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a b s t r a c t

This study aims to advocate that a visual programming environment offering graphical
items and states of a computational problem could be helpful in supporting programming
learning with computational problem-solving. A visual problem-solving environment for
programming learning was developed, and 158 college students were conducted in a
computational problem-solving activity. The students' activities of designing, composing,
and testing solutions were recorded by log data for later analysis. To initially unveil the
students' practice and strategies exhibited in the visual problem-solving environment, this
study proposed several indicators to quantitatively represent students' computational
practice (Sequence, Selection, Simple iteration, Nested iteration, and Testing), computational
design (Problem decomposition, Abutment composition, and Nesting composition), and
computational performance (Goal attainment and Program size). By the method of cluster
analysis, some empirical patterns regarding the students' programming learning with
computational problem-solving were identified. Furthermore, comparisons of computa-
tional design and computational performance among the different patterns of computa-
tional practice were conducted. Considering the relations of students' computational
practice to computational design and performance, evidence-based suggestions on the
design of supportive programming environments for novice programmers are discussed.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Programming has been recognized as one of the important competencies that require students to use computational tools
to address real-world problems in the 21st century (Einhorn, 2011; Grover & Pea, 2013; Yen, Wu, & Lin, 2012). Learning
programming is not only a prerequisite for becoming a computer scientist, but it is also necessary for the practice of solving
problems and designing systems (Palumbo, 1990; Robins, Rountree, & Rountree, 2003). Programming requires programmers
to plan solutions to problems, precisely transform the plans into syntactically correct instructions for execution, and assess
the consequent results of executing those instructions (Brookshear, 2003; Deek, 1999; Ismal, Ngah, & Umar, 2010). However,
research revealed that at the conclusion of introductory programming courses, most students have difficulties in decom-
posing problems, developing plans and implementing their plans with programming languages to solve programming
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problems (Lister et al., 2004; McCracken et al., 2001; de Raadt, 2007; Robins et al., 2003). Some of them lack adequate un-
derstanding of fundamental programming constructs, and most of them lack strategies for transforming programming
problems intoworkable plans and algorithms (Deek,1999; Kessler& Anderson,1986; Li&Watson, 2011; de Raadt, 2007). This
may be because the formal instruction in programming mostly focuses on students' mastery of a general-purpose pro-
gramming language and adopts a programming tool that is intentionally designed for professional programmers (Deek, 1999;
Ismal et al., 2010; Linn & Clancy, 1992; Robins et al., 2003; Xinogalos, 2012). The employment of the general-purpose pro-
gramming language and the professional programming tool often drives the teachers and students to invest their effortsmore
on mastering programming language features than on developing design strategies for solving programming problems
(Brusilovsky, Calabrese, Hvorecky, Kouchnirenko, & Miller, 1997; Deek, 1999; Linn, 1985; Pears et al., 2007).

Numerous studies have been devoted to research on instructional and environmental assistance for programming learning
(Kelleher & Pausch, 2005; Winslow, 1996). Among the studies aiming to devise potential means for enhancing programming,
an alternative approach to engaging students in solving computational problems (Edmonds, 2008) has been recognized as an
effective way of cultivating students' programming constructs and skills (Liu, Cheng, & Huang, 2011; Ring, Giordan, &
Ransbottom, 2008). This method often provides students with computational problems, which are specially designed to
foster specific programming concepts or skills. In a scenario requiring students to solve a computational problem by exer-
cising various programming knowledge and strategies, the students are expected to learn by formulating computer programs
and systematically evaluating the consequent results (Deek,1999). Many studies have also proposed alternative approaches to
the students' difficulties in programming by the use of visual programming environments, such as Scratch and Alice (Cooper,
Dann, & Pausch, 2000; Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010), LighBot and PlayLOGO 3D (Gouws, Bradshaw,
& Wentworth, 2013; Paliokas, Arapidis, & Mpimpitsos, 2011), or objectKarel and Jeroo (Sanders & Dorn, 2003; Xinogalos,
2012). These environments often adopt different visual programming elements that help novice programmers construct
their programs or understand the process of program execution and the state of a problem (Green & Petre, 1996; Kelleher &
Pausch, 2005; Navarro-Prieto & Canas, 2001). Research has revealed that visual programming environments could enhance
novice programmers' engagement in programming tasks and help them demonstrate programming skills and problem
solving strategies during the course of creating digital artifacts or solving programming problems (Cooper et al., 2000; Lye &
Koh, 2014). Although visual programming environments are becoming important and have demonstrated their particular
benefits to assist learning programming and problem solving (Lye & Koh, 2014), little is known about how novice pro-
grammers use a visual programming environment to learn to solve computational problems. Moreover, because constructing
a computer program to solve a computational problem in a visual programming environment requires novice programmers
to manipulate visual programming elements (e.g., control-flow blocks) to formulate and test a design solution to the problem
(e.g., Gouws et al., 2013; Maloney et al., 2010), the programmers' behavior and strategies of solving computational problems
in a visual programming environment may affect their performance of problem solving. Therefore, there is a need to further
explore the novice programmers' behavioral patterns in a visual programming environment and investigate the difference in
their strategies and performance of solving computational problems among different behavioral patterns.

Based on the aforementioned rationale, the purpose of this study is twofold. The first is to develop a visual problem-
solving environment for programming learning and explore how novice programmers use it to learn to solve computa-
tional problems through interacting with the provided visual programming elements. To understand how novice pro-
grammers interact with the proposed environment to solve computational problems, the second purpose is to investigate
novice programmers' visual programming behavior and strategies of computational problem-solving enacted in the visual
problem-solving environment, as well as to examine the performance of computational problem solving among different
patterns of visual programming behavior in computational problem solving activities. To this end, this study aims to answer
the following research questions:

C What are the novice programmers' patterns of visual programming behavior exhibited in a visual programming
environment to solve computational problems?

C Do the novice programmers' computational design and performance of solving computational problems differ in
different patterns of visual programming behavior?

