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a b s t r a c t 

The industry is satisfying the increasing demand for wireless bandwidth by densely deploying a large 

number of access points which are centrally managed, e.g. enterprise WiFi networks deployed in univer- 

sity campuses, companies, airports etc. This “small cell” architecture is gaining traction in the cellular 

world as well, as witnessed by the direction in which 4G+ and 5G standardization is moving. Prior aca- 

demic work in analyzing such large-scale wireless networks either uses oversimplified models for the 

physical layer, or ignores other important, real-world aspects of the problem, like MAC layer considera- 

tions, topology characteristics, and protocol overhead. On the other hand, for deployment purposes the 

industry is using on-site surveys and simulation tools which do not scale, cannot efficiently optimize the 

design of such a network, and do not explain why one design choice is better than another. 

In this paper we introduce an analytical model which combines the realism and practicality of industrial 

simulation tools with the ability to scale, analyze the effect of various design parameters, and optimize 

the performance of real-world deployments. The model takes into account all central system parameters, 

including channelization, power allocation, user scheduling, load balancing, MAC, advanced PHY tech- 

niques (single and multi user MIMO as well as cooperative transmission from multiple access points), 

topological characteristics and protocol overhead. The accuracy of the model is verified via extensive sim- 

ulations and the model is used to study a wide range of real world scenarios, providing design guidelines 

on the effect of various design parameters on performance. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Modern wireless devices such as tablets and smartphones are

pushing the demand for higher and higher wireless data rates

while causing significant stress to existing wireless networks.

While successive generations of wireless standards achieve con-

tinuous improvement, it is the general understanding of both aca-

demic research and the industry that a significant increase in wire-

less traffic demand can be met only by a dramatically denser spec-

trum reuse, i.e., by deploying more base stations/access points per

square kilometer, coupled with advanced physical (PHY) layer tech-

niques to reduce inter-cell interference. 

Enterprise WiFi networks have been deployed following this

paradigm for years. As a matter of fact, the density of access

points (APs) has increased to a point where inter-cell interference

is canceling any additional gains from even denser deployments.
� This work is supported by the National Science Foundation, under the grant 

ECCS-14 4 4060. 
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t the same time, advanced physical layer techniques have been

ncorporated into the standards, most notably single-user MIMO in

02.11n and multi-user MIMO in 802.11ac. Cellular networks, un-

ble to satisfy the bandwidth demand of data plans, resort to WiFi

ffloading, i.e. they deploy WiFi networks to offload traffic from the

ellular network. Future cellular network architectures will most

ikely follow a similar pattern, that is, they will consist of many

mall cells densely deployed and use advanced physical layer tech-

iques, e.g. massive MIMO. 

The industry has responded to the need to efficiently man-

ge such networks with tools that are mostly based on on-site

easurements, simulations, and over-simplistic analytical models.

ased on the available public information about such tools in the

nterprise WiFi market [1,2] , these tools perform three main oper-

tions: (i) user load balancing among APs, (ii) interference man-

gement between APs by channel allocation and power control,

nd (iii) optimization of the Clear Channel Assessment (CCA) CSMA

hreshold to allow for concurrent transmissions which can tolerate

nterference from nearby APs. While such network management

ools have increased the performance of enterprise WiFi networks,

hey do not scale well, cannot be used to efficiently optimize the

http://dx.doi.org/10.1016/j.comnet.2016.05.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.05.024&domain=pdf
mailto:michalol@usc.edu
http://dx.doi.org/10.1016/j.comnet.2016.05.024


A. Michaloliakos et al. / Computer Networks 105 (2016) 150–165 151 

s  

l

 

m  

t  

w  

w  

f  

a  

i  

m  

b  

t  

o  

p

 

v  

e  

n  

t  

m  

M  

n  

w  

c  

a  

d  

a  

l  

n  

W  

m  

l  

 

d  

a  

a  

l  

l  

t  

t  

c

2

 

l  

h  

l  

p  

p  

f  

p  

h  

i  

h  

p  

o  

t  

h  

b

t

e

l  

a

 

t  

l  

o  

a  

a  

i  

n  

c  

t  

b  

w  

a  

w  

o  

b  

w  

f  

e

 

b  

m  

c  

t  

s  

d  

o  

b  

M  

[  

a  

j  

s  

d  

n  

p  

p  

a  

t  

s  

p  

f  

d

 

s  

t  

I  

a

t  

p  

W  

m  

l  

o  

t  

a  

P  

f  
ystem, and do not incorporate the effects of advanced physical

ayer techniques. 

In this paper, we introduce an accurate and practical analytical

odel which takes into consideration all the important parame-

ers affecting the performance of present and future wireless net-

orks, and can be efficiently used in real-world setups. Specifically,

e model and investigate the performance impact of physical layer

eatures such as channelization, power allocation, topological char-

cteristics (e.g. user density and AP distribution in various build-

ngs/structures) and physical layer techniques like single-user (SU),

ulti-user (MU), and coordinated MU-MIMO [3,4] (where a num-

er of remote APs coordinate and transmit concurrently and jointly

o multiple users). Additionally, we model the performance impact

f MAC and higher layer features such as user-AP association, MAC

arametrization and adaptive coding/modulation. 

Our main contributions are the following. We introduce and

alidate through simulations the first (to the best of our knowl-

dge) analytical model which can be applied in real-world sce-

arios while taking into account all the important design parame-

ers in the PHY, MAC and higher layers. Second, we include in the

odel next generation wireless networking technologies such as

U-MIMO and coordinated MU-MIMO for which there is currently

o clear understanding of large scale network performance. Third,

e apply the model to a variety of real world scenarios, including

onference halls, office buildings, open spaces, large stadiums, etc.,

nd study a number of important phenomena (see Section 5 for a

etailed discussion). It is important to note that as of today there

re no existing 3rd party simulators which support advanced PHY

ayer techniques like MU-MIMO and coordinated MU-MIMO, and

o software defined radio testbeds supporting both MU-MIMO and

iFi, neither in the industry nor in academia. 1 Thus, our analytical

odel is, at the moment, the only way to study the performance of

arge scale WiFi networks utilizing advanced PHY layer techniques.

The outline of the paper is as follows. In the next section we

iscuss related work. Section 3 motivates and describes a unified

nalytic treatment of wireless network deployments consisting of

n analytical model for various current and next generation PHY

ayer schemes as well as for the CSMA MAC. The validation and

imitations of our model are studied via extensive simulations for

ractable scenarios of interest in Section 4 . Finally Section 5 applies

he analytic model in various deployment scenarios of interest like

onference halls, open and closed office floor plans and stadiums. 

. Related work 

Traditional 802.11 analysis . When it comes to analyzing wire-

ess network deployments, the wireless networking community

as focused on the MAC layer and has generally ignored the PHY

ayer. Specifically, early work of Bianchi [5] on 802.11 MAC layer

roposed an analytical model to analyze CSMA/CA overhead and

erformance. Meanwhile in [6] the authors investigated the per-

ormance of exponential backoff mechanism in terms of through-

ut and delay. In [7–10] similar Markov Chain models of CSMA/CA

ave been developed and employed to develop algorithms optimiz-

ng various performance metrics. Stochastic geometry approaches

ave been also used to model CSMA networks, using appropriate

oint processes (see [11,12] and references therein). Finally, in our

wn previous works [13,14] , a full analytic model for computing

he achievable rate region of CSMA in multi hop wireless networks

as been presented. These works are mostly based on pure upper
1 MU-MIMO enabled WiFi chipsets are expected to become available soon, 

ut such chipsets can’t be used in a coordinated MU-MIMO setup and come with 

he usual limitations of non-programmable hardware when it comes to 

xperimentation. 

v  
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w  
ayer modeling and do not take the advances of physical layer into

ccount. 

Random matrix theory approaches . There are two main trends

he wireless communication literature follows in analyzing wire-

ess network deployments. The first makes use of techniques based

n random matrix theory to extract performance measures (such

s achievable rates, SINRs etc.) that are used with combinatorial

nd convex optimization methods to solve problems that appear

n multi-cell wireless networks. Such problems include but are

ot limited to: finding the optimal achievable rates under power

ontrol, massive MIMO system asymptotics, base station coopera-

ion towards a coordinated MU-MIMO solution and more as can

e found in prior work of ours [15–17] and others [18–23] . These

orks exhibit similarities to our work on the basis that we also

dopt random matrix theory results and techniques to come up

ith analytically tractable PHY layer performance models. On the

ther hand our work differs from the aforementioned approaches

ecause we use the analytically tractable models in combination

ith an accurate MAC layer approximation, to compare the various

orthcoming WiFi technologies, and examine their applicability and

fficiency under various use cases and MAC layer parameters. 

Stochastic geometry approaches . The second approach is

ased on stochastic geometry and focuses on the random place-

ent of APs and users according to some stochastic point pro-

ess (see for example [24,25] and references therein). Most of

hese works do not consider advanced interference management

chemes at the PHY layer since they introduce statistical depen-

ence between the nodes, and this would break the independence

n which most of these results are based. Recent progress has

een made to model more advanced PHY schemes such as MU-

IMO [26,27] , AP cooperation [28,29] and multi-cell coordination

30,31] using a stochastic geometry analysis, however these works

re limited to non-coherent AP cooperation (also called single-user

oint transmission) [29] or pairwise only coherent joint transmis-

ion [28] . In other words, the performance of full coherent coor-

ination of a large number of APs serving concurrently users is

ot being captured in these works, although it is one of the most

romising forthcoming PHY layer technologies. In contrast, our ap-

roach applies also to large coherent cooperative clusters of APs

nd that can serve multiple users simultaneously. Moreover, al-

hough stochastic geometry methodologies can give important in-

ights for the average behavior of a network, they cannot encom-

ass a specific AP/user placement topology since they analyze per-

ormance over network ensembles with certain distributions and

ensities. 

