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a  b  s  t  r  a  c  t

A  diagnostic  algorithm  is  described  in this  article  that  is based  on  clustering  qualitative  event  sequences
called  traces.  A  sufficient  number  of  training  traces  are  used  instead  of  an internal  model  to specify
the  faulty  models  of  the system.  The  diagnosis  consists  of two  phases.  In the  off-line  training  phase
diagnostic  clusters  representing  nominal  and  faulty  behavior  are  formed  from  the  set  of  training  traces,
while  the  centroids  of  these  clusters  are  stored.  Arbitrary  measured  traces  in  the  on-line  diagnosis  phase
eywords:
ault diagnostics
ualitative diagnosis
lustering
ennessee Eastman process

are compared  with  the centroids,  to recognize  the  most  probable  faulty  scenario  for  the  trace.  The  effects
of different  mapping  functions  and  different  qualitative  ranges  on  the  clustering  are  investigated,  and
the  diagnostic  resolution  of  the  method  is compared  and discussed  using  a  simple  process  system.  A
diagnostic  case  study  using  the benchmark  of  Tennessee  Eastman  process  (TEP)  is  utilized  to illustrate
the  efficiency  of the  proposed  method.

© 2016  Elsevier  Ltd.  All  rights  reserved.
. Introduction

Early and accurate fault diagnostics is one of the most important
hallenges during the operation of modern day process systems.
rimeval fault mitigation and isolation due to proper diagnostics
lays a crucial role in avoiding huge losses and plant breakdowns
aused by the consequences of initially smaller and isolated but
ropagating failures discovered too late.

Due to the high importance of the field, the relevant literature
s extensive with model-based diagnostic methods tradition-
lly being the most widespread. Process fault diagnostics based
n process and fault models had been widely described by
enkatasubramanian et al. (2003a,b,c) in review articles. Accord-

ng to Venkatasubramanian et al. (2003b), model based a priori
nowledge can be broadly classified as quantitative and qualitative.
ault detection using these qualitative models can be performed
y using expert systems with different kind of reasoning, using
igned directed graphs (SDGs) for modeling cause-effect relations
for instance in Vedam and Venkatasubramanian, 1997) or fault
rees describing the relations between primary events to top level

vents or hazards. Fault propagation analysis (Gabbar, 2007) can be
lso used for the identification of faults, causes and consequences
n a systematic manner.

∗ Corresponding author.
E-mail addresses: atezs82@gmail.com (A. Tóth), hangos@scl.sztaki.hu

K.M. Hangos).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.09.001
098-1354/© 2016 Elsevier Ltd. All rights reserved.
Qualitative physics is also used for process system modeling as
a common sense reasoning about physical systems. This approach
is based on qualitative or ordinary differential equations describ-
ing the process system to be diagnosed. These qualitative dynamic
models together with many different methods (like the one in Tóth
et al., 2014) use an abstract hierarchy of process knowledge which
is based on decomposing the process system into subcomponents,
in order to decrease computational complexity and speed up the
diagnostics task.

The information collected by hazard identification can be also
regarded as a special form of process models. An attempt to unite
the diagnostic information stored in HAZOP and FMEA analysis
results, called the blended HAZID methodology was described in
Németh and Cameron (2013) together with its use for process sys-
tem diagnosis tasks. This approach has been further extended in
Guo and Kang (2015) using dynamic fault trees.

Fault diagnosis includes two sub-steps even in the most gen-
eral case: fault detection and fault isolation or identification. While
the first sub-step needs an accurate model of the process in its
normal, i.e. non-faulty operation mode, fault models of the con-
sidered faulty modes are needed for the latter. Therefore, the most
important aspect of a fault diagnostics algorithm for process sys-
tems is the fault model which requires significant amount of human
expertise and work to set up and maintain. Our main aim in this

article is to suggest a data-driven diagnostic procedure which may
require less amount of human assistance as compared to a model-
based approach during set-up and operation and still remains
feasible as a fault diagnostic method. While a satisfactory model of a

dx.doi.org/10.1016/j.compchemeng.2016.09.001
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.09.001&domain=pdf
mailto:atezs82@gmail.com
mailto:hangos@scl.sztaki.hu
dx.doi.org/10.1016/j.compchemeng.2016.09.001
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The qualitative sets defined in Eqs. (1) and (2) can be also seen
A. Tóth, K.M. Hangos / Computers an

ossibly complex process system in each of its considered faulty
ode is needed that requires skilled human efforts, informative

nough observed data set that are annotated with the recognized
ault(s) by the plant operators may  form the basis of a data-driven
iagnostic procedure.

In the last review article of the series by Venkatasubramanian
t al. (2003c) on process systems diagnosis, process history
ased methods are surveyed. Instead of an a priori model, these
ethods require a large amount of historical process data, and

hey can be classified by the way they extract information
rom the process data (this operation is called feature extrac-
ion). Feature extraction can be qualitative (for example using
ule-based expert systems or qualitative trend analysis) and
uantitative (using statistical methods, such as PCA or neural net-
orks).

For describing arbitrary output signal values qualitative trend
nalysis (QTA) can be used, by comparing qualitative trends of
ominal and actual signal values (a good example can be found

n Maurya et al., 2005). In some newer results (in Maurya et al.,
007), these methods have been even combined to perform fault
iagnosis.