The results of this study may be of interest to interface designers attempting to design a specific programming learning
environment for novice programmers. The results may also particularly interest teachers or educators who design formal
instruction for students to foster their programming strategies (de Raadt, Watson, & Toleman, 2009) or computational
problem solving skills.
2. Related works

2.1. Programming learning in visual programming environments

Many visual programming environments have been developed to provide novice programmers with visual supports in
constructing programs and understanding programming constructs. For example, ToonTalk enables a programming envi-
ronment in which users interact with visual objects, such as birds or cars in a city, to construct programs (Kahn, 1996). These
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visual objects may assist users in understanding their programs by examining the state (e.g., appearance, behavior, or
location) of the visual objects. However, the Scratch environment adopts a visual block language allowing users to construct
scripts by dragging-and-dropping the language blocks and provides visual feedback showing the execution of scripts for the
novices to comprehend how they work (Maloney et al., 2010). The LightBot environment proposed by Gouws et al. (2013)
comprises a set of iconic instructions to help users compose programs. The environment also includes a visual robot to
assist users in understanding programming constructs by allowing them to observe how the composed program would
change the robot's behavior. The above programming environments share prominent features of visual programming lan-
guages and programvisualization systems (Navarro-Prieto& Canas, 2001). The visual programming language provides novice
programmers with visual elements, such as icons or symbols, to specify a program by dragging-and-dropping the visual
elements instead of entering text-based statements. This may resolve novice programmers' difficulties in the syntax of
programming languages and allows them to focus on the logic and structure involved in programming (Holvikivi, 2010;
Kelleher & Pausch, 2005; Lye & Koh, 2014; Navarro-Prieto & Canas, 2001). However, the program visualization systems
embody graphical elements and visual models to help novice programmers formulate conceptual ideas and realize the
process and the consequence of executing certain computer instructions (Green& Petre,1996; Navarro-Prieto& Canas, 2001).
Thus, the visual programming environment could lower the barriers to programming, which can then assist novice pro-
grammers in developing and performing programming strategies (Kelleher & Pausch, 2005; Lye & Koh, 2014). It could be
suggested that the use of visual elements assisting in constructing or understanding programs has great potential for novice
programmers' practices and strategies of problem solving for programming learning.

Structured programming languages, such as Cþþ or Java, are widely adopted by engineers or educators to solve problems
or teaching introductory programming (Pears et al., 2007). The representation of a computer program in a structured pro-
gramming language is influenced by Pascal language, which was proposed by Niclaus Wirth and designed to facilitate
development of computer programs by using basic control flow structures (Wirth, 1971). With a structured programming
language, a computer program can be represented by the combination of three control flow structures: sequence, selection,
and repetition (B€ohm & Jacopini, 1966; Deitel & Deitel, 2011). The ability of applying the control flow structures and
combining the structures in a meaningful way is fundamental and crucial to solving a computational problem through
programming (Grover & Pea, 2013). Among the control flow structures, the sequence represents a list of step-by-step in-
structions to be followed one after the other (Brennan & Resnick, 2012; Deitel & Deitel, 2011). Sequencing characterizes a
component of planning involving arranged actions or computer instructions in the order that produces accurate effects (Bers,
Flannery, Kazakoff,& Sullivan, 2014; Suthers, 1994) and is essential to many disciplines, such as literacy or mathematics (Bers
et al., 2014). The selection control flow structure represents the if-then like control structure that specifies conditions to
execute different parts of computer instructions (Brennan & Resnick, 2012; Deitel & Deitel, 2011). It involves the establish-
ment of relationships between conditions and the corresponding computer instructions, which serves as a crucial element of
conditional and logical reasoning (Kurland, Pea,& Clement,1986; Seidam,1981). The repetition control flow structure enables
the process of repeating a set of computer instructions, which requires the construction of an iterative plan involving the
identification of the repeating instructions and the condition governing the end or continuation of the repetition (Brennan &
Resnick, 2012; Deitel & Deitel, 2011; Rogalski & Samurcay, 1990). It could contribute to algorithmic thinking by engaging
learners in recognizing patterns of repetition (Futschek&Moschitz, 2011). Visual programming environments are believed to
support the understanding and adoption of the control flow structures because the environments contain visual elements to
reduce unnecessary syntax difficulties and assist novices in visualizing the effects of the adopted control flow structures
(Kelleher & Pausch, 2005; Lye & Koh, 2014; Navarro-Prieto & Canas, 2001). On the other hand, testing solutions is a pre-
requisite for success in programming, representing the validation of the computer program immediately after the program
has beenmodified by the user (Deek,1999; Gourlay,1983). It involves the users' comprehension of the computer program and
anticipation of how the modified program would work (Cross, Hendrix, & Barowski, 2002; McCauley et al., 2008). In other
words, the comprehension of a modified programmay reduce the need to test the program frequently (Green& Petre, 1996).
In this study, the aforementioned control flow structures and the testing activity were employed to facilitate students'
development of different methods of applying control flow structures and support students' learning of constructing com-
puter programs by solving computational problems. Furthermore, by developing a visual programming environment that
facilitates and visualizes the computational practice, the study could gain understanding of how novice programmers solve
computational problems with the aid of the graphical elements.

2.2. Problem solving in visual programming environments

Strategies of problem solving, such as planning or designing solutions, are considered to be core competencies of computer
science education and are central to programming success (Barg et al., 2000; Fee&Holland-Minkley, 2010; Hazzan, Lapidot,&
Ragnis, 2011; Pears et al., 2007). Problem solving strategies for programming could be domain-specific because they address
the need to use techniques, such as structured decomposition, to analyze given facts, such as input and output and to
formulate steps leading to a problem's solution (Deek, 1999; Ismal et al., 2010). In other words, problem solving through
programming requires programmers to use both problem solving strategies and program development skills (Deek, 1999;
Gomes & Jos�e, 2007; Hazzan et al., 2011; Linn & Clancy, 1992). Therefore, to cultivate these strategies and skills, problem
solving approaches are often adopted to assist novice programmers in learning programming (e.g., Gomes & Jos�e, 2007;
Kiesmüller, 2009; Ring et al., 2008). The approaches typically include computational (or algorithmic) problems that are
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carefully designed to enable a situation where a learner should apply particular sets of programming concepts (e.g., se-
quences, loops, or conditionals) or strategies (e.g., finding an average) to solve the problems. In this situation, learners are
asked to identify the initial goals and states of a problem and then formulate an algorithm specifying a series of steps to solve
the problems (Deek, 1999; Hazzan et al., 2011).

A visual programming environment has the potential to support problem solving because it provides graphical elements
representing problems or program states for a novice to comprehend a problem and assess the current program state (Cooper
et al., 2000; Kelleher & Pausch, 2005; Navarro-Prieto & Canas, 2001). For example, many visual programming environments,
such as Jeroo (Sanders & Dorn, 2003), LightBot (Gouws et al., 2013), or Hour of Code (Code.org, 2015), embody various virtual
worlds in which graphical elements serve as integral parts of a computational problem. By interacting with the graphical
elements, learners are more likely to identify important features of a computational problem and compose their planned
structures for the problem (Lye & Koh, 2014; Navarro-Prieto & Canas, 2001). Given the importance of problem-solving
strategies and the potential of graphical elements, it is suggested that the core design of the visual programming environ-
ment should consider support for cultivating problem solving strategies and the inclusion of graphical elements to facilitate
problem solving processes.

