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In  this  paper,  an innovative  concept  named  Comprehensive  Pareto  Efficiency  is  introduced  in  the  con-
text  of  robust  counterpart  optimization,  which  consists  of  three  sub-concepts:  Pareto  Robust  Optimality
(PRO),  Global  Pareto  Robust  Optimality  (GPRO)  and  Elite  Pareto  Robust  Optimality  (EPRO).  Different
algorithms  are  developed  for computing  robust  solutions  with  respect  to  these  three  sub-concepts.  As  all
sub-concepts  are  based  on  the  Probability  of  Constraint  Violation  (PCV),  formulations  of PCV  under  dif-
ferent  probability  distributions  are  derived  and  an  alternative  way  to  calculate  PCV  is also  presented.
obust optimization
areto optimality
inear programming
nteger programming

Numerical  studies  are  drawn  from  two  applications  (production  planning  problem  and  orienteering
problem),  to demonstrate  the  Comprehensive  Pareto  Efficiency.  The  numerical  results  show  that  the
Comprehensive  Pareto  Efficiency  has  important  significance  for practical  applications  in terms  of the
evaluation  of  the quality  of  robust solutions  and  the  analysis  of  the  difference  between  different  robust
counterparts,  which  provides  a new  perspective  for robust  counterpart  optimization.
. Introduction

Robust optimization (RO), originally introduced by Soyster
1973) and later revitalized by Ben-Tal and Nemirovski (2002),
ertsimas and Sim (2004), El Ghaoui et al. (1998) in late 1990s and
arly 2000s, is a technique for handling uncertainties in mathe-
atical programming problems. In RO, an uncertainty set is firstly

etermined, then a robust counterpart (RC) of the original opti-
ization problem is formulated where the solution should be

easible for any uncertain realizations in the uncertainty set. The
bjective of RO is to calculate a robust solution which satisfies

 decision-maker’s requirement (e.g., a robust solution with high
uality objective value and reliability). For general review and com-
rehensive explanation on RO, we refer to Ben-Tal and Nemirovski
2002), Ben-Tal et al. (2009), Bertsimas et al. (2011), Gabrel et al.
2014), Gorissen et al. (2015).

The definition of the uncertainty set plays an important role in
O. It directly determines the underlying RC and then affects the
hole process of RO. Many works have devoted to the construction

f the uncertainty sets. The first one is considered by Soyster (1973)

n which all possible uncertain realizations are included. This uncer-
ainty set is too pessimistic and conservative which is not preferred
n practice. Later El Ghaoui et al. (1998), Ben-Tal and Nemirovski

∗ Corresponding author at: State Key Laboratory for Manufacturing Systems Engi-
eering, Xi’an Jiaotong University, Xi’an 710049, China.

E-mail address: kshang@foxmail.com (K. Shang).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.07.022
098-1354/© 2016 Elsevier Ltd. All rights reserved.
© 2016  Elsevier  Ltd. All  rights  reserved.

(2002) consider ellipsoidal uncertainty sets and the resulting RC is a
second-order cone programming (SOCP). Bertsimas and Sim (2004)
define a budgeted uncertainty set which leads to a linear program-
ming (LP). This uncertainty set is further improved by Ke et al.
(2013) which is called proportion-based uncertainty set specifically
suitable for 0–1 integer programming problems. Bertsimas et al.
(2004) generalize the definition of the uncertainty sets by more
general norms. In particular, the l1 and l∞ norms result in linear
programming problems, and the l2 norm results in a second-order
cone programming problem. Li et al. (2011) presents a system-
atic study on different uncertainty sets defined by different norms
and their combinations for linear and mixed integer programming
problems and derived corresponding RC. Other works related to
uncertainty set construction include Bertsimas and Brown (2009)
which construct the uncertainty set from coherent risk measures
perspective, Ben-Tal et al. (2013), Bertsimas et al. (2013) construct
the uncertainty set from a data-driven and statistics perspective,
etc.

With the uncertainty set defined, the robust optimal solution
can be obtained by solving the corresponding RC. One important
procedure is to check the quality of the robust solution, in order to
make the right decision. One criterion of the solution quality is the
objective value. When the uncertainty lies in the constraint, then
the Probability of Constraint Violation (PCV) naturally becomes

another criterion of the solution quality. For a decision maker,
a solution with better objective value and lower PCV is always
preferred. Many works have devoted to establishing the Probabil-
ity Bounds of Constraint Violation (PBCV) when the distribution

dx.doi.org/10.1016/j.compchemeng.2016.07.022
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.07.022&domain=pdf
mailto:kshang@foxmail.com
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nformation is unknown or partially known, we refer to Bertsimas
nd Sim (2004), Lin et al. (2004), Paschalidis and Kang (2015), Ben-
al et al. (2009), Li et al. (2012), Guzman et al. (2016). To the best
f our knowledge, there is no systemic work on establishing PCV
ith known probability distributions in RO.

Iancu and Trichakis (2013) first introduced the concept of Pareto
fficiency in the context of the RO methodology for linear opti-
ization problems. The traditional RO optimizes the objective by

atisfying the uncertain constraints under all possible uncertain
ealizations. However, as pointed out by Iancu and Trichakis (2013),
he RO does not optimize the slacks of constraints, in fact, it fails
o guarantee that no other solution exists yielding larger slacks
nd at the same objective value. Iancu and Trichakis (2013) defines
he concept of Pareto Robust Optimality (PRO) based on constraint
lacks. For a decision maker, the PRO solutions are always preferred
o the non-PRO solutions as the non-PRO solutions can more readily
enerate infeasibility. One problem exists in Iancu and Trichakis
2013) is that comparing solutions feasibility by constraint slacks
s very intuitive and sometimes not so accurate. A solution with
ess constraint slacks may  has higher feasibility. Instead the PCV
s the most accurate measurement of solution feasibility. Based on
his observation, we can redefine the PRO by using PCV rather than
onstraint slacks to improve the accuracy. The premise is that the
robability distribution information is known beforehand.

In this paper, we introduce an innovative concept named Com-
rehensive Pareto Efficiency in the context of robust counterpart
ptimization for linear and 0–1 integer programming problems
ith uncertain constraints. The main contributions are as follows:

. Comprehensive Pareto Efficiency is initially introduced which
consists of three sub-concepts: Pareto Robust Optimality (PRO),
Global Pareto Robust Optimality (GPRO) and Elite Pareto Robust
Optimality (EPRO).

. Different algorithms are developed for computing robust solu-
tions with respect to PRO, GPRO and EPRO.

. Formulations of PCV under different probability distributions
are derived, and an alternative way for calculating PCV is also
presented.

. We  draw numerical studies on two applications (production
planning problem and orienteering problem), to demonstrate
the Comprehensive Pareto Efficiency in terms of the evaluation
of the quality of robust solutions and the analysis of the differ-
ence between different robust counterparts.

The remainder of the paper is organized as follows: Section 2
eviews the robust counterpart optimization methodology, Sec-
ion 3 introduces the Comprehensive Pareto Efficiency concept
hich consists of three sub-concepts, Section 4 describes the calcu-

ation of PCV under different probability distributions, Numerical
tudies are drawn in Section 5 with two applications and Section 6
oncludes the whole paper.

. Robust counterpart optimization

In this paper, we consider the following linear programming
roblem and 0–1 integer programming problem simultaneously:

P: max
{

cTx : Ax ≤ b, x ≥ 0
}

(1a)

-1 IP: max
{

cTx : Ax ≤ b, x ∈ {0, 1}N
}

(1b)

here c ∈ R
N , A ∈ R

M×N , b ∈ R
M .
We  only consider single uncertain constraint in this paper.
uppose the ith row of A is affected by uncertainty, denote the
ranspose of ith row of A as uncertain vector ai ∈ R

N , each element
n ai is modeled as independent and symmetric random variable.
al Engineering 94 (2016) 75–91

Then the ith constraint of the nominal linear programming problem
and 0–1 integer programming problem turns into

aT
i x ≤ bi (2)

The robust optimization methodology is thus to define a so-
called uncertainty set U for uncertain vector ai such that the ith
constraint satisfied as:

aT
i x ≤ bi, ∀ai ∈ U (3)

which is known as the robust counterpart of the uncertain con-
straint (2).

Without loss of generality, the uncertainty set U is defined as
follows:

U = {ai = ai + Ai�|� ∈ Z}  (4)

where ai is the nominal value, Ai = diag(ai) is the perturbation set
where ai ∈ R

N+ is the perturbation vector, � ∈ R
N is the vector of

primitive uncertainties, and Z is a convex set which can be defined
by a general norm of � as follows:

Z = {� ∈ R
N |
∥∥�
∥∥ ≤ �}  (5)

where ‖ · ‖ is any norm and � is the parameter controlling the size
of Z.

The key of RO is the definition of the set Z, a particular Z directly
determines the corresponding robust counterpart. One  concern in
RO is the tractability of the robust counterpart. The norm defined
by ł∞, ł1 and ł2 will lead to tractable robust counterparts (Bertsimas
et al., 2004). The uncertainty set defined by ł∞ is called box uncer-
tainty set:

Z∞ = {� ∈ R
N |
∥∥�
∥∥

∞ ≤ �}  (6)

then the linear programming problem and 0–1 integer program-
ming problem have the same robust counterpart:

RC∞ = max
{

cTx : aT
i
x + �aT

i
x ≤ bi

}
(7)

In RC∞ only the ith constraint is presented and other constraints
are eliminated to keep it concise. In the following robust coun-
terparts we  only present the ith constraint as a convention, and a
robust counterpart represents a linear and an 0–1 integer program-
ming problem simultaneously.

