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1. Introduction

Terlaky [1] and Lesaja [2] have suggested simple ways to
teach interior-point methods. In this paper, we suggest an
alternative and maybe still simpler way which is particularly
tailored to the typical mathematical background of CS
students. In particular, only limited knowledge of linear
algebra and calculus is assumed. We have selected most of
the material from popular textbooks [3–8] to assemble a self-
contained presentation of an interior point method—little of
this material is new.

The canonical linear programming problem is to

minimize cTx subject to Ax = b and x ≥ 0. (1)

Here, A is an m × n matrix, c and x are n-dimensional, and b
is an m-dimensional vector. A feasible solution is any vector x
with Ax = b and x ≥ 0. The problem is feasible if there is a
feasible solution, and infeasible otherwise. A feasible problem
is unbounded (or more precisely the corresponding objective
function is unbounded) if for every real z, there is a feasible x
with cTx ≤ z, and bounded otherwise.

In our presentation, we first assume that feasible solutions
to the primal and the corresponding dual LP satisfying a
certain set of properties (properties (I1)–(I3) in Section 3) are
available. We then show how to iteratively improve these
solutions in Sections 2 and 3. In each iteration the gap
between the primal and the dual objective value is reduced
by a factor 1 − O(1/

√
n), where n is the number of variables.

The iterative improvement scheme leads to solutions that are
arbitrarily close to optimality. In Sections 4 and 5 we discuss
how to find the appropriate initial solutions and how to
extract an optimal solution from a sufficiently good solution
by rounding. Either or both these sections may be skipped in
a first course.

Remark 1. It is easy to deal with maximization instead
of minimization and with inequality constraints. Indeed,
maximize cTx is equivalent to minimize −cTx. Constraints of
type α1x1 + · · · + αnxn ≤ β can be replaced by α1x1 + . . . +

αnxn + γ = β with a new (slack) variable γ ≥ 0. Similarly,
constraints of type α1x1 + · · · + αnxn ≥ β can be replaced by
α1x1 + · · · + αnxn − γ = β with a (surplus) variable γ ≥ 0.

We consider another problem, the dual problem, which is

maximize bTy, subject to ATy + s = c, with variables

s ≥ 0 and unconstrained variables y. (2)

The vector y has m components and the vector s has
n components. We will call the original problem the primal
problem.

Claim 1 (Weak Duality). If x is a solution of Ax = b with x ≥ 0
and (y, s) is a solution of ATy + s = c with s ≥ 0, then

1. xTs = cTx − bTy, and
2. bTy ≤ cTx, with equality if and only if sixi = 0 for all is.

Proof. We multiply s = c − ATy with xT from the left and
obtain

xTs = xTc − xT(ATy) = cTx − (xTAT)y

= cTx − (Ax)Ty = cTx − bTy.

As x, s ≥ 0, we have xTs ≥ 0, and hence, cTx ≥ bTy.
Equality will hold if xTs = 0, or equivalently,


i sixi = 0.

Since si, xi ≥ 0,


i sixi = 0 if and only if sixi = 0 for all i. �
If x is a feasible solution of the primal and (y, s) is a feasible
solution of the dual, the difference cTx − bTy is called the
objective value gap of the solution pair. Thus, if the objective
values of a primal feasible and a dual feasible solution are
the same, then both solutions are optimal. Actually, from the
Strong Duality Theorem, if both primal and dual solutions are
optimal, then the equality will hold. We will prove the Strong
Duality Theorem in Section 5 (Theorem 2).

If the primal and the dual are both feasible, neither
of them can be unbounded as by Claim 1, the objective
value of all dual feasible solutions are less than or equal
to the objective values of any primal feasible solution. As a
consequence: If the primal and the dual are feasible, both are
bounded. If the primal is unbounded, the dual is infeasible,
and if the dual is unbounded, the primal is infeasible. It may
happen that both problems are infeasible. It is also true, that
if the primal is feasible and bounded, the dual is feasible
and bounded, and vice versa. This is a consequence of strong
duality.

We will proceed under the assumption that the primal as well
as the dual problem are bounded and feasible. This allows us
to concentrate on the core of the interior point method, the
iterative improvement scheme. We come back to this point in
Section 4.

Claim 1 implies, that if we are able to find a solution to the
following system of equations and inequalities

Ax = b, ATy + s = c, xisi = 0 for all i, x ≥ 0, s ≥ 0,

we will get optimal solutions of both the original primal and
the dual problem. Notice that the constraints xisi = 0 are
nonlinear and hence it is not clear whether we have made
a step towards the solution of our problem. The idea is now
to relax the conditions xisi = 0 to the conditions xisi ≈ µ (with
the exact form of this equation derived in the next section),
where µ ≥ 0 is a parameter. We obtain

(Pµ) Ax = b, ATy + s = c, xisi ≈ µ for all i, x > 0, s > 0.

We will show:

1. (initial solution) For a suitable µ, it is easy to find a solution
to the problem Pµ. This will be the subject of Section 4.

2. (iterative improvement) Given a solution (x, y, µ) to Pµ, one
can find a solution (x′, y′, s′) to Pµ′ , where µ′ is substantially
smaller than µ. This will be the subject of Sections 2 and
3. Applying this step repeatedly, we can make µ arbitrarily
small.

3. (final rounding) Given a solution (x, y, µ) to Pµ for
sufficiently small µ, one can extract an exact solution for
the primal and the dual problem. This will be the subject
of Section 5.

For the iterative improvement, it is important that x > 0
and s > 0. For this reason, we replace the constraints x ≥ 0
and s ≥ 0 by x > 0 and s > 0 when defining problem Pµ (see
Fig. 1).