Advanced PHY layer comparisons . Recent papers have taken

teps towards comparing advanced PHY layer techniques, but lack

he analytic simplicity of the model we proposed in this work.

n [32] the authors compare a traditional Wi-Fi network with

dvanced cooperative cellular networks (coordinated MU-MIMO), 

hey resort however to standard Monte Carlo simulation based ap-

roaches and fail to address the adoption of MU-MIMO in future

i-Fi networks. In [33] the authors compare dense station deploy-

ents against coordinated approaches but only incorporate PHY

ayer characteristic and no MAC is included in the model. More-

ver, they also rely on Monte Carlo Simulations over both the

opology and the channels. In contrast, we propose a simple an-

lytic approach based on random matrix theory that incorporates

HY layer advances in a single PHY/MAC layer model and accounts

or a variety of network design choices. This approach allows for

ery accurate deterministic approximations of the users’ peak link

ates for a given geometry of the network. 

Industry tools . Lastly, there are a number of tools that the

ndustry currently uses for wireless network deployment guid-

nce. For example, Fluke Networks has developed a product [34]

hich creates a model for the wireless environment so that an
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(a) Interference graph

State Limiting Probability

000000 1/(1 + 6ρ + 6ρ2)

100000 ρ/(1 + 6ρ + 6ρ2)

010000 ρ/(1 + 6ρ + 6ρ2)
...

...

000001 ρ/(1 + 6ρ + 6ρ2)

101000 ρ2/(1 + 6ρ + 6ρ2)

100010 ρ2/(1 + 6ρ + 6ρ2)

100001 ρ2/(1 + 6ρ + 6ρ2)

010001 ρ2/(1 + 6ρ + 6ρ2)

001100 ρ2/(1 + 6ρ + 6ρ2)

000101 ρ2/(1 + 6ρ + 6ρ2)

(b) Limiting probabilities of the CSMA CTMC

Fig. 1. Interference graph and limiting probabilities of the corresponding CSMA CTMC. 
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2 Note that in this case all stations will pick a backoff value from the same range, 

and, as a result, all stations will have the same expected countdown time 1/ λ value. 
administrator may simulate and predict the performance. These

tools mostly resort to real time on-site surveys which do not scale

and do not incorporate state-of-the-art advances in the PHY layer. 

3. Modeling of next generation wireless 

In the following sections we construct an analytic model

that captures both PHY and MAC layer characteristics of next-

generation Wi-Fi networks. As is the consensus of both academia

and the industry, we envision dense deployments for meeting

the increasing wireless data needs. We model such deployments

for both state-of-the art and forth-coming technologies. Specifi-

cally, in Subsection 3.1 we describe an analytic approximation for

802.11/CSMA-like scheduling which is the basis of all deployed and

upcoming Wi-Fi architectures. We proceed in Subsection 3.2 where

a short PHY primer is presented along with our assumptions for

the channel modeling. Subsection 3.3 introduces the model for a

single-user beamforming PHY which is the physical layer underly-

ing most current wireless deployments (802.11n and 802.11ac first

stage). In Subsection 3.4 a local MU-MIMO PHY is modeled analyt-

ically using random matrix theory lemmas. MU-MIMO is the tech-

nology adopted from the second wave of 802.11ac deployments,

providing the ability to transmit to multiple users concurrently

from a single AP. Finally, Subsection 3.5 describes a coordinated

MU-MIMO architecture, the next-generation PHY technology that

comes with the promise of mitigating all interference by tightly

coordinating multiple APs and transmissions to users. The Section

concludes with common system parameters used in the verifica-

tion and results sections that follow (see Subsection 3.6 ). 

3.1. CSMA modeling 

Our goal is to deduce an analytically tractable yet reasonably

accurate CSMA model that will be integrated with the PHY layer

modeling presented in Sections 3.3 and 3.5 . With this in mind, we

assume that (i) the transmission and countdown times are expo-

nentially distributed with means 1/ μ and 1/ λ respectively, and (ii)

the medium can be sensed instantaneously, as in [7–10] . 

The first assumption makes the system easy to analyze since it

can be modeled as a Continuous Time Markov Chain (CTMC) and

can be relaxed to milder and more natural system assumptions

without affecting the results, as shown in [8] . The combination of

the first and the second assumption implies that there will be no
ollisions between transmitting stations. 2 Clearly, this might lead

o an overestimation of the throughput of CSMA when the system

pends a sizable time in collisions. However, this won’t be the case

n practical, well-designed topologies as in optimized enterprise

iFi networks. Simulation results in NS-2 [35] validate the accu-

acy of the model despite the assumptions above (see Section 4 ). 

Note that it is possible to incorporate in the model both col-

isions and the binary exponential backoff algorithm along with

on-saturated transmission schedules as has been done in [36] ,

ut this escapes the purpose of this paper. We hasten to mention

hat our goal is not to develop a full model of the CSMA/CA, that

ould lead to non-tractable equations, but rather adopt good as-

umptions that lead to a provably good approximation while al-

owing a seamless integration with an advanced PHY model. Last,

ote that since our CSMA model operates on top of an SINR -based

HY model, we fully model phenomena like hidden terminals and

hannel capture. For example, if a hidden terminal situation arises,

he receiving station will experience high interference and thus a

ow SINR and a very low rate. 

The states of the aforementioned CTMC are all the different fea-

ible transmission patterns for the N s stations ( N a APs plus the

sers). That is, only non-conflicting stations, or, equivalently, inde-

endent sets of stations, can transmit at the same time. The tran-

itions between the different states happen when a station that is

ot conflicting with the stations currently transmitting, gets out of

ountdown and starts transmitting, or when a station finishes its

ransmission. Let m = { m k | k = 1 , . . . , N s } be the binary state vec-

or of the CTMC, where we let m i = 1 if station i is transmitting

nd m i = 0 otherwise. Let M ⊆ { 0 , 1 } N s be the state space of the

TMC. Following a similar approach with prior work, see, for ex-

mple, [8,9] , we compute the limiting stationary distribution of

tate m ∈ M to be: 

m 

= 

ρ‖ m ‖ 1 ∑ 

m 

′ ∈M 

ρ‖ m 

′ ‖ 1 , (1)

here ρ = λ/μ and ‖ · ‖ 1 is the L 1 norm, thus ‖ m ‖ 1 is the num-

er of stations transmitting during state m . 

As an example, in Fig. 1 a we see 6 stations operating on

he same channel and the corresponding contention graph, i.e. a

raph showing the conflicts between stations in our network with

n edge between two stations that cannot transmit concurrently.

here are 13 feasible states for this graph and the probabilities

or each state can be seen in Fig. 1 b. Intuitively, one expects that
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Table 1 

WINNER II parameters ( n w is the number of walls separating the user 

from the AP). 

Scenario A B C X 

Conference Hall 13 .9 64 .4 20 0 

Office floor with rooms (LOS) 18 .7 46 .8 20 0 

Office floor with rooms (NLOS) 36 .8 43 .8 20 5( n w -1) 

Open floor office 13 .9 64 .4 20 0 

Stadium 13 .9 64 .4 20 0 

w  
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arger independent sets are more likely to be scheduled by CSMA,

ince once an station is selected, all sets not containing this sta-

ion will not be scheduled. Indeed, the probabilities in Fig. 1 B are

uch higher for larger independent sets because the transmission

imes are much larger than the countdown times and thus ρ � 1. 3 

s a result, in large networks it is reasonable to take into account

nly states corresponding to maximal independent sets of the in-

erference graph, rather than all feasible states. It should be noted

ere that identifying the maximal independent sets of a graph is

nown to be an NP-complete problem, nevertheless given the spe-

ific characteristics of the interference graphs of CSMA networks

e can successfully run large examples within minutes by using

he algorithm introduced in [37] and recently used in [36] . 

Having computed the fraction of time that the network spends

n each transmission pattern m ∈ M , we next take into account

he throughput resulting from CSMA/CA. To do so, we evaluate the

pectral efficiency achieved for each transmission pattern, average

hese values with respect to the stationary distribution (see Eq. 1 ),

nd multiply the result by the channel bandwidth to obtain the

hroughput in bit/s. 

.2. PHY Primer for next-generation Wi-Fi networks 

OFDM primer. Orthogonal Frequency Division Multiplexing

OFDM) [38] is the preferred PHY layer modulation technique of

odern cellular and WLAN networks. OFDM consists of taking

locks of N coded modulation “frequency domain” symbols and

ransforming them into a block of N “time domain chips” via an

nverse Discrete Fourier Transform (IDFT). Each block of N time-

omain chips is expanded by repeating the last L chips at the be-

inning of the block. This precoding technique, known as Cyclic

refixing (CP), is able to turn the linear convolution of the trans-

itted signal with the channel impulse response into a block-by-

lock cyclic convolution, provided that the length of the multi-

ath channel (in chips) is not larger than L . At the receiver, after

lock timing and carrier frequency synchronization, the CP is re-

oved and a DFT is applied to the resulting blocks of N chips in

rder to recover the N frequency domain symbols. As a result, the

ime-domain multipath channel is transformed into a set of par-

llel frequency-flat channels (referred to as subcarriers) in which

ach frequency-domain symbol experiences only a complex multi-

licative “fading” channel coefficient, corresponding approximately 

o the channel transfer function evaluated at each subcarrier cen-

er frequency (see [39] for a recent accurate and general model of

FDM including also non-ideal transmit/receive effects). 

