Computer Networks 105 (2016) 166-179

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

DiFS: Distributed Flow Scheduling for adaptive switching in FatTree
data center networks

@ CrossMark

Wenzhi Cui? Ye YuP, Chen Qian®*

2 Department of Computer Science, University of Texas at Austin, TX, 78712, United States

b Department of Computer Science, University of Kentucky, KY, 40506, United Statesc Department of Computer Engineering, University of California Santa
Cruz, CA 95064, United States

¢ Department of Computer Engineering, University of California Santa Cruz, CA 95064, United States

ARTICLE INFO ABSTRACT

Article history:

Received 5 September 2015
Revised 1 June 2016
Accepted 2 June 2016
Available online 8 June 2016

Data center networks leverage multiple parallel paths connecting end host pairs to offer high bisection
bandwidth for cluster computing applications. However, the state-of-the-art routing protocols such as
Equal Cost Multipath (ECMP) is load-oblivious due to the static flow-to-link assignment. They may cause
bandwidth loss due to flow collisions. Recently proposed centralized scheduling algorithm or host based
adaptive routing that requires network-wide state information may suffer from scalability problems. In
this paper, we present Distributed Flow Scheduling (DiFS), a new adaptive switching method, for FatTree
data center networks, which is a localized and switch-only solution. DiFS allows switches to cooperate
to avoid over-utilized links and find available paths without centralized control. DiFS is scalable and can
react quickly to dynamic traffic because it is independently executed on switches and requires no syn-
chronization. DiFS provides global bounds of flow balance based on local optimization. Extensive simula-
tions show that the aggregate throughput of DiFS using various traffic patterns is much better than that
of ECMP, and is similar to or higher than those of two representative protocols that use network-wide

Keywords:

Data center networks
Adaptive switching
Flow scheduling

optimization.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The growing importance of cloud-based applications and big
data processing has led to the deployment of large-scale data cen-
ter networks that carry a tremendous amount of traffic. Recently
proposed data center network architectures primarily focus on
using commodity Ethernet switches to build hierarchical trees.
These data center networks usually use FatTree or similar topolo-
gies [1-5]. These topologies provide multiple equal-cost paths
between any pair of end hosts and hence significantly increase
bisection bandwidth. To fully utilize the path diversity, an ideal
switching scheme should allow flows to avoid over-utilized links
and take alternative paths, called adaptive switching. In this work,
we focus on the investigation of throughput improvement by
switching methods. Other approaches such as application layer
virtual machine placement and transport layer protocols are out
of the scope of this paper.

Most state-of-the-art data center networks rely on layer-3
ECMP protocol [6] to assign flows to available links using static

* Corresponding author.
E-mail addresses: wc8348@cs.utexas.edu (W. Cui), yeyu@uky.edu (Y. Yu),
cgian12@ucsc.edu (C. Qian).

http://dx.doi.org/10.1016/j.comnet.2016.06.003
1389-1286/© 2016 Elsevier B.V. All rights reserved.

flow hashing. Being simple and efficient. However, ECMP is load-
oblivious, because the flow-to-path assignment does not account
current network utilization. As a result, ECMP may cause flow col-
lisions on particular links and create hot spots.

We classify the recently proposed methods of improving the
bandwidth utilization in data center networks into three cate-
gories: centralized, host-based, and switch-only.

« Centralized solutions utilize the recent advances in Software
Defined Networking (SDN), which allows a central controller to
perform control plane tasks and install forwarding entries to
switches via a special protocol such as OpenFlow [7]. A typical cen-
tralized solution Hedera [8] relies on a central controller to find a
path for each flow or assign a single core switch to deal with all
flows to each destination host. Centralized solutions may face scal-
ability problems [9], because traffic in today’s data center networks
requires parallel and fast path selection according to recent mea-
surement studies [10,11]. A recent work Fastpass [12] demonstrates
very promising performance. Fastpass uses an arbiter to control the
time at which each packet should be transmitted and the path to
use for the packet.

« Host-based methods, such as DARD [3], can be run without a
central control. These methods enable end systems to monitor the
network bandwidth utilization and then select desired paths for

http://dx.doi.org/10.1016/j.comnet.2016.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.003&domain=pdf
mailto:wc8348@cs.utexas.edu
mailto:ye.yu@uky.edu
mailto:cqian12@ucsc.edu
http://dx.doi.org/10.1016/j.comnet.2016.06.003

W. Cui et al./Computer Networks 105 (2016) 166-179 167

flows based on network conditions. One major limitation of host-
based approaches is that every host needs to monitor the states of
all paths to other hosts. In a large network such as production data
centers, great amounts of control messages would occur. For many
applications such as Shuffle (described in Section 5.3), each DARD
host may have to monitor the entire network, which also limits
its scalability. In addition, all legacy systems and applications run-
ning these protocols need to be upgraded, which incurs a lot of
management cost. There are also some host-based solutions in the
transport layer such as Data Center TCP (DCTCP) [13] and Multi-
path TCP (MPTCP) [14]. These methods are out of the scope of this
work because we only focus on switching methods protocols.
 The last type is switch-only protocols which is efficient and
fully compatible with current systems and applications on end
hosts. It has been argued that switch-only solutions hold the best
promise for dealing with large-scale and dynamic data center traf-
fic patterns [9]. ECMP is a typical switch-only routing protocol for
load balance. Many existing switch-only protocols allow a flow
take multiple paths at the same time (called flow splitting) to
achieve high throughput [5,9,15]. Flow splitting may cause a high
level of TCP packet reordering, resulting in throughput drop [16].

In this paper, we propose Distributed Flow Scheduling (DiFS), a
switch-only switching method that is executed independently on
the control unit of each switch. DiFS aims to balance flows among
different links and improves bandwidth utilization for data center
networks. DiFS does not need centralized control or changes on
end hosts. In addition, DiFS does not allow flow splitting and hence
limits packet reordering.

Based on our observations, we categorize flow collisions in a hi-
erarchical data center networks in two types, local and remote flow
collisions. DiFS achieves load balancing by taking efforts in two di-
rections. First, each switch uses the Path Allocation algorithm that
assigns flows evenly to all outgoing links to avoid local flow colli-
sions. Second, each switch also monitors its incoming links by run-
ning the Imbalance Detection algorithm. If a collision is detected,
the switch will send an Explicit Adaption Request (EAR) message
that suggests the sending switch of a flow to change its path. Upon
receiving the EAR, the sending switch will run the Explicit Adaption
algorithm to avoid remote flow collisions. Previous solutions such as
Hedera [8] try to maximize the total achieved throughput across
all elephant flows using global knowledge by balancing traffic load
among core switches. However, we show that load balance among
core switches is not enough to achieve load balance among dif-
ferent links. DiFS effectively solves this problem using the control
messages called Explicit Adaptation Requests.

We conduct extensive simulations to compare DiFS with three
representative methods from different categories: ECMP (switch-
only) [6], Hedera (centralized) [8], and Dard (host-based) [3]. Ex-
perimental results show that DiFS outperforms ECMP significantly
in aggregate bisection bandwidth. Compared with the centralized
solution Hedera and the host-based solution Dard, DiFS achieves
comparable or even higher throughput and less out-of-order pack-
ets, for both small and large data center network topologies.

The rest of this paper is organized as follows. Section 2 intro-
duces background knowledge of flow scheduling in data center
networks. Section 3 presents the detailed architecture and algo-
rithm design of DiFS. We describe how DiFS handles network
failures in Section 4. We evaluate the performance of DiFS and
compare it with other solutions in Section 5. We conclude our
work in Section 7.

2. Background and overview of DiFS
2.1. Data center topologies

Today’s data center networks often use multi-rooted hierarchi-
cal tree topologies (e.g., the FatTree topology [1]) to provide mul-

Fig. 1. A fat tree topology for a datacenter network.

tiple parallel paths between any pair of hosts to enhance the net-
work bisection bandwidth, instead of using expensive high-speed
routers/switches. Our protocol DiFS is designed for a FatTree topol-
ogy as long as the switch organization in every pod is the same.
However for the ease of exposition and comparison with existing
protocols, we will use the FatTree topology for our protocol de-
scription and simulation evaluation.

A multi-rooted hierarchical tree topology has several vertical
layers. DiFS is specifically designed for 3-layer FatTree topologies.
The three layers are: the edge layer, the aggregate layer, and the
core layer. A pod is a management unit down from the core layer,
which consists of a set of interconnected end hosts and a set of
edge and aggregate switches that connect these hosts. As illus-
trated in Fig. 1, a FatTree network is built from a large number of
k-port switches and end hosts. There are k pods, interconnected by
(kj2)? core switches. Every pod consists of (k/2) edge switches and
(k/2) aggregate switches. Each edge switch also connects (k/2) end
hosts. In the example of Fig. 1, k = 4, and thus there are four pods,
each of which consists of four switches.