According to Deek (1999) and Hazzan et al. (2011), problem solving through programming involves the strategies related
to planning and designing solutions. The planning strategy assists programmers in decomposing a problem goal into a
collection of intermediate sub-goals, which may be further decomposed into more fine-grained sub-goals (Hazzan et al.,
2011; Ismal et al., 2010). The research shows that programmers tend to formulate their plans and goal structures based on
their knowledge of programming plans (Rist, 1991; Robins et al., 2003). The programming plans (or algorithmic patterns) are
segments of code to achieve a common goal (Davies, 1993; Muller & Haberman, 2008; Rist, 1991). Given a computational
problem, the number of sub-goals may reflect the granularity of the decomposition performed by programmers to tackle the
problem. Based on stepwise refinement, the larger is the number of sub-goals, the finer-grained the produced sub-problems
are (Pennington & Grabowski, 1990). On the other hand, the design strategies could help programmers organize and refine
the components of their solution strategies and transform each sub-goal into corresponding algorithms (Deek, 1999; Hazzan
et al., 2011; Soloway, 1986). In this study, visual programming elements that denote parts of a solution are employed to
represent the components of solution plans in the visual programming environment. A problem solver organizes and refines
the visual programming elements to formulate their design of solution plans.

According to Soloway (1986), several useful composition strategies are commonly adopted in organizing programming
plans to achieve sub-goals. Among these strategies, abutment and nesting are two important plan composition methods. The
abutment strategy represents the method of gluing two programming plans together back to front in sequence (Soloway,
1986). This involves applying programming plans and creating a sequential relationship between plans during the trans-
formation of sub-goals into algorithms. The nesting strategy represents themethod of embedding one programming plan into
another (Soloway, 1986). The nesting of programming plans often enables a new programming plan that has a different
structure from the previous two programming plans. Considering problem solving through programming, technical supports
in the decomposition of a problem and the composition of programming plansmay have potential in assisting novices to learn
the planning and designing of solutions. Therefore, in this study, the aforementioned planning and design strategies for
solving computational problems are supported and employed to represent different design strategies of computational
problem solving in the visual programming environment.

Although many visual programming tools have been proposed in previous studies (e.g., Flannery et al., 2013; Gouws et al.,
2013; K€olling, 2010; Maloney et al., 2010; Xinogalos, 2012), there is little research examining novice programmers'
computational practice, design, and performance of solving a computational problem in a visual programming environment.
Furthermore, exploring how novice programmers of different computational practice patterns utilize a visual programming
environment to solve problems may provide insights into the development of more supportive environments for assisting
novice programmers in learning programming and problem solving.

3. Method

3.1. The visual problem-solving environment for programming learning

There are many types of visual programming environments for novice programmers that highlight the distinct benefits to
programming behaviors and problem-solving strategies. Nevertheless, this study focuses on the exploration of how novice
programmers use the provided visual programming elements to learn by solving a computational problem. To explore novice
programmers' visual programming behaviors and strategies, a visual problem-solving environment for programming
learning was specifically designed and developed in line with the research purposes of this study. In the environment, a
novice is allowed to learn the process of solving a computational problem from example instructions on how a robot picks
flowers or cleans barriers (e.g., stones) for a farmer. As shown in Fig. 1, the environment can be divided into four main parts:
the robot's world, the instruction library, the program composer, and the execution button. First, the robot's world includes a
robot, a farmer, instruction cards, and a set of flowers or stones. The robot performs actions (e.g., picking flowers or moving to
specific places) based on the computer instructions contained in the instruction cards. A novice can place the instruction cards
in the appropriate grid cells to inform the robot to perform the actions in different regions of the robot's world. Second, the
instruction library contains visualized instruction blocks representing the computer instructions to control the robot's



Fig. 1. The interface of the visual problem-solving environment for programming learning.
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behavior. Because the environment currently focuses on the supports in learning of basic control flow principles and
mechanisms, there are four control-flow blocks (sequence, selection, simple iteration, and nested iteration), designed ac-
cording to the aforementioned fundamental control flow structures (B€ohm & Jacopini, 1966; Deitel & Deitel, 2011), and 6
command blocks (move forward, move backward, change direction, light signals, pick flowers, and clean grass) in the in-
struction library. In this regard, the aforementioned iteration control-flow structure is further divided into simple and nested
iteration control-flow blocks because the two types of control-flow are quite different in their repetition structures (Moreno,
2012). It is appropriate to purposefully identify them as two different control-flow structures for novice learners. Third, the
program composer is an editor window where a novice assembles computer instructions contained in an instruction card.
The assembly involves selection or drag-and-drop of the visualized instruction blocks to represent a chuck of computer
instructions. An instruction card in the visual programming environment is a user-created visual programming elements used
to help a novice plan the structure of a solution by dividing a solution into different parts. Each part of the solution is rep-
resented by an instruction card. A novice inserts visualized instruction blocks into an instruction card to implement a solution
plan. For example, as shown in Fig. 1, a user created two instruction cards to navigate and collect flowers based on the
distribution of flowers. Each instruction card contains chunks of computer instructions dealing with flowers or stones within
a region in the robot's world. In this example, the user decomposes a goal of collecting all flowers into two sub-goals with each
of them dealing with part of the flowers within a region. The user's instruction cards together form a complete computer
program that gives instructions to the robot on picking flowers. Finally, the execution button is a graphical element that
enables the robot to execute the computer instructions in the instruction cards. The environment provides novice pro-
grammers with various kinds of visual feedback to help them comprehend how the computer instructions would move the
robot and change the states of the graphical objects in the robot's world. The environment also provide the novices with
feedback describing their performance of solving computational problems in terms of the number of flowers collected and
the number of visualized instruction blocks used. The feedback also provides the comparison between the requirements of a
computational problems and a novice's performance, which may help the novices assess the effectiveness of their design
solutions.

The proposed visual programming environment, such as JEROO or Karel the robot (Pattis, Roberts,& Stehlik, 1995; Sanders
& Dorn, 2003), employs various visual elements and feedback to assist novices to implement computer programs and un-
derstand programming concepts. Additionally, to enable the approach that incorporates programming learning with problem
solving, the proposed environment further provides visual programming elements that assist novice programmers to
represent design strategies and offers feedback of assessment that helps novices evaluate their design solutions.