Note that xisi ≈ µ for all i implies bTy − cTx ≈ nµ by
Claim 1. Thus, repeated application of iterative improvement
will make the gap between the primal and dual objective
values arbitrarily small.
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Fig. 1 – The interior of the polygon comprises all points
(x, y, s) satisfying Ax = b and ATy + s = c, x > 0, and s > 0.
The blue (bold) line consists of all points in this polygon
with xisi = µ for all i and some µ > 0. These points trace a
line inside the polygon that ends in an optimal point. The
optimal solution lies on the boundary of the polygon (in the
figure, the optimal point is a vertex of the polygon) and
satisfies xisi = 0 for all i. The red (dashed) line illustrates
the steps of the algorithm. It follows the blue (bold) line in
discrete steps. The close-up shows the situation near the
optimal solution. The algorithm stops tracing the blue
curve and rounds to the near-optimal red solution obtained
at this point of time to an optimal solution. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)

Throughout the paper we assume that the rows of A are linearly

independent and that n > m, i.e., we have more variables than

constraints.1

1 Indeed, we can use Gaussian elimination to remove
superfluous constraints and to make the rows of A independent.
Assume first that A contains a row i in which all entries are
equal to zero. If bi is also zero, we simply delete the row. If bi is
nonzero, the system of equations has no solution, and we declare
the problem infeasible and stop. Now, every row of A contains a
nonzero entry, in particular, the first row.Wemay assume that a11
is nonzero. Otherwise, we interchange two columns. We multiply
the ith equation by −

a11
ai1

and subtract the first equation. In this
way, the first entry of all equations but the first becomes zero. If
any row of A becomes equal to the all zero vector, we either delete
the equation or declare the problem infeasible. We now proceed
in the same way with the second equation. We first make sure
that a22 is nonzero by interchanging columns if necessary. Then
we multiply the ith equation (for i > 2) by −

a22
a21

and subtract the
second equation. And so on. In the end, all remaining equations
will be linearly independent. Equivalently, the resulting matrix
will have full row-rank.
We now have m constraints in n variables with n ≥ m. If n = m,

the system Ax = b has a unique solution (recalling that A has full
row-rank and is hence invertible). We check whether this solution
is non-negative. If so, we have solved the problem. Otherwise, we
declare the problem infeasible. So, we may from now on assume
n > m (more variables than constraints).
2. Iterative improvement: Use of the Newton–
Raphson method

This section and the next follow Roos et al. [3] (see also
Vishnoi [9]).

Let us assume that we have a solution (x, y, s) to

Ax = b and ATy + s = c and x > 0 and s > 0.

We will use the Newton–Raphson Method [3] to get a “better”
solution. Let us choose the next values as x′

= x+h, y′
= y+k,

and s′ = s + f . We can think of the steps h, k, and f as small
values. Then we want, ignoring the positivity constraints for
x′ and s′ for the moment:

1. Ax′
= A(x + h) = b, or equivalently, Ax + Ah = b. Since

Ax = b, this is tantamount to Ah = 0.
2. ATy′

+ s′ = AT(y + k) + (s + f) = c. Since ATy + s = c, we get
ATk + f = c − ATy − s = 0.

3. x′

is
′

i = (xi + hi)(si + fi) ≈ µ′, or equivalently, xisi + hisi + fixi +
hifi ≈ µ′. We drop the quadratic term hifi (if the steps hi
and fi are small, the quadratic term hifi will be very small)
and turn the approximate equality into an equality, i.e., we
require xisi + hisi + fixi = µ′ for all i.

Thus, we have a system of linear equations for hi, ki, fi,
namely,

Ah = 0

system (S) ATk + f = 0

hisi + fixi = µ′
− xisi for all i.

We show in Theorem 1 that system (S) can be solved by
“inverting” a matrix. Note that there are n variables hi, m
variables kj, and n variables fi for a total of 2n + m unknowns.

Also note that Ah = 0 constitutes m equations, ATk + f = 0
constitutes n equations, and hisi + fixi = µ′

− xisi for all i
comprises n equations. So we have 2n + m equations and the
same number of unknowns. Also note that the xi and si are
not variables in this system, but fixed values.

Before we show that the system has a unique solution,
we make some simple observations. From the third group of
equations, we conclude

Claim 2. (xi+hi)(si+fi) = µ′
+hifi, and (x+h)T(s+f) = nµ′

+hTf .

Proof. From the third group of equations, we obtain

(xi + hi)(si + fi) = xisi + hisi + fixi + hifi = µ′
+ hifi.

Summation over i yields

(x + h)T(s + f) =


i

(xi + hi)(si + fi)

=


i


µ′

+ hifi


= nµ′
+ hTf. �

Claim 3. hTf = fTh =


i hifi = 0, i.e., the vectors h and f are
orthogonal to each other.

Proof. Multiplying ATk + f = 0 by hT from the left, we obtain
hTATk + hTf = 0. Since hTAT

= (Ah)T = 0, the equality hTf = 0
follows. �

Claim 4. cT(x + h) − bT(y + k) = (x + h)T(s + f) = nµ′.
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Sh + Xf = µ′e − XSe

h + S−1Xf = S−1µ′e − S−1XSe pre-multiply by S−1

h + S−1Xf = µ′S−1e − XS−1Se diagonal matrices commute

h + S−1Xf = µ′S−1e − x as Xe = x

Ah + AS−1Xf = µ′AS−1e − Ax pre-multiply by A

AS−1Xf = µ′AS−1e − b since Ax = b and Ah = 0

−AS−1XATk = µ′AS−1e − b using f = −ATk

b − µ′AS−1e = (AS−1XAT)k

Box I.
Proof. From Claims 2 and 3, (x + h)T(s + f) = nµ′
+ hTf = nµ′.

Also, applying Claim 1 to the primal solution x′
= x+ h and to

the dual solution (y′, s′) = (y+k, s+f) yields cT(x+h)−bT(y+k) =

(x + h)T(s + f). �

Note that nµ′ is the objective value gap of the updated

solution.

Theorem 1. The system (S) has a unique solution.

Proof. We will follow Vanderbei [4] and use capital letters

(e.g. X) in this proof (only) to denote a diagonal matrix

with entries of the corresponding row vector (e.g. X has the

diagonal entries x1, x2, . . . , xn). We will also use e to denote a

column vector of all ones (usually of length n).

Then, in the new notation, the last group of equations
becomes

Sh + Xf = µ′e − XSe.

Let us look at the equation in Box I in more detail.

As XS−1 is diagonal with positive items, the matrix W =
XS−1 is well-defined. Note that the diagonal terms are
xi/si; since x > 0 and s > 0, we have xi/si > 0 for all i.

Thus, AS−1XAT
= AW2AT

= (AW)(AW)T. Since A has full rank,
(AW)(AW)T, and hence AS−1XAT, is invertible (see Appendix).
Thus,

k = (AS−1XAT)−1

b − µ′AS−1e


.

Then, we can find f from f = −ATk. And to get h, we use the
equation: h + S−1Xf = µ′S−1e − x, i.e.,

h = −XS−1f + µ′S−1e − x.