A path is a set of links that connect two end hosts. There are
two kinds of paths in a FatTree network: inter-pod path and intra-
pod path. An intra-pod path interconnects two hosts within the
same pod while an inter-pod path is a path that connects two end
host in different pods. Between any pair of end hosts in different
pods, there are (k/2)? equal-cost paths, each of which corresponds
to a core switch. An end-to-end path can be split into two flow
segments [17]. The uphill segment refers to the part of the path
connecting source host to the switch in the highest layer (e.g., the
core switch for an inter-pod path). The downhill segment refers to
the part connecting the switch in the highest layer to the destina-
tion host. Similar to existing work, we mainly focus our discussion
on inter-pod flows, because intra-pod flows can be handled by a
simpler version of the switching method.

In this paper we limit our discussion to FatTree. It is because
that FatTree is a representative topology of hierarchical tree topolo-
gies, which have been used in the state-of-art data center designs
for years [1].

2.2. Examples of flow collision and DiFS’s solutions

DiFS aims to avoid too many flows traversing through the same
switch in the network. In order to do this, each DiFS switch tries to
balance the traffic across its ports and distribute the traffic among
the links in the network. When too many flows are transmitted
to the same link, congestion may occur in the network. Collision
in the network refers to multiple flows being transmitted to the
same switch, which may cause congested links. We show three
types of flow collisions in Fig. 2, where in each example some
parts of the network are not shown for simplicity. If a switch ex-
periences a flow collision on one of its links and can locally adjust
the flow assignment to resolve the collision, such collision is called
a local collision. Otherwise, the collision is called a remote colli-
sion. Fig. 2a shows an example of a local collision, where switch
Aggrq; forwards two flows to the same link. Local collisions may be
caused by a bad flow assignment of static multi-pathing algorithms
such as ECMP. Fig. 2b shows an example of Type 1 remote colli-
sion, where two flows take a same link from Core, to Pod,. Type
1 remote collision may be caused by over-utilizing a core switch

168 W. Cui et al./Computer Networks 105 (2016) 166-179

(a) Local collision

) Pod1) Pod,) Pods

(b) Optimal algorithms for doubly weighted (c) Remote collision Type 2: load balance among core
approximation of univariate functions

switches is not enough

Fig. 2. Three types of collisions. For simplicity we use two flows to indicate a collision. In practise, a collision may be caused by many flows.

(a) Path Allocation (b) Solve remote collision Type 1:

solves local collision.
ward the flow to Corel.

Aggra
sends back an EAR and suggest Aggrs; to for- an EAR and suggest Edge;, to forward the flow to

(c) Solve remote collision Type 2: Edge,; sends back

Aggrll.

Fig. 3. Resolving collisions by Ppath allocation and explicit adaption.

(Core; in this example). Hence, some existing solutions propose to
balance traffic among cores [8]. However balancing core utilization
may not be enough. Another example of remote collision (Type 2)
is shown in Fig. 2¢, where core utilization is balanced but flows
still collide on the link from Aggry,, to Edge,;. We also observe
that location collisions happen in uphill segments, and remote col-
lisions happen in downhill segments.

Local collisions can be detected and resolved by local algo-
rithms in a relatively easy way. DiFS uses the Path Allocation algo-
rithm to detect flow-to-link imbalance and move one of the flows
to an under-utilized link, as shown in Fig. 3a. The key insight of
DiFS to resolve remote collisions is to allow the switch in the
downhill segment that detected flow imbalance to send an Explicit
Adaption Request (EAR) message to the uphill segment. The con-
cept of EAR is introduced in [5]. For the example of Fig. 2b, Aggry,
can detect flow imbalance among the incoming links. It then sends
an EAR to Aggrs; in Pods (randomly chosen between two sending
pods), suggesting the flow to take the path through Core;. Aggrs;
runs the Explicit Adaption algorithm and changes the flow path.
That flow will eventually take another incoming link of Aggry; as
shown in Fig. 3b. To resolve the collision in Fig. 2c, Edge,; that de-
tects flow imbalance sends back an EAR and suggest Edge;, to for-
ward the flow to Aggry;. That flow will eventually go from Aggry,
to Edge,q, as shown in Fig. 3c.

The incoming links of the aggregate (edge) switch in the downhill
segment have a one-to-one correspondence to the outgoing links of
the aggregate (edge) switch in the uphill segment in a multi-rooted
tree. This is consistent with the observations in [18]. Therefore,
when an aggregate (edge) switch in the downhill segment detects
imbalance and finds an under-utilized link, it can suggest the ag-
gregate (edge) switch in the uphill segment to change the path to
the “mirror” of the under-utilized link. In the example of Type 1
remote collision, Aggr,; controls the flow to income from Core; by
suggesting Aggrs; to forward the flow to Core;. In the example of
Type 2 remote collision, Edge,; controls the flow to income from
Aggry; by suggesting Edge, to forward the flow to Aggry;.

2.3. Classification of flows

In this paper, a flow is defined as a sequence of packets sent
from a source host to a destination host using TCP. In our flow

Fig. 4. Examples of SISO, SIMO and MISO flows.

scheduling protocol, a flow can have only one path at any time.
Allowing a flow to use multiple paths simultaneously may cause
packet reordering and hence reduce the throughput. However, a
flow is allowed to take multiple paths at different times in its life
cycle.

Elephant and mice flows: DiFS considers the traffic in the net-
work as elephant flows and mice flows. In this work, elephant
flows are defined as large, long-lived flows. The traffic volume of
these flows is significantly larger than that of mice flows. Typical
examples of elephant flows include virtual machine migration traf-
fic, traffic of data mining applications and log file backup traffic.
The other flows are called mice flows. Similar to many other works
[3,8], our protocol focuses on elephant flows and intends to spread
them as evenly as possible among all links. All mice flows will be
processed by ECMP, because recent work has shown that ECMP for-
warding can perform load-balancing efficiently and effectively for
mice flows [4]. Note that at a particular time, the sending rate of
an elephant flow is not necessarily larger than that of a mice flow.
Whether a flow is an elephant or not is determined by the overall
traffic volume.

Classification of elephant flows: Let f,;, be a flow whose source
is a and destination is b. A flow f;, may be classified into four
types for a particular switch s that runs DiFS:

« fap 1S a single-in-single-out (SISO) flow for switch s if and only
if there are only one possible incoming link of s from a and one
possible outgoing link of s to b. In Fig. 4, the core switch Core2
considers the flow from Hosty; to Hosts; (illustrated as a red
line) is a SISO flow.

* fap 1s a single-in-multi-out (SIMO) flow for switch s if and only
if there are one incoming link of s from a and multiple outgoing

W. Cui et al./Computer Networks 105 (2016) 166-179 169

links of s to b. In Fig. 4, Edge,; considers the illustrated flow is
a SIMO flow.

fap is @ multi-in-single-out (MISO) flow for switch s if and only
if there are multiple incoming links of s from a and one out-
going link of s to b. A close look at FatTree networks reveals
that all inter-pod flows are SIMO for the edge and aggregate
switches on the uphill segments, and are MISO for the edge
and aggregate switches on the downhill segments. All inter-
pod flows for core switches are SISO. In Fig. 4, Aggrs; considers
the illustrated flow is a MISO flow. is a MISO flow because the
switch can only forward this flow in one link but this flow can
choose different cores so that it can come into the aggregate
switch from more than one port.

Multi-in-multi-out (MIMO) flows may be defined similarly.
However, there is no MIMO flow for any switch in a FatTree
network. They may appear in general topologies.

Note one flow may be treated as different types by different
switches.

Look at the flow from Host,; to Hosts; in Fig. 4. For edge switch
Edge,,, this is SIMO flow since it has 2 output links to forward it.
For Core2, this is a SISO flow as it can only be forwarded to Pod3.
For Aggregate switch Aggrs;, this flow is a MISO flow as the flow
can be forwarded by another connected core switch.

3. DiFS design
3.1. Components and deployment

A typical switch architecture usually consists of two compo-
nents: data plane and control plane. The data plane includes mul-
tiple network ports, as well as a flow/forwarding table and an out-
put queue for each port. The control plane can perform general-
purpose processing like collecting measurement results and in-
stall/modify the rules in the flow/forwarding tables of the data
plane. As a result, DiFS should be installed in the control plane of
each switch.

Requirement of the switches. In order to execute the DiFS op-
erations, the switches should be able to: (1) Identify elephant flows
from all the flows that traverse through the switch. (2) In its local
memory, maintain three variables for each elephant flow f: L;, L,
and t; maintain two integer vectors that describes the switch sta-
tus, V; and V,. DiFS uses these two vectors to measure the load of a
switch, not other information such as CPU utilization ratio. (3) Ex-
ecute a control loop. In each loop, perform the instructions defined
in Algorithm 1 (see Section 3.4). (3) Execute the given algorithm
described in Algorithms 2 and 3 upon receiving control messages
EAR and PAR. The DiFS switches should be able to execute arith-
metic and logic operations, and send out control messages based
on the execution results. Modern enterprise or data centers usu-
ally use high-end switches. These switches are usually equipped

Algorithm 1: Imbalance detection in control loop.

