path be- 

tweennes centrality values of network links; X axis represents the links, and Y axis 

represents the probability associated with each link. The probabilities are sorted in 

ascending order. 
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In a general routing problem, there are no constraints on how

the flows can be distributed between the paths. However, in OSPF

routing, the routing of the traffic demands is determined only by

the shortest paths. The shortest paths in turn are determined by

the weights chosen for the links. The additional constraint of rout-

ing through only the shortest paths transforms the general routing

problem into a NP-hard problem. In [4] , the following hardness re-

sult of optimal setting of OSPF weights has been proved. 

Theorem 1. It is NP-hard to optimize the maximum link utilization

in OSPF routing. 

The hardness result has been shown by reducing 3SAT to the

problem of optimizing OSPF weight setting with respect to maxi-

mum link utilization. Refer [4] for the detailed proof. We made the

following observation from the construction of the OSPF weight

setting from 3SAT problem. 

Let S = (X, C) be an instance of 3SAT with variable set X and

clause set C where each clause has three literals. There are sev-

eral steps involved in the reduction process. One of the steps is to

derive the traffic demand. There is a source-destination pair 〈 s, t 〉
associated with each x ∈ X . The demand between 〈 s, t 〉 is set to

2| x |, where | x |denotes the least power of two bounding both the

number of negative and the number of positive occurrences of x

in S . It is possible that the traffic demands between all source-

destination pairs could be the same. More precisely, the problem

of optimal setting of OSPF weights is NP-hard even when the traf-

fic demands are uniform. This is also true when the capacity of

each link is same. Refer [35] for the hardness result of the OSPF

Flow Allocation Problem (FAP) in which the demands are consid-

ered uniform. We use this observation in the following proof. 

Theorem 2 (CEM is NP-hard) . It is NP-hard to maximize the entropy

of the shortest path betweenness centrality distribution. 

Proof. We prove this result by reducing the problem of optimiz-

ing OSPF weight setting with respect to maximum link utilization

to the problem of maximizing the entropy of the shortest path be-

tweenness centrality distribution. We construct an instance of the

CEM problem as follows. 

The objective function, minimizing the maximum link utiliza-

tion, is a convex function [36] . p log p is a convex function on R + ,
assuming 0 log 0 = 0 . So, the negative entropy of the centrality dis-

tribution, 	uv ∈ E p ( u, v ) log p ( u, v ) is convex. The objective function

can be restated to minimize the negative entropy of the centrality

distribution. So, both problems are instances of convex optimization

problem. 

We assume that the traffic demands and the capacity of links

are uniform. As stated earlier, f uv denotes the flow on link ( u, v ) ∈
E realized by the chosen routing protocol. In the OSPF routing, for

each source-destination pair 〈 s, t 〉 ∈ V × V , and for each node u ∈
V , we have that f st 

u v = 0 if ( u, v ) is not on a shortest path from s to

t , and that f st 
u v = f st 

u v ′ if both ( u, v ) and ( u, v ′ ) are on shortest paths

from s to t . The total flow f uv is the sum of individual flows with

each flow being associated with a source-destination pair. 

f u v = 

∑ 

∀〈 st〉∈ V ×V 

f st 
u v (A.2)

This individual source-destination pair flow f st 
u v is again the

sum of path-specific individual flows. Let Q st denote the set of the

shortest paths from s to t that need not be edge-disjoint. Then, we

have 

f st 
u v = 

∑ 

Q st 

f st(q i ) 
u v (A.3)

where q i denotes the i -th path in Q st , 1 ≤ i ≤ | Q st |. From the

above equation, f 
st(q i ) 
u v denotes the amount of flow on the link ( u,
 ) that appears in the shortest path q i ∈ Q st from s to t . It is possi-

le that more than one shortest path in Q st pass through the link

 u, v ). 

For each flow variable f 
st(q i ) 
u v , we associate a variable b 

st(q i ) 
u v such

hat 

 

st(q i ) 
u v = 

{
1 if f st(q i ) 

u v > 0 

0 if f st(q i ) 
u v = 0 

This variable helps us determine if the link is in a shortest path

rom s to t . Now the shortest path betweenness centrality of a link

 u, v ) can be derived as follows. 

