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A B S T R A C T

Learning the conditional probability table (CPT) parameters of Bayesian networks (BNs) is a key challenge in
real-world decision support applications, especially when there are limited data available. A conventional
way to address this challenge is to introduce domain knowledge/expert judgments that are encoded as
qualitative parameter constraints. In this paper we focus on a class of constraints which is naturally encoded
in the edges of BNs with monotonic influences. Experimental results indicate that such monotonic influence
constraints are widespread in practical BNs (all BNs used in the study contain such monotonic influences). To
exploit expert knowledge about such constraints we have developed an improved constrained optimization
algorithm, which achieves good parameter learning performance using these constraints, especially when
data are limited. Specifically, this algorithm outperforms the previous state-of-the-art and is also robust to
errors in labelling the monotonic influences. The method is applied to a real world medical decision support
BN where we had access to expert-provided constraints and real hospital data. The results suggest that
incorporating expert judgments about monotonic influence constraints can lead to more accurate BNs for
decision support and risk analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian networks (BNs) have become increasingly popular in the
AI field during the last two decades because of their ability to model
probabilistic dependent relationships among variables in many real-
world problems. A BN model consists of two components: a network
structure and a set of conditional probability tables (CPTs) whose
entries are considered as parameters.

In real-world decision support problems that we wish to model
as BNs, there are typically limited or no relevant data. In such situa-
tions attempts to learn BN structures purely from data are unlikely to
result in useful models. For example, even 500 data points (which in
many real-world situations is a very large sample) is nowhere near
enough to learn the structure of a very small BN such as the well-
known Asia BN that has just 8 nodes and 8 edges in total. Using the
pure data-based structure learning algorithm [18] in this example
results in more than half of the learnt edges being different from
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the ground truth. The scarce data problem is typical of many real-
world decision support problems in which we have nevertheless
used BN models effectively, by exploiting expert domain knowledge.
Specifically, the decision support problems addressed include:

• determine whether or not to provide a specific type of inter-
vention for a given psychiatric patient [10].

• determine whether or not a limb should be amputated given a
patient’s specific pathology [53].

• determine whether a given prisoner with a background of
violence can be safely released into the community [13].

• determine which of two alternative medical tests optimises the
balance between accuracy, safety and cost [21].

• determine how and when to place bets on football matches to
‘beat the bookmakers’ [11].

In all of these problems, limited data were available (both in
terms of size of data and complete absence of data for some key
variables), but we had access to relevant domain experts who were
able to provide the BN structure (including causal relationships
involving unobserved variables) and insights into the conditional
probability table (CPT) parameters where there was little or no
data. However, although there has been some progress in attempts
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to make more systematic the methods helping experts define BN
structures (see, e.g. Refs. [10] and [24] the process for fully defin-
ing the CPTs, i.e. eliciting the BN parameters) from experts has been
largely ad hoc. The objective of this paper is to demonstrate a more
systematic and rigorous approach to combining expert knowledge
and data to achieve more accurate parameter elicitation in such mod-
els. Hence, to clarify the scope, the paper is focused on the following
common scenario:

A BN structure has been hand-crafted by domain experts to model
a real-world decision support problem. A small amount of data
relevant to the model is available. The challenge is to build the
model parameters by combining the limited data with domain
knowledge about the parameters.

In addition to the examples described above an increasing num-
ber of decision support problems (medical, financial and safety)
fit with this scenario [22], and so there is a genuine demand for
improved solutions. It is also important to note that, because we
are restricting our discussion to BNs whose structures have been
hand-crafted by experts, the scope is limited to relatively ‘small’ BNs
(generally expert defined BNs with fewer than 100 nodes), although
our experiments do include some larger BNs.

The simplest parameter learning approach is maximum likeli-
hood estimation (MLE). However, this method usually fails to find
good estimates for parameters with few data points (in some com-
plex BNs, there is an explosion of variable state configurations, we
might not have enough training data in some specific variable state
configurations even in cases where big-data is available). To address
this researchers developed the maximum a posteriori probability
(MAP) approach by introducing a Dirichlet parameter prior, which
we discuss in Section 2. However, as we also discuss in Section 2,
experts tend to feel more comfortable providing qualitative or semi-
numerical judgments with less cognitive effort. Such judgments are
expressed as constraints between parameters of interest, and are
more easily elicited from experts than corresponding point-wise
estimates.

In this paper, we focus on an important class of such constraints
elicited from monotonic influences (also known as qualitative influ-
ences [48] or qualitative monotonicities [1]), which are naturally
encoded in the edges/structures of BNs. A monotonic influence is
one where the increase (or decrease) of one variable will monoton-
ically change the value of another variable. This kind of influence
can be directly elicited from the BN structures, and can be easily
converted into associated parameter constraints, which we refer to
as monotonic influence constraints. These constraints are exterior
parameter constraints (relations between parameters from different
conditional distributions). For a simple example, in “Smoke → Can-
cer”, it is widely accepted that people who smoke have a higher risk
of getting cancer than those who do not. Thus:

P(Cancer = true|Smoke = true) ≥ P(Cancer = true|Smoke = false)

is an example of a monotonic influence constraint.
When the training data is limited, incorporating such exterior

constraints from experts could help the BN parameter learning. In
this paper, we investigate the extent to which such monotonic influ-
ences and their generated exterior constraints are present in a set
of real-world BNs, and provide a simple improved constrained opti-
mization algorithm for parameter estimation with these constraints.

The paper is organized as follows. In Section 2, we discuss related
work in BN parameter learning with limited data. In Section 3, we
introduce the BN parameter learning notation to be used throughout
this paper. In Section 4, we describe the monotonic influences and
the improved parameter learning method. In Section 5, we report
on the experiments of 12 different real-world BNs. In Section 6, we

present the results of applying the method to a real world medical
decision support BN. Our conclusions are in Section 7.

2. Related works

There are several methods for handling parameterization with
limited or no relevant data, described in a rich literature of books,
articles and software packages, which are briefly summarized
in Refs. [15,22,37,41]. Of these, expert knowledge/judgments are
widely used in real-world BN construction [3,6,11], especially in
medical decision support applications [12,25,30,34,52,53].