The uncertainty set defined by ł1 is called polyhedral uncertainty
set:

Z1 = {� ∈ R
N |
∥∥�
∥∥

1
≤ �} (8)

and the corresponding robust counterpart is:

RC1 = max

{
cTx :

aT
i
x + z� ≤ bi

z ≥ âijxj, ∀j

}
(9)

The uncertainty set defined by ł2 is called ellipsoidal uncertainty
set:

Z2 = {� ∈ R
N |
∥∥�
∥∥

2
≤ �}  (10)

and the corresponding robust counterpart is:

RC2 = max
{

cTx : aT
i
x + �

√
xTA2

i x ≤ bi

}
(11)

The above three uncertainty sets are applicable when random
vector � is unbounded, if the random vector � is bounded in an inter-
val, specifically consider � ∈ [−1, 1]N, the above three uncertainty
sets need to be bounded in order to limit � in its bound. This leads

to two  more uncertainty sets which are applicable when � ∈ [−1,
1]N, the first one is the intersection of the box and polyhedral sets:

Z1∩∞ = {� ∈ R
N |
∥∥�
∥∥

1
≤ �,

∥∥�
∥∥

∞ ≤ 1} (12)
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here � ∈ [0, N] and the corresponding robust counterpart is:

RC1∩∞ = max

⎧⎪⎨
⎪⎩cTx :

aT
i
x + z� + eTp ≤ bi

z + pj ≥ âijxj, ∀j

p ≥ 0, z ≥ 0

⎫⎪⎬
⎪⎭ (13)

here e is a N-dimensional vector with all elements equal 1.
The second one is the intersection of the box and ellipsoidal sets:

2∩∞ = {� ∈ R
N |
∥∥�
∥∥

2
≤ �,

∥∥�
∥∥

∞ ≤ 1} (14)

here � ∈ [0,
√

N] and the corresponding robust counterpart is:

RC2∩∞ = max

{
cTx :

aT
i
x + aT

i
y + �

√
zTA2

i z ≤ bi

y + z = x, y ≥ 0

}
(15)

The uncertainty set Z∞ is also applicable for bounded � ∈ [−1,
]N when parameter � ∈ [0, 1].

For a detailed summarization of all uncertainty sets defined
y norms and their combinations, as well as the deduction of the
obust counterparts from their corresponding uncertainty sets, we
efer to Li et al. (2011).

. Comprehensive Pareto Efficiency

.1. Pareto Robust Optimality

Iancu and Trichakis (2013) first introduced the concept of Pareto
fficiency in the context of the RO methodology for linear optimiza-
ion problems. When the uncertainty lies in the constraints, the
O optimizes the objective by satisfying the uncertain constraints
nder all possible uncertain realizations. However the RO does not
ptimize the slacks of constraints, in fact, it fails to guarantee that no
ther solution exists yielding larger slacks and at the same objective
alue.

Consider the ith constraint under uncertainty set U as described
n (3). The slack of the uncertain constraint is defined as:

LK(x, ai) = bi − aT
i x, ∀x ∈ R

N, ai ∈ U (16)

Then Iancu and Trichakis (2013) defined the Pareto Robustly
ptimal (PRO) solution as follows:

efinition 3.1 (Iancu and Trichakis (2013)). A solution x is called a
RO solution under constraint (3) if it is robustly optimal, and there
s no other robust optimal solution x such that

. SLK(x, ai) ≥ SLK(x, ai), ∀ai ∈ U

. SLK(x, ai) > SLK(x, ai), ∃ai ∈ U

In the above setting we say that x Pareto dominates x, the PRO
olutions guarantee the slacks in the constraints are optimized
or all uncertainty realizations ai ∈ U.  Iancu and Trichakis (2013)
ointed out the reason for this setting is that solution with zero or
mall value of slack can more readily generate infeasibility, which
mplicitly means a PRO solution has the highest reliability compare

ith the non-PRO solutions.
The measurement of the uncertain constraint feasibility by

lacks is very intuitive and sometimes not so accurate. If the prob-
bility distribution of the uncertainty is known, a more accurate
easurement of the constraint feasibility is the so-called Probabil-

ty of Constraint Violation (PCV), which is defined as follows:(
T

)
N
CV(x) = Pr ai x > bi , ∀x ∈ R (17)

A solution with zero or small value of PCV means it hardly gener-
tes infeasibility, which means this solution is with high reliability.
his motivates us to define a more accurate PRO concept as follows:
al Engineering 94 (2016) 75–91 77

Definition 3.2 (PRO). A solution x is called a PRO solution under
constraint (3) if it is robustly optimal, and there is no other robust
optimal solution x such that

PCV(x) < PCV(x)

In the definition above, we say that x Pareto dominates x. The
new PRO in Definition 3.2 is much simpler than the old PRO in
Definition 3.1, because we  use PCV as the measurement of the
uncertain constraint feasibility rather than constraint slacks. The
old PRO definition needs to compare all slacks with all possible
values inside the uncertainty set. By using PCV, we  only need to
compare the PCV of two solutions.

Below a toy example is presented to illustrate the notion of the
new PRO concept.

Example 3.1. Consider the following nominal 0–1 integer pro-
gramming:

maximize c1x1 + c2x2 + c3x3 (18a)

subject to a1x1 + a2x2 + a3x3 ≤ b (18b)

x1 + x2 = 1 (18c)

x2 − x3 = 0 (18d)

{x1, x2, x3} ∈ {0, 1}3 (18e)

Suppose ã1, ã2 and ã3 obey uniform distributions and â1 = â2 =
â3 = 1. Denote the primitive uncertainties as �1, �2 and �3 which are
uniformly distributed on [−1, 1]. There are two possible solutions
in this example, x1 = (1, 0, 0), x2 = (0, 1, 1).

Case 1: a1 = 4, a2 = a3 = 2, c1 = 2, c2 = c3 = 1, b = 5. Here we apply
RC1∩∞ robust model, the robust optimal solution is

x∗ =
{

x1 or x2 0 ≤ � ≤ 1

no feasible solution � > 1
(19)

We have:

1. cTx1 = cTx2 = 2.
2. PCV(x1) = Pr(�1â1 > b − a1) = Pr(�1 > 1) = 0

PCV(x2) = Pr(�2â2 + �3â3 > b − a2 − a3) = Pr(�2 + �3 > 1) =
0.125

PCV(x1) < PCV(x2)

From Definition 3.2 we know that x1 is the PRO solution.
Case 2: a1 = 4.5, a2 = a3 = 2, c1 = 2, c2 = c3 = 1, b = 5. Here we apply

RC∞ robust model, the robust optimal solution is

x∗ =
{

x1 or x2 0 ≤ � ≤ 0.5

no feasible solution � > 0.5
(20)

We have:

1. cTx1 = cTx2 = 2.
2. PCV(x1) = Pr(�1â1 > b − a1) = Pr(�1 > 0.5) = 0.25

PCV(x2) = Pr(�2â2 + �3â3 > b − a2 − a3) = Pr(�2 + �3 > 1) =
0.125

PCV(x1) > PCV(x2)

From Definition 3.2 we know that x2 is the PRO solution.
Case 3: a1 = 5 − 1√

2
, a2 = a3 = 2, c1 = 2, c2 = c3 = 1, b = 5. Here we

apply RC2∩∞ robust model, the robust optimal solution is⎧

x∗ =

⎪⎨
⎪⎩

x1 or x2 0 ≤ � ≤ 1√
2

no feasible solution � >
1√
2

(21)
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We  have:

. cTx1 = cTx2 = 2.

. PCV(x1) = Pr(�1â1 > b − a1) = Pr(�1 > 1√
2

) ≈ 0.146

PCV(x2) = Pr(�2â2 + �3â3 > b − a2 − a3) = Pr(�2 + �3 > 1) =
0.125

PCV(x1) > PCV(x2)

From Definition 3.2 we know that x2 is the PRO solution.

emark. From the above example we have the following obser-
ations:

. In order to calculate the PCV, the probability distributions of the
uncertain variables need to be known, in the above example we
assume the primitive uncertainties obey uniform distribution on
[−1, 1].

. Three different robust counterpart models are applied on
this example under different settings, all three models can
obtain two robust optimal solutions. But all three mod-
els fail to distinguish the PRO solution and the non-PRO
solution.

. In practical applications, the PRO solution is always preferred,
so it is necessary to find a method which can produce the PRO
solutions rather than the non-PRO solutions.

The following proposition provides a method for calculating PRO
olutions for a robust counterpart.

roposition 1. All the optimal solutions to min
x ∈ XRO

PCV(x) are PRO

nder constraint (3), where XRO = {x ∈ R
N : cTx ≥ zRO, SLK(x, ai) ≥

, ∀ai ∈ U}  and zRO is the optimal objective value under constraint
3).

roof. It is clear that XRO is the robust optimal solution set
nder constraint (3). By solving min

x ∈ XRO
PCV(x) over set XRO, we  can

btain a robust optimal solution x with the smallest PCV value.
ased on the PRO definition 3.2, there is no other robust opti-
al  solution x such that PCV(x) < PCV(x), which means x is a PRO

olution. �

Proposition 1 suggests two methods for calculating PRO solu-
ions. The first one is to solve the optimization problem min

x ∈ XRO
PCV(x)

irectly. The objective function PCV(x) is always a nonlinear and
omplex function which is difficult to solve in practice1. The sec-
nd method is to obtain the robust optimal solution set XRO first,

nd then filter the solution with the smallest PCV as the PRO solu-
ion. For 0–1 integer programming problem, the XRO is always a
nite set and can be obtained by standard software (e.g., CPLEX
ith Solution Pool feature), so we can get an accurate PRO solu-

ion in this situation. For linear programming problem, if there
xists more than one robust optimal solution, the XRO is always
n infinite set. In this situation, it is difficult to get an accurate PRO
olution, so we develop a heuristic algorithm to obtain an approxi-
ate PRO solution for this case. The heuristic algorithm is shown in
lgorithm 1.