A special type of historical process data are the so called alarms,
he timed sequence of which has been utilized for early fault detec-
ion and diagnosis in Agudelo et al. (2013). These alarm sequences
an be also regarded as event logs. In van der Aalst et al. (2007) a
rocess mining tool called ProM is described which is capable of
iscovering process models in the form of Petri Nets, using event

ogs collected from process systems.
This tool also supports conformance checking, verification,

odel extension and transformation as well as model discovery. A
roM extension described in Alves de Medeiros et al. (2008) uses K-
eans clustering for categorizing event logs prior to mining them,

n order to achieve faster operation. In a slightly different approach
escribed in Rozinat et al. (2008), Petri nets are used to build up
odels from event sequences, and the fitness and appropriateness

f the model is calculated.
In the approach described in this paper similar metrics to ProM

re used to perform the validation (in the way the fitness of
he model is calculated) after an initial training phase performed
n the historical process data. As a technique used thoroughly
n machine learning, clustering is widely used in systems used
or process diagnosis. The algorithm described in this paper is
ased on the K-means clustering algorithm (described in Alpaydin,
010b) like a modeling approach described in Alves de Medeiros
t al. (2008). Different other approaches are using the fuzzy c-
eans clustering (FCM, described in Alpaydin, 1998), a method

ased on the concept of fuzzy sets and logic (described originally
n Zadeh, 1975). For example, fuzzy c-means clustering for fault
lassification is reported in Mercurio et al. (2009) and Petković
t al. (2012) while it is used for process control in Kim and Kim
2014).

The most widely used quantitative feature extraction pro-
edures use statistical methods (e.g. PCA or PLS) for process
onitoring and fault detection, for which good review papers have

ppeared recently, see Yin et al. (2012), Qin (2012) or MacGregor
nd Cinar (2012). A recent improvement of the PLS method capable
f detecting small faults have been reported in Harrou et al. (2015).
owever, these methods usually assume steady-state operation
ondition of the system to be diagnosed, and fail during transient
perations. This fact and the need for diagnosing process systems
utside of their steady-state regime have motivated our research
o overcome this constraint.
The structure of this paper is as follows. First, basic notions
bout qualitative event sequences (traces) and their representa-
ions are introduced. After that, the proposed diagnostic procedure
s described in detail, finally the diagnostic capabilities of the
mical Engineering 95 (2016) 58–70 59

algorithm are demonstrated using a simple and composite case
study (the Tennessee Eastman Challenge Process).

2. Qualitative events, traces and their distances

In case of a process system working under transient condi-
tions (i.e. it is not steady-state) its operation can be described as
sequences of events. These events refer to the actual values of mea-
sured quantities of the system at specific times, such as the values
of the system inputs including the possibly discrete valued (on/off
or open/close) states of the actuator elements (for example pumps
or valves) and the values of the system outputs which are the values
of sensors (such as level or pressure sensors).

2.1. Events with qualitative range spaces

System inputs and outputs are signals, i.e. time-dependent
quantities (as described in Hangos et al., 2004). Their range
space can naturally be discrete (such as open or close for a
two-state valve) or real (a positive real value for a pressure sig-
nal).

In case of uncertain values for a real valued measured signal, one
can describe the actual value using a qualitative range space, which
is a set of ordered mutually disjoint set of real intervals. The number
and the actual end-point set of these intervals (i.e. the resolution of
the qualitative range set) depend on the accuracy of the measured
signals and on the desired accuracy of the diagnostic results. In
order to be able to investigate the effect of the resolution on the
diagnostic accuracy, we  define and use two  different qualitative
range sets in this paper.

First we define a simple natural set of intervals that fits to
positive valued signals, such as temperatures or levels. One  may
associate verbal labels to the intervals following the normal opera-
tional value of the signal as follows: “N” stands for the normal range,
“0”, “L” and “H” denote the empty, low and high but acceptable val-
ues (still inside normal ranges), respectively, while “e−” and “e+”
refer to values which are outside nominal ranges, respectively. For-
mally, this basic qualitative range set is described in the following
way:

Q = {e−, 0, L, N, H, e+} (1)

It is possible to create a refined qualitative range set from the
qualitative set Q in Eq. (1) by placing a new qualitative value
between two already existing ones. Such refined qualitative range
set is given below

Qrefined = {e−, −0, 0, 0L, L, LN, N, NH, H, H+, e+} (2)

with the newly introduced labels “−0” small negative values, “0L”
very low, “LN” a bit low, “NH” a bit high, “H+” very high.

One can further refine the qualitative range set by adding new
intermediate values and achieve the range space of real values in
the limit.

The range space of binary discrete valued signals, such as the
status of a valve with two states, can be described by the range
space

B = {0, 1} (3)

where “0” can be associated to the closed and “1” to the opened
as a boundary case of a fuzzy set (as defined in Zadeh, 1975) which
does not contain fuzziness, in this case every membership function
has a constant value for a defined interval and those intervals does
not overlap each other, like ordinary fuzzy sets do.
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Events.  An event event� associated to a signal or to a set of signals
s an ordered pair of a time instance � and the actual qualitative
alue(s) x(�) at this time instance, i.e. event(x)

� = (�; x(�)). Formally,
he syntax of an input–output event (at time instant � of an n-input

 output system) is:

vent� = (�; input1, . . .,  inputn; output1, . . .,  outputm),

here the time � is also discrete. � is also called the sequence number
f the event.

Examples of events in a system with a single two  state input and
 single real valued output from Eq. (1) are event1 = (1;“0”;“ N”) or
vent5 = (5;“1”;“0”).

Ordered sequences formed from the events above are called
races and defined as:

(t1,tn) = eventt1 , . . .,  eventtn

vents in the same trace always contain the same number of inputs
nd outputs with possibly different values, while � is strictly mono-
onically increasing in consecutive events in the trace (traces are
rdered by the time instants in the events). Note that � can be
nevenly spaced. In this case the difference between consecutive
equence numbers need to be the same in all considered traces. In
his article we are dealing with events with evenly spaced � values
nly.

L-neighbourhood of a qualitative value. Given a qualitative set Q,
or every qualitative value q ∈ Q the neighbourhood(q, �) is defined
s a set containing all elements from Q which, respecting the
rdering of Q, are not farther than a given �>0 natural number
rom q. The neighbourhood does not contain the element itself,

 /∈ neighbourhood(q, n). The parameter � is called the level of neigh-
ourhood.

Given the qualitative set defined in Eq. (2) then

eighborhood(N, 2) = {L, LN, NH, H},

s these are the qualitative values not farther than 2-levels from
N” based on the considered qualitative set.