Small and large scale fading. It is well-known that typical

ireless channels in WLAN environments are slowly-varying in

ime in the order of hundreds of milliseconds [38] . For a sequence

f successive time slots, each one corresponding to a data packet,

he channel coefficients are strongly correlated such that estimates

btained at a given point in time are accurate for a fairly large

umber of time slots. 

Motivated by this, in the following we assume that the

requency-domain channel coefficients are random but constant

ver many data slots, and drop the time index when referring to a

ime slot for the sake of notation simplicity. We shall use index ν
o indicate the OFDM subcarrier index. Hence, the received signal

o a user terminal (UT) k equipped with a single antenna from an

P i equipped with M antennas at any given generic time slot and

FDM subcarrier ν is given by 

 [ ν] = 

√ 

g x i [ ν] H h [ ν] + z [ ν] , (2)
k ik ik k 

3 The increasing data rates of newer standards, e.g. 256-QAM mode of 802.11ac, 

ave reduced the gap between transmission and countdown times. To maintain 

igh efficiency, the new standards have introduced packet aggregation as a means 

o maintain high efficiency by keeping transmission times larger. 

A  

a

a

here h ik [ ν] is an M × 1 vector with Gaussian i.i.d. elements

CN (0 , 1) , 4 representing the channel coefficients between the an-

enna array of AP i and the antenna of UT k , x i [ ν] is a M × 1 vector

ontaining the (frequency-domain) coded modulation symbols sent

y AP i in the downlink, on subcarrier ν , and z k [ ν] represents noise

lus the interference caused by other APs transmitting on the same

ime slot and frequency channel at the receiver of UT k . 

The channel gain, g ik , is a function of the distance, d ik , be-

ween AP i and UT k , the carrier frequency, f c , and other “large-

cale” effects, such as blocking objects, walls and trees. This “large-

cale” channel gain is frequency-flat, i.e., it does not depend on the

ubcarrier index ν , and it is modeled using the widely accepted

INNER-II model [40] . According to this model the pathloss, g ik , is

iven in dB from the formula below: 

 ik [ dB ] = A log 10 (d ik [ m ]) + B + C log 10 ( f c [ GHz] / 5) + X, 

3 ≤ d ik ≤ 100 , 

here A, B, C and X are scenario-dependent parameters. For the

cenarios we consider, the parameters are shown in Table 1 and

an be found in [40] for the corresponding scenarios. 

MIMO primer. Point-to-Point MIMO [41,42] consists of the

echniques of extracting higher capacities from a given wireless

andwidth by adding antennas to the transmitter and receiver.

IMO is ideally suited to work together with OFDM. We describe

he effective channel between a transmitter with M antennas and

 receiver with N r antennas via a set of M × N r channel matri-

es H ik [ ν] for all the subcarriers forming the given system chan-

el. One of the advantages of having multiple transmit/receive an-

ennas is the ability to increase the effective SNR, known as a

ower gain , through techniques such a conjugate beamforming and

aximal ratio combining [38] . In addition, a variety of techniques

nown as spatial precoding [38] enable multiplexing in the spatial

omain, such that the capacity at high SNR is increased by a mul-

iplicative factor up to min ( M, N r ), known as a multiplexing gain . 

For the downlink where N r may be small, a set of techniques

nown as MU-MIMO [43] can be used to attain higher multiplex-

ng gain up to min { M, KN r }, for a system where an AP with M

ntennas serves K UTs with N r antennas each. Since the UTs do

ot cooperate, most MU-MIMO schemes require channel state in-

ormation at the transmitter (CSIT) in order to precode the data

treams. This allows multiple data streams to be simultaneously

ransmitted on the same time-frequency slot, and yet interfere

n a benign and controlled manner at each desired UT by us-

ng precoding schemes such as zero-forcing beamforming (ZFBF)

44] . 

.3. Single-user beamforming 

Without loss of generality, let AP i be active on channel c i ,

nd let ν = 1 , . . . , N denote the corresponding OFDM subcarrier.

ssume that UT k is associated with AP i , i.e., k ∈ S i . The instan-
4 h ∼ CN (0 , 1) indicates a complex circularly symmetric Gaussian random vari- 

ble with mean 0 and variance E [ | h | 2 ] = 1 . This type of small-scale fading is usu- 

lly referred to as Rayleigh fading [38] . 
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taneous peak rate at which AP i can serve user k is given by 

 

m 

ik = m i 

1 

N 

N ∑ 

ν=1 

log 
(
1 + SINR 

m 

ik [ ν] 
)
, (3)

where m denotes the current state of the CMTC (such that this rate

is zero if m i = 0 , i.e., AP i is not in the current active set accord-

ing to the CSMA protocol). The rate C m 

ik 
is measured in bit/s/Hz,

and it is referred to as “instantaneous” since it is a function of the

realization of the fading channel coefficients. The term SINR 

m 

ik 
[ ν]

denotes the Signal to Interference plus Noise Ratio on subcarrier

ν . With single-user beamforming, this is given by 

SINR 

m 

ik [ ν] = 

g ik ‖ h ik [ ν] ‖ 

2 P i 

1 + 

∑ 

j ∈A c i : j � = i m j g jk 
∣∣v H 

j 
[ ν] h jk [ ν] 

∣∣2 
P j 

, (4)

where the set A c i includes the APs assigned to channel c i , P i de-

notes transmit power spectral density (energy per frequency do-

main symbol) of AP i and v H 
i 

[ ν] = h ik [ ν] / ‖ h ik [ ν] ‖ is the unit-norm

transmit beamforming vector of AP i serving user k , according to

the conjugate beamforming scheme. The interfering APs j ∈ A c i use

the same scheme, with a unit vector v j [ ν] that depends on the

channel vector to their own intended user. In the SINR denomina-

tor, the inner product v H 
j 

[ ν] h jk [ ν] corresponds to the “spatial cou-

pling” between the beamforming vector of AP j and the channel

vector from AP j and user k . It is important to note that v j [ ν] and

h jk [ ν] are statistically independent. Thus, v H 
j 

[ ν] h jk [ ν] has the same

distribution as h jk [ ν] since v H 
j 

[ ν] is a unitary vector. On the other

hand, the coupling between the beamforming vector v i [ ν] of AP i

and its intended user channel h ik [ ν] yields v H 
i 

[ ν] h ik [ ν] = ‖ h ik [ ν] ‖
which provides the beamforming gain in the numerator of the

SINR. It follows that 

∣∣∣v H j 
[ ν] h jk [ ν] 

∣∣∣2 

is a chi-squared random vari-

able with 2 degrees of freedom, while ‖ h ik [ ν] ‖ 2 is a chi-squared

random variable with 2 M degrees of freedom. 

In order to obtain simple deterministic analytical formulas for

the rates, we consider that M is large enough such that the effect

of small-scale fading disappears. As a result, the statistical fluctu-

ations of the random quantities around their mean in Eq. (4) are

quite small, see [45] . Motivated by this, we replace ‖ h ik [ ν] ‖ 2 and

| v H 
j 

[ ν] h jk [ ν] | 2 with their expected values, M and 1 respectively.

Thus, the resulting deterministic rate formula for the peak rate is:

 

m 

ik = m i log 

(
1 + 

g ik MP i 
1 + 

∑ 

j ∈A c i : j � = i m j g jk P j 

)
. (5)

With orthogonal downlink multiple access (TDMA) the rate region

for the downlink of AP i for m i = 1 (i.e., in the time slots where AP

i is allowed to transmit because of CSMA/CA) is given by the set of

non-negative rates { R m 

ik 
: k ∈ S i } such that ∑ 

k ∈S i 

R 

m 

ik 

C m 

ik 

≤ 1 . (6)

With proportional fairness downlink resource allocation, the sys-

tem operates at the rate point 

R 

m 

ik = 

m i 

|S i | log 

(
1 + 

g ik MP i 
1 + 

∑ 

j ∈A c i : j � = i m j g jk P j 

)
. (7)

Eventually, the average spectral efficiency of user k ∈ S i when also

averaging with respect to the stationary distribution of the CTMC

that describes the CSMA/CA MAC layer, is given by 

R ik = 

∑ 

m ∈M 

πm 

· R 

m 

ik . (8)

In order to convert this number in the more usual average

throughput in bit/s, it is sufficient to multiply R by the chan-
ik 
el bandwidth W c i (measured in Hz) of the channel c i allocated to

P i . 

Once the user spectral efficiencies R ik are determined, we can

resent the results in terms of the throughput CDF for a given

lacement of the APs and of the UTs, pathloss realization, chan-

el allocation and user-AP association. Letting T ik = W c i R ik denote

ser k average throughput in bit/s, the throughput CDF over the

ser population is given by 

 T (r) = 

1 ∑ 

i |S i | 
∑ 

i,k 

1 { T ik ≤r } . (9)

t follows that F T ( r ) indicates the fraction of users with throughput

ess or equal to some number r . 