1 For detailed PCV formulations see Section 4.
al Engineering 94 (2016) 75–91

Algorithm 1. Calculate an approximate PRO solution for linear
programming problem

Input:  Uncertainty set U,  S a set of sampled points in U,  solution set X
Output:  An approximate PRO solution of LP
1: Set S =∅ and X =∅
2: Randomly sample points in ri(U) where ri(U) is the relative interior

of  U and put the sampled points into set S.
3: for all ai ∈ S do
4: Solve max

x ∈ XRO
SLK(x, ai)

5:  Put the optimal solution into solution set X
6: end for
7: Filter the solution in X with the smallest PCV as an approximate

PRO solution

In Algorithm 1, the idea is that to solve min
x ∈  XRO

PCV(x) directly is

difficult, but we  can solve max
x ∈ XRO

SLK(x, ai) easily because SLK(x, ai)

is a linear function. We can obtain a set of old PRO solutions in
Definition 3.1 where the theoretical basis is Corollary 3 in Iancu and
Trichakis (2013), then we filter the solution with the smallest PCV
as an approximate PRO solution defined in this paper. As the SLK
and PCV are defined upon single uncertain constraint, Algorithm 1
is designed specifically for single uncertain constraint case.

3.2. Global Pareto Robust Optimality

The PRO solution is defined with a given uncertainty set U. As
shown in Section 2, the uncertainty set U has a parameter � which
controls its size. Tuning parameter �, different sized uncertainty
sets can be generated. A PRO solution is associated with each of the
uncertainty sets. In order to compare PRO solutions from different
sized uncertainty sets, we introduce the concept of Global Pareto
Robustly Optimal (GPRO) solution which extends the PRO concept
to a globalized scope.

Without loss of generality, we consider the robust counterpart
RC with uncertainty set U which is controlled by parameter �.
Suppose we  have a finite set which contains different values of
parameter �, here denoted as P = {�i, 1 ≤ i ≤ N} and |P| = N. For each
value in P we  can establish an uncertainty set, then a series of
uncertainty sets with different sizes can be obtained, denoted as
U(�i), 1 ≤ i ≤ N. For each uncertainty set, we  can get a PRO solu-
tion associated with it, then a set of PRO solutions can be obtained,
denoted as XPRO = {xi, 1 ≤ i ≤ N}.

In the following, we give the definition of GPRO solution over
XPRO.

Definition 3.3 (GPRO). Given a finite PRO solution set XPRO of a
robust counterpart RC.  A PRO solution x ∈ XPRO is called a GPRO
solution over XPRO, if there is no other PRO solution x ∈ XPRO such
that:

1. cTx = cTx and PCV(x) < PCV(x)
2. cTx > cTx and PCV(x) ≤ PCV(x)

In the definition above, we  say that x Pareto dominates x. The
PRO only considers a fixed size uncertainty set, the GPRO extends
the PRO to a globalized scope which considers PRO solutions from
different sized uncertainty sets. We need to consider different sized
uncertainty sets and compare the objective values and PCV of the
PRO solutions simultaneously.

Next a toy example is presented to illustrate the notion of the

above GPRO concept.

Example 3.2. Here we  consider the same 0–1 integer program-
ming as presented in Example 3.1, see (18):
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Case 1: a1 = 4.25, a2 = a3 = 2, c1 = 2.5, c2 = c3 = 1, b = 5. Here we
pply RC1∩∞ robust model, the robust optimal solution is

∗ =

⎧⎪⎨
⎪⎩

x1 0 ≤ � ≤ 0.75

x2 0.75 < � ≤ 1

no feasible solution � > 1

(22)

Suppose we define parameter set P = {� = 0, 0.1, . . .,  1}, then the
RO solution set XPRO = {x1, x2} and we have:

. cTx1 = 2.5 > cTx2 = 2.

. PCV(x1) = Pr(�1â1 > b − a1) = Pr(�1 > 0.75) = 0.125 PCV(x2) =
Pr(�2â2 + �3â3 > b − a2 − a3) = Pr(�2 + �3 > 1) = 0.125
PCV(x1) = PCV(x2)

From Definition 3.3 we know that x1 is the GPRO solution over
PRO.

Case 2: a1 = 4.25, a2 = a3 = 2, c1 = 1.5, c2 = c3 = 1, b = 5. Here we
pply RC∞ robust model, the robust optimal solution is

∗ =

⎧⎪⎨
⎪⎩

x2 0 ≤ � ≤ 0.5

x1 0.5 < � ≤ 0.75

no feasible solution � > 0.75

(23)

Suppose we define parameter set P = {� = 0, 0.1, . . .,  1}, then the
RO solution set XPRO = {x1, x2} and we have:

. cTx1 = 1.5 < cTx2 = 2.

. PCV(x1) = Pr(�1â1 > b − a1) = Pr(�1 > 0.75) = 0.125 PCV(x2) =
Pr(�2â2 + �3â3 > b − a2 − a3) = Pr(�2 + �3 > 1) = 0.125
PCV(x1) = PCV(x2)

From Definition 3.3 we know that x2 is the GPRO solution over
PRO.

Case 3: a1 = 4.25, a2 = a3 = 2, c1 = 1.5, c2 = c3 = 1, b = 5. Here we
pply RC2∩∞ robust model, the robust optimal solution is

∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2 0 ≤ � ≤ 1√
2

x1
1√
2

< � ≤ 0.75

no feasible solution � > 0.75

(24)

Suppose we define parameter set P = {� = 0, 0.05, 0.1, . . .,  1},
hen the PRO solution set XPRO = {x1, x2} and we have:

. cTx1 = 1.5 < cTx2 = 2.

. PCV(x1) = Pr(�1â1 > b − a1) = Pr(�1 > 0.75) = 0.125 PCV(x2) =
Pr(�2â2 + �3â3 > b − a2 − a3) = Pr(�2 + �3 > 1) = 0.125
PCV(x1) = PCV(x2)

From Definition 3.3 we know that x2 is the GPRO solution over
PRO.

emark. From the above example we have the following obser-
ations:

. Three robust counterparts RC1∩∞, RC2∩∞ and RC∞ are applied
on this example. We  can observe that PRO solutions obtained
by three robust counterparts may  not be GPRO solutions. This
phenomenon is related to the distribution of the primitive uncer-
tainties and the definition of the uncertainty sets. Different

robust counterparts under different distributions may  behave
totally different.

. The parameter set P determines PRO solution set XPRO. In the
above example, if we define P = {� = 0, 0.1, . . .,  1} for case 3, then
al Engineering 94 (2016) 75–91 79

XPRO = {x2} and x1 cannot be obtained. In order to obtain a more
complete PRO solution set XPRO, the selection of P need to be
denser.

3. In practical applications, the GPRO solution is always preferred.
An ideal robust model will only produce GPRO solutions. From
the above example we  know that all three robust counterparts
are not ideal under uniform distribution, the non-GPRO solutions
cannot be avoided.

The following lemma  describes the relations between two PRO
solutions of a robust counterpart under different sized uncertainty
sets.

Lemma  2. Consider the general uncertainty set U controlled by
parameter � as defined in (4) and (5). For any �1 < �2, x1 and x2 are
PRO solutions under uncertainty sets U(�1) and U(�2) respectively,
then

1. x2 is a feasible solution under uncertainty set U(�1)
2. cTx1 ≥ cTx2
3. if cTx1 = cTx2, then PCV(x1) ≤ PCV(x2)

Proof.

(1) From the definition of uncertainty set U,  it is easy to know that
U(�1) ⊂ U(�2). The robust constraint (3) can be rewritten as:

aT
i x + max

� ∈ Z

{
�TÂix

}
≤ bi (25)

Denote F(x, Z) = max
� ∈ Z

{
�TÂix

}
. Because Z(�1) ⊂ Z(�2),

we have F(x2, Z(�1)) ≤ F(x2, Z(�2)); because aT
i
x2 +

F(x2, Z(�2)) ≤ bi, then we  have aT
i
x2 + F(x2, Z(�1)) ≤ bi,

this implies x2 is a feasible solution under uncertainty set
U(�1).

(2) Suppose cTx1 < cTx2, from above we  know that x2 is a feasible
solution under uncertainty set U(�1), this contradicts x1 is a
PRO solution with uncertainty set U(�1), so the hypothesis is
not established, and we conclude cTx1 ≥ cTx2.

(3) If cTx1 = cTx2, suppose PCV(x1) > PCV(x2), because x2 is a fea-
sible solution under uncertainty set U(�1), this contradicts x1
is a PRO solution with uncertainty set U(�1), so the hypoth-
esis is not established, and we  conclude: if cTx1 = cTx2, then
PCV(x1) ≤ PCV(x2).

�

Next two theorems are established which show that specific
robust counterpart under specific probability distribution can be
an ideal robust model which will only produce GPRO solutions. The
first one is robust counterpart RC2 under Normal distribution which
is described as follows:

Theorem 3.3. If each element of the primitive uncertainties �i obeys
standard Normal distribution, then all PRO solutions in PRO solution
set XPRO generated by robust counterpart RC2(11) are GPRO over XPRO.

Proof. If each element of the primitive uncertainties �i obeys
standard Normal distribution denoted as Normal(0, 1), then
the uncertain vector ai = ai + Ai� obeys Normal distribution
NormalN(ai, A2

i ).
Consider the following chance constraint:

Pr
(

aT
i x > bi

)
< 1 − ε (26)
It is well known that the above chance constraint is equivalent
to the following formulation (Calafiore and El Ghaoui, 2006):

aT
i x + �−1(ε)

√
xTA2

i x ≤ bi (27)
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here �(x) is the cumulative distribution function (CDF) of the
tandard normal distribution.

