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a b s t r a c t

This article proposes a multi-currency cross-hedging strategy that minimizes the exchange risk. The use
of derivatives in small and medium-sized enterprises (SMEs) is not common but, despite its complexity,
can be interesting for those with international activities. In particular, the reduction in the exchange
risk borne through the use of natural multi-currency cross-hedging is measured, considering Conditional
Value-at-Risk (CVaR) and Value-at-Risk (VaR) for measuring market risk instead of the variance. CVaR is
minimized using linear programmes, while a multiobjective genetic algorithm is designed for minimizing
VaR, considering two scenarios for each currency. The results obtained show that the optimal hedge
strategy that minimizes VaR is different from the minimum CVaR hedge strategy. A very interesting
63
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point is that, just by investing in other currencies, a significant risk reduction in VaR and CVaR can be
obtained.

© 2015 AEDEM. Published by Elsevier España, S.L.U. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ultiobjective genetic algorithm

ntroduction

Over the last few decades, changes in exchange rates have
een a major risk for companies around the world. This is partic-
larly true for firms with foreign currency-based activities, such
s imports and exports, and corporate cash flows. Thus firm value
s dependent on exchange rates, rendering the management of
oreign exchange rate risk an important corporate objective and
ctivity. It is accepted that a firm exhibits exchange rate expo-
ure if its value is affected by changes in exchange rates (Adler
nd Dumas, 1984). The main hedging motives are the minimiza-
ion of the impact of foreign exchange rate fluctuations on the
ariability of the firm’s operational cash flow and the reduction
f the probability of financial distress and bankruptcy (Hagelin,
003; Solomon & Joseph, 2000). This and other similar problems
ave been widely analyzed in the related literature. It is not only
orporations that exhibit exchange rate exposure. Individuals can
lso be affected; for example, when they apply for a multi-currency

ortgage.
Both corporations and individuals wish to protect themselves

nd reduce the risk in an effective way. While in many cases it
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E-mail address: matilde.fernandez@uv.es (M.O. Fernández-Blanco).
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would clearly be more effective to hedge a long currency position
using currency futures, there are situations where currency cross-
hedging may be appropriate. A medium size company that operates
in two or three countries with different currency simultaneously
can reduce its income risk by engaging in a hedging activity of assets
correlated with the foreign rate. The use of derivatives in small and
medium-sized enterprises (SMEs) is not very common (Pennings
and Garcia, 2004) and becomes more complicated because of their
nature. Given this complexity, multi-currency cross-hedging can
be more appropriate.

In general, cross-hedging is a hedging strategy where future
contracts on different deliverable instruments are used. Corpora-
tions and individuals that have exposure to two or more currencies
simultaneously can use cross-hedging. An efficient approach to
hedging this risk exposure is to first exploit the natural cross-hedge
that arises from the non-zero correlation between the different cur-
rency exposures, and then to use derivatives to hedge the residual
risk.

There are different ways to measure the risk to hedge. The classi-
cal measurement of risk is the variance, but nowadays researchers
and practitioners tend to focus on Value-at-Risk (VaR) and Condi-

tional Value-at-Risk (CVaR) as market risk measures. The VaR of
a portfolio is the lowest amount which the loss will not exceed
with probability 1 − ˛. CVaR is the conditional expectation of losses
above the VaR.

is an open access article under the CC BY-NC-ND license
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VaR became very popular due to the fact that Basel Committee
ssumed VaR as a risk measurement and that the regulatory capital
or a loan is correlated to its marginal contribution to VaR. However,
he use and acceptance of CVaR have increased because, in contrast
o VaR, it meets expected properties. It informs us about how much
e could lose if the portfolio return falls beyond VaR. Moreover, it

s a convex risk measurement which makes it easy to use to set
ptimal strategies in optimization problems. Alfaro-Cid, Baixauli-
oler, and Fernández-Blanco (2011), Baixauli-Soler, Alfaro-Cid,
nd Fernández-Blanco (2010) and Baixauli-Soler, Alfaro-Cid, and
ernández-Blanco (2011) used several risk measures and different
pproaches to solve classical portfolio optimization problems, and,
mong other conclusions, they showed that using the variance as
isk measure provides the same results than using CVaR. There-
ore, using both simultaneously in multiobjective problems is not
ecommended.