.4. Local MU-MIMO 

We now consider the case where each AP i implements MU-

IMO in order to serve its associated users k ∈ S i . This scheme

s inspired by the MU-MIMO mode of 802.11ac [46] . We denote

his scheme as “local” MU-MIMO in order to stress the difference

ith respect to a coordinated MU-MIMO approach that shall be

reated in the next section, and may be regarded as a future trend

f WLANs and small cell networks. The main modeling difficulty

ere is represented by the fact that AP i can simultaneously serve

 subset of users of size not larger than min { M, |S i |} . Consistent

ith the 802.11ac standard [46] , we consider MU-MIMO based on

FBF. 

Let ̂ S i ⊆ S i denote the subset of users to be served on a given

ime slot in MU-MIMO mode, and let S i = | ̂  S i | indicate its size.

he M × 1 channels of users k ∈ 

̂ S i are assumed to be known at

he AP i transmitter through some form of channel state feed-

ack (e.g., as specified in the 802.11ac standard). Such channel

ectors are collected as the columns of a M × S i channel matrix

 i [ ν] = [ h i 1 [ ν] , . . . , h ik [ ν]] , for all the subcarriers ν forming chan-

el c i , as defined before. The ZFBF precoded signal vector on sub-

arrier ν is given by x i [ ν] = V i [ ν] u i [ ν] , where u i [ ν] is a S i × 1 col-

mn vector of frequency-domain coded modulation symbols to be

ent to users k ∈ 

̂ S i and V i [ ν] is the ZFBF precoding matrix, of di-

ension M × S i , given by 

 i [ ν] = H i [ ν] 
(
H 

H 
i [ ν] H i [ ν] 

)−1 
�1 / 2 

i 
[ ν] , (10)

here �i [ ν] is a column-normalizing diagonal matrix included

n order to preserve the total AP transmit power. In partic-

lar, the k -th diagonal element of �i [ ν] is given by ξik [ ν] =
 / [(H 

H 
i 

[ ν] H i [ ν]) −1 ] kk where [ · ] kk denotes the k -th diagonal el-

ment of the matrix argument. Using the fact that V 

H 
i 

[ ν] H i [ ν] =
1 / 2 
i 

[ ν] and letting λik [ ν] = g ik ξik [ ν] denote the effective channel

oefficient including the large-scale gain from Eq. (2) , the signal

eceived at UT k takes on the form 

 k [ ν] = 

√ 

g ik u i [ ν] H V 

H 
i [ ν] h ik [ ν] + z k [ ν] 

= 

√ 

λik [ ν] u ik [ ν] + z k [ ν] , (11)

hich illustrates that the multi-access interference from signals

enerated by AP i and sent to the other users k ′ ∈ 

̂ S i with k ′ � =
 is completely eliminated by ZFBF precoding. 

Based on the effective channel (11) , we have that the instanta-

eous user rate takes on the same form (3) with a different ex-

ression of SINR 

m 

ik 
[ ν] . In particular, in the case of local MU-MIMO

ith ZFBF precoding this is given by 

INR 

m 

ik [ ν] = 

λik [ ν] P i /S i 

1 + 

∑ 

j ∈A c i : j � = i m j g jk ‖ V 

H 
j 
[ ν] h jk [ ν] ‖ 

2 P j /S j 
, (12)

here we have assumed (for the sake of simplicity) uniform power

llocation over the downlink data streams, i.e., each user gets 1/ S i 
f the total AP transmit power. 
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A major difficulty here is represented by the fact that the co-

fficient λik [ ν] depends on the channel matrix through the whole

elected group of users ̂ S i , which means that the individual user

ates do not “decouple”: for finite dimension, we need to calculate

he rates for all the G i = 

(|S i | 
S i 

)
possible groups. In order to alleviate

his problem and obtain a “decoupled” rate expression, we resort

o asymptotic formulas. With this in mind, we consider the regime

here both M and S i become large while keeping the ratio S i / M ≤
 and fixed. Specifically, we scale all channel coefficients by 1 / 

√ 

M

nd multiply the transmit power by a factor M , which yields 

ik [ ν] → [1 − (S i − 1) /M] · g ik , 

nd 

 V 

H 
j [ ν] h jk [ ν] ‖ 

2 → 

1 

M 

tr (V 

H 
j [ ν] V j [ ν]) = 

S j 

M 

, 

here the asymptotic convergence follows from the trace lemma

f random matrices (see [47] Theorem 3.4, as well as [15,4 8,4 9] for

imilar asymptotic approaches). 

With these limits, we obtain the SINR deterministic approxima-

ion (which becomes exact in the large-system regime) 

INR 

m 

ik → 

(M − S i + 1) g ik P i /S i 
1 + 

∑ 

j ∈A c i : j � = i m j g jk P j 
. (13) 

otice that, as in the case of single-user beamforming, this limit

oes not depend on the subcarrier index ν any longer. Also, for

he sake of consistency, it is interesting to notice that for S i = 1 we

ecover the expression for single user conjugate beamforming 

Under this approximation, the vector of user rates for a given

ctive group of users ̂ S i ⊆ S i is given by 

 

m 

ik ( ̂
 S i ) = 

{
0 for k ∈ S i − ̂ S i 
m i log 

(
1 + SINR 

m 

ik 

)
for k ∈ 

̂ S i . 
(14) 

The achievable rate region in the case of local MU-MIMO is sig-

ificantly more complicated to express than for the case of single-

ser beamforming with downlink orthogonal access. In this case,

ny group of users ̂ S i ⊆ S i with size S i ≤ M can be scheduled in

he downlink. The individual average rate of user k is the convex

ombination of the rates achieved in each group, where the con-

ex combination coefficients depend on the downlink scheduling

cheme. In particular, we can order the groups ̂ S i ⊆ S i of size S i ≤
 in lexicographic order. Let C 

m 

i 
( ̂  S i ) denote the 1 × |S i | row vector

f user rates given in (14) , and let C 

m (S i ) denote the G i × |S i | ma-

rix obtained by stacking all the group rate rows on top of each

ther in the same group lexicographic order. Define the 1 × |S i |
ate vectors R 

m 

i 
with components R m 

ik 
for all users k ∈ S i . The rate

egion obtained by applying TDMA downlink scheduling on top of

U-MIMO for each AP i is given by the union of all points R 

m 

i 
sat-

sfying 

 

m 

i ≤ ρT C 

m (S i ) (15) 

or some non-negative time-sharing vector ρ of dimension G i × 1,

ith components satisfying 
∑ 

k ∈S i ρk = 1 . Notice also that this re-

ion generalizes the single-user beamforming TDMA region, since

n this case we have only |S i | possible groups of size 1, and com-

ining the inequalities R m 

ik 
≤ ρk C 

m 

ik 
with 

∑ 

k ∈S i ρk = 1 yields again

q. (6) . 

Focusing on proportional fairness downlink resource allocation,

he AP gives to each user k ∈ S i equal air time, such that the user

ates are given by 

 

m 

ik = m i 

S i 
|S i | log 

(
1 + SINR 

m 

ik 

)
. (16) 

he number of downlink streams S i may be fixed by some tech-

ology constraints (e.g., by the number of data streams that the

P chipset is able to precode), or it may be optimized for each AP,
ubject to the constraint S i ≤ min { M, |S i |} . In this work, the latter

as chosen as we maximize the sum-rate that every AP serves its

sers individually for every AP. 

As before, the average user rate over all possible states of the

SMA/CA CTMC is given by using Eq. (16) in (8) . From the resulting

verage rates { R ik }, the throughput CDF can be obtained via Eq. (9) .

.5. Coordinated MU-MIMO 

In this case we assume that all APs that operate in the same

hannel cooperate and act as a single virtual mega AP (no con-

ention between the APs for the wireless medium). Therefore, the

hannel index is not necessary and is dropped for notation sim-

licity. 

Assume that B APs with M antennas each form a cluster, pool-

ng together all their BM antennas, and collectively serve the popu-

ation of K UTs with a single antenna each. This type of coordinated

U-MIMO configuration has been widely studied as far as the PHY

lgorithms and the achievable rates from a communication theo-

etic viewpoint are concerned (see for example prior work of ours

15,16,39] and others [22,50] ). Recently, experimental results with

uch systems have been published (see for example our own prior

ork [3] as well as work from others [4,51] ). As before, we wish

o characterize the rate per user in which a subset ̂ S of size S ≤
in { K, BM } of users is served simultaneously by the coordinated

U-MIMO scheme. We shall then apply a TDMA scheduling over

he user subsets in order to obtain a desired throughput K -tuple

atisfying some required fairness criterion. 

As far as the PHY schemes and corresponding performance are

oncerned, the analysis of coordinated MU-MIMO is significantly

ore involved than the previously treated cases because the chan-

el vectors from all the AP antennas to any given user are not i.i.d.

iven the pathloss. In fact, letting g ik denote again the channel gain

oefficient from AP i to user k and letting h ik [ ν] denote the chan-

el small fading coefficient, we have that the composite channel

ector is given by 

 k [ ν] = 

[√ 

g 1 k h 1 k [ ν] , 
√ 

g 2 k h 2 k [ ν] , . . . , 
√ 

g Bk h Bk [ ν] 
]
 

. 

or a certain set of ̂ S = { 1 , . . . , S} users to be served, the resulting

M × S channel matrix takes on the form 

 [ ν] = 

⎡ ⎢ ⎢ ⎣ 

√ 

g 11 h 11 [ ν] 
√ 

g 12 h 12 [ ν] · · · √ 

g 1 S h 1 S [ ν] √ 

g 21 h 21 [ ν] 
√ 

g 22 h 22 [ ν] · · · √ 

g 2 S h 2 S [ ν] 
. . . 