S = the set of all MISO flows forwarded by this switch
for f S do
L; = incoming link of f
min = minimum value among elements in V;
8 = imbalance threshold
if V;[L;] — min > T then
compute a path recommendation p
send a EAR(f, p) to L;
Return
end
end

Algorithm 2: Path allocation.

Input: Path Allocation Request PAR
Output: None
f = flow identifier in PAR
S = set of links that can reach f’s destination
if |S| > 1 then
min = minimal value among all V,[l], [€ S
for [€S do

if V,[l] > min then

| S=s—{1}

end
end
L, = a random element in S
increase Vy[L,| by 1
else
| Lo = the first element of S
end
record the incoming link L; of f
record the outgoing link L, of f
update the access time t of f

Algorithm 3: Explicit adaptation of switch s.

Input: Explicit Adaptation Request EAR
Output: None
f = flow identifier in EAR
r = recommended core or aggregate switch in EAR
L; = current incoming link of f
L, = current outgoing link of f
if r and s are connected and sending f to r can lead to the
destination of f then
L = the outgoing link connecting r
if Vo[L] >= V,[L,] then
\ move a flow currently on L to L,
move f to the outgoing link L
update the link variables of changed links
else
| forward EAR to L;
end

with powerful CPUs and fast local memory. Some typical represen-
tatives include the Cisco Catalyst series [19] and Hewlett-Packard
Enterprise FlexNetwork series [20]. Hence, we believe DiFS can be
implemented on these switches.

Implementation on generic platforms. We notice the trend of
using software-based switches with commodity hardware in data
centers [21,22]. These switches are commodity computers (e.g., x
86_64 systems) equipped with high-end Network Interface Cards
(NICs). The DiFS algorithm on a switch can be implemented as a
program running on a computer. We recommend using the Intel
Data Plane Development Kit (DPDK) [23]. DPDK is a set of software
libraries that allow a Linux system to process packets effectively.
DiFS can be implemented as a DPDK application. This application
program reads packets from the Tx queues of the NICs, executes
DiFS algorithms, and then forward the packet to the corresponding
Rx queues.

Operating with SDN. DiFS is also compatible to software de-
fined networking such as OpenFlow [7]. For each switch in the
network, DiFS distributes the flows among the links in order to
achieve global flow balance and high throughput. In SDN, the con-
troller decides the behavior of individual flows. The control logic
of DIiFS can be implemented in the controllers. The controller ex-
ecutes DiFS algorithms and decides the paths of all flows in the

170 W. Cui et al./Computer Networks 105 (2016) 166-179

network. The controller communicates with the switches to install
the flow tables so that the switches may forward the traffic as in-
structed.

Compared with centralized algorithms that require a single con-
troller responsible for the entire network, distributed and localized
decision-making of DiFS offers tremendous scalability to SDN con-
trol. For example, OpenFlow switches in the same pod can be con-
nected to one controller, which is physically close to these switches
and able to handle the scheduling tasks. The communication over-
head of the control is much smaller when local controllers are de-
ployed than when the network uses one central controller.

3.2. Optimization goals

As a high-level description, DiFS intends to balance the num-
ber of elephant flows among all links in the network to utilize the
bisection bandwidth and take the advantage of path diversity. We
use the number of flows as the optimization metric instead of flow
bandwidth consumption based on the following reasons:

1. A flow’s maximum bandwidth consumption! can hardly be es-
timated. As shown in [8], a flow’s current sending rate tells
very little about its maximum bandwidth consumption. Hedera
[8] uses global knowledge to perform flow bandwidth demand
estimation. However, such method is not possible to be applied
in distributed algorithms such as DiFS.

2. Using flow count only requires a switch to maintain a counter
for each outgoing link. However, measurement of flow band-
width consumption requires complicated traffic monitoring
tools installed on each switch. Our method simplifies switch
structure.

3. Using flow count as the metric, DiFS can achieve similar or even
better performance compared with Hedera [8] and a variant of
DiFS implementation that uses estimated bandwidth consump-
tion as the metric. The results will be shown in Section 5.7.

If the elephant flows are sufficiently large, and each host makes
its best effort to transmit packets, the number of elephant flows is
proportional to the bandwidth utilized by these flows.

Two optimization goals for load-balancing scenarios are de-
sired:

Balanced Output (BO): For an edge switch s, let o(sq) be the
number of SIMO flows on an outgoing link connecting the ag-
gregate switch s;. BO of edge switch s is achieved if and only
if 0(sq1) —0(sg2) < 6, for any two aggregate switches s;; and sgp,
where § is a constant. Similarly we may define BO of an aggregate
switch to cores. BO can be achieved by the Path allocation algo-
rithm of DiFS with the smallest possible value of § being 1.

Balanced Input (BI): For an aggregate switch sq, let i(c) be the
number of MISO flows on an incoming link connecting the core
c. Bl of edge switch s is achieved if and only if i(c;) —i(c;) <9,
for any two cores ¢; and cp, where § is a constant. Similarly, we
may define BI of an edge switch from aggregate switches. Bl can be
achieved by Explicit Adaptation of DiFS with the smallest possible
value of § being 1.

BO and BI do not interfere with each other. Hence, a switch can
achieve them at the same time. Although BO and BI of a switch are
two kinds of optimization in a local view, we have proved that they
provide global performance bounds of load balancing, as presented
in Section 3.7. In Section 5 we further demonstrate that they can
achieve high aggregate throughput via simulations.

T A flow’s maximum bandwidth consumption, also called as flow demand, is the
rate the flow would grow to in a fully non-blocking network.

3.3. Protocol structure

DiFS uses a threshold to eliminate mice flows. Such threshold-
based module can be installed on edge switches. It maintains the
number of transmitted bytes of each flow. This monitoring task can
be cost-efficient in switch resources using recently proposed tech-
niques such as OpenSketch [24]. If the byte number of a flow is
larger than a threshold value, the edge switch will label this flow
as an elephant flow and mark the packet header to notify other
switches on its path.

Each switch has a flow list which maintains three variables for
every flow f: the incoming link identifier, denoted as L;, the out-
going link identifier, denoted as L,, and the last time this flow ap-
peared, denoted as t. A switch also maintains two Port State Vec-
tors (PSVs), V; and V,. The ith element in vector V; is the number
of flows coming from the ith incoming link. Likewise the ith el-
ement in vector V, is the number of flows forwarded to the ith
outgoing link.

There are three flow control modules in aggregate and edge
switches: control loop unit, explicit adaptation unit, and path al-
location unit. Control loops are run periodically by switches. The
main objectives of the control loop unit are to detect imbalance
of MISO flows among incoming links and send an EAR if neces-
sary. An EAR is a notification message sent along the reverse flow
path to recommend switches in the flow’s sending pod to choose
a different path. An EAR also includes a path recommendation.
When a switch receives an EAR, it runs the explicit adaptation unit
and changes the output link of the designated flow in the EAR to
that on the recommended path, if possible. Path Allocation Request
(PAR) is another message to request flow scheduling. PAR includes
a flow identifier and requires switches to allocate an available link
for this flow. Switches treat a packet with a new flow identifier as
a PAR. The sender needs to explicitly send a PAR only if path reser-
vation is allowed to achieve a certain level of performance guar-
antee for upper-layer applications [25]. For a SIMO flow, the path
allocation unit will assign an outgoing port for this flow based on
link utilization. Detailed algorithms for these modules will be pre-
sented in the following subsections.

The time period between two control loops has limited impact
on the convergence time of the whole protocol execution. We will
show that DiFS converges quickly under a wide range of control
loop period time in Section 5.5.

3.4. Control loop

Each DiFS switch continuously runs a control loop. At each iter-
ation, the switch executes the following:

1. Remove disappeared flows. A flow may disappear from a switch
due to several reasons. For example, the flow may have fin-
ished transmission or taken another path. In each iteration, the
switch will delete a flow if the difference between current time
and its last-appeared time t is larger than a threshold, which
may be set to a multiple of the average round-trip time of
flows.

2. Re-balance SIMO flows among all outgoing links. Removing dis-
appeared flows may cause the change of flow numbers on links.
Thus flow re-balancing is necessary.

3. Send an EAR if necessary. If the switch finds a MISO flow
comes in a over-utilized link, the switch will recommend other
switches to change the flow path by sending an EAR. In order to
avoid TCP performance degrade caused by too many EARs, DiFS
forces every switch to send at most one EAR at each iteration.

We detail the steps 2) and 3) as the follows.
Re-balance SIMO flows. The purpose of re-balancing SIMO
flows is to achieve BO, i.e., let the flow count difference of any two

W. Cui et al./Computer Networks 105 (2016) 166-179 171

outgoing links be smaller than the pre-defined threshold 8. The so-
lution seems to be trivial: a switch can simply move flows on over-
loaded links to under-loaded ones. However, this simple method
could cause oscillations of network status. Consider a switch s
moves a random flow f from link [; to [, for load balance. Later by
receiving an EAR from another switch, s will be suggested to move
f from [, to I; to avoid remote collisions. During the next control
loop, s will again move f to [; to I, and so on. Such oscillation will
never stop. One obvious downside of oscillations is that they will
incur packet reordering and hurt TCP performance. To resolve this
problem, we maintain a priority value for each flow in the flow
list. When the link assignment of a flow is changed based on the
suggestion from an EAR, the priority of the flow is increased by
one. When a switch re-balances SIMO flows, it should first move
flows that have smaller priority values. This strategy intends to let
flows whose assignments are changed by EARs be more stable and
reduce the probability of oscillations, by which the system conver-
gence will be faster.