In this context, the main aim of this paper is to establish the
eduction in the exchange risk borne through the use of natu-
al multi-currency cross-hedging considering VaR and CVaR as
easures of market risk. For this, the mid exchange rates for 10

eveloped market currencies against the euro from January 1999
o December 2009 were used.

The approach presented in this paper is useful for implementing
multi-currency hedge strategy and it contributes to the litera-

ure in several ways. Firstly, it combines the use of VaR and CVaR
s measures of risk with the use of multi-currency cross-hedging
s instrument of hedging. The majority of papers in the literature
se variance and derivatives, mainly current futures, for these pur-
oses. Secondly, the approach of minimum hedge ratio and the
ean-risk hedge are used. Thirdly, a multiobjective genetic algo-

ithm is proposed to determine a mean-VaR hedge ratio.
The paper is organized as follows. The second section explains

he determination of the hedge ratio and considers different meas-
res of risk. The third section sets out the methodology to compute
he mean-CVaR and mean-VaR hedge ratios. The fourth section
escribes the multiobjective genetic algorithm used to obtain
ean-VaR hedge ratio. The fifth section presents the data and

mpirical results. Finally, the last section summarizes the main
ndings of the research.

edging the foreign exchange risk

The hedge decision requires us to establish both the optimal
edge ratio and the risk measure that needs to be reduced.

ptimal hedge ratio

Suppose that there is a set of two currencies with returns r0
nd r1. Cross-hedging implies that a short (long) position in a cur-
ency is used to hedge a long (short) position in the other, assuming
hat both currencies are positively correlated. Cross-hedging could
xploit the correlation with more than one currency in order to
educe the hedge portfolio risk. In the case of n currencies the hedge
ortfolio return can be expressed as,

h = r0 +
n∑

i=1

hiri (1)

here r0 represents a long or short position in a currency, ri repre-
ents a long o short position in a currency i in order to hedge and
h represents the hedge portfolio return. One of the most impor-
ant issues in hedging refers to the determination of the optimal

edge ratios, hi. The optimal hedge ratio depends critically on the
articular objective function to be optimized and the measure of
isk considered. Depending on the objective function the problem
o solve is single-objective, since the risk of the hedge portfolio
ent and Business Economics 25 (2016) 2–7 3

return is minimized, or multiobjective, because the risk and the
expected return of the hedge portfolio are minimized/maximized
simultaneously.

The most widely used optimal hedge ratio is the so-called
minimum-variance (MV) hedge ratio. This is a single objective
problem where the risk, measured with the variance, is minimized.
This MV hedge ratio is derived by minimizing the variance of the
hedged portfolio and it is quite simple to understand and estimate.
Nevertheless, the MV hedge ratio ignores the expected return of the
hedged portfolio and so, in general, the MV hedge ratio is not consis-
tent with the mean-variance framework. To make this hedge ratio
consistent with the mean-variance framework, it is necessary to
include the expected return on the hedged portfolio in the objective
function explicitly (Chen, Lee, & Shrestha, 2008). Under return-risk
hedge ratios, expected return and risk of the hedged portfolio are
considered. Companies determine the expected returns and risk,
and as a consequence, the optimal hedging is obtained. When vari-
ance is used to measure risk, this approach is called mean-variance
hedge ratio.

Measures of risk to hedge

The different measures of portfolio risk can be characterized in
several ways. The most important characteristics refer to the coher-
ence of the proposed measure and to its ability to deal with the
asymmetry of the returns function distribution.

Following Artzner, Delbaen, Erber, and Heath (1999), a risk mea-
surement can be viewed as a single number �(r) assigned to the
distribution of the portfolio return r. It is said that a risk mea-
surement is coherent if it satisfies four properties: monotonicity,
translation invariance, homogeneity and subadditivity. Standard
deviation and CVaR satisfy the four properties while VaR satisfies
three of them but it does not satisfy subadditivity under certain
conditions. An optimization problem that includes non-coherent
measures is usually ill-posed, in the sense of Hamard (Alexander,
Coleman, & Li, 2006), which means that it does not have a single
and exact solution.

Risk measures can be also classified in symmetric and asym-
metric measures. Symmetric measures are those that do not take
into consideration the asymmetry of the return function distri-
bution, such as variance or standard deviation. Their use is only
appropriate when those functions are normally distributed or, at
least, symmetric. Asymmetric risk measures are those that take
into consideration the skewness and kurtosis of the return function
distribution (Harris & Shen, 2006). Among them, VaR and CVaR.

