
Computer Networks 105 (2016) 166–179

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

DiFS: Distributed Flow Scheduling for adaptive switching in FatTree

data center networks

Wenzhi Cui a , Ye Yu

b , Chen Qian

c , ∗

a Department of Computer Science, University of Texas at Austin, TX, 78712, United States
b Department of Computer Science, University of Kentucky, KY, 40506, United Statesc Department of Computer Engineering, University of California Santa

Cruz, CA 95064, United States
c Department of Computer Engineering, University of California Santa Cruz, CA 95064, United States

a r t i c l e i n f o

Article history:

Received 5 September 2015

Revised 1 June 2016

Accepted 2 June 2016

Available online 8 June 2016

Keywords:

Data center networks

Adaptive switching

Flow scheduling

a b s t r a c t

Data center networks leverage multiple parallel paths connecting end host pairs to offer high bisection

bandwidth for cluster computing applications. However, the state-of-the-art routing protocols such as

Equal Cost Multipath (ECMP) is load-oblivious due to the static flow-to-link assignment. They may cause

bandwidth loss due to flow collisions. Recently proposed centralized scheduling algorithm or host based

adaptive routing that requires network-wide state information may suffer from scalability problems. In

this paper, we present Distributed Flow Scheduling (DiFS), a new adaptive switching method, for FatTree

data center networks, which is a localized and switch-only solution. DiFS allows switches to cooperate

to avoid over-utilized links and find available paths without centralized control. DiFS is scalable and can

react quickly to dynamic traffic because it is independently executed on switches and requires no syn-

chronization. DiFS provides global bounds of flow balance based on local optimization. Extensive simula-

tions show that the aggregate throughput of DiFS using various traffic patterns is much better than that

of ECMP, and is similar to or higher than those of two representative protocols that use network-wide

optimization.

© 2016 Elsevier B.V. All rights reserved.

c

fl

o

c

l

b

g

D

p

s

t

p

fl

a

r

s

v

t
1. Introduction

The growing importance of cloud-based applications and big

data processing has led to the deployment of large-scale data cen-

ter networks that carry a tremendous amount of traffic. Recently

proposed data center network architectures primarily focus on

using commodity Ethernet switches to build hierarchical trees.

These data center networks usually use FatTree or similar topolo-

gies [1–5] . These topologies provide multiple equal-cost paths

between any pair of end hosts and hence significantly increase

bisection bandwidth. To fully utilize the path diversity, an ideal

switching scheme should allow flows to avoid over-utilized links

and take alternative paths, called adaptive switching. In this work,

we focus on the investigation of throughput improvement by

switching methods . Other approaches such as application layer

virtual machine placement and transport layer protocols are out

of the scope of this paper.

Most state-of-the-art data center networks rely on layer-3

ECMP protocol [6] to assign flows to available links using static
∗ Corresponding author.

E-mail addresses: wc8348@cs.utexas.edu (W. Cui), ye.yu@uky.edu (Y. Yu),

qian12@ucsc.edu (C. Qian).

u

n

http://dx.doi.org/10.1016/j.comnet.2016.06.003

1389-1286/© 2016 Elsevier B.V. All rights reserved.
ow hashing. Being simple and efficient. However, ECMP is load-

blivious, because the flow-to-path assignment does not account

urrent network utilization. As a result, ECMP may cause flow col-

isions on particular links and create hot spots.

We classify the recently proposed methods of improving the

andwidth utilization in data center networks into three cate-

ories: centralized, host-based, and switch-only .

• Centralized solutions utilize the recent advances in Software

efined Networking (SDN), which allows a central controller to

erform control plane tasks and install forwarding entries to

witches via a special protocol such as OpenFlow [7] . A typical cen-

ralized solution Hedera [8] relies on a central controller to find a

ath for each flow or assign a single core switch to deal with all

ows to each destination host. Centralized solutions may face scal-

bility problems [9] , because traffic in today’s data center networks

equires parallel and fast path selection according to recent mea-

urement studies [10,11] . A recent work Fastpass [12] demonstrates

ery promising performance. Fastpass uses an arbiter to control the

ime at which each packet should be transmitted and the path to

se for the packet.

• Host-based methods, such as DARD [3] , can be run without a

central control. These methods enable end systems to monitor the

etwork bandwidth utilization and then select desired paths for

http://dx.doi.org/10.1016/j.comnet.2016.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.003&domain=pdf
mailto:wc8348@cs.utexas.edu
mailto:ye.yu@uky.edu
mailto:cqian12@ucsc.edu
http://dx.doi.org/10.1016/j.comnet.2016.06.003

W. Cui et al. / Computer Networks 105 (2016) 166–179 167

fl

b

a

c

a

h

i

n

m

t

p

w

f

h

p

fi

l

t

a

l

s

t

d

n

e

l

e

c

r

a

s

n

t

t

r

a

H

a

a

c

f

m

r

o

p

i

s

c

e

d

n

r

f

c

w

2

2

c

Fig. 1. A fat tree topology for a datacenter network.

t

w

r

o

H

p

s

l

T

c

w

e

t

k

(

(

h

e

t

p

s

h

p

t

s

c

c

t

t

o

s

t

g

f

2

s

b

t

t

i

s

t

p

p

t

a

s

A

c

s

s

1
ows based on network conditions. One major limitation of host-

ased approaches is that every host needs to monitor the states of

ll paths to other hosts. In a large network such as production data

enters, great amounts of control messages would occur. For many

pplications such as Shuffle (described in Section 5.3), each DARD

ost may have to monitor the entire network, which also limits

ts scalability. In addition, all legacy systems and applications run-

ing these protocols need to be upgraded, which incurs a lot of

anagement cost. There are also some host-based solutions in the

ransport layer such as Data Center TCP (DCTCP) [13] and Multi-

ath TCP (MPTCP) [14] . These methods are out of the scope of this

ork because we only focus on switching methods protocols.

• The last type is switch-only protocols which is efficient and

ully compatible with current systems and applications on end

osts. It has been argued that switch-only solutions hold the best

romise for dealing with large-scale and dynamic data center traf-

c patterns [9] . ECMP is a typical switch-only routing protocol for

oad balance. Many existing switch-only protocols allow a flow

ake multiple paths at the same time (called flow splitting) to

chieve high throughput [5,9,15] . Flow splitting may cause a high

evel of TCP packet reordering, resulting in throughput drop [16] .

In this paper, we propose Distributed Flow Scheduling (DiFS), a

witch-only switching method that is executed independently on

he control unit of each switch. DiFS aims to balance flows among

ifferent links and improves bandwidth utilization for data center

etworks. DiFS does not need centralized control or changes on

nd hosts. In addition, DiFS does not allow flow splitting and hence

imits packet reordering.

Based on our observations, we categorize flow collisions in a hi-

rarchical data center networks in two types, local and remote flow

ollisions. DiFS achieves load balancing by taking efforts in two di-

ections. First, each switch uses the Path Allocation algorithm that

ssigns flows evenly to all outgoing links to avoid local flow colli-

ions . Second, each switch also monitors its incoming links by run-

ing the Imbalance Detection algorithm. If a collision is detected,

he switch will send an Explicit Adaption Request (EAR) message

hat suggests the sending switch of a flow to change its path. Upon

eceiving the EAR, the sending switch will run the Explicit Adaption

lgorithm to avoid remote flow collisions . Previous solutions such as

edera [8] try to maximize the total achieved throughput across

ll elephant flows using global knowledge by balancing traffic load

mong core switches. However, we show that load balance among

ore switches is not enough to achieve load balance among dif-

erent links. DiFS effectively solves this problem using the control

essages called Explicit Adaptation Requests.

We conduct extensive simulations to compare DiFS with three

epresentative methods from different categories: ECMP (switch-

nly) [6] , Hedera (centralized) [8] , and Dard (host-based) [3] . Ex-

erimental results show that DiFS outperforms ECMP significantly

n aggregate bisection bandwidth. Compared with the centralized

olution Hedera and the host-based solution Dard, DiFS achieves

omparable or even higher throughput and less out-of-order pack-

ts, for both small and large data center network topologies.

The rest of this paper is organized as follows. Section 2 intro-

uces background knowledge of flow scheduling in data center

etworks. Section 3 presents the detailed architecture and algo-

ithm design of DiFS. We describe how DiFS handles network

ailures in Section 4 . We evaluate the performance of DiFS and

ompare it with other solutions in Section 5 . We conclude our

ork in Section 7 .

. Background and overview of DiFS

.1. Data center topologies

Today’s data center networks often use multi-rooted hierarchi-

al tree topologies (e.g., the FatTree topology [1]) to provide mul-
iple parallel paths between any pair of hosts to enhance the net-

ork bisection bandwidth, instead of using expensive high-speed

outers/switches. Our protocol DiFS is designed for a FatTree topol-

gy as long as the switch organization in every pod is the same.

owever for the ease of exposition and comparison with existing

rotocols, we will use the FatTree topology for our protocol de-

cription and simulation evaluation.