•, •(u, v ) = 

∑ 

s,t 

σs,t = 

∑ 

s,t 

∑ 

Q st 

b st(q i ) 
u v (A.4)

When the traffic demands and the capacity are uniform, the

PBC of a link is directly proportional to the flow assigned by the

SPF routing. More precisely, the probability value associated with

 link ( u, v ) is directly proportional to the flow realized by the

SPF routing. So, any modification to the weight of a link will have

he same effect on the flow realized by the OSPF routing as well

s the SPBC distribution. More precisely, it is the change induced

y the weight setting in the betweenness centrality of a link which

auses the change in the flow on the link. 

Hence, if we are able to find an optimal weight setting for en-

ropy maximization of SPBC distribution in polynomial time, then

e could determine optimal weight setting for the OSPF routing

ith respect to maximum link utilization in polynomial time. But

t has been proved not possible. This concludes our proof on hard-

ess of the CEM problem. �

ppendix B. Tactical networks topology design 

In this section, we evaluate the proposed network centrality

easure in the context of the shortest path betweenness centrality

n some select network topologies and interpret the results. 

A tactical communication system (TCS) consists of a number of

ommunication nodes connected in a partial mesh topology over

he operational area Fig. B.6 . In a mesh architecture, a full mesh is

 complete graph where each node is directly connected to every

ther node, and a partial mesh is a network topology where each

ode is connected to select neighbors with a point-to-point radio
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Table B.8 

Centrality Distribution �G for the Abilene Network, proba- 

bilities rounded to 3 decimal places. 

( u, v ) σ •• uv p ( u, v ) ( u, v ) σ •• uv p ( u, v ) 

(0, 3) 32 0 .041 (0, 4) 24 0 .033 

(0, 10) 50 0 .069 (1, 4) 15 0 .021 

(1, 7) 18 0 .025 (2, 5) 31 0 .043 

(2, 8) 18 0 .025 (2, 9) 21 0 .029 

(3, 0) 42 0 .058 (3, 5) 21 0 .029 

(3, 6) 34 0 .047 (4, 0) 27 0 .037 

(4, 1) 63 0 .087 (4, 5) 27 0 .037 

(5, 2) 31 0 .046 (5, 3) 30 0 .041 

(5, 4) 46 0 .063 (6, 3) 21 0 .029 

(6, 9) 22 0 .030 (7, 1) 18 0 .025 

(7, 10) 15 0 .021 (8, 2) 12 0 .016 

(8, 9) 17 0 .023 (9, 2) 9 0 .012 

(9, 6) 34 0 .047 (9, 8) 13 0 .018 

(10, 0) 17 0 .023 (10, 7) 22 0 .030 
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Fig. B.7. Entropy values when new links are created; The entropy increases when a 

new link (2,1) is added to the network. 
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ink. The full mesh is too costly and not practical in tactical net-

orks. A partial mesh provides the required redundancy of routes

etween any pair of nodes. The nodes are classified into trunk

odes and access nodes. Trunk nodes are connected by high ca-

acity point-to-point radio links, and form backbone network. The

ccess nodes are connected to trunk nodes, and capable of provid-

ng connectivity to several mobile users. When a node moves from

ne point to another point in the operational area, it discovers its

eighbors and establishes point-to-point link to them. The network

opology formation is highly dynamic. The battle conditions, ter-

ain and disposition of the adversaries determine the position of

etwork elements. 