Measurement errors.  Qualitative output values usually come
rom measurements which might be prone to measurement errors.
hese errors might be large enough (or the qualitative set can be
ne enough) so the observed value does not match the actual value
ven in the considered qualitative range space (it will take on a
eighboring value instead from the range).

Given a set of qualitative values Q, such as the ones described in
q. (1) or Eq. (2), a function

RRSIM(q, �, p) : Q �→ Q

an be defined to simulate the effect of such measurement error,
ransforming a qualitative value q to a qualitative value w from the
eighbourhood (considering neighbourhood level �) of the value q
ith a given probability p. This function is useful to simulate the

ffect of sporadic measurement errors in large number of training-
nput traces. Simulating these errors played an important role in
valuation of the different forms of the diagnostic approach in the
imple case study.

.2. Mapping of qualitative values to real ones
In order to be able to define distances between events and traces,
ne can convert the qualitative values of the outputs present in
vents and traces back to real numbers using a mapping function
mical Engineering 95 (2016) 58–70

M : Q �→ R. In the case of qualitative range space defined in Eq. (1)
the linear mapping function defined in Eq. (4) can be used.

Mlinear(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1.0 if q = e−
0.0 if q = 0

1.0 if q = L

2.0 if q = N

3.0 if q = H

4.0 if q = e+

(4)

The mapping function is application and signal (output) spe-
cific at the same time. Separate mappings can be used for different
outputs (due to different output ranges, for example) and it is pos-
sible to define a mapping function which weights more the possibly
faulty output values (compared to the nominal values) for a single
output. Such non-linear mapping can be defined with Eq. (5) for
the qualitative range set Q in Eq. (1). The nominal values (“0”, “L”
and “N”) are placed next to each other, while the possibly faulty
output values (“e−”, “H” and “e+”) are placed farther away in both
directions.

Mnon-linear(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−10.0 if q = e−
−2.0 if q = 0

−1.0 if q = L

0.0 if q = N

10.0 if q = H

20.0 if q = e+

(5)

In this case nominal outputs are “0”, “L”, “N”, while “H”, “e+” and
“e−” denote a fault, therefore they are weighted accordingly.

A linear mapping function can be defined for the refined quali-
tative range set of Eq. (2), as well with Eq. (6) below.

Mfiner(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1.0 if q = e−
−0.5 if q = 0−
0.0 if q = 0

0.5 if q = 0L

1.0 if q = L

1.5 if q = LN

2.0 if q = N

2.5 if q = NH

3.0 if q = H

3.5 if q = H+
4.0 if q = e+

(6)

For the sake of completeness, it is worth mentioning that event
input values can be also converted to real numbers. For instance,
in the case of the two-valued qualitative set of Eq. (3) the map-
ping in Eq. (7) can be used. (This function can be considered as an
identifying function for the set.)

Mboolean(q) =
{

1.0 if q = 1

0.0 if q = 0
(7)

The effect of using different mapping functions for the output
values is described in the first case study in Section 4.

2.3. Coordinate-vectors of events and traces

Coordinate-vector of events.  Events with quantitative inputs and
outputs can be converted to real-valued vectors (coordinates) using

an event mapping function GIO : E �→ R

r , where E is the space of
events and r can be defined as:

r = (number of inputs + number of outputs)
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he individual qualitative mapping functions described in Sec-
ion 2.2 can be inverted, it is possible to define mappings which
ransform from Q back to R

r . Therefore for the transformation of the
ndividual input and output values to R

r , inverse functions of these
appings can be used. For example, the event (1;“1′′, “ 0′′;“ N′′) hav-

ng two inputs (“1” and “0”) and one output (“N”) is mapped to
ector [1.0, 0.0, 2.0] using the inverse of qualitative mapping func-
ion Mlinear described in Eq. (4) for the single output and the inverse
f the input mapping Mboolean from Eq. (7) for the single input. The
equence number of the event is not converted in this case, because
t is assumed to be always monotonically increasing.

If inputs are also assumed to be failure-free they can be removed
rom the event representation for diagnostics. In that way  a differ-
nt mapping function GO : E �→ R

p can be used, where

 = (number of outputs).

he output of GO is called the event coordinate form. This form con-
ains only the transformed values of the outputs.

For example, the same event (1;“1′′, “ 0′′;“ N′′) in event output
oordinate form is just [2.0], using the inverse of mapping function

linear from Eq. (4). (Note that because inputs are considered error-
ree the mapping function Mboolean is not used anymore.)

Coordinate-vectors of traces.  A trace can be also converted to an m
ength list of r dimensional real-valued vectors, where the sequence
umber of an event is omitted, r is the dimension of the event as
efore, and m is the length of the trace. This form can be considered
s a piece-wise linear trajectory in an r dimensional space, like the
entroids for the first case study described in Section 4 in Fig. 6.

For example, a trace T consists of 4 consecutive events

 =  (1;  “1”, “0”;  “0”), (2;  “1”,  “0”;  “L”), (3; “1”, “0”;  “N”),  (4;  “1”,  “1”; “N”)

can be converted to the following 4 long list of 3 dimensional
eal vectors using function GIO:

IO(T) = [[1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 0.0, 2.0], [1.0, 1.0, 2.0]]

he inverse of qualitative mapping function Mlinear from Eq. (4) is
sed for converting individual outputs and the inverse of the input
apping Mboolean from Eq. (7) for individual inputs. In every ele-
ent of the vector the first two real numbers correspond to the

nputs (two in this case) followed by the real value of the single
utput (we have a single output only in this example case).

In a similar fashion to events, if inputs are considered error-free
hey can be removed from the trace representation, by using the
ame mapping function GO for every event. This vectorial form is
alled the trace coordinate form. As before, this form only uses the
utput mapping function Mlinear from Eq. (4).

For example, the trace from the previous example in trace coor-
inate form is the following:

O(T) = [[0.0],  [1.0],  [2.0],  [2.0]].