A multi-rooted hierarchical tree topology has several vertical

ayers. DiFS is specifically designed for 3-layer FatTree topologies.

he three layers are: the edge layer, the aggregate layer, and the

ore layer. A pod is a management unit down from the core layer,

hich consists of a set of interconnected end hosts and a set of

dge and aggregate switches that connect these hosts. As illus-

rated in Fig. 1 , a FatTree network is built from a large number of

 -port switches and end hosts. There are k pods, interconnected by

 k /2) 2 core switches. Every pod consists of (k /2) edge switches and

 k /2) aggregate switches. Each edge switch also connects (k /2) end

osts. In the example of Fig. 1 , k = 4 , and thus there are four pods,

ach of which consists of four switches.

A path is a set of links that connect two end hosts. There are

wo kinds of paths in a FatTree network: inter-pod path and intra-

od path. An intra-pod path interconnects two hosts within the

ame pod while an inter-pod path is a path that connects two end

ost in different pods. Between any pair of end hosts in different

ods, there are (k /2) 2 equal-cost paths, each of which corresponds

o a core switch. An end-to-end path can be split into two flow

egments [17] . The uphill segment refers to the part of the path

onnecting source host to the switch in the highest layer (e.g., the

ore switch for an inter-pod path). The downhill segment refers to

he part connecting the switch in the highest layer to the destina-

ion host. Similar to existing work, we mainly focus our discussion

n inter-pod flows, because intra-pod flows can be handled by a

impler version of the switching method.

In this paper we limit our discussion to FatTree. It is because

hat FatTree is a representative topology of hierarchical tree topolo-

ies, which have been used in the state-of-art data center designs

or years [1] .

.2. Examples of flow collision and DiFS’s solutions

DiFS aims to avoid too many flows traversing through the same

witch in the network. In order to do this, each DiFS switch tries to

alance the traffic across its ports and distribute the traffic among

he links in the network. When too many flows are transmitted

o the same link, congestion may occur in the network. Collision

n the network refers to multiple flows being transmitted to the

ame switch, which may cause congested links. We show three

ypes of flow collisions in Fig. 2 , where in each example some

arts of the network are not shown for simplicity. If a switch ex-

eriences a flow collision on one of its links and can locally adjust

he flow assignment to resolve the collision, such collision is called

 local collision . Otherwise, the collision is called a remote colli-

ion . Fig. 2 a shows an example of a local collision, where switch

ggr 11 forwards two flows to the same link. Local collisions may be

aused by a bad flow assignment of static multi-pathing algorithms

uch as ECMP. Fig. 2 b shows an example of Type 1 remote colli-

ion, where two flows take a same link from Core 2 to Pod 2 . Type

 remote collision may be caused by over-utilizing a core switch

168 W. Cui et al. / Computer Networks 105 (2016) 166–179

Fig. 2. Three types of collisions. For simplicity we use two flows to indicate a collision. In practise, a collision may be caused by many flows.

Fig. 3. Resolving collisions by Ppath allocation and explicit adaption.

Fig. 4. Examples of SISO, SIMO and MISO flows.

s

A

p

fl

c

w

fl

t

e

fi

T

[

t

p

w

m

a

W

t

i

t

(Core 2 in this example). Hence, some existing solutions propose to

balance traffic among cores [8] . However balancing core utilization

may not be enough. Another example of remote collision (Type 2)

is shown in Fig. 2 c, where core utilization is balanced but flows

still collide on the link from Aggr 22 to Edge 21 . We also observe

that location collisions happen in uphill segments, and remote col-

lisions happen in downhill segments.

Local collisions can be detected and resolved by local algo-

rithms in a relatively easy way. DiFS uses the Path Allocation algo-

rithm to detect flow-to-link imbalance and move one of the flows

to an under-utilized link, as shown in Fig. 3 a. The key insight of

DiFS to resolve remote collisions is to allow the switch in the

downhill segment that detected flow imbalance to send an Explicit

Adaption Request (EAR) message to the uphill segment. The con-

cept of EAR is introduced in [5] . For the example of Fig. 2 b, Aggr 21

can detect flow imbalance among the incoming links. It then sends

an EAR to Aggr 31 in Pod 3 (randomly chosen between two sending

pods), suggesting the flow to take the path through Core 1 . Aggr 31

runs the Explicit Adaption algorithm and changes the flow path.

That flow will eventually take another incoming link of Aggr 21 as

shown in Fig. 3 b. To resolve the collision in Fig. 2 c, Edge 21 that de-

tects flow imbalance sends back an EAR and suggest Edge 12 to for-

ward the flow to Aggr 11 . That flow will eventually go from Aggr 21

to Edge 21 , as shown in Fig. 3 c.

The incoming links of the aggregate (edge) switch in the downhill

segment have a one-to-one correspondence to the outgoing links of

the aggregate (edge) switch in the uphill segment in a multi-rooted

tree. This is consistent with the observations in [18] . Therefore,

when an aggregate (edge) switch in the downhill segment detects

imbalance and finds an under-utilized link, it can suggest the ag-

gregate (edge) switch in the uphill segment to change the path to

the “mirror” of the under-utilized link. In the example of Type 1

remote collision, Aggr 21 controls the flow to income from Core 1 by

suggesting Aggr 31 to forward the flow to Core 1 . In the example of

Type 2 remote collision, Edge 21 controls the flow to income from

Aggr 21 by suggesting Edge 12 to forward the flow to Aggr 11 .

2.3. Classification of flows

In this paper, a flow is defined as a sequence of packets sent

from a source host to a destination host using TCP. In our flow
cheduling protocol, a flow can have only one path at any time.

llowing a flow to use multiple paths simultaneously may cause

acket reordering and hence reduce the throughput. However, a

ow is allowed to take multiple paths at different times in its life

ycle.

Elephant and mice flows: DiFS considers the traffic in the net-

ork as elephant flows and mice flows. In this work, elephant

ows are defined as large, long-lived flows. The traffic volume of

hese flows is significantly larger than that of mice flows. Typical

xamples of elephant flows include virtual machine migration traf-

c, traffic of data mining applications and log file backup traffic.

he other flows are called mice flows. Similar to many other works

3,8] , our protocol focuses on elephant flows and intends to spread

hem as evenly as possible among all links . All mice flows will be

rocessed by ECMP, because recent work has shown that ECMP for-

arding can perform load-balancing efficiently and effectively for

ice flows [4] . Note that at a particular time, the sending rate of

n elephant flow is not necessarily larger than that of a mice flow.

hether a flow is an elephant or not is determined by the overall

raffic volume.

Classification of elephant flows: Let f ab be a flow whose source

s a and destination is b . A flow f ab may be classified into four

ypes for a particular switch s that runs DiFS:

• f ab is a single-in-single-out (SISO) flow for switch s if and only

if there are only one possible incoming link of s from a and one

possible outgoing link of s to b . In Fig. 4 , the core switch Core 2

considers the flow from Host 21 to Host 31 (illustrated as a red

line) is a SISO flow.

• f ab is a single-in-multi-out (SIMO) flow for switch s if and only

if there are one incoming link of s from a and multiple outgoing

W. Cui et al. / Computer Networks 105 (2016) 166–179 169

s

E

F

F

c

3

3

n

t

p

p

s

p

e

e

f

m

a

t

s

e

i

d

E

m

o

a

Algorithm 2: Path allocation.

Input : Path Allocation Request PAR

Output : None

f = flow identifier in PAR

S = set of links that can reach f ’s destination

if | S | > 1 then

min = minimal value among all V o [l] , l ∈ S

for l ∈ S do

if V o [l] > min then

S = S − { l}
end

end

L o = a random element in S

increase V o [L o] by 1

else

L o = the first element of S

end

record the incoming link L i of f

record the outgoing link L o of f

update the access time t of f

Algorithm 3: Explicit adaptation of switch s.

Input : Explicit Adaptation Request EAR

Output : None

f = flow identifier in EAR

r = recommended core or aggregate switch in EAR

L i = current incoming link of f

L o = current outgoing link of f

if r and s are connected and sending f to r can lead to the

destination of f then

L = the outgoing link connecting r

if V o [L] > = V o [L o] then

move a flow currently on L to L o
move f to the outgoing link L

update the link variables of changed links

else

forward EAR to L i
end

w

t

E

i

u

c

links of s to b . In Fig. 4 , Edge 21 considers the illustrated flow is

a SIMO flow.

• f ab is a multi-in-single-out (MISO) flow for switch s if and only

if there are multiple incoming links of s from a and one out-

going link of s to b . A close look at FatTree networks reveals

that all inter-pod flows are SIMO for the edge and aggregate

switches on the uphill segments, and are MISO for the edge

and aggregate switches on the downhill segments. All inter-

pod flows for core switches are SISO. In Fig. 4 , Aggr 31 considers

the illustrated flow is a MISO flow. is a MISO flow because the

switch can only forward this flow in one link but this flow can

choose different cores so that it can come into the aggregate

switch from more than one port.

• Multi-in-multi-out (MIMO) flows may be defined similarly.

However, there is no MIMO flow for any switch in a FatTree

network. They may appear in general topologies.

Note one flow may be treated as different types by different

witches.