In our evaluation, we deal with the topology structure of the

etwork, and use our proposed measure to determine the max-

mally efficient topology. In particular, we are interested in de-

ermining the centralization or decentralization of the entire net-

ork in the context of the shortest paths available in a graph. We

odeled a sample tactical network based on the Abilene network

opology as shown in Fig. 1 . For the purpose of illustration, we as-

ume that each edge has unit weight. The trunk nodes are labeled

rom 0 to 10. These trunk nodes have multiple access nodes, and

he corresponding access nodes are mentioned as dots near each

runk node. 

ntropy of SPBC 

Consider the network topology given in Fig. 1 . We use AMPL

or computing the shortest paths, betweenness centrality values,

nd calculating the entropy values. An efficient algorithm for com-

uting betweenness centrality has been proposed in [13] . Table B.8

hows the number of shortest paths that pass through each link

nd its associated probability value. For example, the link (0, 3)

as 32 shortest paths passing through it, and its associated proba-

ility value is 0.041209. The total number of the shortest paths in

he entire network σ • , • is 404. 

The probability distribution of the Abilene network is shown in

ig. B.6 . 

From Table B.8 , we see that the link (4, 1) has the maximum

umber of the shortest paths passing through it. It is also due to

he fact that the trunk node 1 has the maximum number of ac-

ess nodes. The entropy of SPBC distribution for the given topol-

gy H 28 ( �G ) is 4.6 6220 6. The information distance is: log (28) −
 28 (�G ) = 0 . 145149 . The relative entropy h G = 0 . 969807 . This im-

lies that the centrality distribution is closer to maximum entropy,

nd hence it is a decentralized network. We find the trunk node

 has 12 access nodes, and redistributing 5 nodes to the trunk

ode 4 has shown increase in entropy: H 28 (�G ) = 4 . 686911 and

 G = 0 . 974946 . This implies that the distribution of the shortest

aths among the links has improved. 
dding links 

We now consider the case of adding a new point-to-point radio

ink between two arbitrary nodes. We compute the entropy and

elative entropy for a few cases as shown in Fig. B.7 , and illustrate

ow our proposed measurement helps in validating such design

ecisions. Fig. B.7 shows only cases wherein the entropy increases

ue to addition of new links. For example, when a new link (1, 10)

s added to the network given in Fig. 1 , the entropy has increased

o 4.725330 and subsequently the relative entropy has increased to

.962999. From Fig. B.7 , we can see that adding a new link (2, 1)

s preferred over other links as it results in higher entropy value. 

opology changes 

In tactical networks, when a node moves from one point to

nother point in the operational area, it discovers its neighbors

nd establishes point-to-point links to them. Our proposed net-

ork centrality measure based on betweenness centrality helps in

dentifying the right neighbors that provide maximum efficiency

n routing. We propose an algorithm Neighbor Discovery given in

lgorithm 2 to determine the neighbors from the set of reachable

lgorithm 2 Neighbor Discovery 

Input G = (V, E) , A ⊂ V {A is the set of neighbors} 

Input k {Number of links in the node} 

Output G MAX {A graph with maximum entropy} 

u ← new node to join the network and m ← | A | 
for all k combinations in m do 

Let { i 1 , i 2 , ...i k } be the choice of k neighbors 

V ′ ← V ∪ { u } , E ′ ← E ∪ { (u, i 1 ) , ..., (u, i k ) } , G 

′ = (V ′ , E ′ ) 
Compute W 

↑ 
k 

and W 

↓ 
k 

{bidirectional weights} 

Construct all pair (s, t) s, t ∈ V ′ shortest paths 

Compute σ•, • and p(u, v ) 
Compute H(�G ′ ) and h G ′ 
G MAX ← G 

′ if H(�G ′ ) and h G ′ are increased 

end for 

G MAX is maximum entropy network 

odes based on the entropy values. Our objective is to connect to

he appropriate neighbors that increase the entropy of SPBC dis-

ribution. The algorithm runs through all possible combinations on

he choice of neighbors with appropriate weights on the bidirec-

ional links. For each combination, it computes the entropy and
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relative entropy to measure the efficiency of the new network.

The algorithm finally produces the network topology that has the

maximum entropy. This is useful in addressing a class of network

synthesis problems where we need to determine the links or ca-

pacities on links at minimum cost in order to satisfy the traffic

demands. 

The time complexity to compute the SPBC distribution for a

given network is in O (nm + n 2 log n ), where n is the total num-

ber of nodes and m is the total number of links in the net-

work [13] . Under practical conditions, the number of links and

the number of neighbor nodes are very small. Also, a centralized

controller can precompute the entropy for some of the possibili-

ties based on tactical operations, and pair them based on higher

entropy. 