.4. Event and trace distances

Event-to-event distance. Distance between events are calculated
y using a distance function D between the corresponding coordi-
ates of the events (already in event coordinate form). For example,
he distance between the two-output event

O(event1) = [2.0, 2.0]

nd two-output event
O(event2) = [4.0, 2.0]

s calculated as follows (using the Euclidean distance as D):

(GO(event1), GO(event2)) =
√

(2.0 − 4.0)2 + (2.0 − 2.0)2 = 2.0.
mical Engineering 95 (2016) 58–70 61

Trace-to-trace distance. Distance between traces in trace coordi-
nate form are calculated by summing the distance values between
corresponding events in the traces. Trace to trace distance is inter-
preted only between traces of equal length.

Let ϕ(i) denote the ith event in trace ϕ. Based on this, the distance
between trace ϕ1 and trace ϕ2 can be calculated as described in Eq.
(8) formally (where m is the number of events):

E(ϕ1, ϕ2) =
m∑

i=1

D(ϕ1(i), ϕ2(i)) (8)

For instance, the distance between the two-output trace in trace
coordinate form

[[0.0, 0.0], [1.0, 2.0], [2.0, 3.0]]

and the two-output trace in trace coordinate form

[[0.0, 0.0], [1.0, 1.0], [1.0, 1.0]]

can be calculated as (using the Euclidean distance as D like in the
case of events):

E(ϕ1, ϕ2) =
√

(0.0 − 0.0)2 + (0.0 − 0.0)2

+
√

(1.0 − 1.0)2 + (1.0 − 2.0)2

+
√

(1.0 − 2.0)2 + (1.0 − 3.0)2

=
√

0 + 0 +
√

0 + 1 +
√

1 + 4

= 0 + 1 + 2.236 = 3.236

It is theoretically possible to use other distance functions. How-
ever in this article only the Euclidean distance is used for calculating
distances between events and traces. Note that this simple distance
function in its current form can only compare traces of equal length.

3. The diagnostic method

The proposed diagnostic method uses training traces which
belong to the identified normal or faulty modes of the system
in order to recognize the faulty mode of a not known trace (fur-
ther referred as measured trace). The traces in the training set are
annotated and labeled by the operating personnel with the faulty
mode they recognized. This label may  refer to a variety of faults,
disturbances or malfunctions or even to a combination of those.
This opens up possibilities to diagnose both internal faults, such
as a broken pipe or leaking tank in the system, and external dis-
turbances such as changes in the process feed using the proposed
method.

The normal operation is considered as a special faulty mode with
no fault, therefore we also need observed traces in the training set
characterizing this situation. When only traces of normal opera-
tion are available with some threshold distance characterizing its
accuracy, then only fault detection is possible, i.e. one can decide if
a measured trace belongs to the normal operation mode, or some
fault occurred the nature of which is not known.

3.1. Basic assumptions

• Time is always monotonically increasing and each time instance
is present.

• Inputs are error-free while outputs might contain errors coming

from the measurement or from faulty behaviour (which we are
interested in finding).

• Training traces are long enough to capture the transition which
will be diagnosed.
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Faults are permanent during all traces (training and measured),
and their number n is fixed a priori. (There are no random faults
present or faults that happen during trace execution.)
The length of training traces and diagnosable traces are the same.
This is required because the Eucledian distance function used (see
Section 2.4) works on traces with the same length.

Objective of diagnosis. Given a set of training traces from different
aulty and fault-free operational scenarios, and a possibly faulty

easured trace (both is given in trace coordinate form) identify the
perational scenario to which the measured trace is – most likely –
elongs to, based on its distance from the centroids calculated from
he training data.

.2. Clustering of traces

As described in Alpaydin (2010a) in detail, clustering in general
s a form of unsupervised learning where the objective is to find
egularities (certain patterns occur more often than others) in a
ector space. In our case the vector space is formed by the traces
n trace coordinate form in accordance with the assumptions listed
n Section 3.1. In this regard, a cluster can be defined as a set of
raining traces with similar patterns (having the same fault) while

 centroid (center of a cluster) can be defined as a mean of these
races in trace coordinate form.

A popular method of clustering a vector space with distance
etrics is the K-Means Clustering algorithm where the number

f clusters, K is given as an input. For more details, see Alpaydin
2010b). After conversion of the traces, the K-Means clustering
lgorithm is executed with K = 1 for every diagnostic scenario
faulty and fault-free) to find a single centroid for the set of train-
ng traces having the same pattern. Because of this, the diagnostic
pproach described here – not like clustering in general – can be
onsidered as a form of supervised learning, the centroids represent-
ng the different scenarios are trained separately.

In order to describe the clustering algorithm formally, a few basic
efinitions are needed.

 Given a distance metric D (such as the Euclidean distance
described in Section 2.4).

 Given a set X, let us denote the number of elements in X by |X|.
 Given n diagnostic scenarios let i be the scenario index going from
1 to n.

 Given a set of traces Y in trace coordinate form, and centroids Z
and W.  Let the relation Y belongs to Z denote the set of traces from
Y which are closer to Z than W using distance metric D. Similarly,
Y belongs to W denotes the set of traces from Y which are closer to
W than Z using the same distance metric D. Consequently, |Y| ≥ |Y
belongs to C| for every centroid C.

Acquiring and validating the cluster centres.  For every faulty sce-
ario i a set of traces in trace coordinate form are provided for
reating and validating the centroids. This given set is split into a
raining set Ti (for creating the centroids) and a validation set Vi (for
erforming validation of the centroids). The split is homogeneous
nd the ratio |Ti |

|Vi | is application specific. Executing the K-Means clus-
ering with K = 1 on every training set Ti, the centroid Ci is formed
or scenario i. These centroids are created in single trace coordinate
orm, and they might not be equal to any specific input trace of the
raining set. A centroid, like a trace is a piece-wise linear trajectory

n an m dimensional space where m is the number of outputs, and
he length of the piece-wise linear trajectory is the length of the
race (number of events in the trace). For example, for a training
et which contains 100 event long traces, and 20 output values for
mical Engineering 95 (2016) 58–70

every event, the representation of the trace will be a 100 long line
in 20 dimensional space.