The aforementioned features of the visual programming environment are dedicated to promoting programming learning
in a problem-solving manner. The environment provides a novice with computational problems that require the robot to
collect all the flowers in the robot's world. To solve the computational problem, the novice must examine the distribution of
flowers in the robot's world and determine whether there are any recognizable patterns of the distribution, such as the
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repetition of flowers. After that, the novice may start to set a goal of reaching all flowers and may attempt to decompose the
goal into sub-goals. For each sub-goal, the novice can create an instruction card and assemble the visualized instruction blocks
to implement plans for the sub-goals. For example, Fig. 2 shows different design solutions of collecting all flowers for a
computational problem. Fig. 2(a) shows the design that divides the L-shape region containing flowers and stones into two
sub-regions (denoted by two double-arrow lines) and uses two instruction cards to represent the divisions. Each instruction
cards contains a sequence control-flow block to achieve the plans of moving to and picking flowers. The two sequential
control-flow blocks in this design are abutted together to form a complete computer program. Fig. 2(b), another design
solution, demonstrates the inclusion of two simple iteration control-flow blocks (‘for’ loops), each of which repeats the ac-
tions of moving to and picking flowers three times. In this design, the two simple iteration control-flow blocks are also
abutted together to form a complete computer program. In the design of Fig. 2(c), for each instruction card, a selection
control-flow block (‘if’ condition) is nested in a simple iteration control-flow block, leading to a new pattern that can iter-
atively select accurate targets to process. Fig. 2(d) shows the design that treats the L-shape region as a whole and uses only
one instruction card to represent the solution plan. In the instruction card, a selection control-flow block is nested into a
nested iteration control-flow block (nested ‘for’ loop) to traverse the entire region and select accurate targets. The new
pattern repeats a set of instructions ten times. The proposed visual problem-solving environment for programming learning
provides various visual programming elements for a novice programmer to produce goals, design algorithms, compose
programs, and test the programs. The assistance in the visual programming environment may further help novices explore
different design solutions and evaluate the consequence of the design solutions.
3.2. Participants and procedure

The participants in this study were 158 college students majoring in information communication from three classes at the
same university in northern Taiwan. The participants were 41% male and 59% female students aged from 18 to 21. They were
enrolled in a course introducing the principles and methods of Cþþ language programming and were instructed by the same
teacher who had a computer science major and more than 10 years of teaching experience. During the first 7 weeks of the
course, the participants were taught programming concepts including variables, constants, if-then conditions, for loops, and
nested for loops.

The research procedure started in the eighth week of the programming course and was included as a part of the course.
The procedure included introductory, training, and practice phases, which were conducted in four 60-min periods, with a one
Fig. 2. The different solutions for a computational problem.
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week interval between each period. First, in the introductory phase (the first period), the teacher explained the purpose of
applying the visual problem-solving environment to the support of the computational problem-solving activity as well as
demonstrating the interface of the environment. Second, in the training phase (the second and third periods), the participants
were provided with several computational problems andwere asked to practice solving computational problems in the visual
problem-solving environment. This phase aimed to allow the participants to acquire basic knowledge and skills of applying
visualized control-flow and command blocks to the computational problems. Therefore, more diverse programming behavior
and design strategies exhibited by the participants could emerge in the visual programming environment. Finally, in the
practice phase (the fourth period), a task-driven approach was employed to urge the participants to perform the activities of
computational problem solving. The participants enrolled in the programming course needed to complete the given
assignment. The assignment was to “Help the robot collect all the flowers in the given five maps with the least possible
number of command blocks”. The five maps corresponded to five computational problems that required the students to
design algorithms, as well as assemble control-flow blocks and command blocks to solve the problems. All participants'
activities throughout the procedurewere tracked and stored as log data for later analysis. The participants were informed that
their performance on the assignment would be considered as part of their grade for the course. In this regard, the course-
related assignment and procedure were expected to encourage the students' engagement in the computational problem-
solving activity.
3.3. Data collection and analysis

The data collected in this study included log data about the participants' practice, strategies, and performance of
computational problem-solving activities. Table 1 reveals the definition of each indicator representing the computational
problem-solving activities in the visual problem-solving environment. These indicators could be categorized as three di-
mensions: computational practice, computational design, and computational performance.

The first five indicators represent the computational practice of adopting control-flow blocks and testing the consequence
of generated computer instructions. They denote the behavior of using fundamental control structures (Wirth, 1971) to
compose a computer program as a solution to a computational problem and testing the solution for the validation of the
computer program. The indicators of Sequence and Selection correspond to the use of the sequence and selection control-flow
blocks, respectively. The indicators of Simple iteration and Nested iteration correspond to the use of the simple iteration and
nested iteration control-flow blocks, respectively, and represent different structures of iteration patterns (Moreno, 2012). The
former represents a one-dimensional iteration structure, such as AAA demonstrating the repetition of element A. The latter
represents a two-dimensional iteration structure, such as AAADAAAD showing the repetition of a compound element AAAD
and the repetition of the element A in the compound pattern AAAD. Higher values of the abovementioned four indicators
indicatemore computational practice of using the corresponding control-flow blocks. The four indicators of adopting control-
flow blocks were calculated by inspecting users' final computer programs. For example, there are two sequence control-flow
blocks in the case of Fig. 2(a), two simple iteration and two selection control-flow blocks in case Fig. 2(c), and one nested
iteration and one selection control-flowblock in case Fig. 2(d). The indicator of Testing shows the average frequency of which a
participant tested the consequence of executing a computer program immediately after generating or revising the program. It
was computed by inspecting the log data related to the frequencies of executing computer programs during the process of the
visual programming. The indicator shows the ratio of the number of which a user executes computer programs to test the
consequence during problem solving and the number of visualized computer instructions (control-flow and command
blocks) generated by a user in his/her final computer programs. A lower value of the indicator Testingmay show fewer tests on
Table 1
The indicators of programming activities for problem solving in the visual programming environment.

Indicator Definition

Computational practice
Sequence The number of sequence control flow blocks used by participants
Selection The number of selection control flow blocks used by participants
Simple iteration The number of simple iteration control flow blocks used by participants
Nested iteration The number of nested iteration control flow blocks used by participants
Testing The average frequency of acts testing the consequence of a programmed computer instruction

Computational design
Problem
decomposition

The number of instruction cards used to separate the solutions of problems into different parts of computer instructions

Abutment
composition

The number of combinations where two flow control blocks are glued together back to front in the solutions of problems

Nesting composition The number of combinations where one flow control block was embedded into another one in the solution of problems
Computational performance
Goal attainment The number of flowers collected by a participant through executing his/her computer program developed for solving a

computational problem
Program size The average number of command blocks and control-flow blocks used in a participant's computer program to solve a

computational problem



P.-Y. Chao / Computers & Education 95 (2016) 202e215 209
computer instructions composed by a participant, which may imply that the participant tested their computer instructions
based on chunks of the instructions rather than line by line.