Some of the advantages of VaR are that it takes into account the
asymmetric risk, a temporal period and a confidence level. VaR can
be defined as the maximum expected loss within an investment
horizon of n days with an error probability of �%. By definition, VaR
is a quantile of the probability distribution of the portfolio value. Let
f(rh) be the probability distribution function of the future portfolio
return and ˛ the significant level (usually 1% or 5%), VaR is implicitly
defined in the following equation,
∫ VaR

−∞
f (rh)dr = ˛

VaR can be computed by using an analytic method or Delta
Normal, a Montecarlo method or a historical simulation method.
The analytic method assumes that returns are normally distributed
and that VaR is proportional to the variance. In the Montecarlo
method, simulations are carried out to generate returns assuming

that the return distribution function is known and not necessar-
ily symmetric. Finally, the historical simulation method does not
make any assumption regarding the return distribution function. It
is based on the idea that past behaviour is a good predictor of future
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ehaviour. In this work VaR si computed by using a historical sim-
lation method. The portfolios are built following Eq. (1), using the
istorical return series. The same probability of occurrence (1/T)

s assigned to every day and, ordering the returns rh in decreasing
rder, VaR is chosen as rh

* in the position ˛T.
Following, Alfaro-Cid et al. (2011) and Baixauli-Soler et al.

2011), we use a multiobjective genetic algorithm to obtain the
ptimal hedge ratios when VaR is considered as objective func-
ion to minimize. CVaR is a risk measure that has many of the
dvantages of VaR and quite a few less disadvantages. CVaR takes
nto account asymmetric risk, a temporal period and a confidence
evel. Rockafellar and Uryasev (2000) propose CVaR as a coher-
nt risk measure, it deals with the kurtosis and skewness of the
eturn distribution function and exact solutions may be found for
n optimization problem. CVaR is defined as the average of all losses
xceeding the VaR and it is computed as the expected value of r
onditional on exceeding the VaR,

VaR˛ =
∫ VaR

−∞ rhf (rh)dr∫ VaR
−∞ f (rh)dr

(2)

CVaR is closely linked to VaR. We compute CVaR by using a his-
orical simulation method, as in VaR case. That is, we obtain CVaR
rom the entire distribution of historical returns, as the sample

ean of rh,j lower than VaR.

VaR˛(rh) = (˛T)−1
˛T∑
j=1

rh,j (3)

It can be demonstrated that CVaR is consistent with the mini-
um variance approximation. See, for example, Baixauli-Soler et al.

2010). Under the historical simulation the CVaR and VaR hedge
atios may be different. Given that risk minimization turns the
ptimization problem in a well-posed problem if CVaR is used, or

ll-posed problem if VaR is used, we use a linear programming or
multiobjective genetic algorithm to obtain optimal hedge ratios
epending on whether CVaR or VaR is used to measure risk.

ethodology

ean risk hedge ratio problems

The mean-VaR hedge ratio for cross-hedging a long position
ith long or short positions in other currencies can be obtained

y solving the following multiobjective problem:

Min
h

VaR˛(h) = inf{rh|F(rh) ≥ ˛}

Max
h

rh = r0 +
n∑

i=1

hiri

(4)

As it is known, portfolio optimization problems attempt to
btain the smallest risk value for a given return, or the highest
eturn for a certain risk level. Logically, using VaR as a risk mea-
ure, the optimization problem is a typical ill-posed problem, in
he sense of Hamard (Alexander et al., 2006), because VaR is diffi-
ult to optimize for discrete distributions since is non-convex and
as multiple local extrema.

In contrast to VaR, Rockafellar and Uryasev (2000, 2002) demon-
trate that, in the case of discrete random variables with T possible

utcomes, it is possible to linearize CVaR by introducing a vec-
or of auxiliary variables. CVaR is replaced by a linear function
n the objective function. Then, the mean-CVaR hedge ratio for
ross-hedging a long or short position with long or short positions
ment and Business Economics 25 (2016) 2–7

in other currencies can be obtained solving the following linear
problem.