Thus, system (S) has a unique solution. �

What have we achieved at this point? Given feasible

solutions (x, y, s) to the primal and the dual problem, we can

compute a solution (x′, y′, s′) = (x + h, y + k, s + f) to Ax′
= b

and ATy′
+ s′ = c that also satisfies hTf = 0 and x′Ts = nµ′ for

any prescribed parameter µ′. Why do we not simply choose

µ′
= 0 and be done? It is because we have ignored that we

want x′ > 0 and s′ > 0. We will attend to these constraints in

the next section.
3. Invariants in each iteration

Recall that we want to construct solutions (x, y, s) to Pµ for
smaller and smaller values of µ. The solution to Pµ will satisfy
the following invariants. The first two invariants state that x
is a positive solution to the primal and (y, s) is a solution to
the dual with positive s. The third invariant formalizes the
condition xisi ≈ µ for all i.

(I1) (primal feasibility) Ax = b with x > 0 (strict inequality).

(I2) (dual feasibility) ATy + s = c with s > 0 (strict inequality).

(I3) σ2 :=


i


xisi
µ − 1

2
≤

1
4 .

Remark 2. Even though the variance of xisi is
1
n


i

xisi − µ

2,
we still use the notation σ2.

We need to show

x′ > 0 and s′ > 0 and σ′2
:=


i


x′

is
′

i
µ′

− 1

2
≤

1
4

.

We will do so for µ′
= (1 − δ)µ and δ = Θ


1√
n


. Claim 2 gives

us an alternative expression for σ′2, namely,

σ′2
=


i


(xi + hi)(si + fi)

µ′
− 1

2
=


i


hifi
µ′

2
. (3)

We first show that the positivity invariants hold if σ′ is less
than one.

Claim 5. If σ′ < 1, then x′ > 0, and s′ > 0.

Proof. We first show that if σ′ < 1 then each product x′

is
′

i =

(xi+hi)(si+fi) = µ′
+hifi is positive. From σ′ < 1, we get σ′2 < 1.

Since σ′2
=


i

hifi/µ

′
2, each term of the summation must

be less than one, and hence, −µ′ < hifi < µ′. In particular,
µ′

+ hifi > 0 for every i. Thus, each product (xi + h)(si + f) is
positive.

Assume for the sake of a contradiction that both xi +hi < 0
and si + fi < 0. But as si > 0 and xi > 0, this implies
si(xi + hi) + xi(si + fi) < 0, or equivalently, µ′

+ xisi < 0, which
is impossible because µ′, xi, si are all non-negative. This is a
contradiction. �

We next show σ′
≤ 1/2. We first establish

Claim 6. µ
xisi

≤
1

1−σ
for all i and


i

1 −
xisi
µ

 ≤
√
n · σ.
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σ′2
=


i

(HiFi)
2

=
1
4


i

(H2
i + F2i )2 −


i

(H2
i − F2i )2



≤
1
4


i

(H2
i + F2i )2 since


i

(H2
i − F2i )2 ≥ 0

≤
1
4


i

(H2
i + F2i )

2
more positive terms

=
1
4


i

(Hi + Fi)
2

2
since HTF = 0

=
1
4


i

µ

xisi(1 − δ)


−δ + 1 −

xisi
µ

22
by (4)

≤
1

4(1 − δ)2(1 − σ)2


i


−δ + 1 −

xisi
µ

22
since µ/(xisi) ≤ 1/(1 − σ)

≤
1

4(1 − δ)2(1 − σ)2


nδ2 − 2δ


i


1 −

xisi
µ


+


i


1 −

xisi
µ

22
remove inner square

≤
1

4(1 − δ)2(1 − σ)2


nδ2 + 2δ


i

1 −
xisi
µ

+
i


1 −

xisi
µ

22

≤
1

4(1 − δ)2(1 − σ)2


nδ2 + 2δ

√
n · σ + σ2

2
by Claim 6

=
1

4(1 − δ)2(1 − σ)2

√
nδ + σ

22
, forming inner square

Box II.
Proof. As σ2 =


i

1 − xisi/µ

2, each individual term in the
sum is at most σ2. Thus,

1 − xisi/µ
 ≤ σ, and hence, xisi/µ ≥

1 − σ, and further, µ/xisi ≤ 1/(1 − σ).
For the second claim, we have to work harder. Consider

any n reals z1 to zn. Then (


i
zi)2 ≤ n


i z

2
i ; this is the

frequently used inequality between the one-norm and the
two-norm of a vector.2 We apply the inequality with zi =

1 − xisi/µ and obtain the second claim. �

Let us define two new quantities

Hi = hi


si

xiµ′
and Fi = fi


xi
siµ′

.

Observe that


i HiFi =
 hifi

µ′ = 0 (from Claim 3) and
i(HiFi)

2
=


i


hifi
µ′

2
= σ′2. Also,

Hi + Fi =


1

xisiµ′


hisi + fixi


=


1

xisiµ′


µ′

− µ + µ − xisi


=


µ

xisi

µ

µ′


µ′

µ
− 1 + 1 −

xisi
µ


=


µ

xisi(1 − δ)


−δ + 1 −

xisi
µ


. (4)

Finally, we have the equation in Box II,

2 Indeed,

n

i

z2i −


i

zi

2

= n

i

z2i −


i

z2i − 2

i<j

zizj

= (n − 1)

i

z2i − 2

i<j

zizj =


i<j

(zi − zj)
2

≥ 0.
and hence,

σ′
≤

√
nδ + σ

2
2(1 − σ)(1 − δ)

≤

√
nδ + 1/2

2
2(1 − 1/2)(1 − δ)

!
≤

1
2

, (5)

where the second inequality holds since the bound for σ′ is
increasing in σ, and σ ≤ 1/2. We need to choose δ such that
the last inequality holds. This is why we put an exclamation
mark on top of the ≤-sign. Setting δ = c/

√
n for some to be

determined constant c yields the requirement

(c + 1/2)2

(1 − δ)

!
≤

1
2

, or equivalently, (2c + 1)2
!
≤ 2


1 −

c
√
n


.

This holds true for c = 1/8 and all n ≥ 1. Thus, δ = 1/(8
√
n).

Remark 3. Why do we require σ ≤ 1/2 in the invariant? Let us
formulate the bound as σ ≤ σ0 for some to be determined σ0.
Then, the inequality (5) becomes√

nδ + σ0
2

2(1 − σ0)(1 − δ)

!
≤ σ0.

We want this to hold for δ =
c√
n

and some c > 0. In order

for the inequality to hold for c = 0, we need σ0 ≤ 2(1 − σ0),
or equivalently, σ0 ≤ 2/3. Since we want it to hold for some
positive c, we need to choose a smaller σ0; 1/2 is a nice
number smaller than 2/3.