However, expert elicitation is expensive, time-consuming and
sometimes error-prone [38], because the number of parameters
increase exponentially with the number of nodes in the BN. There-
fore, the challenge has mainly been addressed using methods that
minimize the number of elicited parameters. The Noisy-OR [14] and
Noisy-MAX [43] are examples of methods to reduce the number of
elicited parameters, based on the independence of causal influences
(ICI) assumption [54]. Extensions of these models include the Ranked
Node [23] and NIN-AND tree [49,50] models.

To address the problem that some parameters have zero obser-
vations in limited training data, a Dirichlet parameter prior is intro-
duced for them. Experts are required to provide Dirichlet hyper-
parameters. In the BDeu prior, experts are only needed to provide
the equivalent sample size parameter [28]. Guidance in choosing
the value of equivalent sample size is well studied [47]. However,
elicited hyperparameters of ICI models and Dirichlet distributions
are both numerical, which means they are quantitative knowledge.
Previous work has shown that eliciting qualitative or semi-numerical
judgments is easier than collecting numerical values of CPTs [29].
Parameter constraint [16] is an important class of such qualitative
judgments. For example, the statement “the probability of people
getting cancer is very low” is such a parameter constraint.

Several models have been proposed to integrate parameter con-
straints and improve the learning accuracy. The most popular is
the constrained convex optimization (CO) formulation [5,6,7,33,39].
These algorithms seek the global optimal estimation (maximal log
likelihood) with respect to the parameter constraints. The parame-
ters also can be estimated by the Monte Carlo method [9], where
only the samples that consist of the constraints are kept. Recently,
auxiliary BN models [55,56,58] have been developed for solving this
problem. In this approach, the target parameters, data observations
and elicited constraints are all modelled as nodes in the auxiliary
BNs. Thus, the parameters are estimated via the inference in the
auxiliary BNs. However, constraints discussed in these models are
not elicited from qualitative monotonic influences, and are usually
expensive to elicit.

An alternative approach to reducing the burden of expert elic-
itation is to find monotonic influences in some edges of BNs, and
use them to generate exterior parameter constraints. BNs that are
fully specified by monotonic influences are referred to as Qualitative
Probabilistic Networks (QPNs) [48]. An efficient sign-propagation
algorithm is achieved by restricting the maximal number of node-
sign changes during the inference [17,45]. The inference results
answer the question of how observations of some variables change
the probability distributions of other variables. The combination
of QPNs and BNs is referred to as Semi-Qualitative Probabilistic
Networks (SQPNs) [44], which means parts of the variables are repre-
sented by joint probability tables rather than qualitative influences.
Inference and learning in SQPNs is discussed in later work [4].

As in previous work [1,19,20,26], in this paper, we only use signs
of qualitative probabilistic networks and their generated monotonic
influence constraints to constrain the probabilities in the standard
BN parameter learning. Thus, experts are only required to identify
which edges in the BN have such qualitative monotonicity property.
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Cano et al. [8] and Flores et al. [35] proposed an interactive BN struc-
ture learning approach that iteratively queries the domain expert
about the reliability of learnt edges. This interactive paradigm can be
easily applied to help elicit edges’ monotonic influences from experts
and suggests that the theoretical method presented in this paper
can be applied in practice (we do not use the interactive paradigm
here because in our experiments we assume that any edges with
monotonic influences are known and we simulate errors made by
experts).

More discussions about parameter learning with exterior con-
straints generated from monotonic influences can be found in
Refs. [27,51,57]. Although parameter learning with these constraints
has been well studied, there is no empirical analysis of the extent
to which such monotonic influences exist in real-world BNs. This
paper addresses this research gap by investigating the qualitative
monotonicity for each edge in a set of real-world BNs. Moreover, the
learning performances of state-of-the-art CO algorithm and our sim-
ple improved version (which we refer to as COFP) in these BNs are
also reported.

3. Bayesian networks parameter learning

A BN consists of a directed acyclic graph (DAG) G = (U, E) (whose
nodes U = {X1, X2, X3, . . . , Xn} correspond to a set of random vari-
ables, and whose arcs E represent the direct dependencies between
these variables), together with a set of probability distributions asso-
ciated with each variable [42]. For discrete variables1 the probability
distribution is described by a conditional probability table (CPT) that
contains the probability of each value of the variable given each
instantiation of its parent values in G. We write this as P(Xi|Pi) where
Pi denotes the set of parents of the variable Xi in DAG G. Thus, the BN
defines a simplified joint probability distribution over U given by:

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi|Pi) (1)

Let h denote a set of numerical parameters of the categorical ran-
dom variables in some set U. Let ri denote the cardinality of the space
of Xi, and |Pi| represent the cardinality of the space of parent con-
figurations of Xi. Let P(Xi|Pi = p) denote the discrete probability
distribution of Xi given the p-th state configuration of its parents
(Pi = p). The k-th probability value of P(Xi|Pi = p) can be repre-
sented as hipk, where hipk ∈ h, 1 ≤ i ≤ n, 1 ≤ p ≤ |Pi| and 1 ≤ k ≤ ri.
Assuming D = {D1, D2, . . . , DN} is a dataset of fully observable cases
for a BN, then Dl is the l-th complete case of D, which is a vector of
values of all variables in U.

The classical maximum likelihood estimation (MLE) [2] is to find
the set of parameters that maximize the log likelihood �(h|D) =∑

l log P(Dl|h). Let Nipk be the number of data records in sample D
for which Xi takes its k-th value and its parents Pi take thebreak
p-th state configuration. Then �(h|D) can be rewritten as �(h|D) =∑

ipkNipk log hipk. MLE seeks to estimate h by maximizing �(h|D). In
particular, we can get the estimation of each parameter as follows:

h∗
ipk =

Nipk

Nip
(2)

where Nip =
∑ri

k=1 Nipk.
However, it is common (even for a large dataset) that certain

parent-child state combinations seldom appear, and MLE fails in
this situation. Hence, another classical parameter learning algorithm

1 For continuous variables we normally refer to a conditional probability
distribution.

(maximum a posteriori, MAP) is used to mediate this problem by
introducing the Dirichlet prior:

h∗ = arg max
h

P(D|h)P(h) (3)

Therefore, the MAP estimation of each parameter is:

h∗
ipk =

Nipk + aipk

Nip + aip
(4)

Intuitively, one can think of the hyperparameter aipk in the
Dirichlet prior as an experts’ guess of the virtual data counts of the
parameter hipk. When there is no related expert judgments, people
usually use a uniform/flat prior aipk = 1 or BDeu prior aipk = 1

ri|Pi |
(likelihood equivalent uniform Bayesian Dirichlet) [28].