Imbalance detection and path recommendation for EAR. For
fairness concern, at each iteration, the switch will scan each MISO
flows in a random order. The imbalance detection is also in a
threshold basis, which is presented in Algorithm 1.

Due to lack of global view of flow distribution, the EAR receiver
should be told how to change the flow’s path. Therefore, the EAR
sender should include a path recommendation, which does not nec-
essarily need to be a complete path. In a FatTree, both aggregate and
edge switches can detect load imbalance and recommend an alter-
native path only based on local link status.

For the flow collision example of Fig. 2b, Aggry; will notice the
load imbalance among incoming links and send an EAR to Aggrs;
(randomly selected between senders of the two collided flows).
The path recommendation in this EAR is just Core;. Aggrs; will re-
ceive the EAR and change the flow to the output link connected
with Coreq, and this flow will eventually come from another in-
coming link of Aggry; that was under-utilized, as shown in Fig. 3b.

For the flow collision example of Fig. 2¢, Edge,; can detect it by
comparing two incoming links and then send an EAR to Edge;, in
the uphill segment. The path recommendation here is just Aggry;.
When Edgeq, let the flow take Aggrq;, the flow will eventually take
another incoming link to Edge,; and hence resolves the collision as
shown in Fig. 3c.

As a matter of fact, in a FatTree network, a path recommenda-
tion can be specified by either a recommended core or a recom-
mended aggregate switch in the uphill segment. For other topolo-
gies, more detailed path specification might be needed.

For an intra-pod flow, the path consists of two edge switches
and one aggregate switch. If the aggregate switch detects load im-
balance, it can also send an EAR to the edge switch in the previous
hop and suggest the edge switch to send the flow to another ag-
gregate switch. In fact, this is the one difference in our protocol
when it treats intra-pod and inter-pod flows.

3.5. Operations upon receiving a PAR

As presented in Algorithm 2, To keep all links output balanced,
we use a distributed greedy algorithm to select an outgoing link
for each flow requested by a PAR. When a switch received a PAR,
it first checks how many outgoing links can lead to the destination.
If there is only one link, then the switch will simply use this link.
If there are multiple links to which this flow can be forwarded, the
switch will select a local optimal link for this flow. The algorithm
first find the set of links with the minimum number of outgoing
flows. If there are more than one links in this set, the algorithm
will randomly select a link from the set.

— flows
—— flows

— flow:
— flow:

Fig. 5. Oscillation problem caused by EARs.

3.6. Operations upon receiving an EAR

An EAR includes a flow identifier and a path recommendation.
As mentioned, for a FatTree network a path recommendation can
be specified by either a recommended core or a recommended
uphill aggregate switch. When a switch received an EAR, it first
checks if it can move the requested flow f to the recommended
core or aggregate switch. If not, it will forward this EAR further
towards the reverse path of f. If moving f will cause imbalance
among outgoing links, the switch swaps f with another flow on
the recommended link. The complete algorithm is described in
Algorithm 3.

EARs may also cause network status oscillations. Consider the
following scenario in Fig 5, where only part of the network is
shown. flow; and flow, collide on the same link from SW, to SW;
but the link from SW5 to SW; is free. SW; may send an EAR to SW,
and suggest SW, to send flow; to SWs, in the purpose of resolving
the remote collision at SW;. After receiving the EAR, SW, swaps
the outgoing links of flow; and flows;. However at the same time
SW3 may send an EAR to SW, and suggest SW, to send flow, to
SW,. SW, should then swap the outgoing links of flow, and flow,.
As a result the collisions still exist. By keeping executing the pro-
tocol, oscillations happen and the network status cannot converge.
To deal with the problem, we allow random spans in control loops.
There is some non-negligible time difference between the control
loops of SW; and SW3. In this way, SW5 may notice that its colli-
sion has already been solved after SW, swaps the outgoing links of
flow; and flows and will not send another EAR.

3.7. Bounds on global flow balance

The local optimization on switches can lead to global perfor-
mance bounds as introduced in this section.

We provide a bound on flow balance among aggregate switches
in a same pod by the following theorem:

Theorem 3.1. In a k-pod FatTree, suppose every edge switch achieves
BO with 6. Let n(sy) be the number of flows that are sending to ag-
gregate switch s,. Then we have MAX, — MINg < § - k/2, where MAX,
is the maximum n(sq) value among all aggregate switches in the pod,
MIN, is the minimum n(sq) value among all aggregate switches in the
pod.

Proof. Let x and y be arbitrary two aggregate switches. Let ng4 be
the number of flows from edge switch e to aggregate switch a.

nx) = ane
ny) = Znye

Since |nyxe —nye| <8 for every edge switches e and there are k/2
edge switches in a pod,

InX) —n@)| <Y e —nye| <8-k/2
Hence MAX; — MINg <6 -k/2. O

172 W. Cui et al./Computer Networks 105 (2016) 166-179

We further prove a bound on flow balance among core switches
by the following theorem:

Theorem 3.2. In a k-pod FatTree, suppose every edge and aggre-
gate switch achieves BO with § = 1. Let n(c) be the number of flows
that are sending to core c. Then we have MAX,; — MIN,; < 3k, where
MAXg; is the maximum n(c) value among all cores and MINy is the
minimum n(c) value among all cores.

Proof. The (k/2)? cores can be divided into k/2 groups g;, £, ...
82, each of which contains k/2 cores that receive flows from a
same group of aggregate switches.

Suppose x and y are two cores. If they belong to a same group,
we can prove ny —ny < k/2 using a way similar to the proof of
Theorem 3.1. Consider that they belong to different groups. For a
pod p, x and y connect to two different switches in p, because they
are in different core groups. Let s,; and s,; denote the switches
connecting to x and y respectively. We have n(sq;) — n(sq) < k/2
according to Theorem 3.1. Hence

n(Sq1) _ n(Se2) -
k/2 k/2 —

Hence, the average numbers of flows from s;; and sy, to each core
n(sq1) n(sq2)

are =4 and 5 respectively. Let np. denote the number of
flows from pod p to core c. We have npy — ”5{5/“21) <1 (BO of sg),
and "f/azz) —npy <1 (BO of sg). Hence
n(s n(s
Mpe —Npy < 1+ ,E/”zl) -](</”22) +1<3
Ny =Ny =) Np—) My = (Mpx—npy) <3k
p p 3

g
Similarly we have a bound of flow balance in the receiving side.

Theorem 3.3. In a k-pod FatTree, suppose all aggregate switches in
a same pod achieve BI with 6 = 1. Let n(s.) be the number of flows
that are sending to edge switch s.. Then we have MAX, — MIN, < k/2,
where MAX. is the maximum n(s.) value among all edge switches
in the pod and MIN, is the minimum n(se) value among all edge
switches in the pod.

The proof is similar to that of Theorem 3.1.

Note that the values we provide in the theorems are only
bounds of the difference between the maximum and minimum
flow numbers. In practice, however, the actual differences are much
lower than these bounds.

3.8. Impact on mice flows

DiFS aims to balance the traffic of elephant flows. DiFS moves
flows from highly occupied links to links with abundant free band-
width. As presented above, DiFS balances elephant flows among
aggregate switches. Consider a mice flow that goes through links
Ly, Ly, ---, Ly and switches S;,S,,---,S,_1. The maximum trans-
mission rate of this flow depends on the available bandwidth and
computation resource of these links and switches. Particularly, it
depends on the minimal available bandwidth of all n links. Sup-
pose the available bandwidth on link L; is r; > 0. Clearly, when or;
is constant, a more uniformly distributed rq, 15, ---, r; would re-
sult in a larger minr;. This is to say when the traffic is uniformly
distributed, the available bandwidth of a mice flow is likely to be
larger.

Mice flows in the network can be categorized into two groups.
(1) low bandwidth and long-lasting. (2) short burst flows. Flows in
(1) do not require large resources. Meanwhile, DiFS gives favor to
flows in (2) by balancing the traffic of the elephant flows.

3.9. Flow termination

Most switches support flow expiration. i.e., the OpenFlow stan-
dard specifies that for each flow entry on the switch, there is an
idle time-out value that indicates when this entry shall be re-
moved due to a lack of inactivity. When a flow entry is expired
and removed, we consider the corresponding flow terminates.

3.10. Switch overhead of DiFS

In DiFS, each switch maintains a list of elephant flows, and two
vectors V; and V,. Executing the DiFS algorithms consumes compu-
tation resources. We analyze the time overhead of DiFS algorithms
as follows.