MinCVaR˛(h) = Min
VaR,h,z

− VaR + 1
˛T

T∑
j=1

zj

s.t.

zj ≥ −r0 +
T∑

j=1

hirij + VaR ∀j = 1, . . ., T (5)

r̄0 +
n∑

i=1

hir̄i ≥ r∗
h

Consequently, in our research we have run multiobjective
genetic algorithms to minimize VaR (problem (4)) and linear pro-
grammes to minimize CVaR (problem (5)). In particular, we have
considered two scenarios for each currency: (i) to hedge a loan in
a foreign currency with loans or deposit accounts in the rest of the
currencies; (ii) to hedge a deposit in a foreign currency with loans
or deposit accounts in the rest of the currencies.

Multiobjective genetic algorithm

The GA implementation is based on ECJ (http://cs.gmu.edu/∼
eclab/projects/ecj), a research evolutionary computation system in
Java developed at George Mason University’s Evolutionary Compu-
tation Laboratory (ECLab). In this work the SPEA2 package of ECJ
was used for the multiobjective aspect of the optimization (Zizler
et al., 2001), since it has shown better performance than other mul-
tiobjective techniques in various benchmark problems. A detailed
description of the algorithm used can be found as well in Baixauli-
Soler et al. (2010).

The two objectives to maximize are set to the expected return
and to the inverse of the VaR. Multiobjective GA requires to fix
some parameters before running the algorithm. In this case, the GA
implementation uses tournament selection with a group size of 7,
all individuals undergo crossover in each generation and 5% of them
suffer mutation. The population size used was 1000 individuals that
evolved along 50 generations. The archive size was set to 100.

Every possible solution under evaluation (called individual) is
represented as a vector of n integers (hGA

1 , hGA
2 , . . ., hGA

n ), where n is
the number of currencies available to hedge.

The evaluation of individuals follows this flow. First, portfolio
returns are calculated as

rh,j = r0,j −
n∑

i=1

hGA
i

ri,j , ∀j, where hi
GA, is the weight assigned to

currency i, n is the number of currencies available in the hedge
portfolio and rij is the return of currency i at time j.

Once the historical series of portfolio returns is calculated, it is
sorted in descending order. The 0.01-quantile is fixed to the ele-
ment occupying the position 0.01 T in the sorted series.

The expected return can be computed as E(rh) = (1/T)
∑T

j=1rj

where T is the number of observations per currency.
Finally, VaR is calculated as the expected return minus the 0.01-

quantile of the historic return series.

Data and empirical results
The data set has been obtained from the Bloomberg Database.
The mid exchange rates for 10 developed market currencies (GBP,
AUD, CAD, JPY, NZD, NOK, SGD, SEK, CHF and USD) are measured
against the EUR for the period of 01/01/1999 to 31/12/2009; that

http://cs.gmu.edu/eclab/projects/ecj
http://cs.gmu.edu/eclab/projects/ecj
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Table 1
Summary statistics.

%Return Variance Skewness Kurtosis B–J %VaR99% %CVaR99%

Panel A: Long position
GBP 2.07 0.258 0.111 3.48 1443.4 1.355 1.783
AUD −1.61 0.544 0.853 11.37 15,738.3 1.739 2.593
CAD −1.56 0.423 −0.004 1.34 214.2 1.718 2.060
JPY 0.07 0.630 −0.412 4.77 2794.3 2.174 2.979
NZD −0.99 0.599 0.442 3.05 1199.1 2.022 2.396
NOK −0.57 0.191 0.403 4.20 2172.6 1.128 1.503
SGD 0.25 0.339 −0.045 11.83 16,692.2 1.410 1.879
SEK 0.70 0.185 −0.023 5.41 3489.9 1.257 1.677
CHF −0.67 0.081 0.135 10.70 13,632.4 0.853 1.199
USD 1.71 0.410 0.179 2.17 576.7 1.628 1.954

Panel B: Short position
GBP −2.07 0.258 −0.111 3.48 1443.4 1.489 1.839
AUD 1.61 0.544 −0.853 11.37 15,738.3 1.980 3.140
CAD 1.56 0.423 0.004 1.34 214.2 1.738 2.004
JPY −0.07 0.630 0.412 4.77 2794.3 2.036 2.670
NZD 0.99 0.599 −0.442 3.05 1199.1 2.085 2.873
NOK 0.57 0.191 −0.403 4.20 2172.6 1.327 1.711
SGD −0.25 0.339 0.045 11.83 16,692.2 1.524 2.019
SEK −0.70 0.185 0.023 5.41 3489.9 1.309 1.718
CHF 0.67 0.081 −0.135 10.70 13,632.4 0.706 1.139
USD −1.71 0.410 −0.179 2.17 576.7 1.638 2.215