4. Parameter learning with monotonic influence constraints

This section provides a full formalism of how to translate a set
of qualitative judgments into probability constraints. Here, we fol-
low Wellman’s approach [48], where qualitative judgments involve
monotonic influences between nodes. We will first discuss the exte-
rior constraints and then give the formal definition of monotonic
influences and their converted exterior constraints. After that, we
will discuss how to solve the parameter estimation problem with
such constraints. Finally, we will discuss the computational time
complexity of the proposed learning algorithm.

4.1. The exterior constraint

Parameter constraints can be divided into two types according to
the constrained parameters’ parent state configurations: 1) interior
constraint and 2) exterior constraint. The interior constraint restricts
the node parameters within a CPT column (parameters that share
the same parent state configuration). For example, an interior con-
straint could be “the probability of a patient getting cancer is smaller
than 1%” in a medical BN. In Ref. [56], we showed that significant
improvements to CPT learning can be achieved from a relatively
small number of expert provided interior constraints. However, in
many situations it is possible (and actually more efficient) to elicit
constraints between parameters with different parent state configu-
rations. These constraints are referred to as exterior constraints, and
defined as follows:

Definition 4.1 (Exterior constraints). For any variable Xi in a BN, if
the two associated parameters hipk and hiqk in Xi have different parent
state configurations Pi = p or Pi = q (p �= q), we call hipk ≥ a+bhiqk
or hipk < a + bhiqk (where a,b ∈ R and b �= 0) an exterior constraint.

This kind of constraint can be generated from monotonic influ-
ences which can greatly reduce the burden of expert judgment elici-
tation. Next, we will discuss the definition of monotonic influences.

4.2. The monotonic influences and generated exterior constraints

Definition 4.2 (Monotonic influences). For any dependent relation-
ship Xj → Xi in a BN with ordered categorical variables, if an increase
in Xj leads to an increase in Xi no matter the values of other variables

in Pi\{Xj}, we call this a positive monotonic influence Xj
+→ Xi. Con-

versely, if an increase in Xj leads to a decrease in Xi no matter the
values of other variables in Pi\{Xj}, we call this a negative monotonic
influence Xj

−→ Xi.
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A zero influence (Xj
0→ Xi) is defined analogously whereby an

increase in Xj will not change the value of Xi. This influence is left
implicit in the network’s graphical representation. Finally, if there is
no positive or negative monotonic influence between Xj and Xi, we

call this ambiguous monotonic influence Xj
?→ Xi.

As we will show in Section 5, positive and negative monotonic
influences occur widely in real-world BN applications. Based on the
above definitions (and using smoking Xs, cancer Xc and medical
treatment Xm as example variables shown in Fig. 1), two mono-
tonic influences in the BN example can be formulated as exterior
constraints as follows:

Xs
+→ Xc : F(xc| Xs = false, xm) ≥ F(xc| Xs = true, xm)

Xm
−→ Xc : F(xc| xs, Xm = false) ≤ F(xc| xs, Xm = true) (5)

Here there variables Xs, Xm and Xc are ordered binary categori-
cal variables, their values xs, xm and xc are from the set {false, true}.
Moreover, F(xc) = P(Xc ≤ xc). Thus, for the example above, in
Xs

+→ Xc, observing higher values for Xs makes higher values for Xc

more likely, regardless of any other values of Xm. The arc signs ( +→
and −→) specify the types of the monotonic influence. The negative
influence represents the opposite relationship compared with the
positive influence.

Although such monotonic influences have been well discussed
in previous works [1,20,48], there is no empirical analysis on
using such generated exterior constraints in parameter lean-
ing. Next, we will introduce a flat parameter prior (K2 prior)
into the parameter learning with such exterior constraints, and
derive the related equations for the constrained optimization
problem.

4.3. The constrained optimization method

Parameter learning with monotonic influence constraints can be
formulated as a constrained optimization problem, and solved by
the gradient descent approach. Therefore, the parameter estimation
is converted to find the most probable parameters that maximize
the log likelihood given training data and monotonic influence con-
straints. Any violation of constraints is penalized by reducing the
objective log likelihood.

Fig. 1. A three-node BN with two monotonic influences.

Without loss of generality, for a monotonic influence of Xj on
Xi, we can generate its monotonic influence constraints (denoted by
eckc

i,p,q):

∑kc
k=1 hipk ≥ ∑kc

k=1 hiqk

where 1 ≤ i ≤ n, 1 ≤ p ≤ |Pi|, 1 ≤ q ≤ |Pi|, 1 ≤ k ≤ kc. p and q are
two parent state configurations, their corresponding sub-indices2 on
Xj are denoted as sub(p, j) and sub(q, j). The kc is the state index for
which the cumulative distribution function is evaluated, and satisfies
the condition 1 ≤ kc < ri.