Look at the flow from Host 21 to Host 31 in Fig. 4 . For edge switch

dge 21 , this is SIMO flow since it has 2 output links to forward it.

or Core 2, this is a SISO flow as it can only be forwarded to Pod 3.

or Aggregate switch Aggr 31 , this flow is a MISO flow as the flow

an be forwarded by another connected core switch.

. DiFS design

.1. Components and deployment

A typical switch architecture usually consists of two compo-

ents: data plane and control plane. The data plane includes mul-

iple network ports, as well as a flow/forwarding table and an out-

ut queue for each port. The control plane can perform general-

urpose processing like collecting measurement results and in-

tall/modify the rules in the flow/forwarding tables of the data

lane. As a result, DiFS should be installed in the control plane of

ach switch.

Requirement of the switches. In order to execute the DiFS op-

rations, the switches should be able to: (1) Identify elephant flows

rom all the flows that traverse through the switch. (2) In its local

emory, maintain three variables for each elephant flow f : L i , L o
nd t ; maintain two integer vectors that describes the switch sta-

us, V i and V o . DiFS uses these two vectors to measure the load of a

witch, not other information such as CPU utilization ratio. (3) Ex-

cute a control loop. In each loop, perform the instructions defined

n Algorithm 1 (see Section 3.4). (3) Execute the given algorithm

escribed in Algorithms 2 and 3 upon receiving control messages

AR and PAR. The DiFS switches should be able to execute arith-

etic and logic operations, and send out control messages based

n the execution results. Modern enterprise or data centers usu-

lly use high-end switches. These switches are usually equipped
Algorithm 1: Imbalance detection in control loop.

S = the set of all MISO flows forwarded by this switch

for f ∈ S do

L i = incoming link of f

min = minimum value among elements in V i
δ = imbalance threshold

if V i [L i] − min > T then

compute a path recommendation p

send a EAR(f , p) to L i
Return

end

end

8

(

p

D

l

D

p

D

R

fi

n

a

t

o

e
ith powerful CPUs and fast local memory. Some typical represen-

atives include the Cisco Catalyst series [19] and Hewlett-Packard

nterprise FlexNetwork series [20] . Hence, we believe DiFS can be

mplemented on these switches.

Implementation on generic platforms. We notice the trend of

sing software-based switches with commodity hardware in data

enters [21,22] . These switches are commodity computers (e.g., ×
6_64 systems) equipped with high-end Network Interface Cards

NICs). The DiFS algorithm on a switch can be implemented as a

rogram running on a computer. We recommend using the Intel

ata Plane Development Kit (DPDK) [23] . DPDK is a set of software

ibraries that allow a Linux system to process packets effectively.

iFS can be implemented as a DPDK application. This application

rogram reads packets from the Tx queues of the NICs, executes

iFS algorithms, and then forward the packet to the corresponding

x queues.

Operating with SDN. DiFS is also compatible to software de-

ned networking such as OpenFlow [7] . For each switch in the

etwork, DiFS distributes the flows among the links in order to

chieve global flow balance and high throughput. In SDN, the con-

roller decides the behavior of individual flows. The control logic

f DiFS can be implemented in the controllers. The controller ex-

cutes DiFS algorithms and decides the paths of all flows in the

170 W. Cui et al. / Computer Networks 105 (2016) 166–179

3

b

n

b

n

l

a

s

e

g

p

t

o

e

o

s

l

m

o

s

p

a

W

a

t

(

a

f

a

v

a

a

l

s

o

s

l

3

a

network. The controller communicates with the switches to install

the flow tables so that the switches may forward the traffic as in-

structed.

Compared with centralized algorithms that require a single con-

troller responsible for the entire network, distributed and localized

decision-making of DiFS offers tremendous scalability to SDN con-

trol. For example, OpenFlow switches in the same pod can be con-

nected to one controller, which is physically close to these switches

and able to handle the scheduling tasks. The communication over-

head of the control is much smaller when local controllers are de-

ployed than when the network uses one central controller.

3.2. Optimization goals

As a high-level description, DiFS intends to balance the num-

ber of elephant flows among all links in the network to utilize the

bisection bandwidth and take the advantage of path diversity. We

use the number of flows as the optimization metric instead of flow

bandwidth consumption based on the following reasons:

1. A flow’s maximum bandwidth consumption

1 can hardly be es-

timated. As shown in [8] , a flow’s current sending rate tells

very little about its maximum bandwidth consumption. Hedera

[8] uses global knowledge to perform flow bandwidth demand

estimation. However, such method is not possible to be applied

in distributed algorithms such as DiFS.

2. Using flow count only requires a switch to maintain a counter

for each outgoing link. However, measurement of flow band-

width consumption requires complicated traffic monitoring

tools installed on each switch. Our method simplifies switch

structure.

3. Using flow count as the metric, DiFS can achieve similar or even

better performance compared with Hedera [8] and a variant of

DiFS implementation that uses estimated bandwidth consump-

tion as the metric. The results will be shown in Section 5.7 .

If the elephant flows are sufficiently large, and each host makes

its best effort to transmit packets, the number of elephant flows is

proportional to the bandwidth utilized by these flows.

Two optimization goals for load-balancing scenarios are de-

sired:

Balanced Output (BO): For an edge switch s e , let o (s a) be the

number of SIMO flows on an outgoing link connecting the ag-

gregate switch s a . BO of edge switch s e is achieved if and only

if o(s a 1) − o(s a 2) ≤ δ, for any two aggregate switches s a 1 and s a 2 ,

where δ is a constant. Similarly we may define BO of an aggregate

switch to cores. BO can be achieved by the Path allocation algo-

rithm of DiFS with the smallest possible value of δ being 1.

Balanced Input (BI): For an aggregate switch s a , let i (c) be the

number of MISO flows on an incoming link connecting the core

c . BI of edge switch s is achieved if and only if i (c 1) − i (c 2) ≤ δ,
for any two cores c 1 and c 2 , where δ is a constant. Similarly, we

may define BI of an edge switch from aggregate switches. BI can be

achieved by Explicit Adaptation of DiFS with the smallest possible

value of δ being 1.

BO and BI do not interfere with each other. Hence, a switch can

achieve them at the same time. Although BO and BI of a switch are

two kinds of optimization in a local view, we have proved that they

provide global performance bounds of load balancing, as presented

in Section 3.7 . In Section 5 we further demonstrate that they can

achieve high aggregate throughput via simulations.
1 A flow’s maximum bandwidth consumption, also called as flow demand, is the

rate the flow would grow to in a fully non-blocking network.

fl
.3. Protocol structure

DiFS uses a threshold to eliminate mice flows. Such threshold-

ased module can be installed on edge switches. It maintains the

umber of transmitted bytes of each flow. This monitoring task can

e cost-efficient in switch resources using recently proposed tech-

iques such as OpenSketch [24] . If the byte number of a flow is

arger than a threshold value, the edge switch will label this flow

s an elephant flow and mark the packet header to notify other

witches on its path.

Each switch has a flow list which maintains three variables for

very flow f : the incoming link identifier, denoted as L i , the out-

oing link identifier, denoted as L o , and the last time this flow ap-

eared, denoted as t . A switch also maintains two Port State Vec-

ors (PSVs), V i and V o . The i th element in vector V i is the number

f flows coming from the i th incoming link. Likewise the i th el-

ment in vector V o is the number of flows forwarded to the i th

utgoing link.

There are three flow control modules in aggregate and edge

witches: control loop unit, explicit adaptation unit, and path al-

ocation unit. Control loops are run periodically by switches. The

ain objectives of the control loop unit are to detect imbalance

f MISO flows among incoming links and send an EAR if neces-

ary. An EAR is a notification message sent along the reverse flow

ath to recommend switches in the flow’s sending pod to choose

 different path. An EAR also includes a path recommendation.

hen a switch receives an EAR, it runs the explicit adaptation unit

nd changes the output link of the designated flow in the EAR to

hat on the recommended path, if possible. Path Allocation Request

PAR) is another message to request flow scheduling. PAR includes

 flow identifier and requires switches to allocate an available link

or this flow. Switches treat a packet with a new flow identifier as

 PAR. The sender needs to explicitly send a PAR only if path reser-

ation is allowed to achieve a certain level of performance guar-

ntee for upper-layer applications [25] . For a SIMO flow, the path

llocation unit will assign an outgoing port for this flow based on

ink utilization. Detailed algorithms for these modules will be pre-

ented in the following subsections.

The time period between two control loops has limited impact

n the convergence time of the whole protocol execution. We will

how that DiFS converges quickly under a wide range of control

oop period time in Section 5.5 .

.4. Control loop

Each DiFS switch continuously runs a control loop. At each iter-

tion, the switch executes the following:

1. Remove disappeared flows. A flow may disappear from a switch

due to several reasons. For example, the flow may have fin-

ished transmission or taken another path. In each iteration, the

switch will delete a flow if the difference between current time

and its last-appeared time t is larger than a threshold, which

may be set to a multiple of the average round-trip time of

flows.

2. Re-balance SIMO flows among all outgoing links. Removing dis-

appeared flows may cause the change of flow numbers on links.

Thus flow re-balancing is necessary.

3. Send an EAR if necessary. If the switch finds a MISO flow

comes in a over-utilized link, the switch will recommend other

switches to change the flow path by sending an EAR. In order to

avoid TCP performance degrade caused by too many EARs, DiFS

forces every switch to send at most one EAR at each iteration.