After every centroid Ci is formed from the training sets, the vali-
dation sets are used to calculate the fault detection rate (FDRi) for
every faulty scenario i using the formula defined in Eq. (9). The
sequence {FDRi|i = 1, . . .,  n} also gives an overall fitness of the model,
where

FDRi = |Vi belongs to Ci|
|Vi|

(9)

Note that this FDR value is conceptually the same as the value
which was  the base for the comparison for the different diagnostic
approaches in review article (Yin et al., 2012).

3.3. Steps of the diagnostic procedure

The steps are executed in two  phases: (i) an off-line training
phase which creates the trace clusters identified with a fault label
and its centroid, and (ii) an on-line diagnosis phase which can be
executed with the known clusters for an measured trace we want
to diagnose.

1 Training phase. Every input trace is converted to trace coor-
dinate form using the method in Section 2.3 for every training
scenario. Because inputs are considered as fixed and error-free
(both in their number and value) and sequence numbers are
increasing strictly monotonically (due to the basic assumptions
laid down in Section 3.1), only outputs are participating further in
clustering (the inputs and the sequence numbers are not present
in this form).

2 As defined in Section 3.2, sets Ti, Vi and Ci are created for each
training scenario i = 1, . . .,  n.

3 The diagnostic model is validated using Ci and sets Vi after all
centroids are determined. FDRi values are calculated for every
training scenario as described in Section 3.2 Eq. (9) for each i = 1,
. . .,  n.

4 Each cluster centre Ci is labeled with the inputs of training sce-
nario i and the particular fault (those are fixed).

5 Diagnosis phase. Given a measured trace which is converted into
trace coordinate form, the nearest centroid can be determined
by computing its distances from centroids Ci for training sce-
narios i = 1, . . .,  n, using a distance such as the one described in
Section 2.4, and finding the closest Ci. The fault index i which cor-
responds to the nearest centroid is regarded as the most probable
fault mode of the system during the execution of the measured
trace.

3.4. Dealing with faults not considered a priori in the training set

When unknown faults (faults missing from the training set for
the diagnoser) are present during the Diagnosis phase of the diag-
nosis (see Section 3.3), we can define a modified distance function
having a distance threshold T in order to separate these cases from
the known faults. With this value, a modified distance function in
Eq. (10) (based on the simple Eucledian distance E described in Eq.
(8)) can be used

ET (ϕ1, ϕ2, T) =
{

E(ϕ1, ϕ2) E(ϕ1, ϕ2) ≤ T

∞ otherwise
(10)

in a way  that if the distance is ∞ then the result of diagnosis is
“Unknown”. The distance threshold T can be chosen based on the

diameter (the maximum distance between elements in the training
set belonging to the same centroid). In general, it can be said that
a diagnostics method shall prepare for the presence of unknown
faults. By using a distance function as the one described in Eq. (10)
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Fig. 1. Simple process system used for the case studies.

his can be achieved. Application of a distance function like this is
ut of the scope of this article.

. Simple process example

The aim of this simple example is to compare the resolution of
he diagnostic method on a simple process system controlled by
n operational procedure under the presence of multiple faults.
ualitative sets with different resolution and different mapping

unctions were evaluated and the cases were compared based on
heir FDR values (as described in Section 3.3.)

.1. Process system and trace description

A simple example of a controlled composite process system with
hree tanks (see Fig. 1) that is driven by an operational procedure
s used. The operational procedure in this case was  filling up the
ystem with fluid.

First VA was opened. Later, when TA reached nominal level then
C and VB were opened and TB and TC were filled up with fluid until

hey reached nominal level. Finally, output valves VD and VE were
pened. The corresponding operational procedure in a tabular form
an be seen in Table 1.

The following faults were taken into account for each tank:

The leak of the tank. In the case study two different leak types
were used.
–  For the cases described in Sections 4.2–4.4 the size of the leak

prevents any fluid from staying inside the tank, therefore fluid
level constantly stays at qualitative value 0. This is called a
rupture.

– On the other hand, in Section 4.5 the diagnosability of a more
realistic, smaller leak is surveyed – this results in 10% loss of
fluid per time instant from a tank. This is called a leak.

The positive bias failure of the level sensor. The level sensor
always detects a qualitative value one degree higher than the
actual level of the tank. Given the qualitative set defined in Eq.
(1), the level sensor outputs “H” instead of “N”. This fault is the
same for all presented cases.
The negative bias failure of the level sensor. The level sensor
always detects a qualitative value one degree lower than the
actual level of the tank. Given the qualitative set defined in Eq.
(1), the level sensor outputs “L” instead of “N”. This fault is the
same for all presented cases.

Based on these faults, reference operation traces were created
hich contained all single and dual occurrences of the faults for

ll three components. Training trace sets were formed from each
eference trace copying them 5000 times and applying a simulated
easurement error function (as described in Section 2.1) on each
et with 6% error probability with neighbour level L=2 in the
efined case of Section 4.4 and neighbour level L=1 in the other
wo case studies. (We  have performed a few measurements and
his specified number of traces, error probability and neighbour
mical Engineering 95 (2016) 58–70 63

level turned out to be a good choice for visualizing the results
in the case studies.) Later, the diagnostic procedure described in
Section 3.3 was used to find the centroids and validate them. The
ratio of the training and the validation set size was chosen to be 1:1
for the sake of simplicity. We  tested other ratios (such as 4:1) for
distributing the traces but no significant differences were observed
in the results for this simple case study. The FDR values (refer to
Eq. (9)) were calculated for each set (shown in ascending order on
the graphs in Fig. 2–5), these were used for comparison in the case
studies.

4.2. Single and dual faults in the system

The first part of the case study used a linear mapping function
(see Eq. (4)) to map  qualitative outputs to numeric values. The FDR
values for each scenario can be seen in Fig. 2 in this case.

4.3. The effect of nonlinear output mapping

The second part of the case study used a non-linear mapping
function (see Eq. (5)) instead of the linear one. This mapping func-
tion, due to its non-linear characteristic, made centroids (denoting
different faulty scenarios) farther away from each other.