If the monotonic influence is positive (Xj
+→ Xi), we have

sub(p, j) < sub(q, j). If it is negative(Xj
−→ Xi), the sub-indices of Xj sat-

isfy the condition that sub(p, j) > sub(q, j). Moreover, the sub-indices
of Xi

′s parents in Pi � {Xj} satisfy the condition sub
(

p, j̃
)

= sub
(

q, j̃
)

(caeteris paribus condition [48]).
Let Ci =

{
eckc

i,p,q

}
represent all the elicited exterior constraints in

Xi, which means:

Ci =
{∑kc

k=1 hipk ≥ ∑kc
k=1 hiqk|1 ≤ p ≤ |Pi|, 1 ≤ q ≤ |Pi|, 1 ≤ k ≤ kc < ri

}

Therefore, the constrained maximization problem can be written
as follows:

arg max
h

(
�(h|D) − w

2
•
∑n

i=1
∑

eckc
i,p,q ∈ Ci

penalty
(

eckc
i,p,q

))

s.t.
∑ri

k=1 hipk − 1 = 0 (6)

where the w is the penalty weight, and chosen empirically. The
penalty function is normally set as the squared difference of two
parameters [1]:

penalty
(

eckc
i,p,q

)
= I∑kc

k=1(hiqk−hipk)≥0
•
(∑kc

k=1(hiqk − hipk)
)2

where I( • ) is the indicator function whose value equal to 1 if the
condition ( • ) is satisfied, otherwise its value equal to 0.

Here, the condition
∑ri

k=1 hipk = 1 ensures that the sum of all the
estimated parameters in a probability distribution is equal to one. To
eliminate this condition, we introduce a new parameter l ipk so that

hipk =
elipk∑ri

k=1 elipk
(7)

Thus, the estimated parameters will automatically respect the
condition

∑ri
k=1 hipk = 1. Meanwhile, the local maximum w.r.t l ipk is

also the local maximum w.r.t hipk, and vice versa.
The solution of Eq. (6) moves towards the direction of reducing

constraint violations and increasing data log likelihood. To ensure the
returned solution is global optimum, the objective function must be
convex, which limits the usage of constraints. Meanwhile, because
the starting points are randomly generated in gradient descent, this
may cause unacceptably poor parameter estimation results when

2 The conversion between parent state configurations and sub-indices is needed
in the implementation of the algorithm. This is supported by the ind2subv func-
tion, which is available at http://research.microsoft.com/en-us/um/people/minka/
software/lightspeed/.

http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
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learning with zero or limited data counts Nipk. Thus, we simply
improve the first term of Eq. (6) by introducing a flat Dirichlet prior
h′:

J(h) = �(h|D, h′) − w
2

•
n∑

i=1

∑
eckc

i,p,q∈Ci

penalty
(

eckc
i,p,q

)
(8)

The derivative of J(h) w.r.t l can be expressed as:

∂

∂lipk
J(h) =

∂

∂lipk
�(h|D, h′) − w

2
•

n∑
i=1

∑
eckc

i,p,q∈Ci

∂

∂lipk
penalty

(
eckc

i,p,q

)
(9)

The derivative of the first term is defined by the partials:

∂

∂lipk
�(h|D, h′) = Nipk + 1 − elipk∑ri

k=1 elipk
• (Nip + ri) (10)

The derivative of the second term is only valid when the con-
straint is violated. For each exterior constraint eckc

i,p,q, the violation
margin can be represented as:

4 =

∑kc
k=1 eliqk∑ri
k=1 eliqk

−
∑kc

k=1 elipk∑ri
k=1 elipk

> (11)

Thus, the derivative of the penalty is defined by:

∂

∂lipk
penalty

(
eckc

i,p,q

)
= (−2) • I4≥0 • 4 • elipk

×
(

Ik≤kc
•
∑ri

k=1 elipk − ∑kc
k=1 elipk(∑

kelipk
)2

)

∂

∂liqk
penalty

(
eckc

i,p,q

)
= 2 • I4≥0 • 4 • eliqk

×
(

Ik≤kc
•
∑ri

k=1 eliqk − ∑kc
k=1 eliqk(∑

keliqk
)2

)
(12)

Given the Eq. (6) and decomposability property of the log like-
lihood, the large optimization problem can be decomposed into n
smaller sub-problems:

hi = arg max
hi

⎛
⎜⎜⎝�(hi|D) − w

2
•

∑
eckc

i,p,q∈Ci

penalty
(

eckc
i,p,q

)⎞
⎟⎟⎠ (13)

Based on the gradients (Eqs. (9)–(12)) discussed above, this sub-
problem can be solved using the Karush-Kuhn-Tucker theorem.
And we use Sequential Quadratic Programming (SQP) to com-
pute its solutions [40]. The parameter learning algorithm is shown
in Algorithm 1. We refer to it as the Constrained Optimization
algorithm with a Flat parameter Prior (COFP). The COFP algorithm
consists of two parts. For unconstrained parameters, we perform the
standard estimation. For constrained parameters, we make the solu-
tions move towards the direction of increasing objective function
value.

Algorithm 1. COFP BN parameter learning algorithm with mono-
tonic influence constraints and a flat parameter prior

The A = {Aj,i|1 ≤ j ≤ n, 1 ≤ i ≤ n} in Algorithm 1 is the mono-
tonic influence label matrix, where Aj,i = 1 and Aj,i = −1 represent

a positive (Xj
+→ Xi) and a negative (Xj

−→ Xi) monotonic influence
respectively, and Aj,i = 0 means there is no monotonic influence

between Xj and Xi (Xj
?→ Xi).

4.4. Time complexity analysis

The constrained optimization step usually takes a fixed amount
time to find the optimal parameter estimate. Therefore, we treat this
optimization step as the elementary operation O(1). The bottleneck
in terms of efficiency of the COFP algorithm lies in the total number
of exterior constraints generated from the monotonic influences.

Assuming there are n nodes in a BN and each node has maximum
r states, the worst-case time complexity T(n) of the COFP algorithm
happens in the BN structure that contains one child node and its
n − 1 parent nodes, with all n − 1 edges fully specified by mono-
tonic influences. Therefore, the total number of monotonic influence
constraints is equal to the product of total number of parent config-
urations and the number of child node states. Hence, the worst-case
time complexity is exponential with respect to the total number of
nodes:

T(n) = O

(
r(n−1)!

2!
(
r(n−1) − 2

)
!

r

)
= O

(
1
2

(
r(n2−2n+2) − rn

))
(14)

Despite this complexity, the COFP algorithm is able to produce the
results relatively efficiently for all the real-world models examined
in Section 5 with the biggest model running in 23.81 s3 .