The abovementioned five indicators (i.e., Sequence, Selection, Simple iteration, Nested iteration and Testing) were employed
to represent the participants' activities in the visual programming environment. The participants' frequencies of the five
indicators were analyzed by cluster analysis to explore their patterns of computational practice for solving computational
problems. The Ward's minimum variance method was first adopted to identify number of clusters, followed by the k-mean
cluster analysis on the identified cluster number (e.g., Lin & Tsai, 2012). An ANOVA analysis was employed to distinguish
different computational practice patterns by comparing the five indicators among different clusters. Moreover, the post hoc
tests were also employed to examine the significance of all possible pair-wise comparisons among clusters for the inter-
pretation of the clusters. It should be noted that the ANOVA analysis was conducted for descriptive purposes as it has been
employed in many cluster analysis studies (e.g., Hou, 2015; Lin & Tsai, 2012; Pintrich, Anderman, & Klobucar, 1994).

The dimension of computational design consisted of three indicators to reveal the strategies of decomposing problems and
the strategies of composing control-flow blocks. The indicators denote the plan activity of decomposing a problem into sub-
problems and the design activity of formulating solutions by abutting or nesting visualized control-flow blocks for the sub-
problems. As shown in Table 1, the indicator of Problem decomposition represents the number of sub-problems decomposed
by a student for the following design and implementation of solutions. The instruction cards generated by the student in the
proposed environment reveals the division of a solution to a problem and the decomposition of the problem. A higher value of
the Problem decomposition indicator showed more fine-grained sub-problems produced in the process of decomposing
problems. The indicators of Abutment composition and Nesting composition represent, respectively, the participants' methods
of adjoining control flow patterns sequentially or inserting one control flow pattern into another. The abovementioned three
indicators were calculated by inspecting log data and users' final computer programs. For instance, in the case of Fig. 2(c), the
problem was decomposed into two sub-problems. For the two decomposed sub-problems, two instruction cards were
adopted to implement the solutions. In this case, there is one abutment composition (between two simple iteration control-
flow blocks) and two nesting compositions (between simple iteration and selection control-flow blocks).

On the other hand, the indicators of Goal attainment and Program size aimed to reveal the performance of computational
problem solving in terms of achieving quantitative or qualitative requirements of computational problems in the given
assignment. The Goal attainment indicator demonstrated the effectiveness of a design solution in terms of the accurate
collection of flowers. A higher value of the Goal attainment indicator showed greater effectiveness in terms of achieving the
quantitative requirements. For the achievement of the qualitative requirements, the Program size indicator was adopted to
reveal the quality of the participants' design solutions in terms of the instructions' efficiency. A smaller value of the Program
size indicator shows higher efficiency of the participants' design solutions. The two computational performance indicators
were calculated by inspecting users' final computer programs. For instance, in the case of Fig. 2(d), a novice programmer
collected seven flowers (Goal attainment) by generating six visualized instruction blocks (Program size).

The indicators representing computational design and performance were further analyzed. For descriptive purpose, a
series of ANOVA analyses were employed to examine the interrelationships between computational design strategies and
performance in the visual programming environment.
4. Results

4.1. Descriptive statistics of the computational problem-solving activities

Table 2 reveals the descriptive statistics of 10 indicators regarding the computational problem-solving activities. With
regard to the dimension of computational practice, the results showed that the participants used more simple iteration
(M¼ 8.56, SD ¼ 4.13) and sequence (M¼ 4.84, SD ¼ 3.33) than selection (M¼ 2.04, SD ¼ 4.83) and nested iteration (M¼ 1.25,
Table 2
Statistical results of computational practices, computational design strategies, and computational performance.

Indicators Range M SD

Computational practice
Sequence 0e20 4.84 3.33
Selection 0e26 2.04 4.83
Simple iteration 0e17 8.56 4.13
Nested iteration 0e11 1.25 1.87
Testing 0.12e1.02 0.46 0.18

Computational design
Problem decomposition 5e30 14.65 4.63
Abutment composition 4e36 19.54 7.54
Nesting composition 0e26 1.91 3.18

Computational problem-solving performance
Goal attainment 8e27 23.91 4.90
Program size 5.25e19 11.74 2.72
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SD ¼ 1.87) control-flow blocks in solving the computational problems. The results also showed that the participants, on
average, tested a single programmed instruction 0.46 times (SD ¼ 0.18). This may indicate that most participants tended to
test their code by a chunk of instructions rather than by a single instruction. Referring to computational design, in Table 2, the
indicator of Problem decomposition showed that the participants produced 14.65 (SD ¼ 4.63) subparts of solutions. This may
indicate that the participants would generally divide one computational problem into two or more sub-problems and
formulate corresponding solutions. The results also showed that the participants demonstrated more Abutment composition
(M¼ 19.54, SD¼ 7.54) than Nesting composition (M¼ 1.91, SD¼ 3.18). These results suggest that the participants, in the visual
problem-solving environment, were more likely to generate solutions to the sub-problems by adjoining control-flow blocks
rather than nesting the control-flow blocks. Regarding their computational performance, the indicators of Goal attainment
and Program size showed that the participants, on average, collected 23.91 (SD ¼ 4.9) flowers and used 11.74 (SD ¼ 2.72)
command blocks to solve a computational problem.

4.2. Exploring students' patterns of computational practice in the visual programming environment

To explore the students' patterns of computational practice in the activity of problem solving, the study first employed the
Ward's minimum variance method to identify number of clusters, followed by the k-mean cluster analysis on the identified
cluster number. Finally, this procedure resulted in a four-cluster solution to the cluster analysis because the solution yielded
the clearest distinctions among and provided more meaningful explanations for the different patterns of computational
practices (i.e., Sequent approach, Selective approach, Repetitious approach and Trial approach). For descriptive purpose, separate
ANOVAs and post hoc tests with the cluster group as an independent factorwere conducted to determine the difference of the
participants' computational practices among different clusters by comparing the indicators. Table 3 shows the numbers of
participants, the mean values of the computational practice indicators in each cluster and the comparison of the post hoc
tests. The results showed that there were significant differences among the four clusters for the indicators of Sequence
(F ¼ 51.29, p < 0.001), Selection (F ¼ 135.66, p < 0.001), Simple iteration (F ¼ 91.68, p < 0.001), Nested iteration (F ¼ 8.16,
p < 0.001) and Testing (F ¼ 4.99, p < 0.01). Moreover, the post hoc tests suggested that the four clusters have the potential to
interpret the difference in the computational practice patterns of participants' computational problem solving in the visual
problem-solving environment. Therefore, the participants could be classified into four major groups as follows:

4.2.1. Sequent approach to computational practice
As shown in Table 3, cluster 1 includes 44 participants accounting for 27.8% of the study sample. When compared with the

other clusters, the frequency of the Sequence activity exhibited by the participants in cluster 1 was significantly higher than
that of any other cluster. Moreover, the number of the indicator Simple iteration was also significantly higher than that of
cluster 2 and cluster 4. However, with regard to the indicators Selection and Nested iteration, the numbers shown by cluster 1
were significantly lower than those of cluster 2 and cluster 4. These results reveal that the participants in this group tended to
compose solutions with a relatively linear progression of computational practice, such as sequence or simple iteration, but
tended to exert less effort to use more advanced practices, such as selection or nested iteration. The participants in this cluster
exhibited a sequential approach to computational practices while dealing with computational problems. The participants
seemed to employ a relatively fundamental approach that require merely simple control-flow blocks to implement their
design solutions. They appeared to be unable or unwilling to apply more advanced control-flow blocks to their design
solutions.

4.2.2. Selective approach to computational practice
The second cluster includes nine students accounting for 5.7% of the study sample, which is the smallest group among the

four clusters. When compared with the other clusters, the numbers of Selection and Nested iteration exhibited by the par-
ticipants in cluster 2 were significantly higher than those of any other cluster. In particular, the frequency of Testing was
significantly lower than those of the other three clusters. In addition, they demonstrated relatively low values for the in-
dicators of Sequence and Simple iteration, which to some extent reveals a reverse pattern to that of cluster 1. They also tended
to create complex repetitious conditions by using selection and nested iteration tactics rather than by merely using simple
ones. They revealed a selective and divergent approach to computational problem solving. The participants appeared to
Table 3
The cluster of students' patterns of computational practice.

Sequence Selection Simple iteration Nested iteration Testing

(1) Sequent approach (n ¼ 44) M/SD 8.55/2.94 0.84/2.18 8.73/2.61 0.52/0.76 0.49/0.15
(2) Selective approach (n ¼ 9) M/SD 1.89/3.18 18.56/4.95 6.78/3.63 3.0/3.5 0.4/0.15
(3) Repetitious approach (n ¼ 68) M/SD 3.29/1.55 0.62/1.80 11.6/2.37 1.06/1.36 0.42/0.15
(4) Trial approach (n ¼ 37) M/SD 4.0/2.69 2.08/3.28 3.22/2.27 2.03/2.52 0.54/0.22
F(ANOVA) 51.29*** 135.66*** 91.68*** 8.16*** 4.99**

Post hoc tests (LSD tests) 1 > 2, 1 > 3, 1 > 4
4 > 2

2 > 1, 2 > 3, 2 > 4
4 > 1, 4 > 3

1 > 2, 1 > 4
2 > 4
3 > 1, 3 > 2, 3 > 4

2 > 1, 2 > 3
4 > 1, 4 > 3

1 > 3
4 > 2, 4 > 3

**p < 0.01, ***p < 0.001.



P.-Y. Chao / Computers & Education 95 (2016) 202e215 211
mainly combine selection and nested iteration control-flow blocks. The selection control-flow blocks assisted the participants
to implement different action plans corresponding to different conditions, and the nested iteration control-flow blocks help
the participants implement plans that heavily reused a small set of computer instructions. The participants were likely to
produce a more flexible and efficient solution.

4.2.3. Repetitious approach to computational practice
The third cluster includes 68 students accounting for 43% of the study sample, which forms the largest group among the

four clusters. Among the clusters, cluster 3 had the highest number of Simple iteration and a relatively low number of Selection.
This cluster also had a significantly lower number of Testing than cluster 1 and cluster 4. These results reveal that the par-
ticipants in this group mainly applied a simple repetitious approach to computational practices while performing the
computational problem-solving activity. The participants appeared capable in discovering repeated patterns, such as a line of
flowers, drawn from the distribution of flowers in the computational problem and applying simple iteration control-flow
blocks to implement a repeated set of computer instructions for the repeated patterns. The participants' frequent use of
simple iteration control-flow blocks and the lower number of testing their solutions may reveal that they may be familiar
with the consequent effects of applying simple iteration control-flow blocks.

4.2.4. Trial approach to computational practice
Finally, the fourth cluster accounts for 23.4% of the study sample (n¼ 37). Akin to cluster 2, the students in this cluster had

relatively higher numbers of Selection and Nested iteration than those in cluster 1 and cluster 3. However, this cluster had a
significantly higher number of Testing than cluster 2 and cluster 3. The cluster also had a relatively higher frequency of
Sequence than cluster 2. These results reveal that the participants in this cluster tended to combine various computational
practices in the problem-solving activity and frequently employed a trial approach to testing the results of generated in-
structions. The participants seemed more frequent to try the application of different control-flow blocks to the imple-
mentation of their solutions and evaluate the consequence of their implementation. The combination of control-flow blocks
and the frequent trials may reveal that the participants may have difficulties in implementing basic control-flow blocks or
applying complex combination of control-flow blocks.

4.3. The comparison of computational design strategies among the patterns of computational practice

To examine the relationships between computational practice and computational design strategies, a series of ANOVAs
and post hoc tests with cluster group as an independent factor were conducted to compare the indicators of computational
design among different clusters (i.e., Problem decomposition, Abutment composition and Nesting composition). The results
reveal significant differences in the indicators of computational design among the four clusters. As shown in Table 4, the
clusters of Sequent approach and Repetitious approach revealed significantly higher numbers for the indicators of Problem
decomposition and Abutment composition but a lower number of the indicator Nesting composition than the clusters of Selective
approach and Trial approach. These results revealed that the participants in the Sequent approach or Repetitious approach
clusters tended to decompose problems into finer-grained subparts and were more likely to compose solutions for these
subparts by abutting control-flow blocks.

On the contrary, the participants labeled as the Selective approach or Trial approach clusters tended to decompose problems
into coarser-grained subparts and were more likely to compose solutions for the subparts by nesting control-flow blocks.
Furthermore, as shown in Table 4, the participants in the group of Selective approach had higher numbers of all indicators
regarding computational design strategies than those in the Trial approach group. This result may indicate that although the
Selective approach and Trial approach clusters shared a similar tendency in terms of the decomposition of problems and the
composition of control-flow blocks, the formermay approachmore sub-problems by nesting control-flow blocks than the latter.