An alternative proof for invariant (I3) (provided by Andreas
Karrenbauer) Andreas Karrenbauer derived an alternative
proof for invariant (I3) that avoids introduction of the
quantities H and F and is more compact than the above.

Lemma 1. Assume δ ≤ 1/6. Then σ ≤ δ implies σ′
≤ δ.
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∥σ′
∥1 ≤


i

hifiµ′


≤


i

1
2xisiµ′


(µ′

− xisi)
2

+ (hisi)
2

+ (xifi)
2


by (6)

=


i

(µ′
− xisi)

2

xisiµ′
by (7)

≤


i


µ′

µ −
xisi
µ

2
(1 − δ)(1 − τ)

as xisi ≥ (1 − δ)µ

and µ′
= (1 − τ)µ

=


i


τ −


xisi
µ − 1

2
(1 − δ)(1 − τ)

=

nτ2 − 2τ


xisi
µ − 1


+ σ2

(1 − δ)(1 − τ)

≤
nτ2 + 2τ∥σ∥1 + σ2

(1 − δ)(1 − τ)

≤
(
√
nτ + δ)2

(1 − δ)(1 − τ)
since ∥σ∥1 ≤

√
nδ ( Claim 6)

≤
4δ2

(1 − δ)(1 − δ/
√
n)

for the choice τ = δ/
√
n

≤ δ for δ ≤ 1/6

Box III.
Proof. As σ2 =


xisi
µ − 1

2
≤ δ2, each individual term must

be bounded by δ2. Thus, σ ≤ δ implies
 xisiµ − 1

 ≤ δ, or

−δ ≤
xisi
µ − 1 or xisi ≥ (1 − δ)µ.

We define

∥σ′
∥1 =


i

 (xi + hi)(si + fi)
µ′

− 1
 .

Then from the definition of µ′ and triangle inequality,

∥σ′
∥1 =


i

 (xi + hi)(si + fi)
µ′

− 1
 ≤


i

xisi + xifi + hisi
µ′

− 1


+


i

hifiµ′

 =


i

hifiµ′

 .
Again from xifi + sihi = µ′

− xisi, we obtain (by squaring)

hifi =
1

2xisi


(µ′

− xisi)
2

− (hisi)
2

− (xifi)
2

. (6)

Summing over i and using the fact that from Claim 3, fTh = 0
we obtain
i

(µ′
− xisi)

2
=


i


(hisi)

2
+ (xifi)

2


. (7)

Assume that µ′
= (1 − τ)µ for a τ to be fixed later. Then we

have the equation in Box III.

The claim follows as the two norm is always less than the one

norm,3 σ′
= ∥σ′

∥2 ≤ ∥σ′
∥1. �

3 If α = (α1, . . . , αn) then


|αi|
2

=


|αi|
2

+ 2


i<j |αi||αi| ≥
|αi|

2
=


α2i .
4. Initial solution

This section follows Bertsimas and Tsitsiklis [5, p 430]; see
also Karloff [6, p 128–129]. We have to deal with three
problems:

1. how to make sure that we are dealing with a bounded
problem

2. how to make sure that the problem is feasible and if the
problem is feasible, then how to find an initial solution

3. how to guarantee condition (I3) for the initial solution.

A standard solution for the second problem is the big M
method. Let x0 ≥ 0 be an arbitrary nonnegative column vector
of length n. We introduce a new variable z ≥ 0, change Ax = b
into Ax + (b − Ax0)z = b and the objective into “minimize
cTx + Mz”, where M is a big number. Note that x = x0 and
z = 1 is a feasible solution to the modified problem. We solve
the modified problem. If z∗

= 0 in an optimal solution, we
have also found an optimal solution to the original problem.
If z∗ > 0 in an optimal solution andMwas chosen big enough,
the original problem is infeasible.

Remark 4. There are several other methods of dealing with
the problem of getting a starting solution. These include self-
dual method [1,4] and the infeasible interior point method
[10,11].

We assume for the remainder of the presentation that A, b, and
c are integral and that U is an integer with U ≥

aij , bi , cj for all
i and j.

We need the following Fact which we will prove in
Section 7.
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minimize cTx + Mxn+2, subject to Ax + ρxn+2 = d
eTx + xn+1 + xn+2 = n + 2
x ≥ 0 xn+1 ≥ 0 xn+2 ≥ 0 ,

(8)

where d =
1
Wb, ρ = d − Ae.

Box IV.
Fact 1. LetW = (mU)m. If (1) is feasible, there is a feasible solution
with all coordinates bounded by W. If, in addition the problem is
bounded, there is an optimal solution with this property.

We now give the details. We add the constraint eTx + z ≤

(n + 2)W. If the problem was feasible, it will stay feasible.
If the problem was bounded, the additional constraint does
not change the optimal objective value. If the problem was
unbounded, the additional constraint makes it bounded.
Using an additional slack variable xn+1 we get the equality
eTx + xn+1 + z = (n + 2)W. If we use “normalized variables”
x′

i =
xi
W , drop the primes and use xn+2 for z, we obtain the

following auxiliary primal problem (see Eq. (8) in Box IV). We
show later in this section, thatM can be chosen asM = 4nU/R,
where R =

1
W2 ·

1
2n((m+1)U)3(m+1)

. In matrix form, the auxiliary

primal is

A′

 x
xn+1
xn+2

 = b′, where A′
=


A 0 ρ

eT 1 1



and b′
=


d

n + 2


.

We make the following observations.

– As xi = 1 for 1 ≤ i ≤ n + 2 is a feasible solution, (8) is
feasible. The feasible region is a polytope contained in the
cube defined by 0 ≤ xi ≤ n+ 2 for all i. The following Fact is
shown in Section 7.

Fact 2. The nonzero coordinates of the vertices of this polytope
are at least R.

– As 0 ≤ xi ≤ n + 2 and ci ≥ −U for all i, the objective value is
at least −U(n + 2) Thus, (8) is bounded.

– If x is a feasible solution to (1) with xi ≤ W for 1 ≤ i ≤ n
then ( 1

W x, (n + 2) −
1
W eTx,0) is a feasible solution to (8)

with objective value 1
W cTx.

In particular, if (1) is feasible, then (8) has a solution with
objective value less than or equal to nU. This follows from
xi/W ≤ 1 and ci ≤ U for 1 ≤ i ≤ n.