3 Relevant experiments are performed on an Intel core i7 CPU running at 2.5 GHz
and 16 GB RAM.
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5. Experiments

The experiments have two goals. First to demonstrate the
widespread existence of monotonic influences in BNs in the publicly
available repository that we describe in Section 5.1 and second to
show the advantages of using the generated exterior constraints in
parameter learning (with the COFP algorithm).

In the experiments in this section, we are relying on publicly
available BNs. Unlike the real-world case study that follows in
Section 6, this means that there are a number of necessary exper-
imental conditions, which we acknowledge are only a simulation
of reality (and hence limit the general applicability of the results).
Specifically:

• In practice we would have a known BN structure (this is the
key scenario we are assuming, as explained in the Introduc-
tion) together with a small amount of real-world data relevant
to the BN variables. However, here we have to simulate such
data — not just because we do not actually have it, but also
because we wish to evaluate our method under different sam-
ple sizes. To simulate a realistic set of data we have to assume
that the actual CPTs provided with the models represent the
‘true’ model parameters (of course, in practice the ‘true’ param-
eters are unknown because this is what we are trying to learn).
To do this we use the forwards sampling function which is built
into the BNT package4 to generate data samples (of sizes 50,
100 and 500) randomly from the distributions of the ‘true’ CPTs.

• In practice we would have one or more domain experts on hand
from whom to elicit the monotonic influence labels. Because
we do not have access to such experts, we are using the ‘true’
labels from the BN. However, to simulate reality we include
experiments in which some erroneous labels are randomly
generated.

For comparison, we consider the following parameter algorithms:

• Conventional parameter BN learning algorithms (MLE and
MAP).

• Constrained optimization (CO) algorithm (considering exterior
constraints) [1,33].

• Our improved CO algorithm by incorporating a flat parameter
prior (COFP).

In all cases the resulting learnt CPTs are evaluated against the
true CPTs by using the K–L divergence metric5 [32], which is recom-
mended to measure the distance between distributions. The smaller
the K–L divergence is, the closer the estimated CPT values are to the
true CPT values. If estimated CPT values are zero, they are replaced
by a tiny real value (1 × 10−7) to guarantee they can be computed by
the K–L divergence. Moreover, each experiment setting is repeated
10 times, and the results are presented with their mean and standard
deviation.

5.1. The BNs used in the experiments

The publicly available BN repository6 contains 20 complete BNs,
most of which have been developed in total or in part by domain
experts. Hence, they satisfy the scope of our work. These BNs are

4 BNT is a Matlab toolbox called “Bayes Net Toolbox” that can be found at https://
code.google.com/p/bnt/.

5 Here the K–L divergence is locally measured for each CPT column and averaged
over the whole model. This is to ensure that the fit of each distribution is equally
weighted in the overall metric.

6 http://www.bnlearn.com/bnrepository/.

Table 1
Details and monotonic influence analysis of 12 publicly available Bayesian networks.

Name Nodes Edges Parameters +→ Edges −→Edges

Alarm 37 46 509 18 2
Andes 223 338 1157 336 1
Asia 8 8 18 8 0
Cancer 5 4 10 3 1
Earthquake 5 4 10 4 0
Hailfinder 56 66 2656 23 0
Hepar2 70 123 1453 34 12
Insurance 27 52 984 9 2
Sachs 11 17 178 2 0
Survey 6 6 21 2 1
Weather 4 4 9 3 1
Win95pts 76 112 574 26 3

encoded in the Bayesian Interchange Format (.bif). We used a Perl
program called bif2bnt7 to convert these BNs into the standard BNT
format. This resulted in 12 of the BNs being successfully converted
and used in the experiments; the rest were clearly not well-defined,
but there is no reason to believe that the 12 that were successfully
extracted are not representative of the kind of real-world BN models
that satisfy the scope of our work.

Table 1 provides a summary of these BNs. They range from typ-
ically small expert-built BNs to those which are as large as any
that could be reasonably produced by experts. Each edge of these
BNs is investigated for qualitative monotonicity, and the details are
also described in Table 1. As we can see, monotonic influences are
widespread in all these BNs; in half of them the vast majority of edges
have monotonic influences.

To illustrate in detail the findings, we use the example of the
well-known Alarm BN, which is an acronym for “A Logical Alarm
Reduction Mechanism”. This BN is a medical diagnostic application
used for patient monitoring that contains 37 variables in total: 8
diagnoses, 16 findings and 13 intermediate variables. The BN has 46
edges and 509 parameters, the maximum edge in-degree is 4.

Fig. 2 shows the full structure of the BN, where the signs on
the edges indicate whether the associated monotonic influences are
positive or negative. There are 18 positive and 2 negative mono-
tonic influences, which means that 43.5% of the edges encode such
monotonic influences.

5.2. Results with different data sparsity

In this experiment, we consider three training data sizes: 50, 100
and 500. Table 2 summarises the average K–L divergence between
learnt BNs and true BNs for three different training sample sizes. The
best results are presented in bold. Statistically significant improve-
ments of the best results over competitors are indicated with aster-
isks * (p ≤ 0.05).

For sample size 50 (Table 2 (a)), MAP, CO and COFP all achieve
good performances compared with the conventional MLE, which suf-
fers from the absence of data in several state configurations in such
limited data. Moreover, COFP significantly outperforms MAP and CO
in most experiment settings. Specifically, compared with MAP and
CO results, COFP achieves 16.3% and 70.0% average reductions of K–L
divergence respectively.

For sample size 100 (Table 2 (b)), the performances of MLE, MAP,
CO and COFP are all improved compared with their results in 50
data samples. Specifically, in the small network (Weather BN), the
basic MLE also achieves the best learning result, which means that
the 100 training example is already enough to train a good model.
Again, COFP beats the competitors in every setting except the Asia
BN. Compared with MAP and CO results, COFP achieves 14.3% and
70.5% average reductions of K–L divergence respectively.

7 http://www.digitas.harvard.edu/~ken/bif2bnt/.

https://code.google.com/p/bnt/
https://code.google.com/p/bnt/
http://www.bnlearn.com/bnrepository/
http://www.digitas.harvard.edu/~ken/bif2bnt/


Y. Zhou, et al. / Decision Support Systems 87 (2016) 69–79 75

Fig. 2. The monotonic influence labels in the Alarm BN.