. . . √ 

g B 1 h B 1 [ ν] 
√ 

g B 2 h B 2 [ ν] · · · √ 

g BS h BS [ ν] 

⎤ ⎥ ⎥ ⎦ 

, 

here the effective channel coefficient λk for user k ∈ 

̂ S under

oint ZFBF from all the B APs is given by 

k [ ν] = 1 / [(H 

H [ ν] H [ ν]) −1 ] k,k 

nd the SINR is given by 

INR k [ ν] = λk [ ν] 
P sum 

S 
, (17)

here we define the sum power of all APs in the cluster as P sum 

=
 B 
i =1 P i and assume equal power allocation on all downlink data

treams. Note that since all APs operate as a single virtual mega

P, there is no interference between APs and thus there is no in-

erference term in the SINR above. 

The problem is that now the structure of the channel matrix

epends on the actual set of users ̂ S being served. Hence, even

sing asymptotic formulas from random matrix theory, we should

valuate rates for each set of 
(

K 
S 

)
users, for S = 1 , . . . , min { K, BM} .

ith coordinated MU-MIMO, relevant numbers are (for example)

 = 100 , M = 4 and B = 16 . Clearly even enumerating all the pos-

ible active user subsets ̂ S is difficult. 
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Inspired by prior work of ours [15] we propose the following

simplification: Under certain symmetry conditions in the pathloss

coefficients, the effective channel coefficient λk [ ν] for user k under

joint ZFBF from all the B APs, in the limit for large M and large S

with fixed ratio M / S , asymptotically takes on the form: 

λk [ ν] → [1 − (S − 1) / (BM)] ·
B ∑ 

i =1 

g ik . 

Once more, the limiting expression does not depend on the subcar-

rier index any longer. We use the above expression as an approx-

imation of the ZFBF effective channel coefficients for general co-

ordinated MU-MIMO. This has the following appealing interpreta-

tion: the coordinated MU-MIMO scheme behaves as a local MIMO

system with pathloss coefficients equal to the sum of the pathloss

coefficients and the total number of antennas (the number of an-

tennas of all coordinated APs in the cluster). Thus, we obtain the

(approximated) user downlink rate as: 

 k = 

{
0 , k ∈ S − ̂ S 
log 

(
1 + 

(
M − S−1 

B 

)(∑ B 
i =1 g ik 

)
P sum 

S 

)
, k ∈ 

̂ S . (18)

Notice that this is the effective performance of a virtual local MU-

MIMO system with “resource pooling”, with M effective antennas,

effective load (number of active users per antenna) equal to S / B ,

effective channel gains g k = 

∑ B 
i =1 g ik and effective power P sum 

. No-

tice also that for B = 1 the above formula coincides with the case

developed for local MU-MIMO in the absence of inter-AP interfer-

ence. 

3.6. System level parameters 

Frequency reuse/channel assignment. In our numerical ex-

amples, we have assumed that the system has 80 MHz of to-

tal bandwidth that can be partitioned into 20 MHz or 40 MHz

non-overlapping channels or a single 80 MHz channel, with ref-

erence to the 802.11 2.4 GHz band and the 802.11ac revision [46] .

Each AP is active on one of the system channels. The same chan-

nel can be allocated to multiple APs according to some suitable

spatial frequency reuse scheme. The allocation of channels to APs

is, in general, a hard problem. In this work, we have adopted a

one-pass, greedy algorithm. APs are ordered according to a ran-

dom sorting permutation π and choose their channel sequentially,

such that AP π ( i ) makes its choice at step i and chooses channel

c π(i ) ∈ C where C is the set of available system channels (num-

bered as 1 . . . |C| ). The channel choice is made according to the

rule: c π(i ) = arg min c∈C { ∑ 

j <i : π( j ) ∈ A c (i ) I 
c 
π(i ) ,π ( j) 

} where I c �,r denotes

the interference power received by AP � from AP r in channel c ,

and A c (i ) denotes the set of APs already assigned to channel c at

step i of the assignment procedure. 

User-AP association. The simplest, most widely used user-AP

association algorithm connects each user to the AP with the high-

est Received Signal Strength Indication (RSSI). This solution does

not take into account load balancing; some APs may be cluttered

by a lot of users while others may be left almost idle. The typical

industry solution to this problem is to force a new user to switch

to another AP if the AP with the strongest RSSI has too many users

[1] . 

The AP association and load balancing issue are relatively well-

studied problems in academia, see, for example, [52–54] . In our

examples (see Section 5 ), we have considered a heuristic user-

P assignment scheme aimed at improving the system fairness.

Inspired by the work in [55] , we allocate users based on “avail-

able capacity”. A central controller orders the users according to

a sorting random permutation π ′ and associates each user se-

quentially to the AP that offers the largest available capacity. In

particular, the association algorithm starts by assigning to all APs
 = 1 , . . . , N a an empty set S i = ∅ of associated users. Then, at step

 , user π ′ ( k ) is added to the set S i k if i k is the AP index satis-

ying i k = arg max i =1 , ... ,N a 

C 
i,π ′ (k ) 

|S i ∪{ π ′ (k ) }| , where C i, k denotes the peak

ate of the link from AP i to user k (as estimated from Eqs. (5) ,

14) and (18) ). The association ends when all users have been as-

igned. Notice that we use the ratio 
C 

i,π ′ (k ) 

|S i ∪{ π ′ (k ) }| as a proxy of the

verage throughput that user π ′ ( k ) can get from AP i . This is moti-

ated by the fact that, under proportional fairness scheduling, each

P allocates its downlink channel resource in equal proportion to

ts users. 

Note that while the channel allocation and user-AP association

chemes adopted in this paper are sensible approaches, they do

ot correspond necessarily to optimal strategies. Nevertheless, the

urpose of this paper is not that of proposing system optimiza-

ion strategies, rather, our focus is to develop a general analytical

odel which works irrespectively of the specific channel allocation

nd user-AP association scheme and can be used to enable such a

ystem optimization. 

Coordinated MU-MIMO clusterization. For a network with N a 

Ps, letting B = N a with coordinated MU-MIMO yields that the

hole network corresponds to a single coordination cluster. In

ractice, this may be too constraining since other system limitation

spects arise in coordinated MU-MIMO architectures. For example,

ince all user data need to be precoded jointly from all the coor-

inated APs in the cluster, eventually the wired backbone network

onnecting the APs will become the system bottleneck. Here we

re not concerned with such practical implementation problems of

oordinated MU-MIMO, but for the sake of generality we wish to

ake into account the case where the network is split into multi-

le coordination clusters. In particular, in some numerical results

e consider the case where the network is split into 4 clusters,

ach of which with B = N a / 4 APs, and operating on a different 20

Hz channel, such that there is no inter-cluster interference. In

his case, the same formula (18) applies, where we restrict the ac-

ive user set ˜ S to be a subset of the users assigned to the given

luster. Similarly, we can cluster the APs in 2 clusters assigning the

wo 40 MHz non-overlapping channels to each one. User-cluster

ssociation can be done through a greedy scheme similar to what

e have seen before for the user-AP association. Finally, a larger

umber of clusters can be chosen, and then inter-cluster interfer-

nce has to be accounted for. 

As with the single-user beamforming and local MU-MIMO sys-

ems, for coordinated MU-MIMO we are interested in the per-user

ownlink throughput under proportional fairness scheduling. Let-

ing S denote the number of users simultaneously served by the

luster of APs and assuming that users are given equal air time,

e have that each user k is served for a fraction of time equal to
S 
K . Hence, the proportional fairness scheduler with equal power per

tream yields throughput 

 k = 

S 

K 

log 

( 

1 + 

(
M − S − 1 

B 

)( 

B ∑ 

i =1 

g ik 

) 

P sum 

S 

) 

. (19)

hese rates can be maximized with respect to the size of the active

ser set S = 1 , 2 , . . . , min { K, BM} . From the resulting average rates

 R ik }, the throughput CDF can be obtained again via Eq. (9) . 

. Model validation 

We will proceed with the validation of our model in two steps.

irst, we will evaluate the accuracy of the analytic PHY models us-

ng a custom Monte Carlo simulator implemented in Matlab, and

hen the accuracy of the MAC model (CSMA CTMC) using NS-2

35] . Notice that no open-source 3rd party simulator supports the

dvanced PHY layer schemes that we consider, and thus this two
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5 Notice that the specific data rate does not impact the verification procedure 

since NS-2 is used only to verify the relative air-time between APs. Therefore, even 

in higher data rates, since the transmition simulated is a UDP flow of an infinite 

packet at a constant bit rate, the relative airtimes would remain the same. The 

choice of the 11 Mbps data rate comes from the fact that NS-2 models up to 802.11b 

transmit rates. 
tep validation process is required to validate our model in its en-

irety. 

As an example, consider Eq. (8) which gives the rate of a user

nder single-user beamforming. This equation uses the rates com-

uted in (7) and the stationary distribution of the CSMA CTMC

omputed in (1) . In the first step of the validation process we will

se our custom simulator to verify the accuracy of Eq. (7) , and,

n the second step we will use NS-2 to validate Eq. (1) . A similar

rocess is used for the cases of local MU-MIMO and coordinated

U-MIMO, where in the former case the user rates are given by

16) and in the later by (19) . 