The FDR values also had slightly decreased, their values are
depicted in Fig. 3. The random noise – added by the simulated
measurement error, and the increased distance between centroids
– in the training set caused the cluster centres to be less accurate,
even though they are farther from each other, this made the overall
diagnosis slightly less accurate.

4.4. The effect of using refined qualitative set

In this case the refined qualitative set from Eq. (2) was used
during simulating the measurement errors in the training trace sets
(all reference traces remained the same). A slightly refined version
of the linear mapping function described in Eq. (6) was used.

The FDR values of the scenarios for this case study can be seen in
Fig. 4. The figure shows the accuracy of the diagnosis was  slightly
better in this case compared to both earlier case studies.

4.5. The effect of realistic leaks

In this case instead of a rupture (full loss of containment), a 10%
loss per time instant (a leak) was  present, with the same qualitative
set as in Section 4.4. The results of this change can be seen in Fig. 5.
Comparing the results with the ones in Fig. 4 a significant change in
the FDR values are observed in this case, and the FDR values were
above 0.8 for every scenario.

4.6. General observations on simultaneous fault detection

In this section a few observations on the simple process example
are described.

A few of the determined centroids for the faulty scenarios
described in Section 4.4 can be seen in Fig. 6. On the figure a coordi-
nate of the centroid is represented as a piece-wise linear trajectory
in the three dimensional space, with the three axes as the three
output dimensions (levels in tanks TA, TB and TC) and the separate
points represent different sequence numbers in the trace.

In general, the proposed diagnostic method was able to per-

form simultaneous fault detection and isolation in some cases
for this simple case study. The following observations could be
made regarding the detection of dual faults (with the assumptions
described in Section 3.1) in this simple process example:
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Fig. 2. Case study with linear mapping function and tank rupture. Scenarios are sorted in ascending order by their FDR value. Values for TA − rupture (TA − RP), TA and TB
ruptures (TA − RP & TB − RP) and TA and TC ruptures (TA − RP & TC − RP)  are smaller than 0.9 hence not shown (they are placed around 0.3, refer to Section 4.6 for details).

Fig. 3. Case study with nonlinear mapping function and tank rupture. Scenarios are sorted in ascending order by their FDR value. Values for TA − rupture (TA − RP), TA and TB
ruptures (TA − RP & TB − RP) and TA and TC ruptures (TA − RP & TC − RP)  are smaller than 0.9 hence not shown (they are placed around 0.3, refer to Section 4.6 for details).

Fig. 4. Case study with refined qualitative values and tank rupture. Scenarios are sorted in ascending order by their FDR value. Values for TA − rupture (TA − RP), TA and TB
ruptures (TA − RP & TB − RP) and TA and TC ruptures (TA − RP & TC − RP)  are smaller than 0.9 hence not shown (they are placed around 0.3, refer to Section 4.6 for details).

Fig. 5. Case study with refined qualitative values and tank leak. Scenarios are sorted in ascending order by their FDR value.
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Table  1
Nominal trace for the case study. System input “0” means “closed”, “1” means “opened” valve states, while system outputs (based on qualitative set Eq. (1)) “0” means “no
level”,  “L” means “low”, “N” means “normal” levels in the tank.

Sequence number System inputs System outputs

VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2  1 0 0 0 0 L 0 0

1

2

F
e

3  1 1 1 

4  1 1 1 

5  1 1 1 

 If the faulty scenarios affect different output variable(s) on the
process system, and their effects are independent of each other,
they can be distinguished even though they appear simulta-
neously. Taking a simple example a bias failure in TA and a
rupture on TC at the same time affect different outputs (level sen-
sor of TA and TC), they are not related to each other, hence they
can be detected and distinguished from the rest of the faults. See

the scenario TA pos bias and TC rupture in Fig. 6.

 If the faulty scenarios affect the same output variable on the pro-
cess system, but their effect is independent of each other, they
can be still distinguished. For example, a tank rupture causes the

ig. 6. Centroids for a few scenarios for the case study in Section 4 in three dimensional fo
 −= −1, 0 = 0, L = 1, N = 2, H = 3. Single dot represents a centroid where all values are the sa
0 0 N 0 0
0 0 N L L
1 1 N N N

level to be constant “0” in the tank, but a positive bias failure
changes the sensor value to constant “L” (low) level. See the cen-
troids from faults TC rupture and TC rupture and TC pos bias in
Fig. 6.

3 Dual faults cannot be separated from each other if they are not
independent (i.e. there exists a causal relationship between them).
In a simple case, taking the process system in Fig. 1 if a rupture

in TA occurs, the level of the fluid will be “0” in TB and TC. This
causes the detection of rupture(s) in TB and in TC practically
indistinguishable from the rupture in TA, because faults TA rup-
ture, TA and TB ruptures and TA and TC ruptures produce exactly

rm. Axes represent level output values for the three tanks, with qualitative mapping
me over time.
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Table 2
A subset of the disturbances, along with their types of the Tennessee Eastman Chal-
lenge problem, as described in the original article (Downs and Vogel, 1993).

Identifier Disturbance Type

IDV(1) A/C feed ratio, B composition constant
(stream 4)

Step

IDV(2) B composition. A/C ratio constant (stream
4)

Step

IDV(3) D feed temperature (stream i) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream I) Step
IDV(7) C header pressure loss – reduced

availability (stream 4)
Step

IDV(8) A, B, C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) C feed temperature (stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
6 A. Tóth, K.M. Hangos / Computers an

the same traces (constant zero level in all three tanks) due to the
rupture in source tank TA. This observation is relevant for the
cases described in Section 4.2–4.4 (only these cases have tank
ruptures).

Due to the fact that they cannot be distinguished, the FDR val-
ues for these scenarios are as low (around 0.33) as they do not
even fit to the display interval of [0.9, 1.0] in Fig. 2–4. The cen-
troids are displayed in the bottom row in Fig. 6.