– We next show that if (8) has an optimal solution
(x∗, x∗

n+1, x∗

n+2) with x∗

n+2 = 0 then (1) is feasible. Indeed,
AWx∗

= WAx∗
= Wd = b and hence Wx∗ is feasible for (1).

If, in addition, (1) is bounded,Wx∗ is an optimal solution of
(1). Note that if (1) is bounded, it has an optimal solution
x with xi ≤ W by Fact 1. This solution induces a solution
of (8) with objective value 1

W cTx by the preceding item.

The optimality of (x∗, x∗

n+1, x∗

n+2) implies cTx∗
≥

1
W cTx.

– We finally show that if (8) has an optimal solution with
x∗

n+2 > 0, (1) is infeasible. Indeed, then there must be an
optimal vertex solution of (8). For this vertex, x∗

n+2 ≥ R. The
objective value of this solution is at least M · R − (n + 2)U =

2nU. On the other hand, if (1) is feasible, (8) has a solution
with objective value at most nU. Any value of M for which
M·R−(n+2)U > nUwould work for this argument.M = 4U/R
is one such value. This explains the choice of M.

We summarize: Our original problem is feasible if and only
if x∗

n+2 = 0 in every optimal solution to (8) if and only if
x∗

n+2 = 0 in some optimal solution to (8). Moreover, if x∗

n+2 = 0,

and (1) is bounded, 1
W x∗ is an optimal solution of (1).

Remark 5. By the above, our original problem is feasible if
and only if x∗

n+2 = 0 in an optimal solution to (8). So we
can distinguish feasible and infeasible problems. How can
we distinguish bounded and unbounded problems? Note that
the primal is unbounded if it is feasible and the problem
“minimize 0 subject to cTx = −1, Ax = 0, and x ≥ 0” is feasible.
So the test for unboundedness reduces to two feasibility tests.

The dual problem (with new dual variables ym+1, sn+1 and
sn+2) is Eq. (9) given in Box V.

Which initial solution should we choose? Recall that
we also need to satisfy (I3) for some choice of µ,
i.e.,


1≤i≤n+2(xisi/µ − 1)2 ≤ 1/4. Also, recall that we set xi to 1

for all i. As xn+1 = 1, we choose sn+1 = µ/xn+1 = µ. Then, from
the last equation, ym+1 = −sn+1 = −µ. The simplest choice for
y is y = 0. Then, from the first equation, s = c + eµ, and from
the second equation sn+2 = M − ym+1 = M + µ. Observe that
all slack variables are positive (provided µ is large enough).
For this choice,

xisi
µ

− 1 =
ci
µ

for i ≤ n

xn+1sn+1
µ

− 1 = 0

xn+2sn+2
µ

− 1 =
M
µ

.

Thus, σ2 =


M2

+


c2i


/µ2. We can make σ2 ≤ 1/4 by

choosing

µ2
= 4


M2

+


c2i


. (10)

Summary: Let us summarize what we have achieved.

– For the auxiliary primal problem and its dual, we
have constructed solutions (x(0), y(0), s(0)) that satisfy the

invariants for µ(0)
= 2


M2

+


c2i

1/2
.

– From the initial solution, we can construct a sequence of
solutions (x(t), y(t), s(t)) and corresponding µ(t) such that
– x(t) is a solution to the auxiliary primal,
– (y(t), s(t)) is a solution to its dual,
– µ(t)

= (1 − δ) · µ(t−1)
= (1 − δ)t · µ(0), and

j


x(t)
j s(t)j /µ(t)

− 1
2

≤ 1/4.

For t ≥ 1, the difference between the primal and the
dual objective value is exactly (n + 2)µ(t) (Claim 4). The
gap decreases by a factor 1 − δ = 1 − 1/(8

√
n + 2) in each

iteration, and hence, can be made arbitrarily small.
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maximize dTy + (n + 2)ym+1, subject to ATy + eym+1 + s = c, (9)

ρTy + ym+1 + sn+2 = M

ym+1 + sn+1 = 0

with slack variables s ≥ 0, sn+1 ≥ 0, sn+2 ≥ 0 and unconstrained variables y.
Box V.
In the next section, we will exploit this fact and show how
to extract the optimal solution. Before doing so, we show the
existence of an optimal solution.

Remark 6. Existence of an Optimal Solution: This paragraph
requires some knowledge of calculus, namely continuity
and accumulation point. Our sequence (x(t), y(t), s(t)) has an
accumulation point (this is clear for the sequence of xi since
the x-variables all lie between 0 and n + 2 and we ask the
reader to accept it for the others). Then there is a converging
subsequence. Let (x∗, y∗, s∗) be its limit point. Then x∗ and
(y∗, s∗) are feasible solutions of the artificial primal and its
dual respectively, and x∗

i s
∗

i = 0 for all i by continuity.

5. Extracting an optimal solution

We will show how to round an approximate solution for the
auxiliary problems for a sufficiently small µ to an optimal
solution. This section is similar to [7, Theorem 5.3] and to
the approach in [3, Section 3.3]. See also [12]. The auxiliary
problem has m+1 constraints in n+2 variables. The auxiliary
dual problem has n+2 constraints inm+1+n+2 variables. We
use x to denote the variables of the auxiliary primal including
xn+1 and xn+2, and y and s for the variable vectors of the dual
(including the additional variables). Moreover, we use A for
the entire constraint matrix and b for the full right hand side.
So A is (m + 1) × (n + 2), b is a (m + 2)-vector and c is a (n + 2)-
vector.

Consider an iterate (x, y, s, µ). We will first show that xi ≥

x∗

i /(4(n + 2)) and si ≥ s∗i /(4(n + 2)) for all optimal solutions x∗

and (y∗, s∗) (Lemma 2), i.e., if x∗

i > 0 (s∗i > 0) for some i, then xi
(si) cannot become arbitrarily small. However, since xisi ≤ 2µ

always and µ decreases exponentially, at least one of xi or si
has to become arbitrarily small. We use this observation to
conclude that if xi is sufficiently small (Lemma 3 quantifies
what sufficiently small means) then x∗

i = 0 in every optimal
primal solution. Similarly, if si is sufficiently small, then s∗i = 0
in every optimal dual solution.

LetN be the set of indices for whichwe can conclude x∗

i = 0
and let B be the set of indices for which we can conclude
s∗i = 0. We show B ∪ N = {1, . . . ,n} and B ∩ N = ∅. We
split our last iterate x̄ into two parts x̄B and x̄N accordingly,
round the N-part to zero and recompute the B-part. Since the
coordinates in the N-part are tiny, this has little effect on the
B-part and hence the solution stays feasible. It stays optimal
because of complementary slackness.