This is just the constraint in RC2 with � = �−1(ε). Because �−1(ε)
s a monotonically increasing function of ε, for any ε1 < ε2, then

1 < �2. Suppose x1 is the PRO solution with U(�1) and x2 is the
RO solution with U(�2), from Lemma  2 we have cTx1 ≥ cTx2.

1) If cTx1 > cTx2, suppose PCV(x1) ≤ PCV(x2), because
PCV(x2) < 1 − ε2, then we have PCV(x1) < 1 − ε2, this means
x1 is a feasible solution with U(�2); because cTx1 > cTx2, this
contradicts x2 is PRO solution under U(�2), so the hypothesis
is not established, which means PCV(x1) > PCV(x2).

2) If cTx1 = cTx2, from Lemma  2 we have PCV(x1) ≤ PCV(x2). Sup-
pose PCV(x1) < PCV(x2), because PCV(x2) < 1 − ε2, then we  have
PCV(x1) < 1 − ε2, this means x1 is a feasible solution with U(�2);
because PCV(x1) < PCV(x2), this contradicts x2 is PRO solution
under U(�2), so the hypothesis is not established, which means
PCV(x1) = PCV(x2).

We  can conclude that: for any two PRO solutions x1 and
2, if cTx1 > cTx2, then PCV(x1) > PCV(x2), if cTx1 = cTx2, then
CV(x1) = PCV(x2). So for any XPRO, there is no solution which can
e dominated by another solution. From Definition 3.3 we  know
hat all PRO solutions in XPRO are GPRO. �

The second one is robust counterpart RC∞ under Cauchy dis-
ribution, first we give the following lemma  which describes the
quivalence of chance constraint (26) and robust counterpart RC∞:

emma  3.4. If each element of the primitive uncertainties �i obeys
tandard Cauchy distribution, then chance constraint (26) is equiva-
ent to the following formulation:

T
i x + 	−1(ε)aT

i x ≤ bi (28)

here 	(x) is the CDF of the standard Cauchy distribution.

roof. If each element of the primitive uncertainties �i obeys
tandard Cauchy distribution denoted as Cauchy(0, 1), then from
roperties of Cauchy distribution we have: the uncertain vec-
or ai = ai + Ai� obeys Cauchy distribution CauchyN(ai, ai) and aT

i
x

beys Cauchy(aT
i
x, aT

i
x).

Consider chance constraint (26), reformulate the left hand side:

Pr
(

aT
i
x > bi

)
= Pr

(
aT

i
x − aT

i
x

aT
i
x

>
bi − aT

i
x

aT
i
x

)
(29)

enote Z = ãT
i x−aT

i
x

âT
i x

, so Z obeys standard Cauchy distribution

auchy(0, 1).
Then the chance constraint (26) is equivalent to:

bi − aT
i
x

aT
i
x

≥  	−1(ε) (30)

hich is:

T
i x + 	−1(ε)aT

i x ≤ bi (31)

here 	(x) is the CDF of the standard Cauchy distribution. �

Based on Lemma  3.4, we have the following theorem:

heorem 3.5. If each element of the primitive uncertainties �i obeys
tandard Cauchy distribution, then all PRO solutions in PRO solution
et XPRO generated by robust counterpart RC∞(7) are GPRO over XPRO.

roof. If each element of the primitive uncertainties � obeys
i
tandard Cauchy distribution, from Lemma  3.4 we known that
hance constraint (26) is equivalent to the following formulation:

T
i x + 	−1(ε)aT

i x ≤ bi (32)
al Engineering 94 (2016) 75–91

where 	(x) is the CDF of the standard Cauchy distribution.
This is just the constraint in RC∞ with � = 	−1(ε). Because

	−1(ε) is a monotonically increasing function of ε, for any ε1 < ε2,
then �1 < �2. Suppose x1 is the PRO solution with U(�1) and x2 is
the PRO solution with U(�2), from Lemma  2 we  have cTx1 ≥ cTx2.

Follow the proof way of Theorem 3.3 we  can get: for any two
PRO solutions x1 and x2, if cTx1 > cTx2, then PCV(x1) > PCV(x2), if
cTx1 = cTx2, then PCV(x1) = PCV(x2). So for any XPRO, there is no solu-
tion which can be dominated by another solution. From Definition
3.3 we  know that all PRO solutions in XPRO are GPRO. �

In Theorem 3.3 and 3.5, we  proved that for any XPRO produced
by RC2 under Normal distribution or RC∞ under Cauchy distribu-
tion, all PRO solutions are GPRO over XPRO. For other situations, this
conclusion cannot be guaranteed, which means there may  exist
non-GPRO solutions in XPRO. In order to obtain all GPRO solutions
in XPRO, we  develop an efficient filtering algorithm as shown in
Algorithm 2.

Algorithm 2. Filtering algorithm for obtaining GPRO solutions
from XPRO

Input: A set of PRO solutions XPRO = {xi , 1 ≤ i ≤ N} and its
corresponding parameter set P = {�i , 1 ≤ i ≤ N}.
Output: A set of GPRO solutions XGPRO .
1: Sort solutions in XPRO according to �1 < �2 < · · · < �N

2: Set XGPRO = {x1}, k = 1, j = 1
3:  for j = 2 to N do
4: if xj is not dominated by xk then
5:  Set XGPRO = XGPRO ∪ {xj} and k = j
6: end if
7: end for
8: Output XGPRO

3.3. Elite Pareto Robust Optimality

The GPRO concept is defined with the general uncertainty set U
which is controlled by parameter �.  As shown in Section 2, different
definitions of uncertainty set U lead to different robust counter-
parts. Each robust counterpart has a parameter which controls the
size of the uncertainty set U.  So for each robust counterpart, we
can get a corresponding GPRO solution set XGPRO. Different robust
counterparts may  lead to different GPRO solution sets. In order to
compare the GPRO solutions obtained by different robust counter-
parts, we further extend the GPRO concept, which is named as Elite
Pareto Robust Optimality (EPRO).

Suppose we have a set which contains different robust counter-
parts R = {RCj, 1 ≤ j ≤ M}, for each robust counterpart in R we can
obtain a set of GPRO solutions XGPRO

j
, 1 ≤ j ≤ M.  The EPRO concept

is defined as follows:

Definition 3.4 (EPRO).  Given a robust counterpart set R = {RCj,
1 ≤ j ≤ M}  and the corresponding GPRO solution set XGPRO

j
, 1 ≤ j ≤

M. A GPRO solution x ∈ XGPRO
i

is called an EPRO solution over R, if

there is no other GPRO solution x ∈
⋃M

j=1XGPRO
j

such that:

1. cTx = cTx and PCV(x) < PCV(x)
2. cTx > cTx and PCV(x) ≤ PCV(x)

In the definition above, we  say that x Pareto dominates x. The
GPRO is defined within a specific robust counterpart, and the EPRO
considers Pareto efficiency over a group of different robust coun-
terparts.

Next a toy example is presented to illustrate the notion of the

EPRO.

Example 3.3. Consider the following linear programming:

maximize x1 + x2 (33a)



hemic

s

2

x

x

a
a

c
p
s
f

0
O
l
R
R

0
r
c
i

s
s
I
s

R
v

1

2

3

A
f

K. Shang et al. / Computers and C

ubject to a1x1 + a2x2 ≤ 2.5 (33b)

x1 + x2 ≤ 4 (33c)

1 + 2x2 ≤ 4 (33d)

1, x2 ≥ 0 (33e)

Suppose ã1, ã2 obey uniform distributions and a1 = 1, a2 = 1.01,
ˆ1 = â2 = 0.25. Denote the primitive uncertainties as �1, �2 which
re uniformly distributed on [−1, 1].

We define robust counterpart set R = {RC1∩∞, RC∞}. Each robust
ounterpart in R is used to solve the above linear programming
roblem. All models are solved by CPLEX 12.6 and the PCV of the
olutions under uniform distribution is calculated according to the
ormulation in Section 4.

For RC1∩∞, � ∈ [0, 2], we define parameter set P1 = {� = 0, 0.2,
.4, . . .,  2}. The results are shown in Fig. 1(a) where OV represents
bjective Value and PCV represents Probability of Constraint Vio-

ation. We checked that all robustly optimal solutions obtained by
C1∩∞ are unique under their corresponding uncertainty sets, so all
O solutions are PRO, and it is clear that all PRO solutions are GPRO.

For RC∞, � ∈ [0, 1], we define parameter set P2 = {� = 0, 0.1,
.2, . . .,  1}. The results are shown in Fig. 1(b). We  checked that all
obustly optimal solutions obtained by RC∞ are unique under their
orresponding uncertainty sets, so all RO solutions are PRO, and it
s clear that all PRO solutions are GPRO.

For two GPRO solution sets obtained by RC1∩∞ and RC∞, Fig. 1(c)
hows the comparison between them, it is obvious that some GPRO
olutions of RC∞ are Pareto dominated by GPRO solutions of RC1∩∞.
n fact, all GPRO solutions of RC1∩∞ are EPRO over R, 6 out of 11 GPRO
olutions of RC∞ are EPRO over R.

emark. From the above example we have the following obser-
ations:

. Robust counterpart set R which contains RC1∩∞ and RC∞ is
applied on this example. The GPRO solution sets obtained by two
robust counterparts are compared, which shows that some GPRO
solutions may  not be EPRO solutions over R. 5 GPRO solutions of
RC∞ are Pareto dominated by GPRO solutions of RC1∩∞.

. The parameter sets P1 and P2 determine the corresponding GPRO
solution sets of two  robust counterparts. In the above example
the cardinality of P1 and P2 is 11 which is relatively sparse. In
order to have a deeper comparison between two robust counter-
parts, the parameter sets need to be denser. We  choose sparse
parameter sets in this example just for illustration purpose.