Diversity index 

In tactical networks, the traffic demand between a source-

destination pair changes dynamically. It is important to assess the

routing sub graph between the chosen pair of nodes so that there

is no unexpected congestion or delays. For example, the over-

all entropy of a tactical network may be higher, but there could

be a cut edge between a given source-destination pair. This may

lead to a single point of failure. We can use the diversity in-

dex between source-destination pairs to analyze such cases. In

the above network, the minimum diversity index h 1 , 24 = 0 . 951796 .

Note that one of these measures or a combination of these mea-

sures can be used to evaluate or design the network topology

based on the stated design goals. For example, one may want to

maximize the diversity index between a select source-destination

pair while maintaining the overall network centrality at a certain

value. 

References 

[1] A. Retana , D. Slice , R. White , Advanced IP network design (CCIE Professional

Development), vol. 17, Cisco Press, 1999 . 
[2] A. Mowshowitz , M. Dehmer , Entropy and the complexity of graphs revisited.,

Entropy 14 (3) (2012) 559–570 . 

[3] D. Xu , M. Chiang , J. Rexford , Link-state routing with hop-by-hop forwarding
can achieve optimal traffic engineering, IEEE/ACM Trans. Netw. 19 (6) (2011)

1717–1730 . 
[4] B. Fortz , M. Thorup , Increasing Internet capacity using local search, Comput.

Optim. Appl. 29 (2004) 13–48 . 
[5] V. Chellappan , K.M. Sivalingam , Application of entropy of centrality measures

to routing in tactical wireless networks, in: IEEE Workshop on Local Metropoli-

tan Area Networks, 2013, pp. 1–6 . 
[6] V. Chellappan , K.M. Sivalingam , K. Krithivasan , An entropy maximization prob-

lem in shortest path routing networks, in: IEEE Workshop on Local Metropoli-
tan Area Networks, 2014, pp. 1–6 . 

[7] L.C. Freeman , A set of measures of centrality based on betweenness, Sociome-
try 40 (1) (1977) 35–41 . 

[8] D.R. White , S.P. Borgatti , Betweenness centrality measures for directed graphs,

Soc. Netw. 16 (4) (1994) 335–346 . 
[9] Y. Shavitt , Y. Singer , Beyond centrality - classifying topological significance
using backup efficiency and alternative paths, New J. Phys. 9 (8) (2007)

266:1–266:17 . 
[10] S.P. Borgatti , Centrality and network flow, Soc. Netw. 27 (1) (2005) 55–71 . 

[11] S. Dolev , Y. Elovici , R. Puzis , Routing betweenness centrality, J. ACM 57 (4)
(2010) 25:1–25:27 . 

[12] E.C. Juan Segovia , P. Vilá, New applications of the betweenness centrality con-
cept to reliability-driven routing, in: Proceedings of the Workshop in G/MPLS

Networks, 2009 . 

[13] U. Brandes , A faster algorithm for betweenness centrality, J. Math. Sociol. 25
(2001) 163–177 . 

[14] M.J. Newman , A measure of betweenness centrality based on random walks,
Soc. Netw. 27 (1) (2005) 39–54 . 

[15] A.H. Dekker , B.D. Colbert , Network robustness and graph topology, in: Pro-
ceedings of the 27th Australasian Conference on Computer Science, 2004,

pp. 359–368 . 

[16] C.E. Shannon , A mathematical theory of communication, Bell Syst. Tech. J. 27
(1948) 379–423 . 623–656 

[17] E.T. Jaynes , Information thoery and statistical Mechanics, Phys. Rev. 106, 108
(1995) 620–630 . 171–197 

[18] J.N. Kapur , Maximum-Entropy Models in Science and Engineering, Wiley, Wiley
Eastern Limited, Chichester, 1989 . 