Lemma 2. Let (x, y, s, µ) satisfy (I1)–(I3).

1. For all i ∈ {1, . . . ,n}: xi ≥ x∗

i /(4(n+2)) for every optimal solution
x∗ of the auxiliary primal.
2. For all i ∈ {1, . . . ,n}: si ≥ s∗i /(4(n+2)) for every optimal solution
(y∗, s∗) of the auxiliary dual.

Proof. By (I1) and (I2), x is a feasible solution of the auxiliary
primal and (y, s) a feasible solution of the auxiliary dual. By
(I3), we have σ2 =


i(
xisi
µ − 1)2 ≤

1
4 . Thus, (

xisi
µ − 1)2 ≤

1
4 , and

hence, µ/2 ≤ xisi ≤ 3µ/2 < 2µ for all i. Further, xTs =


i xisi <

2(n + 2)µ.
Let x∗ be any optimal solution of the primal. Then cTx ≥

cTx∗. We apply Claim 1 first to the solution pair x and (y, s)
and then to the pair x∗ and (y, s) to obtain

xTs = cTx − bTy ≥ cTx∗
− bTy = (x∗)Ts.

Consider any i ∈ {1, . . . ,n + 2} and assume xi < x∗

i /(4(n + 2)).
Since xisi ≥ µ/2, we have si ≥ µ/(2xi) > 2(n+2)µ/x∗

i , and hence

(x∗)Ts ≥ x∗

i si > 2(n + 2)µ ≥ xTs ≥ (x∗)Ts,

a contradiction.
Let (y∗, s∗) be any optimal solution of the dual. Then bTy∗

≥

bTy. We apply Claim 1 first to the solution pair x and (y, s) and
then to the pair x and (y∗, s∗) to obtain

xTs = cTx − bTy ≥ cTx − bTy∗
= xTs∗.

Consider any i ∈ {1, . . . ,n + 2} and assume si < s∗i /(4(n + 2)).
Since xisi ≥ µ/2, we have xi ≥ µ/(2si) > 2(n+2)µ/s∗i , and hence

xTs∗ ≥ xis
∗

i > 2(n + 2)µ ≥ xTs ≥ xTs∗,

a contradiction. �

The preceding Lemma implies strong duality, one of the
cornerstones of linear programming theory.

Theorem 2 (Strong Duality). For each i, either x∗

i = 0 in every

optimal solution or s∗i = 0 in every optimal solution. Thus, cTx∗
−

bTy∗
= (x∗)Ts∗ = 0.

Proof. Let x∗ and (y∗, s∗) be any pair of optimal solutions.
Assume that there is an i such that x∗

i s
∗

i > 0. Let (x, y, s, µ)

satisfy the invariants (I1)–(I3). Then xi ≥ x∗

i /(4(n + 2)) and

si ≥ s∗i (4(n+2)) by Lemma 2. Thus 2µ > xisi ≥ x∗

i s
∗

i /(16(n+2)2).

For µ < x∗

i s
∗

i /(32(n + 2)2), this is a contradiction. �

Remark 7. We leave it to the reader to derive strong duality
for the original primal and dual from this.

By the Strict Complementarity Theorem (see e.g.
[8, pp 77–78] or [7, pp 20–21]), there are optimal solutions x∗

and (y∗, s∗) in which x∗

i > 0 or s∗i > 0 for every i. A Quantita-
tive version of strict complementarity is next stated in Fact 3
(the proof is in Section 7).

Fact 3. Let Q = R/(n + 2). Then there are optimal solutions x∗ and
(y∗, s∗) such that for all i either x∗

i ≥ Q and s∗i = 0 or s∗i ≥ Q and
x∗

i = 0.
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The Rounding Procedure: Throughout this section x∗ and
(y∗, s∗) denote optimal solutions as in Fact 3. We run the
iterative improvement algorithm until

µ < µf := R · Q/(64(n + 2)2((m + 1)U))m+2. (11)

Let (x̄, ȳ, s̄, µ̄) be the last iterate. Let

B = {i | s̄i < Q/(4(n + 2))} and N = {i | x̄i < Q/(4(n + 2))}.

Lemma 3. B∪N = {1, . . . ,n}, B∩N = ∅, x∗

i = 0 and x̄i < 8µ̄/Q for
every i ∈ N and s∗i = 0 and s̄i < 8µ̄/Q for every i ∈ B.

Proof. Since xisi < 2µ and µ ≤ Q2/(32n2), we have either
x̄i < Q/(4(n + 2)) or s̄i < Q/(4(n + 2)). Thus B ∪ N = {1, . . . ,n}.
Since x̄i ≥ x∗

i /(4(n+ 2)) and x̄i ≥ s∗i /(4(n+ 2)) and either x∗
≥ Q

or s∗i ≥ Q, we have B ∩ N = ∅. Consider any i ∈ B. Then
s̄i < Q/(4(n + 2)) and hence s∗i < Q. Thus s∗i = 0. Similarly,
i ∈ N implies x∗

i = 0. Finally, since x̄is̄i < 2µ̄, we either have
x̄i ≥ Q/(4(n + 2)) and s̄i < 8µ̄/Q or s̄i ≥ Q/(4(n + 2)) and
x̄i < 8µ̄/Q. �

We split the variables x into xB and xN and the matrix A
into AB and AN. Then our primal constraint system (ignoring
the non-negativity constraints) becomes

ABxB + ANxN = b.

(x∗

B, x∗

N) and (x̄B, x̄N) are solutions of this system, and x∗

N = 0
by Lemma 3. Thus ABx

∗

B = b.
Let us concentrate on the equation ABxB = b. If it has a

unique solution, call it x̂B, then x̂B = x∗

B. We can find x̂B by
Gaussian elimination and (x̂B,0) will be the optimal solution
and we are done.

What can we do if ABxB = b has an entire solution set?
Then the rank of the matrix AB is smaller than the cardinality
of B. Let B1 ⊆ B be such that the rank of the matrix AB1 is
equal to the cardinality of B1 and let B2 = B \ B1. We can find
B1 by Gaussian elimination. Then our system becomes

AB1xB1 + AB2xB2 + ANxN = b.

For every choice of xB2 and xN this system has a unique

solution4 for xB1 . Let x̂B1 be the solution of

AB1 x̂B1 + AB2 x̄B2 = b (xN is set to zero and xB2 is set to x̄B2 ).