The switch maintains integer vectors V; and V,. It often com-
putes the minimal value of V; and V,. V; and V, can be imple-
mented in integer arrays with O(n) for each query and O(1) for
each update. However, we recommend using a heap or binary in-
dex tree with O(logn) for all operations. Note that the lengths of V;
and V, are both equal to the number of ports of the switch, which
is a small constant. This is to say V; and V, can be maintained ef-
fectively in constant time.

The algorithm within one iteration in the control loop includes
detecting the imbalance, re-balancing, and sending EAR if neces-
sary. The time complexity is at most O(n) where n is the num-
ber of elephant flows on the switch. This would take several mil-
liseconds when there are thousands of elephant flows. Experiments
show that DiFS is able to converge even with control loops for ev-
ery 100 ms. Hence, the time overhead of the instructions executed
in one loop is sufficiently small.

On receiving an EAR, the switch executes the particular algo-
rithm with time complexity O(1). On receiving a PAR, the time
complexity is at most O(p) where p is the number of ports on the
switch. These two algorithms only consist of simple arithmetic op-
erations and can be executed within several hundreds of CPU cy-
cles. This is to say the procedure is able to finish within 1us on an
1GHz CPU, which is acceptable for most commodity switches.

4. Failures recovery

Switches must take network failures into consideration in per-
forming flow scheduling. A network failure may be a switch fail-
ure, a link failure, or a host failure. Failures may also be classified
into reachability failures and partial failures. Reachability failures
refer to those failures that can cause one or more end hosts un-
reachable. For example, a crash of an edge switch can make (k/2)
hosts unreachable. We propose mechanisms for DiFS to maintain
network performance under these failures. Only flows towards the
unreachable hosts are affected.

Partial failures, i.e., individual link or port failures on edge
and aggregate switches, can cause performance degradation due
to loss of equal-cost paths. We classify partial failures into two
main types: Independent Link Failures (ILFs) and Compositional Fail-
ures (CFs). ILFs are link or port failures that are independent of
each other, i.e.,, no two link or port failures collide on the same
switch. The most frequent independent link failures are single link
failures. CFs are referred to node failures and multiple link failures
that can occur on the same switch node. Although CFs may cause
more severe results, they happen very rarely compared to ILFs [26].

Since ILFs are very common in Data Center Networks, we first
introduce how DiFS deals with them. When a link is down, the
switch that was connected by this link can realize it and find a
longer detour that can bypass the failed link. For example, if the
link connecting a core switch and an aggregate switch is failed,
this failed link can be replaced by a two hop detour that still con-
nects the core switch and aggregate switches. Such detours can be

W. Cui et al./Computer Networks 105 (2016) 166-179 173

computed at a low cost by switches. Given the fact that switches
know the fat tree topology, which is a reasonable assumption as
the network topology does not change in a long term. Unlike Baat-
daat [27] using a measurement based metric computing the low-
est cost detour, DiFS will randomly select a feasible detour for each
packet. Since it is rare that one packet may have two or more de-
tours under independent link failures, detouring a packet can cause
a very low cost.

Although it is very easy to compute a detour under ILFs, things
are very different for CFs. Node failures and related link failures
can make it harder to compute a feasible detour or even impos-
sible to find a detour with limited hop. To avoid the complexity
caused by compositional failures, we decide not to detour packets
when compositional failures are detected. Instead, If an output port
for some elephant flow is no longer available or cannot reach the
destination due to compositional failures, DiFS will randomly se-
lect an output port for each packet among all the feasible outgoing
links. The DiFS switch that is nearest to the source of the affected
flow will choose the output port for the packets. However, packets
may arrive at the destination but not in the original order. This is
resolved by higher level protocols such as TCP. At the same time,
this flow will still be maintained in flow table but all future EARs
will be ignored. After the failure is fixed, the old flow table can be
quickly reused at a low cost. The switch may store the old flow ta-
ble entries in its local memory and restore them when the failure
is fixed. This method uses different paths for packets of the same
flow and could hurt TCP performance due to packet re-ordering.
However, we argue that the TCP performance has already been af-
fected by network failures and hence packet re-ordering may be
allowed under this circumstance.

Loss or delay of EARs on a congested link may make DiFS de-
grade into a local link balanced algorithm like ECMP. the EAR mes-
sages are sent in UDP to avoid additional costs such as the commu-
nication overhead of TCP handshaking. However, a switch will keep
sending control messages at each control loop if previous flow col-
lisions have not been resolved. In the simulations, we also take the
loss and delay of control messages into consideration. Experiments
show that DiFS still converges in a short time under congestion. In
fact, even an EAR is missing, the network connectivity is not af-
fected, and hence the related flow is not affected by such missing.
Therefore, the loss or delay of control messages has limited impact
to network convergence.

5. Simulation results

In this section, we evaluate the performance of DiFS by com-
paring it with three representative routing solutions from different
categories: ECMP (switch-only) [6], Hedera (centralized) [8], and
Dard (host-based) [3]. Note that both Hedera and Dard use global
network information which is not available to switch-only methods.

5.1. Methodology

Most existing studies use custom-built simulators to evaluate
data center networks at large scale [8,9,14,28]. Simulation is able
to show the scalability of the protocols for large networks with
dynamic traffic patterns while testbed experiments can only have
up to tens of hosts for academic purposes. We find many of them
use a certain level of abstraction for TCP, which may result in in-
accurate throughput results.? To perform simulations with accu-

2 For example, the simulator developed in [8] only simulates each flow without
performing per-packet computation and uses predicted sending rate instead of im-
plementing TCP. The simulator that implements MPTCP [14] has been used for per-
formance evaluation by many other projects [9,28]. However, it does not implement
TCP ACKs and assumes ACKs can all be successfully delivered.

rate results, we developed a packet-level stand-alone simulator? in
which DiFS, as well as other protocols, are implemented in detail.*
Our simulator models individual packets, hence we believe it can bet-
ter demonstrate real network performance. TCP New Reno is imple-
mented in detail as the transportation layer protocol. Our simula-
tor models each link as a queue whose size is the delay-bandwidth
product. A link’s bandwidth is 1 Gbps and its average delay is 0.01
ms. Our switch abstraction maintains finite shared buffers and for-
warding tables. In our simulations, we simulate multi-rooted tree
topologies in different sizes. We use 16-host networks as small
topologies and 1024-host networks for bulk analysis.

DiFS is compared with ECMP, Hedera, and Dard. For ECMP, we
implemented a simple hash function which uses the flow identifier
of each TCP packet as the key. We implemented the Simulated An-
nealing scheduler of Hedera, which achieves the best performance
among all schedulers proposed in Hedera [8]. We set the control
loop period of Hedera to 0.01 s and Simulated Annealing iteration
to 1000, both of which are the same as their implementation. We
also set the period of distributed control loop to 0.01 s for DiFS.
As mentioned in Section 3.2, we focus on balancing the number
of elephant flows among links. We use 100 KB as the elephant
threshold, same to the value used by other work [3].

Performance criteria. We evaluate the following performance
criteria.

Aggregate throughput is the measured throughput of various
traffic patterns using proposed methods on the corresponding data
center topology. It reflects how a switching method utilize the
topology bandwidth.

Flow completion time characterizes the time to deliver a flow,
which may affect the processing efficiency of a data center. Besides
the comparison of flow completion time among different protocols,
we also care about the fairness of flow completion time of different
flows routed by the same protocol.

Packet out-of-order ratio. Although all protocols in our simu-
lations do not split flows, dynamic routing will still cause some
out-of-order packets. The out-of-order ratio is measured to see
whether a protocol will hurt TCP performance.

Convergence time is important to measure the stability of a dy-
namic routing protocol or switching method.

Control overhead. We measure the control message overhead in
bytes.

Traffic patterns. Similar to [8] and [3], we created a group of
traffic patterns as our benchmark communication suite. Each flow
is at least 16MB. These patterns are considered typical for cluster
computing applications and can be either static or dynamic. For
static traffic patterns, all flows are permanent. Dynamic traffic pat-
terns refer to those in which flows start at different times. In this
paper, we evaluate the performance of DiFS against dynamic pat-
terns similar to data shuffle in cluster computing applications such
as MapReduce [29]. The static patterns used by our simulations are
described as follows:

1. Shift(i): A host with index x sends data to a host with index
(x + i)mod (num_hosts), where num_hosts is the number of all
hosts in the network. This traffic pattern stresses out the links
between the core and the aggregation layers with a large i.

2. Staggered(Pe, Pp): A host sends data to another host in the same
edge layer with probability Pe, and to host in the same pod (but
in the different edge layer) with probability Pp, and to hosts in
different pods with probability 1 — P — Pp.