Return (average annual return in percentage), Kurtosis (excess kurtosis coefficient), B–J (Bera–Jarque statistic), and VaR99% and CVaR99% are the 99% 1-day VaR and CVaR
c ndard
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omputed with daily returns. Sample period: 01/01/1999 to 31/12/2009. We use Sta
AD is the Canadian dollar, JPY is the Japanese yen, NZD is the New Zealand dollar,

s the Swiss franc, and USD is the U.S. dollar.

s, a total of 2870 observations per currency. Table 1 reports sum-
ary statistics for the 10 currency series for the whole period. A

ong position and a short position are considered in each currency
ecause the distribution is a non-symmetric distribution. The vari-
nce of the returns covers between 0.081 for CHF and 0.630 for
PY. The skewness coefficient is placed from −0.41 for JPY and 0.85
or AUD. The excess kurtosis coefficient ranges from 1.34 for CAD to
1.83 for SGD. Jarque–Bera test indicates that normality hypothesis
annot be accepted for all currencies. VaR and CVaR at a 99% level
f confidence have been computed following the historical simula-
ion method. It can be seen that VaR and CVaR values for long and
hort positions differ since the shape of the upper and lower tail
re different.

Table 2 contains the hedging effectiveness of the minimum VaR
nd the minimum CVaR hedging strategy for the two-currency
edge portfolio. Panel A reports the minimum VaR hedge ratio and
he minimum CVaR hedge ratio with their corresponding reduc-
ion in VaR and CVaR relative to the unhedged long position in each
urrency. Panel B reports the same information for a short position
n each currency. The R-square coefficient has been computed for
ll two-currency portfolios and select the largest that allows us to
btain the maximum reduction in risk.

Panel A shows that two-currency minimum VaR hedging
nables us to obtain a considerable reduction in portfolio VaR for
ine of the currencies. This reduction goes from 10.01% for NOK/SEK
o 35.50% for NZD/AUD. For SGD/CHF, the reduction is only 0.36%,
hich is very close to zero and due to the very low correlation

f SGD with each of the other nine currencies (maximum value
.049 with CHF). On average, the reduction in VaR is 19.94% and
he hedge ratio is placed from −0.012 for SGD/CHF to −0.760 for
PY/USD. In relation to minimum CVaR hedged portfolios, there
s reduction for the ten currencies which ranges from 1.22% for
GD/CHF to 33.60% for AUD/NZD. On average, the reduction in CVaR
s 16.61%. The hedge ratio is placed from −0.228 for SGD/CHF and
HF/JPY to −0.788 for JPY/USD. In both minimum VaR and CVaR

edge portfolios a negative return is obtained for five of the ten
edged portfolios.

Panel B shows that, when a short position in the currency is
edged with a long position, the minimum VaR hedge portfolio
ISO currency abbreviations: GBP is the British pound, AUD is the Australian dollar,
s the Norwegian krone, SGD is the Singapore dollar, SEK is the Swedish krona, CHF

exhibits a VaR reduction for ten hedged portfolios which ranges
from 3.73% for SGD/CHF to 35.98% for AUD/NZD. On average the
VaR reduction is 18.07%. The hedge ratio is placed from −0.600 for
SGD/CHF to 0.928 for JPY/USD. In relation to minimum CVaR hedge
portfolios, there is a CVaR reduction for the ten currencies, which
ranges from 1.56% for SGD/CHF to 41.46% for AUD/NZD. On aver-
age, the reduction in CVaR is 17.84%. The hedge ratio is placed from
−0.136 for SGD/CHF to 0.808 for JPY/USD. A negative hedge ratio of
−0.136 implies that a short position in SGD is hedged with a short
position in CHF, given the negative correlation between the curren-
cies. In both minimum VaR and CVaR hedge portfolios a negative
return is obtained for four out of the ten hedged portfolios.