. In practical applications, the EPRO solution is always preferred.
An ideal robust model will only produce EPRO solutions. In the
above example we know that RC1∩∞ performs better than RC∞.

lgorithm 3. Filtering algorithm for obtaining EPRO solutions
rom XGPRO over R

Input:  Robust counterpart set R = {RCj , 1 ≤ j ≤ M},  GPRO solution set
XGPRO

j
, 1 ≤ j ≤ M.

Output:  A set of EPRO solutions XEPRO
i

1: Sort each XGPRO
j

according to the increasing order of parameters of RCj ,
1  ≤ j ≤ M

2: Set XEPRO
i

= ∅, indexj = 1, 1 ≤ j ≤ M
3:  for all x ∈ XGPRO

i
do

4:  Set isEPRO = True
5: for j = 1 to M and j /=  i do

6: isDominated = check(x, XGPRO

j
, indexj) /*See Algorithm 4*/

7: if isDominated == True then
8: Set isEPRO = False and break
9: end if
10: end for
11: if isEPRO == True then
al Engineering 94 (2016) 75–91 81

12: Set XEPRO
i

= XEPRO
i

∪ {x}
13: end if
14: end for
15: Output XEPRO

i

Algorithm 4. check(x, XGPRO
j

, indexj)

Input:  A GPRO solution x of RCi , a GPRO solution set XGPRO
j

of RCj

Output: Is solution x dominated by any solution in XGPRO
j

1: for k = indexj to |XGPRO
j

| do
2:  Fetch the kth solution in XGPRO

j
, denote as xk

3: if cTxk ≥ cTx then
4: if xk Pareto dominates x then
5:  Set indexj = k, isDominated = True and break
6:  end if
7:  else
8: Set indexj = k, isDominated = False and break
9:  end if
10: end for
11: Return isDominated

Similar to the GPRO concept, we can prove that specific robust
counterpart under specific probability distribution will only pro-
duce EPRO solutions. Based on Theorem 3.3 and 3.5, it is easy to get
the following two corollaries:

Corollary 1. If each element of the primitive uncertainties �i obeys
standard Normal distribution, then all GPRO solutions produced by
RC2(11) are EPRO over any robust counterpart set R where RC2 ∈ R.

Proof. Follow the proof way  of Theorem 3.3, it is easy to propose
a hypothesis and then get a contradiction. �

Corollary 2. If each element of the primitive uncertainties �i obeys
standard Cauchy distribution, then all GPRO solutions produced by
RC∞(7) are EPRO over any robust counterpart set R where RC∞ ∈ R.

Proof. Follow the proof way  of Theorem 3.5, it is easy to propose
a hypothesis and then get a contradiction. �

Corollaries 1 and 2 show that: for any XGPRO produced by RC2
under Normal distribution or RC∞ under Cauchy distribution, all
GPRO solutions are EPRO over any robust counterpart set R. For
other cases, this conclusion cannot be guaranteed, which means
there may  exist non-EPRO solutions in XGPRO. In order to obtain all
EPRO solutions in XGPRO, we develop an efficient filtering algorithm
which is described in Algorithms 3 and 4.

3.4. Computational consideration

For a robust counterpart RC with uncertainty set U which is con-
trolled by parameter � ∈ [�l, �u] where �l and �u are the lower
and upper bounds respectively, to find the GPRO or EPRO solutions,
first we  need to define a finite parameter set P = {�i ∈ [�l, �u],
1 ≤ i ≤ N} and solve the RC N times under different sized uncertainty
sets. With a large set P, this may  lead to significant computational
efforts for addressing realistic problems. In order to reduce the
computational effort, we provide the following two strategies:

Strategy 1: Sparse discretization. This strategy means that we
discretize interval [�l, �u] sparsely. Then the obtained parameter
set P will have a small number of elements and the computational
effort can be decreased. But the drawback of this strategy is that
with sparser parameter set P, we  will get less accurate GPRO or
EPRO solutions, and this may  mislead the decision-maker to make
a bad decision.

Strategy 2: Local discretization. This strategy means that we

only discretize interval [�l, �u] locally. For example we  choose
a sub-interval [�′

l
, �′

u] ⊂ [�l, �u] and discretize interval [�′
l
, �′

u]
to generate parameter set P. This will decrease the computational
effort as we only focus on the discretization of a sub-interval. The
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Fig. 1. Numerical

rawback of this strategy is that we can only generate local GPRO
r EPRO solutions.

For realistic problems which need large computational efforts,
e can apply the above two strategies to reduce the computational

fforts. For the situation when we need an overall understanding
f the PRO solutions from the most conservative one to the most
isky one, it is reasonable to choose Strategy 1. For the situation
hen we only need the PRO solutions around a specific PCV value,

trategy 2 is a better choice.

. Probability of Constraint Violation

The Comprehensive Pareto Efficiency concepts introduced in
his paper are based on PCV. The calculation of PCV needs the sup-
ort of probability distributions. In this section, formulations of
CV are derived under different probability distributions. We  also
resent an alternative way for calculating PCV when the formula-
ion of PCV cannot be established.

Generally, we can reformulate the PCV as follows:

PCV(x) = Pr
(

aT
i
x > bi

)
= Pr

(
�TAix > bi − aT

i
x
) (34)

Denote random variable Z = �TAix and its CDF as FZ(z), then we
an formulate the PCV as:

CV(x) = 1 − FZ (bi − aT
i x) (35)

Next five concrete probability distributions are considered: Uni-
orm, Triangular, Rademacher, Normal and Cauchy distributions.
he formulations of PCV under these probability distributions are
erived.

.1. Uniform distribution

roposition 3.6. Suppose each element of the primitive uncertain-
ies �i obeys Uniform distribution on [−1, 1],  then the PCV can be
alculated as:

CV(x) = 1 −
∑


  ∈ {0,±1}N
(

bi − aT
i
x + 
TAix

)l

+
∏

�j=1
j

l!2l
∏

�j=1âijxj
(36)

here l = eT�, e is a N-dimensional vector with all elements equal 1,

 is a N-dimensional vector with each element �j =
{

1 if xj > 0
,

0 if xj = 0

+ = max(y, 0),  
 is a N-dimensional vector with each element 
j =± �j.

roof. Because each element of the primitive uncertainties �i
beys Uniform distribution on [−1, 1], then Z = �TAix is the sum
V OV

s of Example 3.3.

of N independent and non-identically distributed uniform random
variables.

Based on Corollary 1 in Bradley and Gupta (2002), we  can for-
mulate the probability density function (PDF) of Z as:

fZ (z) =
∑


  ∈ {0,±1}N
(

z + 
TAix
)l−1

+
∏

�j=1
j

(l − 1)!2l
∏

�j=1âijxj
(37)

where l = eT�, e is a N-dimensional vector with all elements equal 1,

� is a N-dimensional vector with each element �j =
{

1 if xj > 0
0 if xj = 0

,

y+ = max(y, 0), 
 is a N-dimensional vector with each element

j =± �j.

From the PDF we can easily get the CDF of Z:

FZ (z) =
∑


  ∈ {0,±1}N
(

z + 
TAix
)l

+
∏

�j=1
j

l!2l
∏

�j=1âijxj
(38)

Then the PCV can be formulated as:

PCV(x) = 1 − FZ (bi − aT
i
x)

= 1 −
∑


  ∈ {0,±1}N
(

bi − aT
i
x + 
TAix

)l

+
∏

�j=1
j

l!2l
∏

�j=1âijxj

(39)

�

4.2. Triangular distribution

Proposition 3.7. Suppose each element of the primitive uncertain-
ties �i obeys Triangular distribution on [−1, 1],  then the PCV can be
calculated as:

PCV(x) = 1 −
∑


  ∈ {0,±1}2N

(
bi − aT

i
x + �(
)

)l

+
∏

|
j |=1
j

l!2l
∏

�j=1(âijxj/2)2
(40)

where l = 2eT�, e is a N-dimensional vector with all elements equal

1, � is a N-dimensional vector with each element �j =
{

1 if xj > 0
0 if xj = 0

,

y+ = max(y, 0), �(
) = 
T

[
Ai/2 0
0 Ai/2

] [
x
x

]
where 
 =

[

1


2

]
, 
1

j
=

±�j and 
2
j

= ±�j .
Proof. Because each element of the primitive uncertainties �i
obeys Triangular distribution on [−1, 1], then Z = �TAix is the sum
of N independent and non-identically distributed triangular ran-
dom variables.
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As a triangular random variable X ∼ Triangular(−1, 1) can be
ecomposed as the sum of two uniform random variables X1 + X2
here X1, X2 ∼ Uniform(−1/2, 1/2). So Z is the sum of 2N indepen-
ent and non-identically distributed uniform random variables.

Based on the CDF obtained in (38) we can formulate the CDF of
 as:

Z (z) =
∑


 ∈ {0,±1}2N (z + �(
))l
+
∏

|
j |=1
j

l!2l
∏

�j=1(âijxj/2)2
(41)

here l = 2eT�, e is a N-dimensional vector with all elements
qual 1, � is a N-dimensional vector with each element �j =

1 if xj > 0
0 if xj = 0

, y+ = max(y, 0), �(
) = 
T

[
Ai/2 0
0 Ai/2

] [
x
x

]
where

 =
[


1


2

]
, 
1

j
= ±�j and 
2

j
= ±�j .