4.4. The comparison of computational performance among the patterns of computational practice

To examine the relationships between computational practice and computational performance, a series of ANOVAs and
post hoc tests with cluster group as an independent factor were conducted to compare the indicators of computational
Table 4
Comparison of computational design strategies of the different clusters.

Problem decomposition Abutment composition Nesting composition

(1) Sequent approach (n ¼ 44) M/SD 17.8/3.65 21.43/6.37 0.75/1.20
(2) Selective approach (n ¼ 9) M/SD 11.67/3.71 16/8.2 9.11/7.18
(3) Repetitious approach (n ¼ 68) M/SD 15.96/2.67 23.22/5.15 1.4/1.83
(4) Trial approach (n ¼ 37) M/SD 9.24/3.7 11.37/5.79 2.46/3.06
F(ANOVA) 53.138*** 35.605*** 27.482**

Post hoc tests (LSD tests) 1 > 2, 1 > 3, 1 > 4
2 > 4
3 > 2, 3 > 4

1 > 2, 1 > 4
2 > 4
3 > 2, 3 > 4

2 > 1, 2 > 3, 2 > 4
4 > 1, 4 > 3

**p < 0.01, ***p < 0.001.
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performance among different clusters (i.e., Goal attainment and Program size). As shown in Table 5, the Trial approach had a
significantly lower number of the Goal attainment indicator and a higher value of the Program size indicator than the Sequent
approach and the Repetitious approach. The participants who adopted the Trial approach collected the least flowers and
produced relatively inefficient instructions, which implies relatively lower effectiveness and efficiency in performing the
given assignments.

With regard to the Selective approach and the Repetitious approach, the participants in these clusters showed a significantly
lower value of the Program size indicator than the other two clusters. Additionally, the Selective approach cluster had the
lowest value of the Program size indicator. These results could suggest that both the Selective approach and the Repetitious
approach clusters produced relatively efficient computer programs, but the former cluster did better than the latter. Moreover,
the participants in the Repetitious approach demonstrated higher numbers of Goal attainment than those in the Trial approach
cluster but had no difference in this indicator with the other two clusters. These results could suggest that, when compared
with the Trial approach cluster, the Repetitious approach cluster participants could meet relatively more quantitative re-
quirements of problems with relatively efficient computer instructions.

Finally, the participants in the Sequent approach cluster had a significantly higher number of Goal attainment than those in
the Trial approach cluster. They also had a significantly higher value of the Program size than those in the Selective approach
and Repetitious approach clusters. These results demonstrate that the participants in this cluster could also meet relatively
more quantitative requirements of the problems. However, they tended to produce relatively inefficient computer
instructions.

5. Discussion and conclusion

This study proposed a visual problem-solving environment aiming to assist students' programming learning by analyzing,
designing, implementing, and evaluating solutions to computational problems. Because many studies have suggested the
potential of visual programming environments for programming learning (Cooper et al., 2000; Lye & Koh, 2014; Maloney
et al., 2010), the visual problem-solving environment proposed in this study further allowed the students to solve compu-
tational problems by iteratively formulating diverse programming strategies in a visualized and constructive way. Thus, the
purpose of programming learning changes its emphasis to the understanding of programming constructs and the application
of programming strategies rather than merely focusing on the features or syntax of programming languages (Muller &
Haberman, 2008; de Raadt et al., 2009). For this reason, this study examined the effectiveness of the proposed environ-
ment by exploring the interrelations among students' computational practice, computational design, and computational
problem-solving performance in the computational problem-solving activities.

This pilot study initially proposed ten indicators categorized as computational practice, computational design, and
computational performance to display the features of computational problem-solving activities. For example, the participants
in this study exhibited the highest numbers of simple iterations among the use of four control-flow blocks. They also tested
the results of program execution according to a chunk of instructions. This may imply that the participants could easily
identify the situation of adopting simple iteration control-flow blocks in the visual problem-solving environment. This
tendency is in line with the finding that novice programmers are relatively familiar with applying loop concepts in a visual
programming environment (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). The visual programming elements provided by
the visual problem-solving environment may further support the decomposition of computational problems, the assembly of
control flow structures, and the testing of chunks of novices' self-generated instructions (Maloney et al., 2010).

Students' computational practice patterns and computational design are crucial to their quality of learning programming
in educational settings (Brennan & Resnick, 2012; Lye & Koh, 2014). By analyzing the students' computational problem-
solving activity exhibited while interacting with the environment, this pilot study initially identified four different pat-
terns of computational practice (i.e., Sequent approach, Selective approach, Repetitious approach and Trial approach). For
example, the participants labeled as adopting the Selective approach tended to be more capable of adopting selection and
nested iteration control-flow blocks than other clusters for resolving computational problems in the visual problem-solving
environment. Concerning computational design strategies, they tended to decompose problems into relatively coarser-
grained subparts and represent solutions by nesting selection control-flow blocks into simple iteration or nested iteration
Table 5
Comparison of the computational performance of the different clusters.

Goal attainment Program size

(1) Sequent approach (n ¼ 44) M/SD 24.18/5.34 12.45/2.0
(2) Selective approach (n ¼ 9) M/SD 23.33/5.57 8.05/1.82
(3) Repetitious approach (n ¼ 68) M/SD 25.15/3.77 11.36/1.43
(4) Trial approach (n ¼ 37) M/SD 21.46/5.31 12.49/4.26
F(ANOVA) 4.386** 9.139***

Post hoc tests (LSD tests) 1 > 4
3 > 4

1 > 2, 1 > 3
3 > 2
4 > 2, 4 > 3

**p < 0.01, ***p < 0.001.
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control-flow blocks. This type of nesting, which achieved a meaningful programming plan that enabled iterative, simulta-
neously selective processing of every target item (e.g., flowers or stones), is believed to improve the flexibility and efficiency of
the designed solutions (Johnson, 1986). The outcomes of problem solving further evidenced the superiority of this kind of
composition. That is, the participants who adopted the Selective approach showed the most efficient design solutions among
the four clusters. The proposed visual programming environment may help the participants of Selective approach adopt
relatively advanced design strategies that could lead to efficient and flexible design solutions to the computational problems.
The cluster played a particular role in supporting programming learning because the participants' features of solving pro-
gramming problems appear similar to those of the ‘effective novice’ suggested by Robins et al. (2003, p. 165), who can apply
effective programming strategies without excessive effort or assistance. The pattern of the Selective approach provides
valuable insights into the behavioral and strategic patterns that may be employed by effective novices.