Subtracting this equation from AB1 x̄B1 + AB2 x̄B2 + ANx̄N = b
yields

AB1 (x̄B1 − x̂B1 ) + ANx̄N = 0.

The coordinates of x̄N are bounded by 8µ̄/Q and hence
the coordinates of ANx̄N are bounded by 8(n + 2)Uµ̄/Q =

R/(8(n+2)((m+1)U)m+1) in absolute value. By the remark after

4 Let m′
≤ m be the rank of AB. By row operations and

permutation of columns, we can transform the system ABxB +

ANxN = b into

IxB1 + A′

B2
xB2 + A′

NxN = b′

0 + 0 + A′′

NxN = b′′,

where I is a m′
× m′ identity matrix, A′

B2
, A′

N, and b′ have m′ rows,

and A′′

N and b′′ havem−m′ rows. Since (x∗

B, x∗

N) is a solution to this
system and x∗

N = 0, we have b′′
= 0. Since (x̄B, x̄N) is a solution to

this system, we have further A′′

Nx̄N = 0. Thus for every choice of
xB2 and xN this system has a unique solution for xB1 .
Lemma 4 of Section 7, all coordinates of x̄B1 − x̂B1 are bounded

by ((m+ 1)U)m+1 times this number in absolute value, i.e., are
bounded by R/(8(n+2)) in absolute value. Since x̄i ≥ R/(4(n+2))

for every i ∈ N, we have x̂B1 ≥ 0. Thus x̃ = (x̂B1 , x̄B2 ,0) is a
feasible solution of (8). Since x̃Ts∗ =


i∈B x̃is

∗

i +


i∈N x̃is
∗

i =

0 + 0 = 0, x̃ is an optimal solution to (8).

6. Complexity

Let us assume that the initial value of µ is µ0 and that we
want to decrease µ to µf . Since every iteration decreases µ by
the factor (1− δ), we have µ = (1− δ)rµ0 after r iterations. The
smallest r such that (1 − δ)r ≤ µf is given by

ln
µ0
µf

= −r ln(1 − δ) ≈ −r(−δ),

or equivalently,

r = O


1
δ
log

µ0
µf


= O


√
n log

µ0
µf


.

In (10), we defined

µ2
0 = 4


M2

+


c2i


≤ 4


16n2U2

R2
+ nU2


≤ 68

n2U2

R2
.

In (11), we defined µf . Thus, the number of iterations will be

r = O


√
n log

µ0
µf


= O


√
n log

n2U2/R2

RQ/(64(n + 2)2((m + 1)U)m+2)



= O


√
n(logn + m log(mU)) + log

1
R


= O

√
n(logn + m


log(mU)


)

,

as log 1
R = O(logn + m(log(mU))).

7. The proofs of Facts 1–3

In the previous sections, we used upper bounds on the
components of an optimal solution and lower bounds on
the nonzero components of an optimal solution. In this
section, we derive these bounds. In this section, we assume
more knowledge of linear algebra, namely, determinants and
Cramer’s rule, and some knowledge of geometry. Unless
stated otherwise, we assume that all entries of A and b are
integers bounded by U in absolute value.

The determinant of a k × k matrix G is a sum of k! terms,
namely,

detG =


π

sign(π) · g1π(1)g2π(2) . . . gkπ(k).

The summation is over all permutations π of k elements,
sign(π) ∈ {−1,1}, and the product corresponding to a
permutation π selects the π(i)th element in row i for each i.
Each product is at most Uk. As there are k! summands, we
have

detG ≤ k!Uk
≤ (kU)k; see [5, pp 373–374], [6, p 75] or

[8, pp 43–44].
Cramer’s rule states that the solution of the equation Gz =

g (for a k × k non-singular matrix G) is zi = (detGi)/detG,
where Gi is obtained by replacing the ith column of G by g.
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Lemma 4. Let Gz = g be a linear system in k variables with a
unique solution. Let z∗ be the solution of the system. If all entries
of G and g are integers bounded by U in absolute value thenz∗

i

 ≤ (kU)k for all i and z∗

i ≠ 0 implies
z∗

i

 ≥ 1/(kU)k.

Proof. Since the system has a unique solution there is a
subsystem G′z = g′ consisting of k equations such that G′ is
non-singular and G′z∗

= g′. Then z∗

i = (detG′

i)/detG
′, where

G′

i is obtained from G′ by replacing the ith column of G by g′.
Since all entries of G and g are integral, detG′ is at least one
in absolute value, detG′

i is at least one in absolute value if

nonzero, and detG′

i ≤ (kU)k. The bounds follow. �

If the entries of the right-hand side g are bounded by U′

instead of U, the upper bound becomes kkUk−1U′.

Lemma 5. Assume that (1) is feasible. Let x be a feasible solution
with the maximum number of zero coordinates (equivalently the
minimum number of nonzero coordinates).5 Let B be the set of
indices for which xi ≠ 0, and let AB be the submatrix of A formed
by the columns indexed by B. Then ABz = b has a unique solution,
where the dimension of z is equal to the number of columns of AB.

If, in addition (1) is bounded, the same claim holds for an optimal
solution with a maximum number of zero coordinates.

Proof. Let xB be the restriction of x to the indices in B. Then
ABxB = b. Assume there is a second solution x′

B of ABz = b
with x′

B ≠ xB. Then all points z(λ) = xB+λ(x′

B−xB), λ ∈ R, satisfy
ABz = b. These points form a line. Consider the intersection
z∗ closest to xB of this line with one of the coordinate planes
zi = 0; if there are several with the same distance choose one
of them. Then z∗

≥ 0 because we consider an intersection
closest to xB and z∗

i = 0 for at least one i ∈ B. Thus z∗ is
a feasible solution to (1) with one more zero coordinate, a
contradiction to the definition of x.

If (1) is bounded, there is an optimal solution. Let x
be an optimum solution with a maximum number of zero
coordinates. Define xB, x′

B, and z(λ) as above. Since xB > 0,
the z(λ) is feasible for small enough |λ|. Also cTBz(λ) = cTBxB +

λ(cTBx
′

B − cTBxB); here cB is the restriction of c to the indices in B.
Since λ may be positive or negative, we must have cTBx

′

B = cTBxB
and hence z(λ) is feasible and optimal as long as z(λ) ≥ 0. The
proof is now completed as in the preceding paragraph. �

We can now give the proof of Facts 1, 2, and 3.