[19] J.A. Tomlin , S.G. Tomlin , Traffic distribution and entropy, Nature 220 (1968)

974–976 . 
[20] A.K. Agarwal , D. Mohan , R.S. Singh , Traffic planning in a constrained network

using entropy maximisation approach, J. IEI 85 (2005) 236–240 . 
[21] L.C. Freeman , Centrality in social networks: Conceptual clarification, Soc. Netw.

1 (1979) 215–239 . 
22] B. Fortz , M. Thorup , Internet traffic engineering by optimizing OSPF weights,

in: Proceedings of the IEEE INFOCOM, 20 0 0, pp. 519–528 . 

[23] D. Braess , A. Nagurney , T. Wakolbinger , On a paradox of traffic planning, Trans-
port. Sci. 39 (4) (2005) 446–450 . 

[24] K.G. Ramakrishnan , M.A. Rodrigues , Optimal routing in shortest-path data net-
works, Bell Labs Tech. J. 6 (1) (2001) 117–138 . 

25] S. Nelakuditi , Z. li Zhang , On selection of paths for multipath routing, in: Pro-
ceedings of IWQoS, 2001, pp. 170–186 . 

26] B. Zhang , D. Massey , L. Zhang , Destination reachability and BGP convergence

time, in: Proceedings of the IEEE GLOBECOM, 3, 2004, pp. 1383–1389 . 
[27] K. Conrad, Probability distributions and maximum entropy is notes from Keith

Conrad, and available online at: http://www.math.uconn.edu/ ∼kconrad/blurbs/
analysis/entropypost.pdf . 

28] M.H. Sqalli , S.M. Sait , S. Asadullah , OSPF weight setting optimization for single
link failures, Int. J. Comput. Netw. Commun. 3 (1) (2011) 168–183 . 

[29] V.K. Gurbani , M. Scharf , T.V. Lakshman , V. Hilt , E. Marocco , Abstracting net-

work state in Software Defined Networks (SDN) for rendezvous services, in:
Proceedings of IEEE ICC, 2012, pp. 6627–6632 . 

[30] B. Lantz , B. Heller , N. McKeown , A network in a laptop: rapid prototyping for
software-defined networks, in: Proceedings of the ACM SIGCOMM Workshop

on Hot Topics in Networks (HotNets), 2010, pp. 19:1–19:6 . 
[31] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,

S. Shenker , J. Turner , OpenFlow: enabling innovation in campus networks, ACM
SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74 . 

32] A . Tizghadam , A . Leon-Garcia , AORTA: autonomic network control and man-

agement system, in: Proceedings of the IEEE Conference on Computer Com-
munications Workshops INFOCOM, 2008, pp. 1–4 . 

[33] V. Matossian , M. Parashar , Towards autonomic control of network topologies,
in: Proceedings of the IEEE workshop on Modeling Autonomic Communication

Environments (MACE), 2006, pp. 235–250 . 
[34] D.O. Awduche , A. Chiu , A. Elwalid , I. Widjaja , X. Xiao , Overview and Principles

of Internet Traffic Engineering, RFC 3272, IETF, 2002 . 

[35] M. Pióro , A. Szentesi , J. Harmatos , A. Jüttner , P. Gajowniczek , S. Kozdrowski , On
OSPF related network optimisation problems, Perform. Eval. 48 (1/4) (2002)

201–223 . 
36] D. Medhi , K. Ramasamy , Network Routing - Algorithms, Protocols, and Archi-

tectures., Morgan Kaufmann, San Francisco, CA, USA, 2007 . 

http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0026
http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30113-X/sbref0035


V. Chellappan et al. / Computer Networks 104 (2016) 1–15 15 

 at LinkBee Inc. USA. He was the CTO and one of the co-founders of Helyxon Healthcare 

hnology (IIT) Madras in the field of Computer Science. From 1995 to 2014, he has held 
ai, most recently as General Manager. He has extensive expertise in communications and 

h-speed packet classification algorithms, traffic engineering, high-end router architecture, 

s, and has filed for grant of patents for some his ideas. He won Cisco’s Pioneer Technology 
fficer, India-UK Advanced Technology Centre of Excellence in Next Generation Networks, 

idance of Prof. Krishna M. Sivalingam in CSE Department, IIT Madras, India. 