We detail the steps 2) and 3) as the follows.

Re-balance SIMO flows. The purpose of re-balancing SIMO

ows is to achieve BO, i.e., let the flow count difference of any two

W. Cui et al. / Computer Networks 105 (2016) 166–179 171

o

l

l

c

m

r

f

l

n

i

p

l

s

o

fl

fl

r

g

f

fl

t

s

s

e

e

n

l

(

T

c

w

c

c

t

W

a

s

t

m

g

a

b

h

g

w

3

w

f

i

I

I

s

fi

fl

w

Fig. 5. Oscillation problem caused by EARs.

3

A

b

u

c

c

t

a

t

A

f

s

b

a

t

t

S

S

A

t

T

T

l

s

fl

3

m

i

T

B

g

i

M

p

P

t

n

n

S

e

|
H

utgoing links be smaller than the pre-defined threshold δ. The so-

ution seems to be trivial: a switch can simply move flows on over-

oaded links to under-loaded ones. However, this simple method

ould cause oscillations of network status. Consider a switch s

oves a random flow f from link l 1 to l 2 for load balance. Later by

eceiving an EAR from another switch, s will be suggested to move

 from l 2 to l 1 to avoid remote collisions. During the next control

oop, s will again move f to l 1 to l 2 and so on. Such oscillation will

ever stop. One obvious downside of oscillations is that they will

ncur packet reordering and hurt TCP performance. To resolve this

roblem, we maintain a priority value for each flow in the flow

ist. When the link assignment of a flow is changed based on the

uggestion from an EAR, the priority of the flow is increased by

ne. When a switch re-balances SIMO flows, it should first move

ows that have smaller priority values. This strategy intends to let

ows whose assignments are changed by EARs be more stable and

educe the probability of oscillations, by which the system conver-

ence will be faster.

Imbalance detection and path recommendation for EAR. For

airness concern, at each iteration, the switch will scan each MISO

ows in a random order. The imbalance detection is also in a

hreshold basis, which is presented in Algorithm 1 .

Due to lack of global view of flow distribution, the EAR receiver

hould be told how to change the flow’s path. Therefore, the EAR

ender should include a path recommendation, which does not nec-

ssarily need to be a complete path . In a FatTree, both aggregate and

dge switches can detect load imbalance and recommend an alter-

ative path only based on local link status .

For the flow collision example of Fig. 2 b, Aggr 21 will notice the

oad imbalance among incoming links and send an EAR to Aggr 31

randomly selected between senders of the two collided flows).

he path recommendation in this EAR is just Core 1 . Aggr 31 will re-

eive the EAR and change the flow to the output link connected

ith Core 1 , and this flow will eventually come from another in-

oming link of Aggr 21 that was under-utilized, as shown in Fig. 3 b.

For the flow collision example of Fig. 2 c, Edge 21 can detect it by

omparing two incoming links and then send an EAR to Edge 12 in

he uphill segment. The path recommendation here is just Aggr 11 .

hen Edge 12 let the flow take Aggr 11 , the flow will eventually take

nother incoming link to Edge 21 and hence resolves the collision as

hown in Fig. 3 c.

As a matter of fact, in a FatTree network, a path recommenda-

ion can be specified by either a recommended core or a recom-

ended aggregate switch in the uphill segment. For other topolo-

ies, more detailed path specification might be needed.

For an intra-pod flow, the path consists of two edge switches

nd one aggregate switch. If the aggregate switch detects load im-

alance, it can also send an EAR to the edge switch in the previous

op and suggest the edge switch to send the flow to another ag-

regate switch. In fact, this is the one difference in our protocol

hen it treats intra-pod and inter-pod flows.

.5. Operations upon receiving a PAR

As presented in Algorithm 2 , To keep all links output balanced,

e use a distributed greedy algorithm to select an outgoing link

or each flow requested by a PAR. When a switch received a PAR,

t first checks how many outgoing links can lead to the destination.

f there is only one link, then the switch will simply use this link.

f there are multiple links to which this flow can be forwarded, the

witch will select a local optimal link for this flow. The algorithm

rst find the set of links with the minimum number of outgoing

ows. If there are more than one links in this set, the algorithm

ill randomly select a link from the set.
.6. Operations upon receiving an EAR

An EAR includes a flow identifier and a path recommendation.

s mentioned, for a FatTree network a path recommendation can

e specified by either a recommended core or a recommended

phill aggregate switch. When a switch received an EAR, it first

hecks if it can move the requested flow f to the recommended

ore or aggregate switch. If not, it will forward this EAR further

owards the reverse path of f . If moving f will cause imbalance

mong outgoing links, the switch swaps f with another flow on

he recommended link. The complete algorithm is described in

lgorithm 3 .

EARs may also cause network status oscillations. Consider the

ollowing scenario in Fig 5 , where only part of the network is

hown. flow 1 and flow 2 collide on the same link from SW 4 to SW 1

ut the link from SW 5 to SW 1 is free. SW 1 may send an EAR to SW 2

nd suggest SW 2 to send flow 1 to SW 5 , in the purpose of resolving

he remote collision at SW 1 . After receiving the EAR, SW 2 swaps

he outgoing links of flow 1 and flow 3 . However at the same time

W 3 may send an EAR to SW 2 and suggest SW 2 to send flow 4 to

W 4 . SW 2 should then swap the outgoing links of flow 2 and flow 4 .

s a result the collisions still exist. By keeping executing the pro-

ocol, oscillations happen and the network status cannot converge.

o deal with the problem, we allow random spans in control loops.

here is some non-negligible time difference between the control

oops of SW 1 and SW 3 . In this way, SW 3 may notice that its colli-

ion has already been solved after SW 2 swaps the outgoing links of

ow 1 and flow 3 and will not send another EAR.

.7. Bounds on global flow balance

The local optimization on switches can lead to global perfor-

ance bounds as introduced in this section.

We provide a bound on flow balance among aggregate switches

n a same pod by the following theorem:

heorem 3.1. In a k-pod FatTree, suppose every edge switch achieves

O with δ. Let n (s a) be the number of flows that are sending to ag-

regate switch s a . Then we have M AX a − M IN a ≤ δ · k/ 2 , where MAX a

s the maximum n (s a) value among all aggregate switches in the pod,

IN c is the minimum n (s a) value among all aggregate switches in the

od.

roof. Let x and y be arbitrary two aggregate switches. Let n ae be

he number of flows from edge switch e to aggregate switch a .

 (x) =

∑

n xe

 (y) =

∑

n ye

ince | n xe − n ye | ≤ δ for every edge switches e and there are k /2

dge switches in a pod,

 n (x) − n (y) | ≤ ∑ | n xe − n ye | ≤ δ · k/ 2

ence M AX a − M IN a ≤ δ · k/ 2 . �

172 W. Cui et al. / Computer Networks 105 (2016) 166–179

3

d

i

m

a

3

v

t

a

p

m

e

d

a

i

f

d

s

b

l

s

e

i

r

c

s

e

c

1

4

f

u

i

r

r

h

n

u

a

t

m

u

e

s

f

t

m

i

s

l

l

t

n
We further prove a bound on flow balance among core switches

by the following theorem:

Theorem 3.2. In a k-pod FatTree, suppose every edge and aggre-

gate switch achieves BO with δ = 1 . Let n (c) be the number of flows

that are sending to core c. Then we have M AX all − M IN all ≤ 3 k, where

MAX all is the maximum n (c) value among all cores and MIN all is the

minimum n (c) value among all cores.

Proof. The (k /2) 2 cores can be divided into k /2 groups g 1 , g 2 , ...,

g k /2 , each of which contains k /2 cores that receive flows from a

same group of aggregate switches.

Suppose x and y are two cores. If they belong to a same group,

we can prove n x − n y ≤ k/ 2 using a way similar to the proof of

Theorem 3.1 . Consider that they belong to different groups. For a

pod p, x and y connect to two different switches in p , because they

are in different core groups. Let s a 1 and s a 2 denote the switches

connecting to x and y respectively. We have n (s a 1) − n (s a 2) ≤ k/ 2

according to Theorem 3.1 . Hence

n (s a 1)

k/ 2

− n (s a 2)

k/ 2

≤ 1

Hence, the average numbers of flows from s a 1 and s a 2 to each core

are
n (s a 1)

k/ 2
and

n (s a 2)
k/ 2

respectively. Let n pc denote the number of

flows from pod p to core c . We have n px − n (s a 1)
k/ 2

≤ 1 (BO of s a 1),

and

n (s a 2)
k/ 2

− n py ≤ 1 (BO of s a 2). Hence

n px − n py ≤ 1 +

n (s a 1)

k/ 2

− n (s a 2)

k/ 2

+ 1 ≤ 3

n x − n y =

∑

p

n px −
∑

p

n py =

∑

p

(n px − n py) ≤ 3 k

�

Similarly we have a bound of flow balance in the receiving side.