Table 3 shows the risk reduction with minimum VaR and CVaR
ten-currency hedging for a given return with regards to two hedge
portfolio and total, that is, with regards to VaR and CVaR of each
unhedged position in each currency. In particular, the given return
is selected to be the minimum VaR and CVaR two-currency efficient
portfolio. In the long scenario, the total reduction in VaR and CVaR
ranges from 1% for SGD to 39.3% for AUD and from 3% for SGD to
38.4% for AUD with an average reduction of 26.4% and 23.9%. With
regards to reductions in comparison to the two currency hedge
portfolios, the most important additional reductions in VaR are for
CAD (15.9%) and USD (21.5%), and in CVaR, for CAD (19%) and USD
(24.3%). In the short scenario, the most important reductions in VaR
are for AUD (42.3%) and USD (37.1%), and in CVaR, for AUD (47.8%)
and NZD (38.9%). In comparing with the two-currency hedge port-
folio, the most considerable VaR and CVaR reduction occur for USD
(19.4% and 23.9%). The average reductions are 8.3% (VaR for long),
8.8% (CVaR for long) and 10% (VaR for short) 9.7% (CVaR for short).
The number of different currencies added to the hedging portfo-
lio is nine, except in one portfolio (CVaR-JPY long) where eight
currencies are added.

Fig. 1 shows graphs corresponding to the minimum VaR and
CVaR ten currency hedging for different levels of return for long
AUD hedge portfolios. Also, the initial unhedged AUD position and

the minimum VaR and CVaR for the two-currency hedge portfolio
are plotted in each graph.

Graphically it can be observed significant reductions in VaR
and CVaR for a long position on AUD with two-currency hedging
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Table 2
Hedging effectiveness of minimum VaR and minimum CVaR: Two currency hedge portfolio.

Panel A: Long position

Long Short Minimum VaR Minimum CVaR

H %�VaR %Return H %�CVaR %Return

GBP USD −0.496 −24.47 1.222 −0.396 −16.96 1.393
AUD NZD −0.664 −31.27 −0.953 −0.720 −33.60 −0.897
CAD USD −0.540 −25.08 −2.485 −0.488 −15.42 −2.396
JPY USD −0.760 −22.43 −1.232 −0.788 −14.07 −1.280
NZD AUD −0.676 −35.50 0.099 −0.696 −27.20 0.132
NOK SEK −0.468 −10.01 −0.898 −0.424 −13.83 −0.867
SGD CHF −0.012 −0.36 0.253 −0.228 −1.22 0.398
SEK NOK −0.396 −17.01 0.928 −0.460 −14.40 0.964
CHF JPY −0.272 −12.72 −0.685 −0.228 −15.11 −0.682
USD CAD −0.492 −20.56 2.476 −0.432 −14.27 2.382

Average −0.478 −19.94 −0.127 −0.86 −16.61 −0.085

Panel B: Short position

Short Long Minimum VaR Minimum CVaR

H %�VaR %Return H %�CVaR %Return

GBP USD 0.456 −6.73 −1.290 0.352 −2.91 −1.468
AUD NZD 0.736 −35.98 0.882 0.808 −41.46 0.811
CAD USD 0.440 −22.68 2.314 0.401 −12.71 2.246
JPY USD 0.928 −19.29 1.519 0.800 −26.10 1.300
NZD AUD 0.768 −29.74 −0.248 0.776 −36.51 −0.260
NOK SEK 0.464 −16.24 0.895 0.560 −12.76 0.963
SGD CHF −0.600 −3.73 0.155 −0.136 −1.56 −0.155
SEK NOK 0.552 −18.75 −1.017 0.624 −19.34 −1.058
CHF JPY 0.040 −5.67 0.670 0.201 −12.54 0.681
USD CAD 0.512 −21.89 −2.507 0.512 −12.50 −2.507

Average 0.430 −18.07 0.137 0.489 −17.84 0.055

Panel A reports the minimum-VaR hedge ratio and minimum-CVaR hedge ratio relative to a long position in a currency. Panel B reports the minimum-VaR hedge ratio and
minimum-CVaR hedge ratio relative to a short position in a currency.

Table 3
Minimum CVaR for a return given ten currecy hedging.