 If the simulated measurement errors were eliminated, then
the diagnostics had 100% accuracy in every case, using every
mapping function – except in the case when the faults were
not independent as described above. If simulated measurement
errors were present, then the following observations can also be
made on the nature of the output mapping functions, in contrast
to the linear mapping function with its FDR distribution in Fig. 2:
(a) The diagnostic accuracy improved when a linear mapping

function with refined qualitative set was used (see the FDR
distribution in Fig. 4).

(b) The diagnostic accuracy worsened when a non-linear map-
ping function was used (see the FDR distribution in Fig. 3).
In this case the combination of the simulated measurement
error and the non-linear mapping had been responsible for
the loose position of the centroids and the less accurate diag-
nostics.

 When a leak (10% loss) was present instead of a rupture (full
loss of containment) in Section 4.5, then the diagnostic accuracy
greatly improved for the previously indistinguishable cases hav-
ing a rupture (TA rupture, TA and TB rupture and TA and TC rupture).
In this case faults TA leak, TA and TB leaks and TA and TC leaks
became distinguishable from each other (because they did not
produce the same traces anymore, like the corresponding rup-
ture faults did). This effect is responsible for the increased FDR
values for all scenarios (all above 0.8). On the other hand, due to
the fact that the 10% leak caused only a minor difference between
leaky and leak-free scenarios in terms of the qualitative values,
the overall diagnostic accuracy worsened. (The majority of the
FDR values were between 0.85 and 0.95 in Fig. 5, while in the
original refined case most of them were above 0.99 in Fig. 4.)

. Case study

As a more serious example, a commonly used process system
the Tennessee Eastman Challenge problem) is used to demonstrate
he diagnostics capabilities of the algorithm. As in the previous case,
or the various disturbances (faults) of the problem the fault detec-
ion ratio (FDR) is calculated (as described in Section 3.2). A similar
urvey for many different statistical methods had been performed
n Yin et al. (2012) on the same process system and disturbances
or statistical methods.

.1. Tennessee-Eastman process

The Tennessee Eastman process (later mentioned as TEP) is
idely used and accepted for developing, studying and comparing
rocess control and diagnostics algorithms. It consists of a reac-
or/separator/recycle arrangement involving two simultaneous
as-liquid exothermic reactions and two additional byproduct
eactions. The process has 12 available valves for manipulation and
1 available output measurements for monitoring or control. In the
ase study the first 15 of the original 20 simulated disturbances are

onsidered (see Table 2 for details), due to the fact that the last 5
isturbances are of type “Unknown”, and we wanted to emphasize
iagnosing the known faults in the case study. Note that these “not
nown” disturbances were part of the actual diagnosis for the rest
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking

of the disturbances, but their FDR values have not been calculated,
and observations have not been made for them.

The TEP produces two  products, an inert and a byproduct from
four reactants (there are eight components altogether, A, B, C, D, E,
F, G and H). The following reactions take place based on the compo-
nents in this example process system (based on Downs  and Vogel,
1993):

A(g) + C(g) + D(g) → G(liq) (Product 1)

A(g) + C(g) + E(g) → H(liq) (Product 2)

A(g) + E(g) → F(liq) (By product)

3D(g) → 2F(liq) (By product)

These components are also shown on the flow-sheet of the process
system in Fig. 7. For more details, refer to Downs and Vogel (1993).
In order to be more consistent with the original article, the term
disturbance will be used for faults in the description of this case
study.

The original model was written in FORTRAN, but in this case
study the revised MATLAB version of the TEP (described in Bathelt
et al., 2015) was used for generating the training traces for the
algorithm.

The MATLAB model has already contained simulated mea-
surement errors, so the measurement error generation approach
described in Section 2.1 was not used in this case, the raw values
were just taken from the simulated model without change. Due to
the available functionality of the model, only single disturbances
were considered in this case.

5.2. Preparation of the data

In this case study the diagnostic algorithm’s ability to iden-
tify the various disturbances (considered as fault modes from the
algorithm’s perspective) are surveyed for the TEP. Two  operational
modes, an “open-loop” mode and a controlled steady-state mode
(refer to “Mode 1” in Downs and Vogel, 1993) were considered.
Inputs were modified by the simulated controller in steady state
mode but were not taken into account. Also, only a subset of the

original 41 outputs (22 “Continuous process measurements”, see
Table 4 in Downs and Vogel, 1993) were taken into account in
the case study. The reason for this is that we wanted to focus
on the continuous measurements only during diagnosis (the rest
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Fig. 7. Tennessee Eastman Challeng

f the outputs were relatively infrequently sampled process mea-
urements measuring concentrations in the output of the process
ystem, which would not change the findings of the case study).
herefore the output of the simulation was a set of events (each
ontaining 22 output values) ordered by time. A single event was
escribing a state of the system at a different sequence number for

 single execution. This is converted to the trace format required
y the algorithm where inputs were not considered (there was
o input changes during the execution of traces), while the list of
utputs contained every output from the simulation.

After the results had been collected from the MATLAB simula-
or, the traces were trimmed to equal length (this was one of the
ssumptions from Section 3.1). Moreover, the raw data was sam-
led at different intervals to determine the effect of sampling on
he diagnostic accuracy. The reactor in the “open loop” case always
hut down after approximately 1 h of operation (due to the high
ressure threshold built into the MATLAB model), while in the
teady-state case (“Mode 1”) always a 5-h model MATLAB simu-
ation was performed (the model could have been executed longer
n this case).

.3. Results

The corresponding output values were normalized and con-
erted to trace coordinate form using a qualitative mapping
unction. Normalization was performed so that the same qualita-
ive function could be used for all outputs, this made the execution
f the diagnosis simpler. Finally, the diagnostic algorithm was exe-
uted for the traces, centroids are formed from the training traces
nd the fault (disturbance) detection rates (FDRs) are calculated
rom the validation set for every disturbance case.