Theorem 3.3. In a k-pod FatTree, suppose all aggregate switches in

a same pod achieve BI with δ = 1 . Let n (s e) be the number of flows

that are sending to edge switch s e . Then we have M AX e − M IN e ≤ k/ 2 ,

where MAX e is the maximum n (s e) value among all edge switches

in the pod and MIN e is the minimum n (s e) value among all edge

switches in the pod.

The proof is similar to that of Theorem 3.1 .

Note that the values we provide in the theorems are only

bounds of the difference between the maximum and minimum

flow numbers. In practice, however, the actual differences are much

lower than these bounds .

3.8. Impact on mice flows

DiFS aims to balance the traffic of elephant flows. DiFS moves

flows from highly occupied links to links with abundant free band-

width. As presented above, DiFS balances elephant flows among

aggregate switches. Consider a mice flow that goes through links

L 1 , L 2 , ���, L n and switches S 1 , S 2 , · · · , S n −1 . The maximum trans-

mission rate of this flow depends on the available bandwidth and

computation resource of these links and switches. Particularly, it

depends on the minimal available bandwidth of all n links. Sup-

pose the available bandwidth on link L i is r i > 0. Clearly, when σ r i
is constant, a more uniformly distributed r 1 , r 2 , ���, r n would re-

sult in a larger min r i . This is to say when the traffic is uniformly

distributed, the available bandwidth of a mice flow is likely to be

larger.

Mice flows in the network can be categorized into two groups.

(1) low bandwidth and long-lasting. (2) short burst flows. Flows in

(1) do not require large resources. Meanwhile, DiFS gives favor to

flows in (2) by balancing the traffic of the elephant flows.
.9. Flow termination

Most switches support flow expiration. i.e., the OpenFlow stan-

ard specifies that for each flow entry on the switch, there is an

dle time-out value that indicates when this entry shall be re-

oved due to a lack of inactivity. When a flow entry is expired

nd removed, we consider the corresponding flow terminates.

.10. Switch overhead of DiFS

In DiFS, each switch maintains a list of elephant flows, and two

ectors V i and V o . Executing the DiFS algorithms consumes compu-

ation resources. We analyze the time overhead of DiFS algorithms

s follows.

The switch maintains integer vectors V i and V o . It often com-

utes the minimal value of V i and V o . V i and V o can be imple-

ented in integer arrays with O (n) for each query and O (1) for

ach update. However, we recommend using a heap or binary in-

ex tree with O (log n) for all operations. Note that the lengths of V i

nd V o are both equal to the number of ports of the switch, which

s a small constant. This is to say V i and V o can be maintained ef-

ectively in constant time.

The algorithm within one iteration in the control loop includes

etecting the imbalance, re-balancing, and sending EAR if neces-

ary. The time complexity is at most O (n) where n is the num-

er of elephant flows on the switch. This would take several mil-

iseconds when there are thousands of elephant flows. Experiments

how that DiFS is able to converge even with control loops for ev-

ry 100 ms. Hence, the time overhead of the instructions executed

n one loop is sufficiently small.

On receiving an EAR, the switch executes the particular algo-

ithm with time complexity O (1). On receiving a PAR, the time

omplexity is at most O (p) where p is the number of ports on the

witch. These two algorithms only consist of simple arithmetic op-

rations and can be executed within several hundreds of CPU cy-

les. This is to say the procedure is able to finish within 1 μs on an

GHz CPU, which is acceptable for most commodity switches.

. Failures recovery

Switches must take network failures into consideration in per-

orming flow scheduling. A network failure may be a switch fail-

re, a link failure, or a host failure. Failures may also be classified

nto reachability failures and partial failures. Reachability failures

efer to those failures that can cause one or more end hosts un-

eachable. For example, a crash of an edge switch can make (k /2)

osts unreachable. We propose mechanisms for DiFS to maintain

etwork performance under these failures. Only flows towards the

nreachable hosts are affected.

Partial failures , i.e., individual link or port failures on edge

nd aggregate switches, can cause performance degradation due

o loss of equal-cost paths. We classify partial failures into two

ain types: Independent Link Failures (ILFs) and Compositional Fail-

res (CFs). ILFs are link or port failures that are independent of

ach other, i.e., no two link or port failures collide on the same

witch. The most frequent independent link failures are single link

ailures. CFs are referred to node failures and multiple link failures

hat can occur on the same switch node. Although CFs may cause

ore severe results, they happen very rarely compared to ILFs [26] .

Since ILFs are very common in Data Center Networks, we first

ntroduce how DiFS deals with them. When a link is down, the

witch that was connected by this link can realize it and find a

onger detour that can bypass the failed link. For example, if the

ink connecting a core switch and an aggregate switch is failed,

his failed link can be replaced by a two hop detour that still con-

ects the core switch and aggregate switches. Such detours can be

W. Cui et al. / Computer Networks 105 (2016) 166–179 173

c

k

t

d

e

p

t

a

a

c

s

c

w

f

d

l

l

fl

m

r

t

w

q

b

i

fl

H

f

a

g

s

n

s

l

l

s

f

f

T

t

5

p

c

D

n

5

d

t

d

u

u

a

p

p

f

T

r

w

O

t

m

t

p

m

w

t

t

i

o

n

a

l

t

a

A

o

t

c

t

c

t

w

t

w

fl

l

o

w

n

b

t

i

c

s

t

p

t

a

d

omputed at a low cost by switches. Given the fact that switches

now the fat tree topology, which is a reasonable assumption as

he network topology does not change in a long term. Unlike Baat-

aat [27] using a measurement based metric computing the low-

st cost detour, DiFS will randomly select a feasible detour for each

acket. Since it is rare that one packet may have two or more de-

ours under independent link failures, detouring a packet can cause

 very low cost.

Although it is very easy to compute a detour under ILFs, things

re very different for CFs. Node failures and related link failures

an make it harder to compute a feasible detour or even impos-

ible to find a detour with limited hop. To avoid the complexity

aused by compositional failures, we decide not to detour packets

hen compositional failures are detected. Instead, If an output port

or some elephant flow is no longer available or cannot reach the

estination due to compositional failures, DiFS will randomly se-

ect an output port for each packet among all the feasible outgoing

inks. The DiFS switch that is nearest to the source of the affected

ow will choose the output port for the packets. However, packets

ay arrive at the destination but not in the original order. This is

esolved by higher level protocols such as TCP. At the same time,

his flow will still be maintained in flow table but all future EARs

ill be ignored. After the failure is fixed, the old flow table can be

uickly reused at a low cost. The switch may store the old flow ta-

le entries in its local memory and restore them when the failure

s fixed. This method uses different paths for packets of the same

ow and could hurt TCP performance due to packet re-ordering.

owever, we argue that the TCP performance has already been af-

ected by network failures and hence packet re-ordering may be

llowed under this circumstance.

Loss or delay of EARs on a congested link may make DiFS de-

rade into a local link balanced algorithm like ECMP. the EAR mes-

ages are sent in UDP to avoid additional costs such as the commu-

ication overhead of TCP handshaking. However, a switch will keep

ending control messages at each control loop if previous flow col-

isions have not been resolved. In the simulations, we also take the

oss and delay of control messages into consideration. Experiments

how that DiFS still converges in a short time under congestion. In

act, even an EAR is missing, the network connectivity is not af-

ected, and hence the related flow is not affected by such missing.

herefore, the loss or delay of control messages has limited impact

o network convergence.

. Simulation results

In this section, we evaluate the performance of DiFS by com-

aring it with three representative routing solutions from different

ategories: ECMP (switch-only) [6] , Hedera (centralized) [8] , and

ard (host-based) [3] . Note that both Hedera and Dard use global

etwork information which is not available to switch-only methods .

.1. Methodology

Most existing studies use custom-built simulators to evaluate

ata center networks at large scale [8,9,14,28] . Simulation is able

o show the scalability of the protocols for large networks with

ynamic traffic patterns while testbed experiments can only have

p to tens of hosts for academic purposes. We find many of them

se a certain level of abstraction for TCP, which may result in in-

ccurate throughput results. 2 To perform simulations with accu-
2 For example, the simulator developed in [8] only simulates each flow without

erforming per-packet computation and uses predicted sending rate instead of im-

lementing TCP. The simulator that implements MPTCP [14] has been used for per-

ormance evaluation by many other projects [9,28] . However, it does not implement

CP ACKs and assumes ACKs can all be successfully delivered.

N

u

d

ate results, we developed a packet-level stand-alone simulator 3 in

hich DiFS, as well as other protocols, are implemented in detail. 4

ur simulator models individual packets, hence we believe it can bet-

er demonstrate real network performance. TCP New Reno is imple-

ented in detail as the transportation layer protocol. Our simula-

or models each link as a queue whose size is the delay-bandwidth

roduct. A link’s bandwidth is 1 Gbps and its average delay is 0.01

s. Our switch abstraction maintains finite shared buffers and for-

arding tables. In our simulations, we simulate multi-rooted tree

opologies in different sizes. We use 16-host networks as small

opologies and 1024-host networks for bulk analysis.