Then the PCV can be formulated as:

PCV(x) = 1 − FZ (bi − aT
i
x)

= 1 −
∑


  ∈ {0,±1}2N

(
bi − aT

i
x + �(
)

)l

+
∏

|
j |=1
j

l!2l
∏

�j=1(âijxj/2)2

(42)

.3. Rademacher distribution

roposition 3.8. Suppose each element of the primitive uncertain-
ies �i obeys Rademacher distribution, then the PCV can be calculated
s:

CV(x) = 1 − 1
2l

∑

  ∈ {0,±1}N


(

bi − aT
i x, 


)
(43)

here l = eT�, e is a N-dimensional vector with all elements equal 1,

 is a N-dimensional vector with each element �j =
{

1 if xj > 0
0 if xj = 0

,

(z, 
) =
{

1 if z ≥ 
TAix
0 if z < 
TAix

, 
j =± �j.

roof. Because each element of the primitive uncertainties �i
beys Rademacher distribution, the probability mass function
PMF) of �i is:

 (�i) =

⎧⎪⎨
⎪⎩

1/2 if �i = +1

1/2 if �i = −1

0 otherwise

(44)

Then Z = �TAix is the sum of N independent and non-identically
istributed two-point random variables.

The CDF of Z can be expressed as:

1 ∑

Z (z) =

2l


  ∈ {0,±1}N
 (z, 
) (45)

here l = eT�, e is a N-dimensional vector with all elements equal 1,

 is a N-dimensional vector with each element �j =
{

1 if xj > 0
0 if xj = 0

,

(z, 
) =
{

1 if z ≥ 
TAix
0 if z < 
TAix

, 
j =± �j.
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Then the PCV is:

PCV(x) = 1 − FZ (bi − aT
i
x)

= 1 − 1
2l

∑

  ∈ {0,±1}N


(

bi − aT
i x, 


) (46)

�

4.4. Normal distribution

Proposition 3.9. Suppose each element of the primitive uncer-
tainties �i obeys standard Normal distribution, then the PCV can be
calculated as:

PCV(x) = 1 − �

(
bi − aT

i
x√

xTA2
i x

)
(47)

where �(x) is the CDF of the standard Normal distribution.

Proof. If each element of the primitive uncertainties �i obeys
standard Normal distribution, according to the following two  prop-
erties of Normal distribution:

1. If X ∼ Normal(�, �2), then aX + b ∼ Normal(a� + b, a2�2)
2. If X∼Normal(�1, �2

1 ) and Y∼Normal(�2, �2
2 ) are independent,

then X + Y∼Normal(�1 + �2, �2
1 + �2

2 )

We  have Z = �TAix obeys Normal distribution Normal(0,  xTA2
i x).

Follow the definition of PCV and the property of Normal distri-
bution we have:

PCV(x) = Pr
(

�TAix > bi − aT
i
x
)

= Pr

(
�TAix√
xTA2

i x
>

bi − aT
i
x√

xTA2
i x

)

= 1 − �

(
bi − aT

i
x√

xTA2
i x

) (48)

where �(x) is the CDF of the standard Normal distribution. �

4.5. Cauchy distribution

Proposition 3.10. Suppose each element of the primitive uncer-
tainties �i obeys standard Cauchy distribution, then the PCV can be
calculated as:

PCV(x) = 1
2

− 1
�

arctan

(
bi − aT

i
x

aT
i
x

)
(49)

Proof. If each element of the primitive uncertainties �i obeys
standard Cauchy distribution, according to the following two prop-
erties of Cauchy distribution:

1. If X ∼ Cauchy(x0, �), then kX + l ∼ Cauchy(x0k + l, � |k|)
2. If X ∼ Cauchy(x0, �0) and Y ∼ Cauchy(x1, �1) are independent,

then X + Y ∼ Cauchy(x0 + x1, �0 + �1)

We have Z = �TAix obeys Cauchy(0,  aT
i
x).
Then the CDF of Z is:

FZ (z) = 1
�

arctan

(
z

aT
i
x

)
+ 1

2
(50)
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Then we can get the PCV as:

PCV(x) = 1 − FZ (bi − aT
i
x)

= 1
2

− 1
�

arctan

(
bi − aT

i
x

aT
i
x

)
(51)

.6. Other distributions

For the probability distributions under which the PCV cannot be
ormulated explicitly, there is an alternative way for calculating PCV
hich is by means of FFT technique Ruckdeschel and Kohl (2010).

As random variable Z is the sum of N independent random vari-
bles, its PDF can be expressed as the convolution of the PDF of

 random variables. Ruckdeschel and Kohl (2010) proposed an
lgorithm which is based on the discrete Fourier transformation
DFT) and its fast computability via the fast Fourier transformation
FFT). The R package “distr” implements the FFT algorithm, vari-
us probability distributions are supported. For details we  refer to
uckdeschel et al. (2015).

. Numerical studies

.1. Production planning problem

The first example is a linear programming problem called pro-
uction planning problem which is introduced by Li et al. (2012)
nd further studied in Li and Floudas (2014), Li and Li (2015), Yuan
t al. (2016), Guzman et al. (2016). In this problem, a company needs
o make a production plan for the coming year which is divided into

 periods. At the beginning, there is an initial stock of 500 tons of
roduct in storage, and it is required to have the same amount of
roduct in storage at the end of the year. The objective is thus to
aximize the sales while some constraints need to be satisfied,

ncluding the total production and storage cost is within a budget,
he inventory product balances, the final stored product require-

ent, the production capacity limitations and the product demand
pper bounds.

Then the production planning problem can be formulated as
ollows:

aximize
∑

j

Pjzj (52a)

ubject to
∑

j

Cjxj +
∑

j

Vjyj ≤ 400, 000 (52b)

00 + x1 − (y1 + z1) = 0 (52c)

j−1 + xj − (yj + zj) = 0, ∀j = 2, . . .,  6 (52d)

6 = 500 (52e)

j ≤ Uj, ∀j = 1, . . .,  6 (52f)

j ≤ Dj, ∀j = 1, . . .,  6 (52g)

j, yj, zj ≥ 0, ∀j = 1, . . .,  6 (52h)

For detailed problem description and data we refer to Li et al.
2012).

.1.1. Experiment settings

We  have the following experiment settings for this problem:

. In this problem, suppose the production cost C̃j is involved in

uncertainty, C̃j = Cj + Ĉj�j where Cj is the nominal value, Ĉj =
al Engineering 94 (2016) 75–91

0.5Cj is the perturbation value and �j is the primitive uncertainty
variable.

2. We  consider two  situations of the primitive uncertainty vari-
able �j: bounded and unbounded. When �j is bounded in [−1, 1],
the selection of the robust counterpart set is R1 = {RC∞, RC1∩∞,
RC2∩∞}. When �j is unbounded, the selection of the robust coun-
terpart set is R2 = {RC∞, RC1, RC2}.

3. In the case when �j is bounded, we  consider four concrete
probability distributions: Uniform, Triangular, Rademacher and
Arcsine distributions. In the case when �j is unbounded, two con-
crete probability distributions: Normal and Cauchy distributions
are considered.

4. For the general robust counterpart RC with uncertainty set U
which is controlled by parameter �,  suppose we define � ∈ [�l,
�u], the parameter set P for RC is defined as follows:

P =
{

�i = (�u − �l)(i − 1)
N − 1

+ �l, 1 ≤ i ≤ N
}

(53)

and we set N = 500 in the experiment which means 500 runs for
each robust counterpart.

5. If the primitive uncertainty variable �j is bounded, we define
� ∈ [0, 1], � ∈ [0, 4.62] and � ∈ [0, 2.07] for RC∞, RC1∩∞ and
RC2∩∞ respectively, the reason for this setting is that RC∞, RC1∩∞
and RC2∩∞ generate the most conservative solution with � = 1,
� = 4.62 and � = 2.07 according to a pre-calculation. If the prim-
itive uncertainty variable �j is unbounded, we  define � ∈ [0, 6],
� ∈ [0, 23.7] and � ∈ [0, 10.87] for RC∞, RC1 and RC2 respec-
tively, the reason for this setting is that RC∞, RC1 and RC2 have
close objective values with � = 6, � = 23.7 and � = 10.87 accord-
ing to a pre-calculation.

5.1.2. Numerical analysis
First we consider the case when the primitive uncertainty

variable �j is bounded in [−1, 1]. The robust counterparts in R1
are solved by CPLEX 12.6. PCV under Uniform, Triangular and
Rademacher distributions are calculated by formulations estab-
lished in Section 4 and the PCV under Arcsine distribution is
calculated by R package “distr”. The numerical results are shown
in Fig. 2. For solutions with objective value less than 2,840,000, we
checked that all solutions are unique optimal solutions under their
corresponding uncertainty sets, which implies all of them are PRO
solutions. In the case when the objective value of an optimal solu-
tion x is 2,840,000, we apply Algorithm 1 to obtain an approximate
PRO solution x. We  define a metric for performance improvement
between x and x as follows:

log PCV(x) − log PCV(x)
log PCV(x)

(54)

Table A1 gives the mean and maximum performance improvement
of each RC under different distributions. From the results we can
see that the approximate PRO solutions obtained by Algorithm 1
improved the performance compare with the original optimal solu-
tions.

Next for each RC in R1, we obtain the set of GPRO solutions
XGPRO from PRO solution set XPRO by Algorithm 2, then calculate
|XGPRO|/|XPRO| which is the ratio of the GPRO solution number to the
PRO solution number, this index can reflect the ability of a RC to gen-
erate GPRO solutions. The results are shown in Table A2. From the
results we  know that RC∞ and RC2∩∞ perform better than RC1∩∞ on
generating GPRO solutions under Uniform, Triangular and Arcsine
distributions, while three RC perform nearly under Rademacher
distribution.
Lastly for each RC in R1, we  obtain the set of EPRO solutions
XEPRO over robust counterpart set R1 by Algorithm 3. Then calcu-
late |XEPRO|/|XPRO| which is the ratio of the EPRO solution number
to the PRO solution number, this index reflects the ability of a RC
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Fig. 2. Numerical results of 3 RC under different 

o generate EPRO solutions over R1. Fig. 3 shows an intuitionistic
omparison of 3 RC under different distributions and the results
re shown in Table A3. From the results we know that RC∞ and
C2∩∞ perform better than RC1∩∞ on generating EPRO solutions
nder Uniform, Triangular and Arcsine distributions, while three
C perform nearly under Rademacher distribution.