3 The simulator is available via https://github.com/sdyy1990/NSim/raw/master/
NSim.7z

4 We have also implemented DiFS on NS2, but experienced very slow speed when
using NS2 for data center networks. We guess the existing studies do not use NS2
due to the same reason.

https://github.com/sdyy1990/NSim/raw/master/NSim.7z

174 W. Cui et al./Computer Networks 105 (2016) 166-179

8 ¢ 8 S 12 i

3 2 ¢ 3 10

= = <

Ed 2 5 2 8

o o o

= £ 4 £ 6

= = =

) o 3 o 4

© © 2 ©

j=3 i=J j=J

e S o 2

=3 =3 =]

g : g : g o
shift shift shift shift shift stag0 stag1 stag2 stag3 stag4 stag5 rand rand rand rand rand rand rand
M @ @ @ (1) (0,00 (0,0) (.2,-3) (.2,.3) (0,.5) (0,.5) 0 1 x2 x3 x4 bi0 bijt
ECMP &=z Dard s ECMP &=z Dard s ECMP &=z Dard mmmmm
Hedera DiFS Hedera DiFS Hedera DiFS

(a) Shift traffic pattern

(b) Staggered traffic pattern

(c) Random traffic pattern

Fig. 6. Aggregate throughput comparison on small topologies.

3. Random: A host sends one elephant flow to some other end
host in the same network with a uniform probability. This is
a special case of Randx(x) where x = 1.

4. Randx(x): A host sends x elephant flows to any other end host
in the same topology with a uniform probability.

5. Randbij: A host sends one elephant flow to some other host
according to a bijective mapping of all hosts. This is a special
case of Random pattern which may be created by certain clus-
ter computing applications.

5.2. Small topology simulation results

In this set of simulations, 16 hosts (acting as clients) first es-
tablish TCP connections with some designated peers (acting as
servers) according to the specified traffic pattern. After that, these
clients begin to send elephant flows to their peers constantly.
Each simulation lasts 60 s, and each host measures the incoming
throughput during the whole process. We use the results for all
hosts in the middle 40 s as the aggregate throughput.

Fig. 6a shows the average aggregate throughput for a variety of
Shift traffic patterns with different parameters. For Shift parameter
i =1, all three methods have good performance. DiFS achieves the
highest throughput for all i values and outperforms ECMP signif-
icantly when i is greater than 2. DiFS has a significant lead over
Hedera and Dard when i =9 and 11. Note a larger value of i indi-
cates less traffic locality. Hence DiFS is more robust than the other
methods for traffic locality.

Fig. 6b shows the average aggregate throughput for Staggered
patterns. Similar to the Shift results, DiFS has the highest through-
put for most cases. In two cases (stag2(.2,.3) and stag3(.2,.3)),
DiFS’s throughput is marginally less than that of Hedera and Dard
respectively. We might find that the absolute bandwidth values of
all three methods in this set of simulations are less than those
in the Shift simulations. According to our results on non-blocking
switches and links (not shown in the figure), the average through-
put for Staggered is also limited to 10-12 Gbps due to the hotspots
created by the traffic pattern. DiFS results are relatively closer to
the limit than the others.

Fig. 6¢ depicts the throughput for Random patterns. For all
cases except one, DiFS outperforms the other three protocols.
In Random simulations, DiFS outperforms ECMP in the average
throughput by at least 33% for most traffic patterns. For particular
patterns, this value can be higher than 100%. Compared to Hed-
era and Dard that uses global information, DiFS achieves higher
throughput for the Randbijl pattern and similar throughput for
the others. We suspect there are two major reasons why Hedera
achieves less bandwidth compared to DiFS: First, Hedera ignores
intra-pod flows and degrades to ECMP when intra-pod flows are
dominant. Second, Hedera with Simulated Annealing does not as-
sign an explicit path for each flow. Instead, Hedera assigns a core
switch for every single host, which may result in bottlenecks on
the links connecting aggregate switches and edge switches.

Table 1
Results of shuffle simulations.
ECMP Hedera Dard DiFS

Shuffle time (s) 249.82 204.87 210.83 179.48
Aver. completion time (s) 224.78 178.53 191.25 157.20
Aver. throughput (Gbps) 431 530 4,61 6.10
Aver. out-of-order to 0.006 0.006 0.006 0.006
in-order ratio
Max. out-of-order to 0.643 0.750 0.750 0.4
in-order ratio
Aver. out-of-order 0.00 14.75 13.72 28.66
window size
Max. out-of-order 0.00 69.00 68.00 123.00

window size

5.3. Dynamic traffic: data shuffle

We conduct simulations of all-to-all Data Shuffle in the 16-host
multi-rooted tree topology to evaluate the performance of DiFS un-
der dynamic traffic patterns. Data Shuffle is an important opera-
tion for MapReduce-like applications. Each host (acting as reducer)
in the network will sequentially receive a large amount of data
(500 MB in our simulation) from all other hosts (acting as mapper)
using TCP. Therefore, in total it is a 120 GB Data Shuffle. In order
to avoid unnecessary hotspots, each host will access other hosts in
a random order. We also assume there is no disk operation during
the whole process. We measure the shuffle time, average comple-
tion time, and average throughput of the three methods. The shuf-
fle time is the total time for the 120 GB Shuffle operation. The av-
erage completion time is the average value of the completion time
of every host in the network. The average aggregate throughput
refers to the sum of average throughput of every host.

We also measure two variables described in [5] during the
Shuffle period in order to reflect the packet reordering problem.
The first variable is the ratio of the number of packets delivered
out-of-order to the number of packets provided in-order in TCP by
the senders. The second variable is the out-of-order packet win-
dow size, defined as the average gap in the packet sequence num-
bers observed by the receivers.

Table 1 shows that our algorithm outperforms ECMP by 28%,
Hedera by around 13%, and Dard by 15%, in aggregate through-
put. The most important metric is the shuffle time, i.e., the max-
imal completion time of all flows. The shuffle time of DiFS is less
than 180 s while the other methods use more than 200 s. DiFS
achieves the least shuffle time and average completion time per
flow. In addition, DiFS causes less packet reordering compared to
Hedera. ECMP has the least out-of-order packets because it is a
static scheduling algorithm.

Fig. 7 depicts the cumulative distribution function (CDF) of host
completion time of the three methods. As observed from this fig-
ure, by the time DiFS finishes Shuffle operations, around 50% hosts
of Hedera have completed their jobs and only 20% hosts of Dard

W. Cui et al./Computer Networks 105 (2016) 166-179 175

100 %
60 % _1/ // /
ST
vl S
LI/

Fraction of Completed Hosts

100 120 140 160 180 200 220 240
Time(sec)
ECMP —— Dard
Hedera DiIFS ——

Fig. 7. CDF of host completion time for data shuffle.

and 5% hosts of ECMP have finished their jobs. In general DiFS fin-
ishes flows much faster than all other protocols. All four methods
have obvious variation in the completion time of different flows.

5.4. Large topology simulation results

Fig. 8 shows the aggregate throughput comparison using a
1024-host FatTree network (k = 16). We can find that ECMP per-
forms worse in a large topology, compared with its performance
in the 16-host network using the same traffic patterns. We sus-
pect this is because the chances of collisions in path assignment
for static hash functions increase when topology gets larger. We
also noticed that the performance gap between Hedera and DiFS
shrinks in the 1024-host network compared to that in the 16-host
network due to the decreased portion of intra pod flows. However,
DiFS still has the highest aggregate throughput in general except
for two traffic patterns among the three figures.

5.5. Convergence speed and control overhead

Convergence speed

Convergence speed is a critical performance metric for DiFS, be-
cause DiFS is a distributed solution rather than a centralized al-
gorithm. We measure the convergence speed of DiFS for differ-
ent traffic patterns using FatTree topologies. In Fig. 9 we show the
achieved fraction of throughput of DiFS versus time for different
traffic patterns in the 1024-host network. Even with Random traf-
fic our algorithm may still converge to a steady state within 5 s.
We also compare the convergence speed against the frequency of
control loops in 1024 host networks using Randbij patterns. Fig. 10
compares the convergence speed of DiFS with 10 ms control loops
to 100 ms control loops. Although smaller frequency yields longer
converge time, the throughput still converge to relatively stable
state in three seconds and achieves more than 80% throughput in
the first second. We may conclude that our protocol is robust un-
der different frequencies of control loops.

900

100 %
9%5% |,
90 % |
85%
80 %
75% k
70%

Achieved Fraction
of Throughput

0.5 1 1.5 2
Time(sec)

Shift —— Stag = Rand e

Fig. 9. Convergence time of DiFS in the 1024-host network.

100 %

/ ——
g5 2|/
oo
g<
= 60 %
h=3<]

@

B o

£ o

2 20 %
0%

1 2 3 4 5
Time(sec)

10ms 100ms

Fig. 10. Convergence time of DiFS with different control loops.

Table 2
Control overhead of DiFS for random traffic pat-
terns.

k Host EAR Control overhead (KB)

4 16 4 0

8 128 304 7.72
16 1024 4113 104.43
32 8192 45183 1147.22

Control overhead

As a distributed solution, the computation cost of DiFS is very
low because switch only needs to consider its local flows. Hence,
we mainly focus on the communication overhead of DiFS, which is
measured by the number of EAR messages. Aside from communi-
cation overhead, too many EAR messages may cause performance
degradation because flows may be requested to change their paths
back and forth.