Table 2
Learning results of MLE, MAP, CO and COFP on 12 publicly available BNs.

MLE MAP CO COFP

(a) 50 data samples
Alarm 2.83±0.18* 0.76±0.03* 2.48±0.17* 0.67 ±0.03
Andes 1.50±0.03* 0.25±0.01* 0.17±0.01* 0.16 ±0.01
Asia 0.98±0.22* 0.44±0.03* 0.23 ±0.08 0.30±0.04*
Cancer 0.93±0.49* 0.11±0.03 0.11±0.04 0.08 ±0.03
Earthquake 1.58±0.73* 0.16±0.03 0.30±0.06* 0.14 ±0.05
Hailfinder 3.39±0.04* 0.57±0.01* 3.24±0.03* 0.49 ±0.01
Hepar2 3.48±0.09* 0.36±0.01* 3.23±0.08* 0.35 ±0.01
Insurance 2.49±0.11* 1.39±0.01* 2.07±0.10* 1.29 ±0.02
Sachs 2.21±0.15* 0.91±0.03* 1.97±0.13* 0.84 ±0.02
Survey 0.47±0.11* 0.05±0.01* 0.15±0.05* 0.03 ±0.01
Weather 0.03 ±0.03 0.07±0.02* 0.03 ±0.03 0.04±0.01
Win95pts 3.88±0.09* 0.89±0.01* 3.22±0.12* 0.83 ±0.01
Average 1.98±0.19 0.50±0.02 1.43±0.08 0.43 ±0.02

(b) 100 data samples
Alarm 2.24±0.12* 0.65±0.02* 2.03±0.10* 0.58 ±0.03
Andes 1.06±0.02* 0.18±0.00* 0.11±0.03 0.10 ±0.00
Asia 0.57±0.28* 0.34±0.06* 0.09 ±0.08 0.19±0.07*
Cancer 0.61±0.60* 0.08±0.03 0.12±0.09 0.07 ±0.04
Earthquake 1.16±0.46* 0.14±0.04 0.35±0.29* 0.11 ±0.06
Hailfinder 2.86±0.03* 0.46±0.01* 2.76±0.02* 0.40 ±0.01
Hepar2 3.13±0.10* 0.33±0.01 2.97±0.08* 0.32 ±0.01
Insurance 1.85±0.11* 1.17±0.02* 1.59±0.09* 1.07 ±0.02
Sachs 1.67±0.16* 0.76±0.03* 1.50±0.14* 0.69 ±0.02
Survey 0.35±0.15* 0.04±0.01* 0.11±0.04* 0.03 ±0.01
Weather 0.02 ±0.02 0.03±0.01* 0.02 ±0.02 0.02 ±0.01
Win95pts 3.61±0.07* 0.82±0.02* 2.99±0.12* 0.74 ±0.02
Average 1.59±0.18 0.42±0.02 1.22±0.09 0.36 ±0.03

(c) 500 data samples
Alarm 1.39±0.13* 0.43±0.02* 1.29±0.14* 0.39 ±0.02
Andes 0.37±0.03* 0.07±0.00* 0.05±0.01* 0.02 ±0.00
Asia 0.25±0.15* 0.21±0.03* 0.02 ±0.01 0.05±0.01*
Cancer 0.05±0.03* 0.01 ±0.01 0.03±0.02* 0.01 ±0.01
Earthquake 0.59±0.19* 0.08±0.03* 0.10±0.08 0.04 ±0.05
Hailfinder 1.52±0.03* 0.24±0.00* 1.50±0.03* 0.22 ±0.00
Hepar2 2.43±0.10* 0.26 ±0.01 2.36±0.09* 0.26 ±0.01
Insurance 0.88±0.04* 0.65±0.01* 0.77±0.04* 0.58 ±0.01
Sachs 0.95±0.16* 0.47±0.04* 0.90±0.16* 0.44 ±0.04
Survey 0.04±0.01* 0.02±0.01 0.02±0.01* 0.01 ±0.00
Weather 0.00 ±0.00 0.01±0.00* 0.00 ±0.00 0.00 ±0.00
Win95pts 2.97±0.06* 0.64±0.01* 2.53±0.13* 0.50 ±0.01
Average 0.95±0.08 0.26±0.01 0.80±0.06 0.21 ±0.01

For sample size 500 (Table 2 (c)), the performances of MLE,
MAP, CO and COFP are further improved. Compared with other
learning methods, COFP still achieves the best overall learning per-
formance. Specifically, of the total 12 experiments, 10 experiments
show improvement in COFP over both MAP and CO. Moreover, the
COFP achieves 19.2% and 73.8% average reductions of K–L divergence
compared with MAP and CO.

As a detailed example, Fig. 3 highlights the learning results of the
Alarm BN under different data sizes ranging from 50 to 500 samples.
It is clear that the average K–L divergence of all four algorithms show
the decreasing trends with increasing sample sizes. Moreover, the
CO results always outperform the MLE results, which demonstrate
the usefulness of using elicited exterior constraints from monotonic
influences. As expected, with the increase of data sizes, the gap
between the performances of CO and MLE decreases.

More importantly, COFP greatly outperforms MLE and CO, and it
also outperforms MAP with 10.8% average reduction of K–L diver-
gence. These findings show the superiority and effectiveness of
applying COFP in the Alarm BN parameter estimation with extremely
limited data.

5.3. Time complexity analysis

As discussed in Section 4.4, the computational complexity is
mainly determined by the total number of exterior constraints.
Table 3 describes the average computational time of each learning
task for different learning algorithms.

As expected from the complexity analysis, there is clearly a
much greater computational overhead in using CO and COFP com-
pared to MLE and MAP (which is inevitable given the iteration steps
in the constraint optimization). Crucially, however, COFP performs
much more efficiently than CO (it outperforms CO in 34 of the 36
experiments).

5.4. Results with error labels

As shown in the above experiments, incorporating exterior
constraints generated from monotonic influences can significantly

Fig. 3. The learning performances of MLE, MAP, CO and COFP in the Alarm BN under
different data sizes.
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Table 3
Running time (seconds) for MLE, MAP, CO and COFP in 12 publicly available BN
parameter learning problems.