We start with the first step of the validation process, namely

he validation of Eqs. (7) , (16) , and (19) . In all three cases, we

ompare the distribution of the average per-user rates as com-

uted by the model and by our simulation for some representa-

ive tractable scenarios of interest, namely an open conference hall

see Section 5.2 ) and an office with rooms (see Section 5.4 ). We

tilize the same user locations for both the analytic and simula-

ion results, which are illustrated in Fig. 5 a and c. For the scenarios

hich require APs to use orthogonal channels, the channel selec-

ion is performed as in Section 3.6 , where 4 channels of 20MHz

ach are shared among the APs. Lastly, the user-AP association is

erformed as in Section 3.6 as well. 

Our custom Monte Carlo simulator proceeds as follows. For

ach topology scenario it creates a large number of channel in-

tantiations. Then, for a particular channel realization, it computes

he received signal power and the received interference power

or each user, calculates the SINR of each user under that chan-

el realization, and computes the corresponding (Gaussian) user

ates. Finally, it calculates the average achievable rate for each user

cross all the channel realizations and the empirical CDF of user

ates. It is important to note that the instantaneous SINR values

re computed using a different formula by the Monte Carlo sim-

lator depending on the PHY model. For single-user beamform-

ng we use (4) , for local MU-MIMO (12) , and for coordinated MU-

IMO (17) (and variations to take into consideration different clus-

er sizes). 

For the SU-MISO simulations, each transmitter transmits to a

andom user located within its cell on each iteration. The trans-

itters are assumed to have channel state information, and thus

eamform to their selected user. Physically adjacent APs operate

n separate channels, such that users experience interference only

rom non-neighbor APs transmitting on the same frequency. Each

P transmits with power P = 90 dB above the noise floor, and at a

andwidth of 20 MHz. Including pathloss, the users receive their

espective signals at typical Wi-Fi SNRs in the range of roughly 0–

0 dB. 

In the case of the 802.11ac-like approach, APs retain the same

hannel allocation as in the SU-MISO simulations, such that neigh-

oring APs operate on different frequencies. Instead of transmitting

o a single user, however, they beamform to a random subset of

he users in each cell using ZFBF. Based on simulation trials, we

etermined the optimal number of users (on average) to serve si-

ultaneously in each cell, which was typically 2 or 3. Again, each

P transmits with power P = 90 dB above the noise floor at a band-

idth of 20 MHz. 

The coordinated MIMO simulations utilize a clustering approach

n which groups of 5 APs achieve sufficient synchronization such

hat they act as a single 20-antenna AP. In this case, all interference

s nulled within a given cluster, and each cluster is assigned to a

hannel as in the previous two simulations. We assume that the

Ps pool their power, such that total transmit power is ∼ 97 dB

ithin each cluster. This simplifies the treatment of the precoder

alculation, but it may allow individual APs to transmit higher than

0 dB power above the noise floor. In practice, we would need to

tilize results on ZFBF under per-antenna power constraints [56] ,
hough we avoid this issue since it is not treated in the model.

s in the previous simulations, each cluster occupies 20 MHz of

andwidth. 

Figs. 2 and 3 display the CDFs of the average per-user rates

or the simulations and the models. Although the analytic mod-

ls make a number of assumptions, for example, in the single-

ser beamforming case that the number of antennas M per AP

s large, in the local MU-MIMO case that the number of anten-

as and users per AP is large, and in the coordinated MU-MIMO

ase that, in addition, there is a specific geometric symmetry in

he topology, we see that analytical results track closely the Monte

arlo simulations. We should note that specifically for the coordi-

ated MU-MIMO case, the extra symmetric condition assumption

hat was necessary in order to break the dependence from the ran-

om channel coefficients, produces a larger gap between analytic

nd simulated results compared to the other results. The analytic

esults still, nevertheless, tracks with satisfying approximation the

DF of the simulation results. We have produced similar validation

esults for a variety of user and AP placements along with user-AP

ssociation schemes and varying AP numbers. 

Lastly, we proceed to the second step of the validation process

nd evaluate the accuracy of the CSMA CTMC model used in this

ork for the open conference hall scenario depicted in Fig. 5 a us-

ng NS-2 [35] . We want to compute the relative airtime of each

P, taking into account contention from other stations (APs and

sers). We assume a ratio of 90/10 for downlink and uplink traf-

c. This decision is motivated by the fact that the traffic patterns

f enterprise WiFi deployments like the ones examined here are

eavily asymmetric with the majority of the traffic being down-

ink, forcing network planners to give high priority to APs during

ontention to avoid congestion and packet losses (see [57] and ref-

rences therein). 

Stations form a contention graph by setting an SINR threshold

elow which the interference is treated as noise. (This is known

s the Clear Channel Assessment (CCA) threshold.) Stations in the

ensing range of each other that operate on the same channel can-

ot transmit concurrently, due to the CSMA/CA algorithm and thus

hey share a link in the contention graph. 

In order to infer the APs relative airtime in NS-2, an 802.11

cenario is constructed where every AP and transmitting UL user

s to transmit a UDP stream with constant bit rate (CBR) traffic

f 7 Mbps. At the MAC layer, the maximum data rate was set to

1 Mbps 5 , the ACKs and other control messages are transmitted

s usual at the base rate of 1 Mbps, and the carrier sensing and

eceiving thresholds were arranged so that the same interference

raph resulted for both the simulation and the CTMC model. Due

o PHY and MAC overhead, e.g. airtime consumed by ACKs, NS-2

ields an effective rate of 5.3 Mbps when every station is trans-

itting in isolation. Thus, by simulating the achievable goodput

nder saturation conditions when all stations are transmitting, we

an estimate the relative airtime of each AP. The results can been

een in Fig. 4 a and b for 16 and 20 APs respectively all operating

t the same channel. In the same figure, error bars indicating two

tandard deviation intervals are plotted from the measurements

oming from different possible UL traffic scenarios (placement of

sers). As can be seen the analytic model closely tracks the NS-2

elative airtime allocations with their difference being mostly be-

ow 15%. (There are occasions where larger deviations are noticed,

or example for a couple of APs in the 20 APs scenario, but even in
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Fig. 2. CDFs of the user rate for the analytic model vs. simulation for the conference hall scenario. 
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Fig. 3. CDFs of the user rate for the analytic model vs. simulation for the office floor scenario. 
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Fig. 4. NS-2 and analytic relative airtime allocations validation plots for the conference room scenario. 
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these cases the difference between the corresponding probabilities

is rather small.) Note that a similar CTMC CSMA model has been

validated under small scale scenarios in [8] . 

The formulas used in our Monte Carlo simulations (e.g. Eqs. (4) ,

(12) and (17) ) are stochastic formulas which depend on the chan-

nel realization and thus computing rates via them requires quite a

bit of computational power. In contrast, the obtained deterministic

formulas of our analytical model, e.g. Eq. (13) in place of (12) , re-

quire far less computational power. For example, for the stadium

scenario of Section 5.5 (500 APs and 20 0 0 0 users), a Monte Carlo

simulation for a single instantiation takes roughly an hour to run

on a dual-core Intel i3 3.2GHz processor, compared to less than

a second for the analytic computation. Moreover, NS-2 can’t even

handle such a large scale scenario. For a moderate scale scenario

with, say, 100 APs, it takes NS-2 15 min to run a 2 min simulation

interval whereas it takes a few seconds to compute the maximal

independent sets and the associated stationary distribution of the

CTMC. Taking into account that in an optimization setting multiple

setups would have to be evaluated in terms of user/AP associa-

tion, number of APs, transmit power of APs etc., it becomes appar-

ent that the analytical model is the only practical way to proceed.
 o  
hat is more, the analytical model can also capture network dy-

amics, e.g. due to the mobility of nomadic users, in the sense that

ts runtime is orders of magnitude faster than the rate of change

f such dynamics. 

. Network performance under practical scenarios 

In the following section, results and insights from the applica-

ion of the analytic model in various practical scenarios will be

resented. Most of these results would be practically intractable

o run using Monte Carlo and NS-2 simulation as noted earlier. 

.1. OFDM and MCS overhead 

We discuss the rate degradation from having actual quan-

ized rates based on the 802.11 standard’s Modulation and Coding

chemes (MCS) along with the overhead incurred by OFDM. There

re of course other sources of overhead as well, e.g. the CSMA

verhead included in our model already (see Section 3.1 ), and the

verhead to collect channel state information and/or coordinate
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(a) Conference hall with 20 APs
and 200 users.

(b) Open-floor office building with
20 APs and 200 users.

(c) Office building with rooms with
20 APs and 200 users. (d) Stadium scenario with 200 APs

and 20000 users.

Fig. 5. AP placement, channel allocation and user-to-AP assignment for the scenarios examined. In the figures users are dots and APs are squares. The 4 different colors 

account for the 4 non-overlapping channels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Modulation/Coding pairs from IEEE 802.11ac and the correspond- 

ing SINRs at which they can be selected. 