DiFS is compared with ECMP, Hedera, and Dard. For ECMP, we

mplemented a simple hash function which uses the flow identifier

f each TCP packet as the key. We implemented the Simulated An-

ealing scheduler of Hedera, which achieves the best performance

mong all schedulers proposed in Hedera [8] . We set the control

oop period of Hedera to 0.01 s and Simulated Annealing iteration

o 10 0 0, both of which are the same as their implementation. We

lso set the period of distributed control loop to 0.01 s for DiFS.

s mentioned in Section 3.2 , we focus on balancing the number

f elephant flows among links. We use 100 KB as the elephant

hreshold, same to the value used by other work [3] .

Performance criteria. We evaluate the following performance

riteria.

Aggregate throughput is the measured throughput of various

raffic patterns using proposed methods on the corresponding data

enter topology. It reflects how a switching method utilize the

opology bandwidth.

Flow completion time characterizes the time to deliver a flow,

hich may affect the processing efficiency of a data center. Besides

he comparison of flow completion time among different protocols,

e also care about the fairness of flow completion time of different

ows routed by the same protocol.

Packet out-of-order ratio. Although all protocols in our simu-

ations do not split flows, dynamic routing will still cause some

ut-of-order packets. The out-of-order ratio is measured to see

hether a protocol will hurt TCP performance.

Convergence time is important to measure the stability of a dy-

amic routing protocol or switching method.

Control overhead. We measure the control message overhead in

ytes.

Traffic patterns. Similar to [8] and [3] , we created a group of

raffic patterns as our benchmark communication suite. Each flow

s at least 16MB. These patterns are considered typical for cluster

omputing applications and can be either static or dynamic. For

tatic traffic patterns, all flows are permanent. Dynamic traffic pat-

erns refer to those in which flows start at different times. In this

aper, we evaluate the performance of DiFS against dynamic pat-

erns similar to data shuffle in cluster computing applications such

s MapReduce [29] . The static patterns used by our simulations are

escribed as follows:

1. Shift (i): A host with index x sends data to a host with index

(x + i) mod(num _ hosts) , where num _ hosts is the number of all

hosts in the network. This traffic pattern stresses out the links

between the core and the aggregation layers with a large i .

2. Staggered (P e , P p): A host sends data to another host in the same

edge layer with probability P e , and to host in the same pod (but

in the different edge layer) with probability P p , and to hosts in

different pods with probability 1 − P e − P p .
3 The simulator is available via https://github.com/sdyy1990/NSim/raw/master/

Sim.7z
4 We have also implemented DiFS on NS2, but experienced very slow speed when

sing NS2 for data center networks. We guess the existing studies do not use NS2

ue to the same reason.

https://github.com/sdyy1990/NSim/raw/master/NSim.7z

174 W. Cui et al. / Computer Networks 105 (2016) 166–179

Fig. 6. Aggregate throughput comparison on small topologies.

Table 1

Results of shuffle simulations.

ECMP Hedera Dard DiFS

Shuffle time (s) 249 .82 204 .87 210 .83 179 .48

Aver. completion time (s) 224 .78 178 .53 191 .25 157 .20

Aver. throughput (Gbps) 4 .31 5 .30 4 .61 6 .10

Aver. out-of-order to 0 .006 0 .006 0 .006 0 .006

in-order ratio

Max. out-of-order to 0 .643 0 .750 0 .750 0 .4

in-order ratio

Aver. out-of-order 0 .00 14 .75 13 .72 28 .66

window size

Max. out-of-order 0 .00 69 .00 68 .00 123 .00

window size

5

m

d

t

i

(

u

t

a

t

t

fl

e

o

r

S

T

o

t

d

b

H

p

i

t

a

fl

H

s

c

u

o
3. Random : A host sends one elephant flow to some other end

host in the same network with a uniform probability. This is

a special case of Randx (x) where x = 1 .

4. Randx (x): A host sends x elephant flows to any other end host

in the same topology with a uniform probability.

5. Randbij : A host sends one elephant flow to some other host

according to a bijective mapping of all hosts. This is a special

case of Random pattern which may be created by certain clus-

ter computing applications.

5.2. Small topology simulation results

In this set of simulations, 16 hosts (acting as clients) first es-

tablish TCP connections with some designated peers (acting as

servers) according to the specified traffic pattern. After that, these

clients begin to send elephant flows to their peers constantly.

Each simulation lasts 60 s, and each host measures the incoming

throughput during the whole process. We use the results for all

hosts in the middle 40 s as the aggregate throughput.

Fig. 6 a shows the average aggregate throughput for a variety of

Shift traffic patterns with different parameters. For Shift parameter

i = 1 , all three methods have good performance. DiFS achieves the

highest throughput for all i values and outperforms ECMP signif-

icantly when i is greater than 2. DiFS has a significant lead over

Hedera and Dard when i = 9 and 11. Note a larger value of i indi-

cates less traffic locality. Hence DiFS is more robust than the other

methods for traffic locality.

Fig. 6 b shows the average aggregate throughput for Staggered

patterns. Similar to the Shift results, DiFS has the highest through-

put for most cases. In two cases (stag2(.2,.3) and stag3(.2,.3)),

DiFS’s throughput is marginally less than that of Hedera and Dard

respectively. We might find that the absolute bandwidth values of

all three methods in this set of simulations are less than those

in the Shift simulations. According to our results on non-blocking

switches and links (not shown in the figure), the average through-

put for Staggered is also limited to 10–12 Gbps due to the hotspots

created by the traffic pattern. DiFS results are relatively closer to

the limit than the others.

Fig. 6 c depicts the throughput for Random patterns. For all

cases except one, DiFS outperforms the other three protocols.

In Random simulations, DiFS outperforms ECMP in the average

throughput by at least 33% for most traffic patterns. For particular

patterns, this value can be higher than 100%. Compared to Hed-

era and Dard that uses global information, DiFS achieves higher

throughput for the Randbij1 pattern and similar throughput for

the others. We suspect there are two major reasons why Hedera

achieves less bandwidth compared to DiFS: First, Hedera ignores

intra-pod flows and degrades to ECMP when intra-pod flows are

dominant. Second, Hedera with Simulated Annealing does not as-

sign an explicit path for each flow. Instead, Hedera assigns a core

switch for every single host, which may result in bottlenecks on

the links connecting aggregate switches and edge switches.
.3. Dynamic traffic: data shuffle

We conduct simulations of all-to-all Data Shuffle in the 16-host

ulti-rooted tree topology to evaluate the performance of DiFS un-

er dynamic traffic patterns. Data Shuffle is an important opera-

ion for MapReduce-like applications. Each host (acting as reducer)

n the network will sequentially receive a large amount of data

500 MB in our simulation) from all other hosts (acting as mapper)

sing TCP. Therefore, in total it is a 120 GB Data Shuffle. In order

o avoid unnecessary hotspots, each host will access other hosts in

 random order. We also assume there is no disk operation during

he whole process. We measure the shuffle time, average comple-

ion time, and average throughput of the three methods. The shuf-

e time is the total time for the 120 GB Shuffle operation. The av-

rage completion time is the average value of the completion time

f every host in the network. The average aggregate throughput

efers to the sum of average throughput of every host.

We also measure two variables described in [5] during the

huffle period in order to reflect the packet reordering problem.

he first variable is the ratio of the number of packets delivered

ut-of-order to the number of packets provided in-order in TCP by

he senders. The second variable is the out-of-order packet win-

ow size, defined as the average gap in the packet sequence num-

ers observed by the receivers.

Table 1 shows that our algorithm outperforms ECMP by 28%,

edera by around 13%, and Dard by 15%, in aggregate through-

ut. The most important metric is the shuffle time, i.e., the max-

mal completion time of all flows. The shuffle time of DiFS is less

han 180 s while the other methods use more than 200 s. DiFS

chieves the least shuffle time and average completion time per

ow. In addition, DiFS causes less packet reordering compared to

edera. ECMP has the least out-of-order packets because it is a

tatic scheduling algorithm.

Fig. 7 depicts the cumulative distribution function (CDF) of host

ompletion time of the three methods. As observed from this fig-

re, by the time DiFS finishes Shuffle operations, around 50% hosts

f Hedera have completed their jobs and only 20% hosts of Dard

W. Cui et al. / Computer Networks 105 (2016) 166–179 175

Fig. 7. CDF of host completion time for data shuffle.

a

i

h

5

1

f

i

p

f

a

s

n

D

f

5

c

g

e

a

t

fi

W

c

c

t

c

s

t

d

Fig. 9. Convergence time of DiFS in the 1024-host network.

Fig. 10. Convergence time of DiFS with different control loops.

Table 2

Control overhead of DiFS for random traffic pat-

terns.

k Host EAR Control overhead (KB)

4 16 4 0

8 128 304 7 .72

16 1024 4113 104 .43

32 8192 45183 1147 .22

l

w

m

c

d

b

d

m

w

o

t

t

C

c

a
nd 5% hosts of ECMP have finished their jobs. In general DiFS fin-

shes flows much faster than all other protocols. All four methods

ave obvious variation in the completion time of different flows.