Table 2 shows the number of EARs sent by switches under ran-
dom traffic patterns in FatTree networks with different sizes. In the
measurement, we assume the size of each message is 26 Bytes,
which includes the size of flow identifier and the address of rec-
ommended core or aggregate switch in an EAR. As shown in the
table, for an 8192-host FatTree network, DiFS only generates con-
trol messages in a total size of around 1 MB. Fig. 11 shows the
CDF of EAR-receiving times. Within 5 s, all EARs have sent and re-
ceived, and around 80% EARs are received in the first second. We
also measure the control overhead under dynamic traffic patterns.

7 2 500 g 80

& 800 g 450 | 8 700

= 700 T 400} S o

2 600 g 30¢ g

=) S 300 } S 500

2 500 2 9

3 3 250 8 400 |

£ 400 £ 2

= = 200 = 300}

g 5 g 150 2 a0l

g oo g% g 100}

8 5 % g

< Shift(1) _ Shift@) _Shift(64) < Stag(0, 5) Stag(.2,.3) Stag(0,0) < Rand Randbi
ECMP Dard s ECMP Dard s ECMP Dard
Hedera DiFS Hedera DiFS Hedera DiFS

(a) Shift traffic pattern

(b) Staggered traffic pattern

(c) Random traffic pattern

Fig. 8. Aggregate throughput comparison for bulk analysis.

176 W. Cui et al./Computer Networks 105 (2016) 166-179

100 %

''''' e

& 80 % :,.v—" """
<
Y 60%
[s}
c
S 40%
3]
©
L 20%

0%

0 1 2 3 4 5
Time(sec)
128 host 1024 host =

Fig. 11. Cumulative distribution of EAR-receiving times.

The average number of EAR messages is 15.4 for the experiments
in Section 5.3.

5.6. Failure recovery

We consider three kinds of failures in simulation: single link
failures, multiple independent link failures and single node fail-
ures. For each failure pattern, we consider three kinds of client
transmission rate: 50 MB/s, 65 MB/s and 80 MB/s. The failures
are generated randomly and will last for 10 s. We also recorded
the throughput 5 s before and after the failure. Fig. 13 shows the
throughput for different sending rates under single link failures.
When each sender is send data in 50 MB/s, a single link is down
at the 5th second and we can observe that aggregate bandwidth
is dropped by around 15% without failure handling. However, the
aggregate bandwidth does not drop so much if DiFS rerouted the
impacted flows. Even though the aggregate bandwidth may drop
when sending rate gets larger (65 MB/s and 80 MB/s), the over-
all bandwidth with failure handling is not worse than that without
failure handling and no flow will be suspended due to network
failure. Figs. 14 and 15 exhibit similar behaviour under indepen-
dent link failures and single node failures.

5.7. Flow count versus flow bandwidth consumption

DiFS use the number of elephant flows as the metric for load
balancing. Obviously, not all elephant flows have equal bandwidth
consumptions, i.e., sending rates. As discussed in Section 3.2, DiFS
cannot estimate the flow bandwidth consumption due to lack of
global information. A substitution for bandwidth consumption es-
timation is to measure the sending rate of each flow on the current
path. Unfortunately, a flow’s current sending rate doest not reflect
its maximum bandwidth consumption [8]. In the evaluation, the
sending rate is controlled by TCP congestion control algorithms.
Every host makes its best effort to send packets. We also imple-
mented a variant of DiFS which uses measured flow sending rate
as the metric for load balancing, denoted as DiFS-FM. We compare
both algorithms in Figs. 12a and b. The results tell that DiFS-FM
has similar performance compared to DiFS that uses flow count.
Therefore, there is no need to deploy a particular module to keep
measuring sending rates in switches.

5.8. Summary of results

To summarize the performance evaluation, we compare the im-
portant properties of adaptive switching methods in Table 3. Our
results show that DiFS can achieve similar or even higher through-
put than Hedera and Dard that require network-wide information
for routing decisions. As a local, switch-only solution, DiFS does
not have the limitations of central and host-based methods such as
bottleneck of a single controller and massive monitoring messages.
Compared to the state-of-art networking techniques, DiFS only re-
quires either the SDN support or simple special switch logic.

6. Related works

Recently there have been a great number of proposals for data
center network topologies that provide high bisection bandwidth
[2,4,30-32]. However, current routing protocols like ECMP [6] usu-

7 14 . r r B 800 T
& 12§ & 700
O} b oo g
S ol Bl < 4 S 600
2 1 B % W 2
& gl |18 5 500 1
o 3‘5% K 5 <4 S 400]
= = W 5 W= £
A B % o
s @ W - = 300]
TR . 5 k)
«© RS 159] «© 200 4
> e 4 < >
9 s ke & 9
= 2 < etk pose Py 100]
3 ’ 3
KXH
<< 0 ked < 0
Shift Stag Rand Rand Rand Shift Stag Rand Rand
4 (2.3 x4 (64) (.2,.3) bij
DiFS-FM &z DiFS E DiIFS-FM &=z DiFS E===3
(a) 16-host network (b) 1024-host network
Fig. 12. Flow bandwidth measurement vs flow counting.
2 5) 2
Qo Qo el
g s D g 8 et S 12
i E g s
£ 3 E o3 £ 6
e 2 E o 4
S S f S 5
g o g o g o
=3 =2 j=3
< 0 5 10 15 20 < 0 5 10 15 20 < 0 5 10 15 20
Time(Sec) Time(Sec) Time(Sec)

With Failure Handling ——
Without Failure Handling ——

(a) SOMBps

With Failure Handling ——
Without Failure Handling

(b) 65MBps

With Failure Handling ——
Without Failure Handling

(c) 8OMBps

Fig. 13. Aggregate throughput comparison for single link failure.

W. Cui et al./Computer Networks 105 (2016) 166-179 177
@ 2 2
8 7 g 9 s 14
2 s 2 & a2 10
%’ 4 g 5 g 8
£ £ 4 £ o
° 2 o 3 o 4
© T 2 ©
g ! g 1 g 2
g 0 g 0 3 0
< 0 5 10 15 20 < 0 5 10 15 20 < 5 10 15 20
Time(Sec) Time(Sec) Time(Sec)
With Failure Handling —— With Failure Handling —— With Failure Handling ——
Without Failure Handling —— Without Failure Handling —— Without Failure Handling ——
(a) 50MBps (b) 65MBps (c) 80MBps
Fig. 14. Aggregate throughput comparison for independent link failure.
;Z'; 7 _E 9 E 12
8 6 SN . g 10
g 5 7 3 N
g5 2 6 £ 8 *
E E 2
e o 2 6
£ 3 £ q £
e 2 e 3 s 4
< T 2 ©
g ! g 1 g 2
g 0 3 0 g o
< 0 5 10 15 20 < o 5 10 15 20 < 5 10 15 20
Time(Sec) Time(Sec) Time(Sec)
With Failure Handling —— With Failure Handling —+— With Failure Handling ——
Without Failure Handling —— Without Failure Handling —— Without Failure Handling ——
(a) 50MBps (b) 65MBps (c) 80MBps
Fig. 15. Aggregate throughput comparison for single node failure.
Table 3
Important properties of adaptive switching methods.
ECMP [6] Hedera [8] Dard [3] DiFS (this work)
Network throughput ~ Benchmark Higher than ECMP High than ECMP ~ Hedera and Dard
Flow completion Benchmark faster than ECMP and Dard faster than ECMP faster than other three
Decision making Local info. Network-wide info. Network-wide info. Local info.
Scalability problem? Scalable Bottleneck of a single controller Massive monitoring msgs Scalable
Compatibility Standard SDN support & monitoring tools ~ Changes on hosts SDN support or switch logic

ally suffer from elephant flow collisions and bandwidth loss. Ap-
plication layer scheduling like Orchestra [33] usually focuses on
higher level scheduling policies such as transfer prioritizing and ig-
nores multipathing issues in data center networks. Transport layer
solutions like DCTCP [13] and MPTCP [14] optimize the resource
share on fixed paths among flows. This work focuses on adaptive
switching solutions.

Centralized flow routing [8,34] usually relies on a central con-
troller and schedules flow path at every control interval. Aside
from the additional hardware and software support for commu-
nication and computation, centralized solutions may be hard to
scale out due to the single point of the controller. Recent research
[10,11] shows that centralized solutions must employ parallelism
and fast route computation heuristics to support observed traffic
patterns.

Host-based solutions [3] enable end hosts select flow path si-
multaneously to enhance parallelism. Dard [3] allows each host to
select flow path based on network conditions. However, Dard has
potential scalability issues due to massive monitoring messages to
every host. Besides, deployment of host-based solutions requires
updates on legacy systems and applications.

Switch-only protocols [5,9,35,36] are also proposed. However
most of them require flow splitting which may cause significant
packet reordering. TeXCP [35], as an online distributed Traffic En-
gineering protocols, performs packet-level load balancing by using
splitting schemes like FLARE [37]. Localflow [9] refines a naive link
balancing solution and minimizes the number of flows that are
split. Dixit et al. [36] uses random packet spraying to split flows
to multiple paths to minimize the hurts to TCP. DiFS does not split
a flow in order to avoid packet reordering.