802 .11ac MCS index Modulation Code rate SNR 

0 BPSK 1/2 ≥ 2 dB 

1 QPSK 1/2 ≥ 5 dB 

2 QPSK 3/4 ≥ 8 dB 

3 16-QAM 1/2 ≥ 12 dB 

4 16-QAM 3/4 ≥ 15 dB 

5 64-QAM 2/3 ≥ 18 dB 

6 64-QAM 3/4 ≥ 21 dB 

7 64-QAM 5/6 ≥ 24 dB 

8 256-QAM 3/4 ≥ 27 dB 
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6 To examine the network performance for a wide range of parameter values, 

e.g. number of APs, we will be reporting averages, e.g. average throughput, and, at 

times, variances and Jain’s fairness index [58] , rather than showing the complete 

CDF as we did in Figs. 2 and 3 . 
emote APs in the context of coordinated MU-MIMO which will be

iscussed later (see Section 5.6 ). 

Starting from the OFDM overhead we note that based on the

02.11ac standard [46] for channels of 20 MHz bandwidth, only 52

f the 64 subcarriers carry data (the rest are devoted to pilots or

re nulled). For 40 MHz and 80 MHz channels the corresponding

umbers are 108 out of 128 subcarriers, and 234 out of 256 sub-

arriers respectively (notice that these overheads slightly vary for

02.11n and 802.11ac, the numbers of the latter are adopted for

easons of simplicity). Finally, the OFDM Cyclic Prefix (CP) is in-

luded in the Guard Interval (GI) that is prepended to every OFDM

ymbol for a total overhead of an extra 20% (assuming a normal GI

f 0.8 μ s with total symbol duration of 4 μ s). 

As a more realistic approach to the rate calculation, we map

he received SINRs into a discrete set of modulation and coding

airs. While we acknowledge that choosing the best among sev-

ral discrete modulation and coding options (known as rate adap-

ation) is non-trivial, for the sake of simplicity we assume that we

an choose the best scheme based on the received SINR. Table 2

rovides one such mapping that corresponds to the 9 mandatory

CSs of 802.11ac [46] , keeping in mind that mappings vary by ven-

or or may be dynamically chosen in practical scenarios. 

The scenarios presented in the rest of the section cover typical

et interesting cases of WiFi deployments, along with more chal-

enging situations. Specifically: i) a densely populated conference

all, ii) an open-floor plan office space, iii) an office building floor

ith separated rooms and iv) an event stadium with high capacity.

or all scenarios 4 antennas per AP are assumed (the maximum

umber allowed by the 802.11n standard and supported by most

02.11ac implementations to date) and the UTs are equipped with

 antenna, as is the typical case for handheld devices. 
.2. Conference hall 

A conference hall of dimension 20 m ×20 m with 200 users and

 varying number of APs placed in a canonical fashion (see Fig. 5 a)

s examined. Fig. 6 a plots the average throughput per user against

he number of APs. 6 It is obvious that in this scenario, a coor-

inated solution where interference is suppressed through the co-

rdinated MU-MIMO system is highly favorable. As the number of

Ps increases, the average user throughput increases for the coor-

inated MU-MIMO technology. The greatest gains come if we uti-

ize the whole bandwidth as a single channel and let both APs and

ser receivers transmit and receive in the whole 80 MHz band.

evertheless, even in the case where we cluster neighboring APs

o act as a single AP, assign a 20 MHz channel to each cluster, and

ssign each user to a single cluster (see Section 3.5 ) the gains are

till enormous compared to the non-coordinated technologies. It

s worth noting that in these scenario, due to the symmetry of the

ser and AP placement the standard deviation between the achiev-

ble rates of different users is very small, giving a variance coef-

cient (standard deviation over the mean) lower than 0.3 and a

ain’s fairness index greater than 95% implying a rather fair rate

llocation. 

It is notable that even under the idealized CSMA scenario

here collisions are assumed to be insignificant, the throughputs

f 802.11n SU-MISO and 802.11ac MU-MIMO are quickly saturated.

hus, increasing the number of APs does not provide any extra

ains as can be seen in Fig. 6 b. Also, the small gains in the figure

hat different channelization options produce to non-coordinated

ystems under a strict CCA threshold are due to the reduced OFDM

verheads when a smaller number of larger channels is used (see

ection 5.1 ). Notice that this is only true under the assumption of

o collisions. 

CSMA impact as number of APs increases: In Fig. 6 b and c

e see the average per user throughput for different channeliza-

ion options for the case of CSMA with the default CCA thresh-

ld of 10 dB above the noise floor and an unbounded CCA thresh-

ld (no CSMA present). It is worthwhile to notice that 802.11ac

U-MIMO, being more susceptible to interference, performs sig-

ificantly worse under the regime of no CSMA. It performs similar

o 802.11n’s robust conjugate beamforming gains as the number

f interferers grows ( Fig. 6 c). Indeed, in this interference limited

egime, the MU-MIMO system selects only one user to be served
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Fig. 6. Average throughput per user in a conference hall with 200 users varying CCA thresholds and 90 dB transmit power. 
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Fig. 8. User/AP association metrics comparison for a conference hall with 200 users 

and 20 APs. 

 

c  

p  

e  

f  

u  

f  

c  

t  

p  

g  

g  

A  

d  

f  

f  

g  
at a time, reverting to a SU- MISO scheme. On the other hand, as

can be seen in Fig. 6 b, using CSMA random access clearly benefits

the MU-MIMO scheme as the multiplexing gains are larger. Finally,

in terms of fairness between the users, when CSMA is turned off,

as the number of APs grows, only a few users manage to have a

measurable service rate and thus fairness degrades, and the vari-

ance coefficient of the user rates distribution grows to values larger

than 1. 

CCA threshold and power control: Fig. 7 a and b show the

change in the average user throughput as power increases and the

CCA (Clear Channel Assessment) threshold is changed for 802.11n

SU-MISO and 802.11ac MU-MIMO. For this optimization, Gaussian

rates have been assumed instead of the discretized rate allocation

we introduced. Also, a 4 channel system with 20 MHz per channel

and 20 APs serving 200 users is assumed for these computations.

We can see from these plots that SU-MISO is more robust to inter-

ference as the power of all APs increases, whereas for MU-MIMO to

perform with a noticeable multiplexing gain a lower CCA thresh-

old has to be chosen. In Fig. 7 c we see the optimal CCA thresh-

old for a range of transmit powers from 60 to 120 dB for the two

non-coordinated technologies. Notice that thanks to the model we

have introduced, such an optimization can be quickly performed

and trade-offs can be efficiently explored. 

User/AP association: In Fig. 8 we compare the throughput gains

of different user/AP association schemes. For the purposes of this

simulation a non-uniform user distribution (according to which

users were concentrated towards the one half of the floor plan)

was selected in order to exemplify the merits of different associa-

tion schemes. We compare the simple high RSSI scheme with the

“available capacity” scheme, introduced in Section 3.6 . The gains

of a more sophisticated association metric are pronounced in non-

uniform user distributions. Specifically, for the SU-MISO case gains

of 53% are realized whereas for the MU-MIMO and the coordinated

MU-MIMO schemes the gains are 77% and 24% respectively. 
Sectorization gains: In the previous results we saw that the

oordinated MU-MIMO technology significantly outperforms the

resented non-coordinated schemes that quickly become interfer-

nce limited as the number of APs grows. To mitigate the inter-

erence between APs that operate on the same channel we can

se a sectorized deployment. Such deployments can commonly be

ound in cellular networks, where the antennas used have a sub-

ircular sector shaped radiation pattern [59] , and simplified varia-

ions are slowly making their appearance in enterprise WiFi de-

loyments. We present here a simple scheme to illustrate the

ains of mitigating the interference for non-coordinated technolo-

ies with such an approach. We shape the radiation patterns of all

Ps in the conference hall topology ( Fig. 5 a) such that they only ra-

iate energy to a 90 o sector, oriented towards the same direction

or all APs. This simple approach significantly improves the per-

ormance of SU-MISO 802.11n and MU-MIMO 802.11ac technolo-

ies as can be seen in Fig. 9 , by a factor of 3x and 7x respectively.



A. Michaloliakos et al. / Computer Networks 105 (2016) 150–165 161 

0 10 20 30 40
0

10

20

30

40

50

Number of APs

A
V

G
. T

hr
ou

gh
pu

t p
er

 u
se

r 
[M

bp
s]

802.11n SU−MIMO 4 ch.
802.11n SU−MIMO 4 ch. 90° sectors
802.11ac MU−MIMO 4 ch.
802.11ac MU−MIMO 4 ch. 90° sectors
Dist. MU−MIMO 4 clusters

Fig. 9. Average throughput per user in a conference hall with and without sector- 

ization with transmit power of 90 dB and no CCA. 

N  

t  

s  

d  

t  

t  

o

5

 

t  

e  

i  

s  

i  

t  

c  

a  

t  

b  

s  

F  

t  

c  

w  

n  

r  

i

 

r  

A  

m  

t  

a  

t  

i  

r  

g  

i  

c  

l  

a  

s

5

 

c  

T  

a  

fi  

b  

p  

s

 

s  

d  

i  

a  

t  

p  

w  

M

 

b  

a  

s  

t  

f  

a

 

c  

o  

h  

O  

f  

c  

b  

M

5

 

t  

w  

d  

m  

s  

a  

p  

a

2  

o  

h  

a  

i  

s  

u  

N  

c  

a  

9

 

l  

m  

s  

c  

d  

s  

t  

i  

p  

t  

o  
ote that coordinated MU-MIMO, which uses omnidirectional an-

ennas, still performs significantly better, especially in a 1 cluster

etup. (Only the 4 cluster setup is shown in this plot to better

istinguish the performance of the other schemes). As expected,

his simple sectorized approach has an impact on the fairness of

he network, lowering the fairness index more than 20% in some

ccasions. 