.4. Large topology simulation results

Fig. 8 shows the aggregate throughput comparison using a

024-host FatTree network (k = 16). We can find that ECMP per-

orms worse in a large topology, compared with its performance

n the 16-host network using the same traffic patterns. We sus-

ect this is because the chances of collisions in path assignment

or static hash functions increase when topology gets larger. We

lso noticed that the performance gap between Hedera and DiFS

hrinks in the 1024-host network compared to that in the 16-host

etwork due to the decreased portion of intra pod flows. However,

iFS still has the highest aggregate throughput in general except

or two traffic patterns among the three figures.

.5. Convergence speed and control overhead

Convergence speed

Convergence speed is a critical performance metric for DiFS, be-

ause DiFS is a distributed solution rather than a centralized al-

orithm. We measure the convergence speed of DiFS for differ-

nt traffic patterns using FatTree topologies. In Fig. 9 we show the

chieved fraction of throughput of DiFS versus time for different

raffic patterns in the 1024-host network. Even with Random traf-

c our algorithm may still converge to a steady state within 5 s.

e also compare the convergence speed against the frequency of

ontrol loops in 1024 host networks using Randbij patterns. Fig. 10

ompares the convergence speed of DiFS with 10 ms control loops

o 100 ms control loops. Although smaller frequency yields longer

onverge time, the throughput still converge to relatively stable

tate in three seconds and achieves more than 80% throughput in

he first second. We may conclude that our protocol is robust un-

er different frequencies of control loops.
Fig. 8. Aggregate throughput com
Control overhead

As a distributed solution, the computation cost of DiFS is very

ow because switch only needs to consider its local flows. Hence,

e mainly focus on the communication overhead of DiFS, which is

easured by the number of EAR messages. Aside from communi-

ation overhead, too many EAR messages may cause performance

egradation because flows may be requested to change their paths

ack and forth.

Table 2 shows the number of EARs sent by switches under ran-

om traffic patterns in FatTree networks with different sizes. In the

easurement, we assume the size of each message is 26 Bytes,

hich includes the size of flow identifier and the address of rec-

mmended core or aggregate switch in an EAR. As shown in the

able, for an 8192-host FatTree network, DiFS only generates con-

rol messages in a total size of around 1 MB. Fig. 11 shows the

DF of EAR-receiving times. Within 5 s, all EARs have sent and re-

eived, and around 80% EARs are received in the first second. We

lso measure the control overhead under dynamic traffic patterns.
parison for bulk analysis.

176 W. Cui et al. / Computer Networks 105 (2016) 166–179

Fig. 11. Cumulative distribution of EAR-receiving times.

5

b

c

c

g

t

p

i

s

E

m

a

b

h

T

m

5

p

r

p

f

n

b

C

q

6

c

[
The average number of EAR messages is 15.4 for the experiments

in Section 5.3 .

5.6. Failure recovery

We consider three kinds of failures in simulation: single link

failures, multiple independent link failures and single node fail-

ures. For each failure pattern, we consider three kinds of client

transmission rate: 50 MB/s, 65 MB/s and 80 MB/s. The failures

are generated randomly and will last for 10 s. We also recorded

the throughput 5 s before and after the failure. Fig. 13 shows the

throughput for different sending rates under single link failures.

When each sender is send data in 50 MB/s, a single link is down

at the 5th second and we can observe that aggregate bandwidth

is dropped by around 15% without failure handling. However, the

aggregate bandwidth does not drop so much if DiFS rerouted the

impacted flows. Even though the aggregate bandwidth may drop

when sending rate gets larger (65 MB/s and 80 MB/s), the over-

all bandwidth with failure handling is not worse than that without

failure handling and no flow will be suspended due to network

failure. Figs. 14 and 15 exhibit similar behaviour under indepen-

dent link failures and single node failures.
Fig. 12. Flow bandwidth measu

Fig. 13. Aggregate throughput comp
.7. Flow count versus flow bandwidth consumption

DiFS use the number of elephant flows as the metric for load

alancing. Obviously, not all elephant flows have equal bandwidth

onsumptions, i.e., sending rates. As discussed in Section 3.2 , DiFS

annot estimate the flow bandwidth consumption due to lack of

lobal information. A substitution for bandwidth consumption es-

imation is to measure the sending rate of each flow on the current

ath. Unfortunately, a flow’s current sending rate doest not reflect

ts maximum bandwidth consumption [8] . In the evaluation, the

ending rate is controlled by TCP congestion control algorithms.

very host makes its best effort to send packets. We also imple-

ented a variant of DiFS which uses measured flow sending rate

s the metric for load balancing, denoted as DiFS-FM. We compare

oth algorithms in Figs. 12 a and b. The results tell that DiFS-FM

as similar performance compared to DiFS that uses flow count.

herefore, there is no need to deploy a particular module to keep

easuring sending rates in switches.

.8. Summary of results

To summarize the performance evaluation, we compare the im-

ortant properties of adaptive switching methods in Table 3 . Our

esults show that DiFS can achieve similar or even higher through-

ut than Hedera and Dard that require network-wide information

or routing decisions. As a local, switch-only solution, DiFS does

ot have the limitations of central and host-based methods such as

ottleneck of a single controller and massive monitoring messages.

ompared to the state-of-art networking techniques, DiFS only re-

uires either the SDN support or simple special switch logic.

. Related works

Recently there have been a great number of proposals for data

enter network topologies that provide high bisection bandwidth

2,4,30–32] . However, current routing protocols like ECMP [6] usu-
rement vs flow counting.

arison for single link failure.

W. Cui et al. / Computer Networks 105 (2016) 166–179 177

Fig. 14. Aggregate throughput comparison for independent link failure.

Fig. 15. Aggregate throughput comparison for single node failure.

Table 3

Important properties of adaptive switching methods.

ECMP [6] Hedera [8] Dard [3] DiFS (this work)

Network throughput Benchmark Higher than ECMP High than ECMP ≈ Hedera and Dard

Flow completion Benchmark faster than ECMP and Dard faster than ECMP faster than other three

Decision making Local info. Network-wide info. Network-wide info. Local info.

Scalability problem? Scalable Bottleneck of a single controller Massive monitoring msgs Scalable

Compatibility Standard SDN support & monitoring tools Changes on hosts SDN support or switch logic

a

p

h

n

s

s

s

t

f

n

s

[

a

p

m

s

p

e

u

m

p

g

s

b

s

t

a

7

p

S

b

s

t

a

i

A

C

F

R

lly suffer from elephant flow collisions and bandwidth loss. Ap-

lication layer scheduling like Orchestra [33] usually focuses on

igher level scheduling policies such as transfer prioritizing and ig-

ores multipathing issues in data center networks. Transport layer

olutions like DCTCP [13] and MPTCP [14] optimize the resource

hare on fixed paths among flows. This work focuses on adaptive

witching solutions.

Centralized flow routing [8,34] usually relies on a central con-

roller and schedules flow path at every control interval. Aside

rom the additional hardware and software support for commu-

ication and computation, centralized solutions may be hard to

cale out due to the single point of the controller. Recent research

10,11] shows that centralized solutions must employ parallelism

nd fast route computation heuristics to support observed traffic

atterns.

Host-based solutions [3] enable end hosts select flow path si-

ultaneously to enhance parallelism. Dard [3] allows each host to

elect flow path based on network conditions. However, Dard has

otential scalability issues due to massive monitoring messages to

very host. Besides, deployment of host-based solutions requires

pdates on legacy systems and applications.

Switch-only protocols [5,9,35,36] are also proposed. However

ost of them require flow splitting which may cause significant

acket reordering. TeXCP [35] , as an online distributed Traffic En-

ineering protocols, performs packet-level load balancing by using

plitting schemes like FLARE [37] . Localflow [9] refines a naive link

alancing solution and minimizes the number of flows that are

plit. Dixit et al. [36] uses random packet spraying to split flows

o multiple paths to minimize the hurts to TCP. DiFS does not split

 flow in order to avoid packet reordering.
. Conclusion

This paper proposes DiFS, a local, lightweight, and switch-only

rotocol for adaptive packet switching in data center networks.

witches running DiFS cooperate to achieve flow-to-link balance

y avoiding both local and remote collisions. Experimental re-

ults show that our algorithm can outperform the well-known dis-

ributed solution ECMP, a centralized scheduling algorithm Hedera,

nd a host-based protocol Dard. We will investigate flow schedul-

ng for general network topologies in future work.

cknowledgments

Ye Yu and Chen Qian were supported by University of Kentucky

ollege of Engineering Faculty Startup Grant and National Science

oundation grant CNS-1464335 .

eferences

[1] M. Al-Fares , A. Loukissas , A. Vahdat , A scalable, commodity data center net-
work architecture, in: Proceedings of ACM SIGCOMM, 2008 .

[2] R. Niranjan Mysore , A. Pamboris , N. Farrington , N. Huang , P. Miri , S. Radhakr-
ishnan , V. Subramanya , A. Vahdat , Portland: a scalable fault-tolerant layer 2

data center network fabric, in: Proceedings of ACM SIGCOMM, 2009 .
[3] X. Wu , X. Yang , Dard: Distributed adaptive routing for datacenter networks, in:

Proceedings of IEEE ICDCS, 2012 .
[4] A. Greenberg , J.R. Hamilton , N. Jain , S. Kandula , C. Kim , P. Lahiri , D.A. Maltz ,

P. Patel , S. Sengupta , VL2: a scalable and flexible data center network, in: Pro-

ceedings of ACM SIGCOMM, 2009 .
[5] E. Zahavi , I. Keslassy , A. Kolodny , Distributed adaptive routing for big-data ap-

plications running on data center networks, in: Proceedings of ACM/IEEE ANCS,
2012 .