Name Data MLE MAP CO COFP

Alarm 50 0.02 0.01 2.75 0.98
100 0.02 0.01 2.54 1.17
500 0.02 0.01 2.61 1.40

Andes 50 0.05 0.05 18.38 9.67
100 0.05 0.07 21.81 15.60
500 0.06 0.06 22.71 12.11

Asia 50 0.00 0.00 0.23 0.19
100 0.00 0.00 0.23 0.20
500 0.00 0.00 0.22 0.21

Cancer 50 0.00 0.00 0.12 0.09
100 0.00 0.00 0.13 0.11
500 0.00 0.00 0.12 0.11

Earthquake 50 0.00 0.00 0.13 0.10
100 0.00 0.00 0.15 0.11
500 0.00 0.00 0.16 0.10

Hailfinder 50 0.01 0.01 2741.99 20.05
100 0.01 0.01 1694.87 21.78
500 0.02 0.02 2579.77 23.81

Hepar2 50 0.02 0.01 2.91 1.66
100 0.02 0.02 3.01 1.99
500 0.02 0.02 2.73 2.19

Insurance 50 0.01 0.01 8.19 4.36
100 0.01 0.01 12.23 5.39
500 0.01 0.01 19.32 8.13

Sachs 50 0.00 0.00 0.98 0.32
100 0.00 0.00 0.90 0.31
500 0.00 0.00 0.59 0.36

Survey 50 0.00 0.00 0.16 0.11
100 0.00 0.00 0.14 0.10
500 0.00 0.00 0.13 0.14

Weather 50 0.00 0.00 0.11 0.10
100 0.00 0.00 0.10 0.10
500 0.00 0.00 0.14 0.12

Win95pts 50 0.02 0.02 6.92 4.80
100 0.02 0.02 7.55 5.38
500 0.03 0.02 7.73 6.78

Average N/A 0.01 0.01 198.97 4.17

improve the learning performance. However, in real-world appli-
cations it is inevitable that, when eliciting such constraints from
experts, the influence labels will sometimes be wrong. Hence,
it is important to investigate the sensitivity of the results to
such errors. To this end, we generate “error labels” for a ran-
domly selected small subset of the previously elicited monotonic
influences (where an error label is a positive influence labelled

Fig. 4. The learning performances of CO and COFP in the Alarm BN with increasing
number of error labels.

negative or vice versa). We consider two sets of experiments
for each BN: one in which there is exactly one edge with an
error label; and one in which 5% of the edges have error labels
(also note that, for BNs with less than 20 edges with mono-
tonic influences, these are the same). We feel that anything
more than 5% does not realistically represent expert judgment
error.

As expected, the results in (Table 4) show that the perfor-
mances of CO and COFP are both worse than their previous
results that learnt with correct influence labels (Table 2 (b)). For
example, the average K–L divergence of COFP learnt with one
error label and 5% error labels are 0.43 and 0.44, which are much
higher than the previous result (0.36) learnt with correct influence
labels.

However, as is shown in the last column of Table 4, even with the
errors introduced, COFP outperforms MAP in most cases. The excep-
tions are the Cancer, Earthquake and Weather BNs, which have less
than 5 edges with monotonic influence constraints (so a single error
represents 25% of the edges, and it is unsurprising in such cases that
the performance of COFP is badly affected).

Table 4
Learning results of MLE, MAP, CO and MPL-EC with error monotonic influence labels and 100 training data samples in 12 publicly available BN parameter learning problems.

Name 1 error label 5% error labelsa COFP better or equal than MAP?

CO COFP CO COFP

Alarm 2.09±0.10 0.59 ±0.02 2.09±0.10 0.59 ±0.02 Yes
Andes 0.11±0.01 0.10 ±0.00 0.19±0.03 0.13±0.00 Yes
Asia 0.30 ±0.10 0.41±0.11 0.30 ±0.10 0.41±0.11 Yes
Cancer 0.22±0.07 0.16 ±0.03 0.22±0.07 0.16 ±0.03 No
Earthquake 0.86±0.21 0.46 ±0.06 0.86±0.21 0.46 ±0.06 No
Hailfinder 2.75±0.04 0.42 ±0.01 2.77±0.05 0.43±0.01 Yes
Hepar2 2.94±0.07 0.32 ±0.01 2.94±0.07 0.32 ±0.01 Yes
Insurance 1.69±0.12 1.12 ±0.02 1.69±0.12 1.12 ±0.02 Yes
Sachs 1.63±0.15 0.75 ±0.02 1.63±0.15 0.75 ±0.02 Yes
Survey 0.16±0.08 0.03 ±0.01 0.16±0.08 0.03 ±0.01 Yes
Weather 0.07 ±0.02 0.07 ±0.01 0.07 ±0.02 0.07 ±0.01 No
Win95pts 3.08±0.11 0.75 ±0.02 3.10±0.11 0.83±0.02 Yes
Average 1.33±0.09 0.43 ±0.03 1.33±0.09 0.44±0.03 N/A

a The final number of error labels is rounded up to the nearest integer.
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Fig. 5. The Trauma Care Bayesian network, which contains four main parts: “Injury”, “Shock”, “Coagulopathy” and “Death”.

For large BNs, the performance of COFP is remarkably robust
to errors, as can be seen in Fig. 4, which shows how the intro-
duced errors affect the learning results of CO and COFP in the
Alarm BN with 100 data samples. Obviously errors are irrelevant
for the learning performances of MLE and MAP so their esti-
mation results are fixed over varying numbers of error labels.
As we can see, there are increasing trends of K–L divergence
in CO and COFP with increasing number of error monotonic
influences. The slight fluctuation comes from randomly chosen
error labels in each experiment repetition. However, COFP out-
performs MAP with up to 5 errors (which is 25% of the relevant
edges).

Table 5
Details of constrained variables.

Variable Description States

Death The risk of patient’s death in 48 h. No
Yes

ATC Acute traumatic coagulopathy. No
Yes

Age Patient’s age. Y: Age ≤ 45
M: 45 < Age < 65
O: Age ≥ 65

Hypoperfusion The degree of decreased blood flow
through an organ.