Long #h > 0 #h < 0 %�VaR #h > 0 #h < 0 %�CVaR

Total Two
currencies

Total Two
currencies

GBP 3 6 −26.5 −2.7 1 8 −22.1 −6.1
AUD 3 6 −39.3 −11.6 4 5 −38.4 −7.3
CAD 1 8 −37.0 −15.9 2 7 −31.5 −19.0
JPY 5 4 −27.5 −6.6 6 2 −28.1 −16.3
NZD 2 7 −39.1 −5.6 5 4 −28.3 −1.5
NOK 2 7 −17.7 −8.5 3 6 −16.7 −3.3
SGD 6 3 −1.0 −0.6 5 4 −3.1 −1.8
SEK 4 5 −19.5 −3.0 5 4 −17.6 −3.7
CHF 6 3 −18.7 −6.8 3 6 −18.7 −4.2
USD 4 5 −37.6 −21.5 2 7 −35.1 −24.3

Average −26.4 −8.3 −23.9 −8.8

Short #h > 0 #h < 0 %�VaR #h > 0 #h < 0 %�CVaR

Total Two
currencies

Total Two
currencies

GBP 5 4 −22.5 −16.9 9 0 −13.7 −11.2
AUD 4 5 −42.3 −9.8 6 3 −47.8 −10.8
CAD 8 1 −35.9 −17.1 6 3 −31.2 −21.2
JPY 4 5 −26.3 −8.7 4 5 −29.8 −5.0
NZD 5 4 −35.0 −7.5 7 2 −38.9 −3.9
NOK 5 4 −21.6 −6.4 9 0 −19.3 −7.6
SGD 4 5 −7.2 −3.6 7 2 −3.6 −2.1
SEK 6 3 −25.7 −8.6 6 3 −25.3 −7.3
CHF 5 4 −7.7 −2.1 3 6 −16.5 −4.5
USD 5 4 −37.1 −19.4 3 6 −33.4 −23.9

Average −26.1 −10.0 −26.0 −9.7

#h > 0: total number of currencies in the hedging portfolio with a long position; #h < 0: total number of currencies in the hedging portfolio with a short position; Total: risk
reduction for minimum VaR and CVaR ten currency hedging with regard to initial VaR and CVaR of each currency; Two currencies: risk reduction for minimum VaR and CVaR
ten-currency hedging with regard to VaR and CVaR of the two-currency hedge efficient portfolio minimum CVaR.
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Fig. 1. Mean-VaR and mean-CVaR portfolios for a long position in AUD.

ortfolio. When a ten-currency hedging portfolio is considered, the
dditional reductions in VaR and CVaR are small and can disappear
f constraints related to long (loans) and short (deposit accounts)
ositions in some currencies are considered. Hence, optimal hedge
atio under the objective of minimizing risk does not depend on
he number of added currencies. By contrast, optimal hedge ratio
onsistent on mean-risk framework is very sensitive to the num-
er of added currencies. This implies that when an expected return

s fixed a ten-currency hedging portfolio is significantly more effi-
ient in VaR and CVaR than two-currency hedging portfolio. The
UD long position results are quite similar to the rest of currencies.

onclusions

Movements in exchange rates are a major risk for companies
ith foreign currency-based activities. Different approaches, such

s hedging via forwards, currency swaps, futures options and many
ther complex financial instruments, have been employed in order
o effectively manage risk. Multi-currency cross hedging is rele-
ant because it greatly expands the opportunity set of risk reducing
lternatives.
VaR and CVaR have been used for measuring currency risk expo-
ure because they are suitable for asymmetric return distributions.
his choice is consistent with the asymmetric return distribution
unctions exhibited in our data set.
ent and Business Economics 25 (2016) 2–7 7

Our results show that the optimal hedge strategy that mini-
mizes VaR is different from the minimum CVaR hedge strategy. The
approach described in this paper could help to hedgers to obtain
the optimal minimum VaR hedge strategy through a multiobjec-
tive genetic algorithm. Portfolio diversification has the potential to
substitute the hedged portfolios with derivatives, which can help
small and medium-sized enterprises (SMEs).

Also, we have dealt with the question of which degree of risk
reduction in VaR and CVaR offers multi-currency cross-hedging. A
two-currency hedge strategy can reduce VaR up to 35.98% and on
average around 19% and CVaR up to 41.46% and on average around
17%. Without considering any constraint, an increase in the num-
ber of currencies to hedge from two currencies to ten implies an
additional increase in risk reduction on average around 9% in both
VaR and CVaR.

Furthermore, if a mean-risk framework is considered, an opti-
mal mean-risk hedge ratio accounting for the trade-off between
return and risk differs from the minimum risk hedge ratio and it is
significantly more efficient as the number of currencies to hedge
increases in both VaR and CVaR.

Overall, given our findings, in a multi-currency hedge strategy
is not critical to consider several currencies to obtain a significant
VaR and CVaR reduction in contrast with a mean-risk framework.
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