.3. Open-floor office building 

The open-floor office scenario shares a few common charac-

eristics with the conference hall but has some interesting differ-

nces. We define an office floor of dimensions 160 m × 23 m that

s occupied by cubicles (essentially no walls obscure the line of

ight from AP-to-AP or AP-to-user). APs are placed equally spaced

n two rows and users are scattered uniformly and at random in

he whole floor (see Fig. 5 b). The coordinated MU-MIMO system

learly outperforms the non-coordinated solution in terms of aver-

ge per user throughput as can be seen in Fig. 10 a. It is interesting

o notice that in contrast to the previous case, increasing the num-

er of APs even up to 40 gives some gains for the non-coordinated

ystems under the CSMA scheduling scenario (see Fig. 10 b). From

ig. 10 c it is apparent that when the CCA threshold is removed all

ogether, the regime becomes interference limited as before. This

an be seen by the rate degradation of the single channel system

hen adding more than 20 APs in the topology. Finally, the fair-

ess index is very high for the coordinated MU-MIMO case, and

emains lower than 60% for the SU-MISO and MU-MIMO schemes

n most settings with more than 8 APs. 

At this point we must emphasize the impact of using quantized

ates in comparison to the information theoretic Gaussian rates.

lthough the latter offer a starting point to solve complex opti-

ization problems and attain intuition for physical layer effects,

hey might lead to misleading intuition if not combined with an

ctual quantized mapping. Specifically, the scenarios with no CCA

hreshold (see Figs. 10 c and 6 c) would look significantly different

n their respective Gaussian versions. The rates would still satu-

ate, but even at very low SINR, when the MCS mapping would

ive rates equal to zero, the Gaussian rate would assign some pos-

tive rate to every user. Further, increasing the number of APs in-

reases the number of users served simultaneously (up to some

imit), so the use of Gaussian rates leads to computing a higher

verage rate per user compared to the negligible rate a quantized

cheme would achieve. 

.4. Office building floor with rooms 

A typical office building floor with two rows of rooms and a

orridor in between them (see Fig. 5 c) is analyzed with our model.
he length of the floor is 160 m, the width of each room is 10 m,

nd the corridor width is 3 m. For this series of experiments we

x the number of APs to 20 and users to 200 and investigate the

ehavior of the network as the number of rooms is varied. APs are

laced in a canonical way to cover the whole area and users are

cattered uniformly at random in the whole floor. 

The increase of the number of rooms, while the floor dimen-

ions and number of APs remains the same, essentially adds ad-

itional barriers (walls) between APs. This, in return, effectively

ncreases the pathloss between APs that share the same channel

nd thus significantly lowers the interference. On the other hand,

he users fall out of line-of-sight with more APs, and in fact their

athlosses to many of the APs substantially increase due to the

alls in between them. Thus, the multiplexing gains of coordinated

U-MIMO disappear shortly after the number of rooms increases. 

In Fig. 11 we can see that as the APs become better separated

y adding walls between them, the gains of coordinated MU-MIMO

re negligible and eventually trail behind the localized MU-MIMO

cheme. This is expected since in this scenario, only the gain with

he AP assigned to each user is significant and thus, trying to beam

orm to users from distant APs, that are not in their transmit range,

ctually hurts the system instead of providing multiplexing gains. 

Finally, in terms of fairness, Jain’s fairness index indicates that

oordinated MU-MIMO achieves fairness larger than 90% for most

f the topologies, with it dropping lower from 85% only in the

ighly spatially decoupled cases of a large number of rooms.

n the other hand, both SU-MISO and local MU-MIMO suffer

rom lower fairness indexes, that go to as low as 50%. The non-

oordinated technologies benefit in terms of fairness as the num-

er of rooms increases moderately whereas the coordinated MU-

IMO system starts losing it’s efficiency to serve all users equally. 

.5. Stadium 

Having the analytic model makes it easy and fast to compute

he expected average user throughput in even larger scenarios as

ould be in the case of a football stadium (with a radius of 100 m)

uring a big game (see Fig. 5 d for topology and channel assign-

ent). We can imagine that at moments of high interest, for in-

tance during a questionable refereeing decision or a touchdown,

 large percentage of the in stadium fans might want to see a re-

lay or a different camera feed online. In Fig. 12 a we can see the

verage throughput per user for a stadium of dimensions 200 m ×
0 0 m, with 20 0 0 0 users trying to access the internet and a range

f APs. It is obvious in this case that only coordinated MU-MIMO

as the potential to provide an acceptable user service under such

 challenging yet typical scenario. Moreover, if the CCA threshold

s completely removed we again end up in an interference limited

cenario where non-coordinated technologies suffer from rate sat-

ration/degradation as the number of APs increases (see Fig. 12 b).

ote that in this scenario the fairness index remains in most oc-

asions lower than 80% for the non-coordinated MU-MIMO system

nd lower than 50% for the SU-MISO. It grows to values larger than

0% when activating CSMA. 

In such a large deployment, coordinating hundreds of APs at the

evel of accuracy the coordinated MU-MIMO architecture requires

ay be impossible in practice. Thus, we consider clustering only a

mall number of closely located APs in a coordinated MU-MIMO

luster, and operating a large number of such clusters indepen-

ently to cover the whole area. Clearly, clusters operating in the

ame frequency will interfere with each other. In Fig. 12 c we plot

he performance of coordinated MU-MIMO when APs are grouped

n small clusters consisting of neighboring APs. As expected, the

erformance is lower than that of a system coordinating all the APs

ogether (compare Fig. 12 a and c). That said, it outperforms unco-

rdinated MU-MIMO. It is interesting to explain the trend in the
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Fig. 10. Average throughput per user for an open-floor office plan with transmit power of 90 dB. 
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throughput curves in Fig. 12 c. Taking as an example the clusters of

20 APs, when we have 100 APs (5 clusters in total) only 2 clusters

interfere and since this is a stadium the two clusters that interfere

are diametrically opposite to each other making the interference

small. With 140 APs (7 clusters) 6 clusters interfere (in pairs of

two) and so 3 channels experience interference which outbalances

the increase in APs and hence the drop in the average through-

put. With 180 APs (9 clusters) all channels experience interference

and now interfering clusters can no longer be diametrically oppo-

site in pairs so interference is increased significantly compared to

the previous case. After 180 APs the increase in APs provides gains

since we were already in the regime that all clusters experienced

interference. 
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Fig. 12. Average throughput per user for a stadium w
.6. Signaling overhead 

CSIT overhead: It is worth noting that all the PHY schemes

onsidered require the knowledge of channel state information at

he transmitter side (CSIT) [38] . The overhead of the collection of

SIT exists and is similar in all aforementioned systems, but dif-

ers per topology and thus can only be taken into account in a

er-scenario basis, it is thus not included in the analytic model. It

s however straightforward to compute and discount for such an

verhead based on the 802.11n/ac standards [46] and on some re-

ent work of ours [39] . 

Coordinated MU-MIMO overhead: Coordinated MU-MIMO re-

uires additional overhead to coordinate the APs in the cluster and

llow them to operate as a single, virtual AP. In particular, tim-

ng and frequency synchronization (necessary for coherent coor-

inated ZFBF) and uplink-downlink reciprocity (necessary to learn

he downlink channel from the users uplink data packets) must be

mplemented through an efficient synchronization and calibration

rotocol. These problems have been recently addressed in depth

n our work [39] , as well as in a number of publications reporting

oftware-defined radio prototype implementations of coordinated

U-MIMO by us [3] and others [4,51] . 

Practical synchronization between the APs is imperfect and

esidual carrier frequency offsets (CFOs) lead to a rate degradation

hat gets progressively worse over the course of transmission. De-

eloping an analytical characterization of the tradeoff between the

chievable rates and the synchronization overhead is difficult, since

t is highly dependent upon the selection of “anchor” or leader

odes, and it involves non-convex optimization [39] . As such, this

roblem can be solved on a per-topology basis using simulations. 

In addition to synchronization overhead, coordinated MU-MIMO

tilizes calibration between the APs in order to achieve uplink-

ownlink reciprocity [39,60] . In general, for a given network con-
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guration and coordinated MU-MIMO clustering, it is possible to

ptimize the overhead incurred by synchronization and calibration

ff-line, and apply this overhead as a discount factor to calculate

he goodput of the system. 

. Conclusions 

In this paper we have introduced an accurate and practical ana-

ytical model for next generation WiFi networks and applied it in a

ariety of real-world scenarios. An important result from this study

s the significant performance gains that coordinated MU-MIMO

as over non-coordinated approaches. That said, coordinated MU-

IMO incurs additional overhead, and its gains are smaller in the

resence of walls and other barriers which reduce inter-cell inter-

erence, as well as when considering a cap on the total number

f APs that can be efficiently coordinated. Other interesting re-

ults are the sizable gains from sectorization, though to achieve

hose gains one needs to use front ends of varying complexity

nd cost, as well as how fast non-coordinated approaches become

nterference-limited resulting in no additional gains as more APs

re deployed. As a final point, it is evident from the analysis of the

arious practical scenarios in this work that our model can be ef-

ectively used to guide the deployment of future wireless networks

nd optimize their performance. 
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