Now we consider the case when the primitive uncertainty vari-
ble �j is unbounded. The numerical results are shown in Fig. 4. We
hecked that all optimal solutions with objective value less than
,840,000 are PRO solutions. For each RC in R2, we obtain the set
f GPRO solutions XGPRO from PRO solution set XPRO and calculate

XGPRO|/|XPRO|. The results are shown in Table A4. From the results
e know that RC∞ and RC2 perform better than RC1 on generating
PRO solutions under two unbounded distributions.

Then for each RC, we obtain the set of EPRO solutions XEPRO over
obust counterpart set R2 and calculate |XEPRO|/|XPRO|. Fig. 5 shows
n intuitionistic comparison of 3 RC under two distributions and
he results are shown in Table A5. From Fig. 5 and Table A5 it is
lear to observe that: RC2 overwhelms RC∞ and RC1 under Normal
istribution and RC∞ overwhelms RC1 and RC2 under Cauchy dis-
ribution, with all PRO solutions are EPRO. This further confirms the
heorems and corollaries we obtained in Section 3.

.2. Orienteering problem
The second example is a 0–1 integer programming problem
alled orienteering problem (OP) which is a variation of Vehicle
outing Problem (VRP). It is firstly introduced by Golden et al.
1987) and has been studied in planning, scheduling and supply
ed distributions (production planning problem).

chain areas. For a survey of OP we  refer to Vansteenwegen et al.
(2011), Gunawan et al. (2016). In this problem, a set of vertices is
given, each with a score. The goal is to plan a path with limited
length, that visits some vertices and maximizes the sum of the col-
lected scores. Some constraints need to be satisfied including the
path starts and ends at the depot, each vertex is visited at most one
time, the length of the path has a maximum limit and the path need
to have connectivity.

Then the orienteering problem can be formulated as follows:

maximize
∑
i ∈ N

si

∑
j ∈ N+\{i}

xij (55a)

subject to
∑

(i,j) ∈ A

dijxij ≤ L (55b)

∑
i ∈ N

x0i =
∑
i ∈ N

xi0 = 1 (55c)

∑
i ∈ N+\{j}

xij =
∑

i ∈ N+\{j}
xji ≤ 1, ∀j ∈ N (55d)

ui − uj + 1 ≤ (1 − xij)|N|, ∀i, j ∈ N (55e)

1 ≤ ui ≤ |N|, ∀i ∈ N (55f)

xij ∈ {0, 1}, ∀(i, j) ∈ A (55g)
where N is the set of vertices, |N| is the cardinality of set N, 0 is the
depot location where 0 /∈ N, N+ = N ∪ {0}, A is the set of arcs connect-
ing vertices in N+, i, j are the index of vertex, si is the score of vertex
i, (i, j) is the arc between i and j where (i, j) ∈ A, dij is the length of
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Fig. 3. Comparisons of 3 RC under different bo

rc (i, j), L is the maximum length of a path, xij is the binary decision
ariable where xij = 1 if and only if arc (i, j) is visited by the path,
i, uj are auxiliary variables. The data is from data set “Tsiligirides
roblem 2” (Tsiligirides, 1984) which contains 20 nodes,2 each with

 score of either 10, 15, 20, 25, 30, 40 or 50. The maximum length L
s 40.

.2.1. Experiment settings
We  have the following experiment settings for this problem:

. In this problem, suppose the arc length d̃ij is involved in uncer-

tainty, d̃ij = dij + d̂ij�ij where dij is the nominal value, d̂ij = 0.2dij

is the perturbation value and �ij is the primitive uncertainty
variable.

. We  consider two situations of the primitive uncertainty vari-
able �j: bounded and unbounded. When �j is bounded in [−1, 1],
the selection of the robust counterpart set is R1 = {RC∞, RC1∩∞,
RC2∩∞}. When �j is unbounded, the selection of the robust coun-
terpart set is R2 = {RC∞, RC1, RC2}.

. In the case when �j is bounded, we consider four concrete
probability distributions: Uniform, Triangular, Rademacher and

Arcsine distributions. In the case when �j is unbounded, two con-
crete probability distributions: Normal and Cauchy distributions
are considered.

2 The original data has two depots, we delete the second depot and only consider
ne depot in this paper. The original data set can be found with URL: http://www.
ech.kuleuven.be/en/cib/op.
OV

 distributions (production planning problem).

4. The parameter set P is defined as in Formulation (53) and we set
N = 500 in the experiment which means 500 runs for each robust
counterpart.

5. If the primitive uncertainty variable �j is bounded, we define
� ∈ [0, 0.9], � ∈ [0, 11.6] and � ∈ [0, 3.3] for RC∞, RC1∩∞ and
RC2∩∞ respectively, the reason for this setting is that RC∞, RC1∩∞
and RC2∩∞ produce the most conservative solution with � = 0.9,
� = 11.6 and � = 3.3 according to a pre-calculation. If the primi-
tive uncertainty variable �j is unbounded, we define � ∈ [0, 2.3],
� ∈ [0, 13.9] and � ∈ [0, 7.4] for RC∞, RC1 and RC2 respectively,
the reason for this setting is that RC∞, RC1 and RC2 have the same
objective values with � = 2.3, � = 13.9 and � = 7.4 according to a
pre-calculation.

5.2.2. Numerical analysis
First we  consider the case when the primitive uncertainty vari-

able �j is bounded in [−1, 1]. The robust counterparts in R1 are
solved by CPLEX 12.6. PCV under Uniform and Rademacher dis-
tributions are calculated by formulations established in Section 4
and the PCV under Triangular3 and Arcsine distributions are cal-
culated by R package “distr”. The numerical results are shown in
Fig. 6 where the small dots represent the robust optimal solutions
obtained by RC and are jittered horizontally to reduce overlaps. In

order to obtain the PRO solutions, the 3 RC are solved by CPLEX
with the solution pool feature which generates and stores all opti-
mal  solutions, then the PCV of all optimal solutions are calculated

3 In this problem, we cannot use the formulation of Triangular distribution to
calculate PCV because the calculation is beyond the computing ability of a PC.

http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
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Fig. 4. Numerical results of 3 RC under Normal and Cauchy distributions (production planning problem).
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Fig. 5. Comparisons of 3 RC under Normal and 

nd compared which identifies the PRO solutions. The big dots in
ig. 6 represent the PRO solutions found.

For all non-PRO solutions, performance improvement as defined
n Formulation (54) are calculated and summarized. Table A6 gives
he mean and maximum performance gain of each RC under differ-
nt distributions. From the results we can see that PRO solutions

ave a significant performance gain compare with non-PRO solu-
ions.

Next for each RC in R1, we obtain the set of GPRO solutions XGPRO

rom PRO solution set XPRO and then obtain the set of EPRO solutions
OV

y distributions (production planning problem).

XEPRO over R1, and calculate |XGPRO|/|XPRO| and |XEPRO|/|XPRO| respec-
tively. The results are shown in Tables A7 and A8. From the results
we know that: For all RC in R1, all PRO solutions obtained are GPRO
and EPRO.

Now we consider the case when the primitive uncertainty vari-
able �j is unbounded. Fig. 7 shows the results. Table A9 gives

the mean and maximum performance gain of each RC under
different distributions. From the results we know that PRO solu-
tions have a significant performance gain compare with non-PRO
solutions.
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Fig. 6. Numerical results of 3 RC under differ

Next for each RC in R2, we obtain the set of GPRO solutions XGPRO
rom PRO solution set XPRO and then obtain the set of EPRO solu-
ions XEPRO over R2, and calculate |XGPRO|/|XPRO| and |XEPRO|/|XPRO|
espectively. The results are shown in Tables A10 and A11.
rom the results we know that RC∞ performs the best over R2
unded distributions (orienteering problem).

on generating GPRO solutions. RC2 outperforms RC∞ and RC1
under Normal distribution and RC∞ outperforms RC1 and RC2
under Cauchy distribution, with all PRO solutions are EPRO.
This is consistent with the Theorems and Corollaries in Sec-
tion 3.
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. Conclusion

In this paper, we introduced the concept of Comprehen-
ive Pareto Efficiency in robust counterpart optimization which
ncludes Pareto Robust Optimality (PRO), Global Pareto Robust
ptimality (GPRO) and Elite Pareto Robust Optimality (EPRO). We
heoretically proved that RC2 under Normal distribution and RC∞
nder Cauchy distribution achieve the best performance, with all
RO solutions generated are GPRO and EPRO. The numerical results
f two applications show that PRO solutions can improve the
OV

 Cauchy distributions (orienteering problem).

performance compare with non-PRO solutions. By considering
GPRO and EPRO solutions, we  can have a deep understanding of
the quality of the robust solutions and the difference between dif-
ferent robust counterparts. In general, the Comprehensive Pareto
Efficiency provides a new perspective for robust counterpart opti-
mization and has important significance in practice which can help

us to find high quality solutions and make better decisions.

We only consider single uncertain constraint in this paper, it
is interesting to consider multiple uncertain constraints in robust
counterpart optimization, many researchers have worked on this
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Table A6
Performance improvement obtained by the PRO solutions under different bounded
distributions (orienteering problem).

RC Uniform Triangular Rademacher Arcsine

Mean Max  Mean Max Mean Max  Mean Max

RC1∩∞ 0.0762 0.4575 0.0633 0.4075 0.0913 0.3042 0.0456 0.3066
RC2∩∞ 0.1065 0.4633 0.0807 0.4291 0.1051 0.3118 0.061 0.325
RC∞ 0.098 0.4575 0.0806 0.4977 0.1087 0.3042 0.0691 0.3783

Table A7
|XGPRO|/|XPRO| of each RC under different bounded distributions (orienteering
problem).