sor in the Department of CSE, IIT Madras, Chennai, INDIA. Previously, he was a Professor 

 County, Maryland, USA from 2002 until 2007; with the School of EECS at Washington 
with the University of North Carolina Greensboro, USA from 1994 until 1997. He has also 

urray Hill, NJ, and at AT&T Labs in Whippany, NJ. He received his Ph.D. and M.S. degrees 
at Buffalo in 1994 and 1990 respectively; and his B.E. degree in Computer Science and 

gineering Guindy, Chennai (Madras), India. While at SUNY Buffalo, he was a Presidential 

ireless networks, wireless sensor networks, optical wavelength division multiplexed net- 
pported by several sources including AFOSR, DST India, IBM, NSF, Cisco, Intel, Tata Power 

. He holds three patents in wireless networks and has published several research articles 
dited a book on Next Generation Internet Technologies in 2010; on Wireless Sensor Net- 

 04. He is serving or has served as a member of the Editorial Board for journals including 
bile Computing, and Elsevier Optical Switching and Networking Journal. He is presently 

ommunications Journal and EAI Endorsed Transactions on Ubiquitous Environments. He 

orks and Telecommunications Symposium (ANTS) and EAI/ICST MobiQuitous conferences. 
nguished Scientist. 

y of Madras, and she joined the Indian Institute of Technology Madras (IITM) in 1975. She 

ce at IITM, in which she served as Chairperson during 1992–1995. Her research interests 

ls of computing like DNA computing, membrane computing and discrete tomography. A 
mala is also a fellow of the Indian National Academy of Engineering. 
Vanniyarajan Chellappan is consultant Principal Engineer

Solutions. He has a Ph.D. from the Indian Institute of Tec
various positions with M/s HCL Technologies Ltd at Chenn

networking technologies, specifically routing protocols, hig

etc. He has co-authored several papers in IEEE publication
Innovation Award 2002 (Team). He was also a Sr. Project O

Systems and Services from DST GoI, working under the gu

Krishna M. Sivalingam Krishna M. Sivalingam is a Profes

in the Dept. of CSEE at University of Maryland, Baltimore
State University, Pullman, USA from 1997 until 2002; and 

conducted research at Lucent Technologies’ Bell Labs in M
in Computer Science from State University of New York 

Engineering in 1988 from Anna University’s College of En

Fellow from 1988 to 1991. His research interests include w
works, and performance evaluation. His work has been su

Company and Laboratory for Telecommunication Sciences
including more than fify journal publications. He has co-e

works in 2004; on optical WDM networks in 20 0 0 and 20
ACM Wireless Networks Journal, IEEE Transactions on Mo

serving as Editor-in-Chief of Springer Photonic Network C

serves on the Steering Commihee of IEEE Advanced Netw
He is a Fellow of IEEE, a Fellow of INAE and an ACM Disti

Kamala Krithivasan received her Ph.D. from the Universit

has more than 30 years of teaching and research experien

include formal language theory and unconventional mode
recipient of the Fulbright fellowship in 1986, Professor Ka


	A Centrality Entropy Maximization Problem in Shortest Path Routing Networks
	1 Introduction
	2 Related work
	3 Definitions and notations
	3.1 Entropy properties

	4 Network centrality
	5 Network centrality and routing
	 Topology studied
	5.1 Routing efficiency
	5.2 Braess’ paradox

	6 Centrality entropy maximization (CEM)
	6.1 The CEM problem
	6.2 Solving CEM using local search
	6.3 Evaluation
	6.4 Entropy and network imbalance

	7 OSPF single link failure
	7.1 Proposed algorithm
	7.2 Evaluation
	7.3 OSPF weights

	8 Discussion
	8.1 MPLS
	8.2 Software defined networks
	8.3 Autonomic networks
	8.4 Network design

	9 Conclusions
	Appendix A Proof of NP-hardness of the CEM problem
	Appendix B Tactical networks topology design
	 Entropy of SPBC
	 Adding links
	 Topology changes
	 Diversity index

	 References