Uncompensated

None
Compensated

Head Severe head injury of patient. No
Yes

6. A real medical case study

The previous experiments demonstrated the effectiveness of our
COFP algorithm on repository BN models under simulated conditions
of scarce data and generated exterior constraints. In this section,
we demonstrate its effectiveness to learn parameters of a real BN
developed for a medical problem, where the “true” parameters and
monotonic influences are unknown.

The BN was developed by trauma care specialists, and relates
to procedures in hospital. The full details of the BN (whose graph
is shown in Fig. 5) and datasets are proprietary to the hospitals
involved. This BN contains 18 discrete variables (of which 3 are
hidden) and 11 Gaussian variables8 that are grouped into 4 parts:

• the degree of overall tissue injury,
• the degree of hypoperfusion resulting from blood loss for the

patient,
• the risk of developing acute traumatic coagulopathy, and
• the risk of death for the patient.

Here, a well learnt BN is important because rapid and accurate
identification of hidden risk factors and conditions modelled by the
network are important to support a doctors’ decision making about
treatments which reduce mortality rate [31].

8 The details of these variables can be found in http://www.traumamodels.com/.

http://www.traumamodels.com/
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Table 6
The elicited expert judgments for monotonic influences in the Trauma Care BN.

Monotonic influences Description

ATC +→ Death ATC occurs will result in the death of patient
with very high probability.

Age +→ Death Old patient has higher risk of death than young
patient.

Hypoperfusion −→ Death Uncompensated hypoperfusion will very likely
result in the death of patient.

Head +→ Death Severe head injury will likely result in the death
of patient.

In this experiment, we elicited monotonic influences from med-
ical experts and were also give access to a hospital dataset. Hence
we are able, in a real-world setting, to evaluate the MPL-TC
method.

The monotonic influences and their descriptions are shown in
Table 6, which constrain the variables: ‘Death’, ‘ATC’, ‘Age’, ‘Hypop-
erfusion’, and ‘Head’ (their details can be found in Table 5).

The real dataset was collected from an inner city hospital in Ger-
many, and contains 105 instances. We perform cross-validation in
this dataset, using half the instances to train the model, and half
to evaluate the model. To evaluate the model we instantiate the
evidence variables in the target domain test set, select one of the
variables of interest (Death), and query this variable. AUC values are
calculated for the query variable. To get an effective decision support
model, we need to pick up the trained model that has the highest
AUC value. The results are presented in Table 7, with the best result
in bold, and statistically significant improvements of the best result
over competitors indicated with asterisks * (p ≤ 0.05).

As shown in Table 7, all learning algorithms mentioned in this
paper have been compared. Due to data scarcity, MAP outper-
forms MLE. After incorporating constraints generated from mono-
tonic influences, the performance of CO is better than MLE, which
demonstrates the correctness of expert judgments in Table 6. More-
over, the COFP achieves the best result, which shows the potential
benefit of using COFP for real-world decision support problems,
especially when the training data are extremely limited.

7. Conclusions and future work

When data are limited, purely data driven BN learning is inaccu-
rate. In this paper our focus is on those scenarios in which we have a
BN whose structure is expert-defined, but whose parameters we seek
to learn from a combination of scarce data and expert judgments.
By incorporating monotonic influence constraints discussed in this
paper parameter learning performance is significantly improved.

The broad goal of this paper was to understand the monotonic
influence constraints in a range of BNs, and to determine the extent
to which knowledge of such constraints improved learning perfor-
mance. We analysed such properties in each edge of every readable
BN in the publicly available BN repository. Surprisingly, monotonic
influences were widespread in all the BNs (typically over 40% of
all edges in most of the 12 BNs used in the study). We described
an improved parameter learning algorithm (COFP) that incorporates
constraints generated from these monotonic influences, and com-
pared its performance to MLE, MAP and the previous state-of-the-art
algorithm CO using a range of different sample size settings.

Table 7
Prediction performance (AUC) for the Trauma Care BN. The query variable is ‘Death’.

Algorithm MLE MAP CO COFP

AUC 0.829∗ 0.872 0.859∗ 0.938

We demonstrated that over the full set of models in the experi-
ment COFP consistently outperforms CO. We also demonstrated that,
while COFP is obviously far more computationally demanding than
MLE and MAP it is actually at least as efficient as CO in most BNs.
We also showed that, COFP is robust with respect to a small number
of error labels, especially in large BNs. In Alarm BN, it requires more
than 25% errors before COFP is outperformed by MAP.

The experiments in Section 5 were only a simulation of the real-
world problem of learning parameters for a fixed BN structure given
scarce data together with expert judgments. However, we believe
the set of BNs was representative of those defined within the scope
of our research, and the simulation method, which included simulat-
ing expert errors, was a reasonable match to real-world scenarios. In
our real medical case study, we had access to a BN structure devel-
oped by trauma care experts (for coagulopathy risk), together with
expert elicited monotonic influences and a hospital dataset; the COFP
algorithm achieved the best learning results.

While this paper has provided a contribution to improving the
accuracy of BN parameter learning by incorporating monotonic influ-
ences, there are a number of areas in which the work could be
extended in future research. First, in real-world decision support
applications, the dataset might contain ‘missing values’. In such cases
the simplest way continue to use our algorithm is to employ impu-
tation techniques that fill the missing values of the dataset with the
most likely value; however, this may introduce large amounts of
bias especially when the data is scarce. To address this, we could
apply the EM algorithm [36], where the exterior constraints should
be incorporated in the M-step. Because of the multiple iterations
in the EM algorithm, this would, however reduce the efficiency of
the algorithm. A second area of future research would be to inves-
tigate the existence of the extended representations of monotonic
influences in the BNs that we studied, which are named context-
specific influences [46]. This representation can model knowledge
about monotonic influences (Xj → Xi) that hold only for specific
values of Pi\{Xj}. Therefore, ambiguous monotonic influences could
be further exploited, and might be used to improve the parameter
learning accuracy in some BNs.
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