Proof (Fact 1). Consider a feasible (optimal) solution x of (1)
with a maximum number of zero coordinates. Then x is of
the form x = (xB, xN) with xN = 0 and xB being the unique
solution to the system ABxB = b. Thus the coordinates of xB
are bounded by (mU)m. �

Proof (Fact 2). Let x∗ be an optimal vertex of the artificial
primal (8). How small can a nonzero coordinate of x∗ be? The
constraint system is

Ax + (
1
W

b − Ae)xn+2 =
1
W

b

eTx + xn+1 + xn+2 = (n + 2).

5 Consider minimize 0 subject to x1 + x2 = 1, x1 ≥ 0 and
x2 ≥ 0. The feasible solutions (0,1) and (1,0) have one nonzero
coordinate. The feasible solutions (x1, x2) with x1 > 0 and x2 > 0
and x1 + x2 = 1 have two nonzero coordinates.
Let B be the index set of the nonzero coordinates of x∗. Then
x∗

B is the solution to a subsystem formed by |B| columns of
the above and this subsystem has a unique solution. For i ∈ B,
x∗

i = detGi/detG, where G is a nonsingular square matrix and
Gi is obtained from G by replacing the ith column by the corre-
sponding entries of the right hand side. In the system above,
the entries in the column corresponding to xn+2 are bounded
by (n + 1)U, and all other entries are bounded by U. Since any
product in the determinant formula for G can contain only
one value of the column for xn+2, we have

detG ≤ (m+1)!(n+

1)Um+1. Consider next detGi. We need to lower bound
detGi

.
The matrix Gi may contain two columns with fractional val-
ues. If we multiply these columns with W, we obtain an inte-
ger matrix. Thus,

detGi
 ≥ 1/W2 if nonzero. Thus

x∗

i ≥
1

W2
·

1

2n ((m + 1)U)m+1
≥

1

2n ((m + 1)U)3(m+1)
. � (12)

Proof (Fact 3). We prove the fact for the auxiliary primal. Let
O be a smallest set of optimal vertices with the property
that if for some i there is an optimal solution with x∗

i > 0,
then O contains an optimal vertex with this property. ThenO ≤ n + 2. Let x∗∗

=
1

|O|


x∗∈O x∗ be the center of gravity of

the vertices in O. Then x∗∗

i ≥ x∗

i /(n + 2) for every x∗
∈ O. Thus

Q = R/(n + 2) works. �

Beyond the integral case If the entries of A and b are rational
numbers, we write the entries in each column (or row) with a
common denominator. Pulling them out brings us back to the
integral case. For example,2/3 4/5
1/3 6/5

 =
1
15

2 4
1 6

 .
Thus, if the determinant is nonzero, it is at least 1/15.
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Appendix. Result from algebra

Assume that A is m × n matrix and the rank of A is m, with
m < n. Then, all m rows of A are linearly independent. Or,
α1A1 +α2A2 +· · ·+αmAm = 0 (0 here being a row vector of size
n) has only one solution αi = 0. Thus, if x is any m × 1 matrix
(a column vector of size m), then xTA = 0 implies x = 0. Note
that (xTA)T = ATx. Thus, ATx = 0 implies x = 0.

As A is m × n matrix, AT will be n × m matrix. The product
AAT will be an m × m square matrix.

Consider the equation (AAT)x = 0. Pre-multiplying by xT

we get xTAATx = 0 or (ATx)T(ATx) = 0. Now, (ATx)T(ATx) is the
squared length of the vector ATx. If a vector has length zero,
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all its coordinates must be zero. Thus, ATx = 0, and hence,
x = 0 by the preceding paragraph.

Thus, the matrix AAT has rank m and is invertible.
Also observe that if X is a diagonal matrix (with all

diagonal entries non-zero) and if A has full row-rank, then
AX will also have full row-rank. Basically, if the entries of
X are x1, x2, . . . , xm then the matrix AX will have rows as
x1A1, x2A2, . . . , xmAm (i.e., ith row of A gets scaled by xi). If
rows of AX are not independent, then there are βs (not all
zero) such that β1x1A1 + β2x2A2 + · · · + βmxmAm = 0, or there
are αs (not all zero) such that α1A1 + α2A2 + · · · + αmAm = 0
with αi = βixi.

R E F E R E N C E S

[1] T. Terlaky, An easy way to teach interior-point methods, Eur.
J. Oper. Res. 130 (2001) 1–19.

[2] G. Lesaja, Introducing interior-point methods for introduc-
tory operations research courses and/or linear programming
courses, Open. Oper. Res. J. 3 (2009) 1–12.
[3] C. Roos, T. Terlaky, J.-P. Vial, Interior Point Methods for Linear
Optimization, second ed., Springer, 2006.

[4] R.J. Vanderbei, Linear Programming: Foundations and Exten-
sion, first ed., Kluwer Academic Publishers, 1997, (third ed:
Springer).

[5] D. Bertsimas, J.N. Tsitsiklis, Introduction to Linear Optimiza-
tion, Athena Scientific, 1997.

[6] H. Karloff, Linear Programming, Birkhauser, 1991.
[7] Y. Ye, Interior Point Algorithms, Wiley, 1997.
[8] R. Saigal, Linear Programming, in: A Modern Integrated

Analysis, Kluwer, 1995.
[9] N.K. Vishnoi, Convex Optimization Notes, http://theory.epfl.

ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.
pdf.

[10] S. Mizuno, M. Kojima, M.J. Todd, Infeasible-interior-point
primal–dual potential-reduction algorithms for linear pro-
gramming, SIAM J. Optim. 5 (1995) 52–67.

[11] Y. Zhang, On the convergence of a class of infeasible interior-
point methods for the horizontal linear complementarity
problem, SIAM J. Optim. 5 (1994) 208–227.

[12] H.J. Greenberg, The use of the optimal partition in a linear
programming solution for postoptimal analysis, Oper. Res.
Lett. 15 (1994) 179–185.

http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref1
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref2
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref3
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref4
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref5
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref6
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref7
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref8
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://theory.epfl.ch/vishnoi/Nisheeth-VishnoiFall2014-ConvexOptimization.pdf
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref10
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref11
http://refhub.elsevier.com/S1574-0137(16)30087-9/sbref12

	A still simpler way of introducing interior-point method for linear programming
	Introduction
	Iterative improvement: Use of the Newton-- Raphson method
	Invariants in each iteration
	Initial solution
	Extracting an optimal solution
	Complexity
	The proofs of Facts 1--3
	Acknowledgments
	Result from algebra
	References