7. Conclusion

This paper proposes DiFS, a local, lightweight, and switch-only
protocol for adaptive packet switching in data center networks.
Switches running DiFS cooperate to achieve flow-to-link balance
by avoiding both local and remote collisions. Experimental re-
sults show that our algorithm can outperform the well-known dis-
tributed solution ECMP, a centralized scheduling algorithm Hedera,
and a host-based protocol Dard. We will investigate flow schedul-
ing for general network topologies in future work.

Acknowledgments

Ye Yu and Chen Qian were supported by University of Kentucky
College of Engineering Faculty Startup Grant and National Science
Foundation grant CNS-1464335.

References

[1] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center net-
work architecture, in: Proceedings of ACM SIGCOMM, 2008.

[2] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
ishnan, V. Subramanya, A. Vahdat, Portland: a scalable fault-tolerant layer 2
data center network fabric, in: Proceedings of ACM SIGCOMM, 2009.

[3] X. Wu, X. Yang, Dard: Distributed adaptive routing for datacenter networks, in:
Proceedings of IEEE ICDCS, 2012.

[4] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, S. Sengupta, VL2: a scalable and flexible data center network, in: Pro-
ceedings of ACM SIGCOMM, 2009.

[5] E. Zahavi, 1. Keslassy, A. Kolodny, Distributed adaptive routing for big-data ap-
plications running on data center networks, in: Proceedings of ACM/IEEE ANCS,
2012.

[6] C. Hopps, Analysis of an equal-cost multi-path algorithm, RFC 2992, 2000.

http://dx.doi.org/10.13039/100000001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0006

178 W. Cui et al./Computer Networks 105 (2016) 166-179

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, Openflow: Enabling innovation in campus networks, SIG-
COMM Comput. Commun. Rev. (2008).

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera: dy-
namic flow scheduling for data center networks, in: Proceedings of USENIX
NSDI, 2010.

[9] S. Sen, D. Shue, S. IThm, M.J. Freedman, Scalable, opitmal flow routing in data-
centers via local link balancing, in: Proceedings of ACM CoNEXT, 2013.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of data
center traffic: measurements & analysis, in: Proceedings of ACM IMC, 2009.

[11] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers
in the wild, in: Proceedings of ACM IMC, 2010.

[12]]. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, H. Fugal, Fastpass: A central-
ized zero-queue datacenter network, in: Proceedings of the 2014 ACM Confer-
ence on SIGCOMM, ACM, 2014, pp. 307-318.

[13] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-
gupta, M. Sridharan, Dctcp: Efficient packet transport for the commoditized
data center, in: Proceedings of ACM SIGCOMM, 2010.

[14] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, Design, implementation and
evaluation of congestion control for multipath tcp, in: Proceedings of USENIX
NSDI, 2011.

[15] A. Dixit, P. Prakash, R.R. Kompella, On the efficacy of fine-grained traffic split-
ting protocols in data center networks, in: Proceedings of ACM SIGCOMM,
2011.

[16] K.C. Leung, V. Li, D. Yang, An overview of packet reordering in transmission
control protocol (tcp): Problems, solutions, and challenges, IEEE Trans. Parallel
Distrib. Syst. (2007).

[17] X. Yang, D. Clark, A. Berger, Nira: A new inter-domain routing architecture,
IEEE/ACM Trans. Netw. (2007).

[18] Z. Ding, R.R. Hoare, AK. Jones, R. Melhem, Level-wise scheduling algorithm
for fat tree interconnection networks, in: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, ACM, 2006, p. 96.

[19] Catalyst switch architecture and operation, 2011. http://www.cisco.com/
networkers/nw03/presos/docs/RST-2011.pdf.

[20] Hpe flexnetwork switch chassis, 2016. http://www8.hp.com/us/en/products/
networking-switches/.

[21] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, S. Ratnasamy, SoftNIC: A Software
NIC to Augment Hardware, Technical Report UCB/EECS-2015-155, EECS Depart-
ment, University of California, Berkeley, 2015.

[22] D. Zhou, B. Fan, H. Lim, M. Kaminsky, D.G. Andersen, Scalable, high perfor-
mance ethernet forwarding with cuckooswitch, in: Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments and Technologies, in:
CoNEXT '13, ACM, New York, NY, USA, 2013, pp. 97-108, doi:10.1145/2535372.
2535379.

[23] Intel data plane development kit, 2015. http://dpdk.org/.

[24] M. Yu, L. Jose, R. Miao, Software defined traffic measurement with opensketch,
in: Proceedings of USENIX NSDI, 2013.

[25] H. Ballani, P. Costa, T. Karagiannis, A. Rowstron, Towards predictable datacenter
networks., in: Proceedings of SIGCOMM, 2011.

[26] P. Gill, N. Jain, N. Nagappan, Understanding network failures in data centers:
Measurement, analysis, and implications, in: Proceedings of ACM SIGCOMM,
2011.

[27] EP. Tso, D. Pezaros, Baatdaat: Measurement-based flow scheduling for cloud
data centers, in: Proceedings of ISCC, 2013.

[28] A. Singla, C.-Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: Networking data centers
randomly, in: Proceedings of USENIX NSDI, 2012.

[29] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Communications of the ACM, 2008.

[30] A. Greenberg, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, Towards a next genera-
tion data center architecture: Scalability and commoditization, in: Proceedings
of ACM PRESTO, 2008.

[31] C. Guo, et al., Bcube: a high performance, server-centric network architecture
for modular data centers, in: Proceedings of ACM SIGCOMM, 2009.

[32] C. Guo, et al., Dcell: a scalable and fault-tolerant network structure for data
centers, Proceeding of ACM SIGCOMM, 2008.

[33] M. Chowdhury, M. Zaharia,]. Ma, M.L. Jordan, I. Stoica, Managing data transfers
in computer clusters with orchestra, in: Proceedings of ACM SIGCOMM, 2011.

[34] T. Benson, A. Anand, A. Akella, M. Zhang, Microte: fine grained traffic engineer-
ing for data centers, in: Proceedings of ACM CoNEXT, 2011.

[35] S. Kandula, D. Katabi, B. Davie, A. Charny, Walking the tightrope: responsive
yet stable traffic engineering, in: Proceedings of ACM SIGCOMM, 2005.

[36] A. Dixit, P. Prakash, Y.C. Hu, R.R. Kompella, On the impact of packet spraying
in data center networks, in: Proceedings of IEEE INFOCOM, 2013.

[37] S. Sinha, S. Kandula, D. Katabi, Harnessing tcps burstiness using flowlet switch-
ing, in: Proceedings of ACM HotNets, 2004.

http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://www.cisco.com/networkers/nw03/presos/docs/RST-2011.pdf
http://www8.hp.com/us/en/products/networking-switches/
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://dx.doi.org/10.1145/2535372.2535379
http://dpdk.org/
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037

W. Cui et al./Computer Networks 105 (2016) 166-179 179

Wenzhi Cui is a Ph.D. student at the Department of Computer Science, University of Texas at Austin. He received the B.Sc. degree from Nanjing
University in Software Engineering. His research interests including computer networking and distributed systems.

Ye Yu is a Ph.D. student at the Department of Computer Science, University of Kentucky. He received the B.Sc. degree from Beihang University. His
research interests including data center networks and software defined networking.

Chen Qian is an Assistant Professor at the Department of Computer Engineering, UC Santa Cruz. He was an Assistant Professor at University of
Kentucky in 2013-2016. He received the B.Sc. degree from Nanjing University in 2006, the M.Phil. degree from the Hong Kong University of Science
and Technology in 2008, and the Ph.D. degree from the University of Texas at Austin in 2013, all in Computer Science. His research interests
include computer networking, data-center networks and cloud computing, and Internet of Things. He has published more than 30 research papers
in a number of top conferences and journals. He has served in the organizing committees and technical program committees of a number of
conferences, including the TPC co-chair of ACM CSAR (with SenSys’16), TPC track chair of ICCCN'16, TPC co-chair of ICNP student workshop 2013.
He is an editor of the Cyber-Physical Systems Journal. He received the Best Paper Award of ACM MSCC 2015.

	DiFS: Distributed Flow Scheduling for adaptive switching in FatTree data center networks
	1 Introduction
	2 Background and overview of DiFS
	2.1 Data center topologies
	2.2 Examples of flow collision and DiFS’s solutions
	2.3 Classification of flows

	3 DiFS design
	3.1 Components and deployment
	3.2 Optimization goals
	3.3 Protocol structure
	3.4 Control loop
	3.5 Operations upon receiving a PAR
	3.6 Operations upon receiving an EAR
	3.7 Bounds on global flow balance
	3.8 Impact on mice flows
	3.9 Flow termination
	3.10 Switch overhead of DiFS

	4 Failures recovery
	5 Simulation results
	5.1 Methodology
	5.2 Small topology simulation results
	5.3 Dynamic traffic: data shuffle
	5.4 Large topology simulation results
	5.5 Convergence speed and control overhead
	5.6 Failure recovery
	5.7 Flow count versus flow bandwidth consumption
	5.8 Summary of results

	6 Related works
	7 Conclusion
	 Acknowledgments
	 References