[6] C. Hopps , Analysis of an equal-cost multi-path algorithm, RFC 2992, 20 0 0 .

http://dx.doi.org/10.13039/100000001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0006

178 W. Cui et al. / Computer Networks 105 (2016) 166–179

[

[

[

[

[

[7] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,
S. Shenker , J. Turner , Openflow: Enabling innovation in campus networks, SIG-

COMM Comput. Commun. Rev. (2008) .
[8] M. Al-Fares , S. Radhakrishnan , B. Raghavan , N. Huang , A. Vahdat , Hedera: dy-

namic flow scheduling for data center networks, in: Proceedings of USENIX
NSDI, 2010 .

[9] S. Sen , D. Shue , S. Ihm , M.J. Freedman , Scalable, opitmal flow routing in data-
centers via local link balancing, in: Proceedings of ACM CoNEXT, 2013 .

[10] S. Kandula , S. Sengupta , A. Greenberg , P. Patel , R. Chaiken , The nature of data

center traffic: measurements & analysis, in: Proceedings of ACM IMC, 2009 .
[11] T. Benson , A. Akella , D.A. Maltz , Network traffic characteristics of data centers

in the wild, in: Proceedings of ACM IMC, 2010 .
[12] J. Perry , A. Ousterhout , H. Balakrishnan , D. Shah , H. Fugal , Fastpass: A central-

ized zero-queue datacenter network, in: Proceedings of the 2014 ACM Confer-
ence on SIGCOMM, ACM, 2014, pp. 307–318 .

[13] M. Alizadeh , A. Greenberg , D.A. Maltz , J. Padhye , P. Patel , B. Prabhakar , S. Sen-

gupta , M. Sridharan , Dctcp: Efficient packet transport for the commoditized
data center, in: Proceedings of ACM SIGCOMM, 2010 .

[14] D. Wischik , C. Raiciu , A. Greenhalgh , M. Handley , Design, implementation and
evaluation of congestion control for multipath tcp, in: Proceedings of USENIX

NSDI, 2011 .
[15] A. Dixit , P. Prakash , R.R. Kompella , On the efficacy of fine-grained traffic split-

ting protocols in data center networks, in: Proceedings of ACM SIGCOMM,

2011 .
[16] K.C. Leung , V. Li , D. Yang , An overview of packet reordering in transmission

control protocol (tcp): Problems, solutions, and challenges, IEEE Trans. Parallel
Distrib. Syst. (2007) .

[17] X. Yang , D. Clark , A. Berger , Nira: A new inter-domain routing architecture,
IEEE/ACM Trans. Netw. (2007) .

[18] Z. Ding , R.R. Hoare , A.K. Jones , R. Melhem , Level-wise scheduling algorithm

for fat tree interconnection networks, in: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, ACM, 2006, p. 96 .

[19] Catalyst switch architecture and operation, 2011. http://www.cisco.com/
networkers/nw03/presos/docs/RST-2011.pdf .

[20] Hpe flexnetwork switch chassis, 2016. http://www8.hp.com/us/en/products/
networking-switches/ .

[21] S. Han , K. Jang , A. Panda , S. Palkar , D. Han , S. Ratnasamy , SoftNIC: A Software

NIC to Augment Hardware, Technical Report UCB/EECS-2015-155, EECS Depart-
ment, University of California, Berkeley, 2015 .
22] D. Zhou, B. Fan, H. Lim, M. Kaminsky, D.G. Andersen, Scalable, high perfor-
mance ethernet forwarding with cuckooswitch, in: Proceedings of the Ninth

ACM Conference on Emerging Networking Experiments and Technologies, in:
CoNEXT ’13, ACM, New York, NY, USA, 2013, pp. 97–108, doi: 10.1145/2535372.

2535379 .
[23] Intel data plane development kit, 2015. http://dpdk.org/ .

[24] M. Yu , L. Jose , R. Miao , Software defined traffic measurement with opensketch,
in: Proceedings of USENIX NSDI, 2013 .

[25] H. Ballani , P. Costa , T. Karagiannis , A. Rowstron , Towards predictable datacenter

networks., in: Proceedings of SIGCOMM, 2011 .
26] P. Gill , N. Jain , N. Nagappan , Understanding network failures in data centers:

Measurement, analysis, and implications, in: Proceedings of ACM SIGCOMM,
2011 .

[27] F.P. Tso , D. Pezaros , Baatdaat: Measurement-based flow scheduling for cloud
data centers, in: Proceedings of ISCC, 2013 .

28] A. Singla , C.-Y. Hong , L. Popa , P.B. Godfrey , Jellyfish: Networking data centers

randomly, in: Proceedings of USENIX NSDI, 2012 .
[29] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,

Communications of the ACM, 2008 .
[30] A. Greenberg , P. Lahiri , D.A. Maltz , P. Patel , S. Sengupta , Towards a next genera-

tion data center architecture: Scalability and commoditization, in: Proceedings
of ACM PRESTO, 2008 .

[31] C. Guo , et al. , Bcube: a high performance, server-centric network architecture

for modular data centers, in: Proceedings of ACM SIGCOMM, 2009 .
32] C. Guo , et al. , Dcell: a scalable and fault-tolerant network structure for data

centers, Proceeding of ACM SIGCOMM, 2008 .
[33] M. Chowdhury , M. Zaharia , J. Ma , M.I. Jordan , I. Stoica , Managing data transfers

in computer clusters with orchestra, in: Proceedings of ACM SIGCOMM, 2011 .
[34] T. Benson , A . Anand , A . Akella , M. Zhang , Microte: fine grained traffic engineer-

ing for data centers, in: Proceedings of ACM CoNEXT, 2011 .

[35] S. Kandula , D. Katabi , B. Davie , A. Charny , Walking the tightrope: responsive
yet stable traffic engineering, in: Proceedings of ACM SIGCOMM, 2005 .

36] A. Dixit , P. Prakash , Y.C. Hu , R.R. Kompella , On the impact of packet spraying
in data center networks, in: Proceedings of IEEE INFOCOM, 2013 .

[37] S. Sinha , S. Kandula , D. Katabi , Harnessing tcps burstiness using flowlet switch-
ing, in: Proceedings of ACM HotNets, 2004 .

http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0018
http://www.cisco.com/networkers/nw03/presos/docs/RST-2011.pdf
http://www8.hp.com/us/en/products/networking-switches/
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0021
http://dx.doi.org/10.1145/2535372.2535379
http://dpdk.org/
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30183-9/sbref0037

W. Cui et al. / Computer Networks 105 (2016) 166–179 179

puter Science, University of Texas at Austin. He received the B.Sc. degree from Nanjing

including computer networking and distributed systems.

cience, University of Kentucky. He received the B.Sc. degree from Beihang University. His
ware defined networking.

f Computer Engineering, UC Santa Cruz. He was an Assistant Professor at University of

 Nanjing University in 2006, the M.Phil. degree from the Hong Kong University of Science
 University of Texas at Austin in 2013, all in Computer Science. His research interests

loud computing, and Internet of Things. He has published more than 30 research papers
rved in the organizing committees and technical program committees of a number of

th SenSys’16), TPC track chair of ICCCN’16, TPC co-chair of ICNP student workshop 2013.
received the Best Paper Award of ACM MSCC 2015.
Wenzhi Cui is a Ph.D. student at the Department of Com

University in Software Engineering. His research interests

Ye Yu is a Ph.D. student at the Department of Computer S
research interests including data center networks and soft

Chen Qian is an Assistant Professor at the Department o

Kentucky in 2013-2016. He received the B.Sc. degree from
and Technology in 2008, and the Ph.D. degree from the

include computer networking, data-center networks and c
in a number of top conferences and journals. He has se

conferences, including the TPC co-chair of ACM CSAR (wi
He is an editor of the Cyber-Physical Systems Journal. He

	DiFS: Distributed Flow Scheduling for adaptive switching in FatTree data center networks
	1 Introduction
	2 Background and overview of DiFS
	2.1 Data center topologies
	2.2 Examples of flow collision and DiFS’s solutions
	2.3 Classification of flows

	3 DiFS design
	3.1 Components and deployment
	3.2 Optimization goals
	3.3 Protocol structure
	3.4 Control loop
	3.5 Operations upon receiving a PAR
	3.6 Operations upon receiving an EAR
	3.7 Bounds on global flow balance
	3.8 Impact on mice flows
	3.9 Flow termination
	3.10 Switch overhead of DiFS

	4 Failures recovery
	5 Simulation results
	5.1 Methodology
	5.2 Small topology simulation results
	5.3 Dynamic traffic: data shuffle
	5.4 Large topology simulation results
	5.5 Convergence speed and control overhead
	5.6 Failure recovery
	5.7 Flow count versus flow bandwidth consumption
	5.8 Summary of results

	6 Related works
	7 Conclusion
	 Acknowledgments
	 References