RC Uniform Triangular Rademacher Arcsine

RC1∩∞ 1.00 1.00 1.00 1.00
RC2∩∞ 1.00 1.00 1.00 1.00
RC∞ 1.00 1.00 1.00 1.00

Table A8
0 K. Shang et al. / Computers and C

hich is known as joint chance constraint. Future work will be
onducted to extend the current concept to the multiple uncertain
onstraints case.
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ppendix A. Detailed numerical results

Tables A1–A11

able A1
erformance improvement obtained by the approximate PRO solutions (production
lanning problem).

RC Uniform Triangular Rademacher Arcsine

Mean Max  Mean Max  Mean Max  Mean Max

RC1∩∞ 0.01 0.1397 0.0139 0.1942 0.0061 0.0852 0.0083 0.1156
RC2∩∞ 0.0348 0.0698 0.0492 0.0982 0.013 0.0433 0.0286 0.0574
RC∞ 0.0747 0.1397 0.1048 0.1942 0.0596 0.0852 0.0612 0.1156

able A2
XGPRO|/|XPRO| of each RC under different bounded distributions (production planning
roblem).

RC Uniform Triangular Rademacher Arcsine

RC1∩∞ 0.87 0.87 0.03 0.87
RC2∩∞ 1.00 1.00 0.04 1.00
RC∞ 1.00 1.00 0.03 1.00

able A3
XEPRO|/|XPRO| of each RC under different bounded distributions (production planning
roblem).

RC Uniform Triangular Rademacher Arcsine

RC1∩∞ 0.06 0.06 0.03 0.06
RC2∩∞ 0.76 0.62 0.04 0.89
RC∞ 0.75 0.89 0.03 0.52

able A4
XGPRO|/|XPRO| of each RC under Normal and Cauchy distributions (production plan-
ing problem).

RC Normal Cauchy

RC1 0.95 0.91
RC2 1.00 1.00
RC∞ 1.00 1.00

able A5
XEPRO|/|XPRO| of each RC under Normal and Cauchy distributions (production plan-
ing problem).

RC Normal Cauchy

RC1 0.01 0.01
RC2 1.00 0.08
RC∞ 0.08 1.00

|XEPRO|/|XPRO| of each RC under different bounded distributions (orienteering
problem).

RC Uniform Triangular Rademacher Arcsine

RC1∩∞ 1.00 1.00 1.00 1.00
RC2∩∞ 1.00 1.00 1.00 1.00
RC∞ 1.00 1.00 1.00 1.00

Table A9
Performance improvement obtained by the PRO solutions under Normal and Cauchy
distributions (orienteering problem).

RC Normal Cauchy

Mean Max  Mean Max

RC1 0.0917 0.3799 0.0614 0.2672
RC2 0.0643 0.2492 0.0395 0.1385
RC∞ 0.0664 0.2563 0.0384 0.1411

Table A10
|XGPRO|/|XPRO| of each RC under Normal and Cauchy distributions (orienteering
problem).

RC Normal Cauchy

RC1 0.95 0.78
RC2 1.00 0.89
RC∞ 1.00 1.00

Table A11
|XEPRO|/|XPRO| of each RC under Normal and Cauchy distributions (orienteering
problem).

RC Normal Cauchy

RC1 0.92 0.66

RC2 1.00 0.89
RC∞ 0.94 1.00

References

Ben-Tal, A., Nemirovski, A., 2002. Robust optimization-methodology and
applications. Math. Program. 92, 453–480.

Ben-Tal, A., El Ghaoui, L., Nemirovski, A., 2009. Robust Optimization. Princeton
University Press.

Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G., 2013.
Robust solutions of optimization problems affected by uncertain probabilities.
Manag. Sci. 59, 341–357.

Bertsimas, D., Brown, D.B., 2009. Constructing uncertainty sets for robust linear
optimization. Oper. Res. 57, 1483–1495.

Bertsimas, D., Sim, M.,  2004. The price of robustness. Oper. Res. 52, 35–53.

Bertsimas, D., Pachamanova, D., Sim, M.,  2004. Robust linear optimization under

general norms. Oper. Res. Lett. 32, 510–516.
Bertsimas, D., Brown, D.B., Caramanis, C., 2011. Theory and applications of robust

optimization. SIAM Rev. 53, 464–501.

http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0005
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0010
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0010
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0010
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0010
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0010
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0015
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0020
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0025
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0030
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0035


hemic

B

B

C

E

G

G

G

G

G

I

K

L

L

797–809.
K. Shang et al. / Computers and C

ertsimas, D., Gupta, V., Kallus, N., 2013. Data-Driven Robust Optimization,
arXiv:1401.0212.

radley, D.M., Gupta, R.C., 2002. On the distribution of the sum of n non-identically
distributed uniform random variables. Ann. Inst. Stat. Math. 54, 689–700.

alafiore, G.C., El Ghaoui, L., 2006. On distributionally robust chance-constrained
linear programs. J. Optim. Theory Appl. 130, 1–22.

l Ghaoui, L., Oustry, F., Lebret, H., 1998. Robust solutions to uncertain semidefinite
programs. SIAM J. Optim. 9, 33–52.

abrel, V., Murat, C., Thiele, A., 2014. Recent advances in robust optimization: an
overview. Eur. J. Oper. Res. 235, 471–483.

olden, B.L., Levy, L., Vohra, R., 1987. The orienteering problem. Naval Res. Logist.
34,  307–318.

orissen, B.L., Yanıkoğlu, İ., den Hertog, D., 2015. A practical guide to robust
optimization. Omega 53, 124–137.

unawan, A., Lau, H.C., Vansteenwegen, P., 2016. Orienteering problem: a survey
of  recent variants, solution approaches and applications. Eur. J. Oper. Res.

uzman, Y.A., Matthews, L.R., Floudas, C.A., 2016. New a priori and a posteriori
probabilistic bounds for robust counterpart optimization: I. Unknown
probability distributions. Comput. Chem. Eng. 84, 568–598.

ancu, D.A., Trichakis, N., 2013. Pareto efficiency in robust optimization. Manag. Sci.
60,  130–147.

e, L., Xu, Z., Feng, Z., Shang, K., Qian, X., 2013. Proportion-based robust
optimization and team orienteering problem with interval data. Eur. J. Oper.
Res.  226, 19–31.
i, Z., Floudas, C.A., 2014. A comparative theoretical and computational study on
robust counterpart optimization: III. Improving the quality of robust solutions.
Ind. Eng. Chem. Res. 53, 13112–13124.

i, Z., Li, Z., 2015. Optimal robust optimization approximation for chance
constrained optimization problem. Comput. Chem. Eng. 74, 89–99.
al Engineering 94 (2016) 75–91 91

Li, Z., Ding, R., Floudas, C.A., 2011. A comparative theoretical and computational
study on robust counterpart optimization: I. Robust linear optimization and
robust mixed integer linear optimization. Ind. Eng. Chem. Res. 50,
10567–10603.

Li, Z., Tang, Q., Floudas, C.A., 2012. A comparative theoretical and computational
study on robust counterpart optimization: II. Probabilistic guarantees on
constraint satisfaction. Ind. Eng. Chem. Res. 51, 6769–6788.

Lin, X., Janak, S.L., Floudas, C.A., 2004. A new robust optimization approach for
scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28,
1069–1085.

Paschalidis, I.C., Kang, S.-C.,2015. Robust linear optimization: on the benefits of
distributional information and applications in inventory control. In: 44th IEEE
Conference on Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. IEEE, pp. 4416–4421.

Ruckdeschel, P., Kohl, M.,  2010. General Purpose Convolution Algorithm in
S4-Classes by Means of FFT, arXiv:1006.0764.

Ruckdeschel, P., Kohl, M.,  Stabla, T., Camphausen, F., 2015. S4 classes for
distributions a manual for packages “distr”, “distrex”, “distrellipse”,
“distrmod”, “distrsim”, “distrtest”, “distrteach”, Version 2.5.

Soyster, A.L., 1973. Technical note convex programming with set-inclusive
constraints and applications to inexact linear programming. Oper. Res. 21,
1154–1157.

Tsiligirides, T., 1984. Heuristic methods applied to orienteering. J. Oper. Res. Soc.,
Vansteenwegen, P., Souffriau, W.,  Van Oudheusden, D., 2011. The orienteering
problem: a survey. Eur. J. Oper. Res. 209, 1–10.

Yuan, Y., Li, Z., Huang, B., 2016. Robust optimization under correlated uncertainty:
formulations and computational study. Comput. Chem. Eng. 85, 58–71.

http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0040
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0040
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0040
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0040
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0045
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0050
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0055
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0060
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0065
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0070
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0075
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0080
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0085
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0090
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0095
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0100
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0105
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0110
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0115
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0120
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0125
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0130
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0135
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0140
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0145
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150
http://refhub.elsevier.com/S0098-1354(16)30242-3/sbref0150

	Comprehensive Pareto Efficiency in robust counterpart optimization
	1 Introduction
	2 Robust counterpart optimization
	3 Comprehensive Pareto Efficiency
	3.1 Pareto Robust Optimality
	3.2 Global Pareto Robust Optimality
	3.3 Elite Pareto Robust Optimality
	3.4 Computational consideration

	4 Probability of Constraint Violation
	4.1 Uniform distribution
	4.2 Triangular distribution
	4.3 Rademacher distribution
	4.4 Normal distribution
	4.5 Cauchy distribution
	4.6 Other distributions

	5 Numerical studies
	5.1 Production planning problem
	5.1.1 Experiment settings
	5.1.2 Numerical analysis

	5.2 Orienteering problem
	5.2.1 Experiment settings
	5.2.2 Numerical analysis


	6 Conclusion
	Acknowledgements
	Appendix A Detailed numerical results
	References