The participants categorized as adopting the Trial approach also attempted to use selection and nested iteration control-
flow blocks and compose their design solutions by nesting the control-flow blocks. Nevertheless, they finally produced
relatively ineffective and inefficient computer programs. Although the participants of Trial approach attempted to try rela-
tively advanced design strategies, they appeared to have most difficulties in producing good computational performance in
the visual programming environment. This may suggest that in the proposed visual programming environment the adoption
of selection control-flow blocks and the employment of nesting composition strategies may be insufficient for the good
performance of solving computational problems. Research shows that the strategies of pattern composition, particularly for
the nesting method, are the main factors in students' difficulties solving programming problems (Soloway, 1986; Spohrer &
Soloway, 1986). The participants tended to adopt the nesting method and show relatively frequent testing of solutions. In this
regard, some participants may have difficulties applying their nested blocks to solving computational problems. Further
examination of errors or revisions made by novice programmers during the process of programming can be helpful in
revealing the kinds of the difficulties or in finding other possibilities that lead to frequent testing of solutions and poor
computational performance. To support the development of effective design strategies, it is suggested that particular scaf-
folding is needed to assist the participants in mastering this nesting composition method. For instance, integrating explicit
educational instructions on the composition of programming plans (Muller & Haberman, 2008; de Raadt et al., 2009) with
visualized program tracking mechanisms (e.g., Rowe & Thorburn, 2000) may help the participants deeply understand how
nested control-flow blocks work and what the subsequent effects are.

With regard to the groups of Repetitious approach and Sequent approach, the participants usually adopted sequence and
simple iteration control-flow blocks. Unlike the participants in the other two groups (i.e., Selective approach and Trial
approach), they tended to design solutions by decomposing problems into more fine-grained subparts and then compose
solutions by adjoining sequence and simple iteration control-flow blocks. The proposed visual programming environment
may assist the participants of Repetitious approach or Sequent approach to adopt relatively simple design strategies that may
partially achieve good computational performance. The simple design strategies appeared to help the participants meet
quantitative requirement of computational problems but may also produce relatively inefficient design solutions. The par-
ticipants' design strategies of decomposing problems and composing control-flow blocks may be affected by their knowledge
of control-flow structures (Robins et al., 2003). They may possess insufficient knowledge of when and how to decomposing
problems for the application of more complex control-flow blocks, such as selection or nested iteration control-flow blocks.
The assistance that helps the participants acquire knowledge of applying nesting method and complex control-flow struc-
tures or reminds them to consider the efficiency requirement of computational problems can be beneficial to the learning of
constructing efficient computer programs. For this reason, particular scaffolding or problem setting could be employed to
improve the quality of decomposition during the design phase of problem solving, for instance, imposing efficiency con-
straints on the size of self-generated computer programs, such as explicitly asking a novice to solve a computational problem
within a maximumnumber of computer instructions (e.g., Code.org, 2015). Another example is to provide students with hints
about using specific control-flow blocks during problem solving, such as a scaffolding that automatically assesses students'
use of specific control-flow blocks and provides themwith suggestion of more appropriate control-flow blocks immediately
after the participants test their design solutions in the visual programming environment. With these supports, it is believed
that the students can learn the nesting method of composing different control-flow blocks and make progress toward
becoming effective novices. In addition, it is noticeable that the participants who adopted the Sequent approach showed less
simple iteration computational practice and more testing of solutions when compared with those participants who took the
Repetitious approach. This difference may reveal that the participants in the Sequent approach group did not have as much
mastery over the simple iteration control-flow blocks as the Repetitious approach participants. Therefore, before introducing
the nesting of control-flow blocks to the Sequent approach participants, scaffolding that helps them transform the use of
sequence control-flow blocks into the use of iteration ones could be beneficial to their mastery of iteration control-flow
blocks.

A visual problem-solving environment for programming learning provides students with technological supports in
learning programming through solving computational problems. The students learned to adopt effective computational
practice and design strategies by interacting with the environment. The proposed visual problem-solving environment
assisted students in modeling, simulation, and problem solving, which is believed to be beneficial to the development of
computational thinking (Lye & Koh, 2014). The visual problem-solving environment provided students with rich and visual
programming elements for meaningful interactions between the students and the environment. The meaningful interaction
revealed different practical patterns, which reflects diverse engagement that leads to different computational design
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strategies and performance of computational problem solving. For example, the students employing a more selective
approach to computational practice tended to use the more advanced design strategy of nesting different control flow
structures, which may produce relatively effective and efficient computer programs. In this sense, students who are moti-
vated to engage in meaningful interaction with the visual problem-solving environment may develop more effective stra-
tegies of computational design and then have better performance of computational problem solving. Therefore, the
scaffolding for meaningful interactions may cultivate students' programming skills and design strategies.

The results of this study show that visual problem solving through programming constitutes an effective approach to
assisting novice programmers to learn programming and computational design strategies. The cluster analysis adopted in this
study identified different patterns of computational practices and design strategies in solving computational problems.
However, the classes and fields of computational problems conducted in this study are specific, which may limit the emer-
gence of behavioral patterns and design strategies. The generalization of the computational practice patterns and the findings
presented in this study are limited. Future studies need to explore novices' programming behavior of solving computational
problems of different classes. Additionally, this study was still a small-scale investigation. Further work needs to be under-
taken with a larger sample to provide additional evidence. Specifically, because there has been renewed interest in intro-
ducing programming to younger students in recent years (Grover & Pea, 2013), it would be worthwhile to explore how the
visual problem-solving environment could influence younger students' learning of programming and problem-solving skills.
In addition, according to the results of the cluster analysis, the participants demonstrated different practical patterns and
adopted diverse design strategies to solve problems. Given the difference in the visual problem-solving activity of the par-
ticipants, further research on the design of visual programming environments should consider such individual differences.
Furthermore, to support novice programmers' visual problem-solving activities, a visual problem-solving environment for
programming learning integrated with specific scaffolds should be designed to facilitate and guide visual programming
processes in consideration of all of the principal computational practice and design strategies involved in programming.
Future research should analyze different aspects of novice programmers' processes of visual programming. Activities engaged
by novice programmers during the process of programming, such as inspecting errors, revising plans, or tracing codes, could
provide more insight into the behavioral patterns and design strategies exhibited by novice programmers. Further investi-
gation is also necessary to explore the integration of the visual problem-solving environment into a programming instruction
and to explore the effects on programming behavior and performance. It would also be worthwhile to integrate game ele-
ments into the visual environment and to explore the influence of the game elements on the learners' experience and
motivation to solve computational problems.
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