Table 3 shows a summary about the most important properties
f the executed cases. These are the following:
 Number of training and validation traces. The number of
times the simulation was executed for every disturbance sce-
nario described in Table 2 to get the traces required by the
lem from Downs and Vogel (1993).

algorithm. The first half of the traces was  used for training while
the second half is for validation of the trained centroids (the
FDR values were calculated from diagnosis on the validation set,
see Section 3.2 for details). We  have experimented with other
training/validation ratios, such as 4:1 but we  have not seen sig-
nificant differences in the results of the case study (like in the
case of the simple case study in Section 4). The exact number of
training and validation traces (simulator runs) was chosen in a
way that we have enough traces for each disturbance to com-
pare the diagnostic accuracy between them. A couple of hundred
traces per disturbance proved to be more than enough for this
purpose.

2 Trace trim. Traces are trimmed at this length after conversion.
Trimming is needed so that every trace participating in the diag-
nosis will have the same length (to comply to the assumptions
in Section 3.1). This was  required because for some of the distur-
bances the MATLAB simulation (see Bathelt et al., 2015) produced
fewer number of events due to the fact that internal error thresh-
olds (eg. “Low stripper liquid level” in the case of IDV(6) in Mode
1) were met, which correctly caused the simulation to halt imme-
diately. This resulted in shorter traces for these disturbances. In
order to comply with the diagnostic assumptions in Section 3.1
(all traces shall have the same length), longer traces for other dis-
turbances were trimmed accordingly, so that every trace would
have the same length.

3 Sampling rate. This item describes how the simulation output
was sampled. For example, “7” means that every seventh event
was taken from the simulation output (the rest was thrown
away), “1” means that every event was  kept. In the “Mode 1”
case due to the chosen sampling rate, the traces needed to be
trimmed at an earlier event, so that traces for every disturbance
have the same length. This effect can also be seen in Table 3.

4 Qualitative sets. The resolution of qualitative sets used to

represent the previously normalized output values. After normal-
ization, every output had the same range, so the same qualitative
output mapping function could be used for them. In every case
(except for ∞)  a linear qualitative mapping function (like the one
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Table 3
Basic properties of the executed case studies.

Case study Qualitative sets Number of training and validation traces Trace trim Sampling rate

Mode 1 #1 ∞ 366 100 1
Mode  1 #2 Refined 366 100 1
Mode  1 #3 Coarse 366 100 1

Mode  1 #4 ∞ 366 59 7
Mode  1 #5 Refined 366 59 7
Mode  1 #6 Coarse 366 59 7

Open  Loop #1 ∞ 300 100 1
Open  Loop #2 Refined 300 100 1
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Open  Loop #3 Coarse 300 

described in Eq. (4)) was used, which divided the interval [0, 1]
into n qualitative sets evenly.
(a) ∞ means that qualitative sets are not used for the output.
(b) Refined means a 8-element refined qualitative set for the out-

put:

Q = {0, 0L, L, LN, N, NH, H, H+} (11)

(c) Coarse means a 3-element qualitative set for the output:

Q = {0, L, N} (12)

he parameters in Table 3 were chosen based on preparatory sim-
lation experiments, so they are valid for this case study only, and
ight be different for other process systems or operational proce-

ures.
After the traces were converted, they were given as input to the

iagnostic algorithm. The first half of them were used for train-
ng (calculating the centroids using K-Means clustering with K = 1),

hile the remainder was used for validating these clusters and
etermine the FDR values for every disturbance in every case study.
hese values are collected in Table 4. The original article also con-
ained disturbances from type “Unknown”. Due to the not known
ature of these disturbances they are not displayed in Table 4 for the
ase studies – they were only taken into account during calculating
f the FDR values for the other, known disturbances.

.4. Observations based on the results

Based on these results the following observations can be made:

 It can be seen in Table 4, that many of the Step type disturbances,
such as IDV(1), IDV(6) or IDV(7), of the TEP were detected with
100% FDR. This means that the diagnostic algorithm could isolate
a separate centroid – farther from the rest – for these disturb-
ance types successfully. A reason for this in the case of IDV(7)
can be seen in Fig. 8 which shows a TEP output (“A and C feed
(stream 4)”) for all the considered disturbance scenarios and
cases, with IDV(7) as bold black line while the rest of the dis-
turbances with ordinary red lines. This figure shows a significant
contrast between IDV(7) and all the rest of the disturbances in the
value of the TEP output for all the executed case studies described
in Table 3. The dissimilarity in the value is so outstanding in this
case that not even:
• a significant change in the Sampling Rate (from “1” to “7”,

where 6
7 ≈ 85% of the traces were dropped, see diagrams in

the first row in Fig. 8),
• the use of a very coarse 3-element qualitative set

could not affect the diagnostic capability of the algorithm for this
disturbance significantly. Differences like this placed the centroid
for IDV(7) farther than the centroids for the other disturbance
scenarios, and this is responsible for the 100% accuracy in this
100 1

case. Similar differences to this in output values are respon-
sible for the 100% accuracy in some of the other cases when
Step type disturbances were diagnosed. Step type disturbances
were assumed among the diagnostic assumptions in Section 3.1.
(Faults (disturbances) are permanent and their number is fixed a
priori.)

2 Step type disturbances could be well diagnosed in case of both
the “Open Loop” operational mode and the steady-state (“Mode
1”) operational mode of the simulation.

3 In case of the “Mode 1” case studies the use of different
Sampling rates (“1” and “7”) had no significant effect on the diag-
nostic result for Step type disturbances IDV(1), IDV(2), IDV(6)
and IDV(7). These disturbances could still be diagnosed for
both Sampling rates, despite the fact that the diagnosis was
based on a fraction of the available events only (every seventh
event). Due to the loss of data during sampling, the FDR for
some other Step type disturbances (IDV(4) and IDV(5)) reduced
drastically.

4 The use of the three different qualitative sets (as described in
Section 5.3) had also no effect on the diagnostic result.

5 Disturbances from other types (such as Random Variations)  could
be detected with a very low FDR. In this case individual centroids
are created by the clustering overlapped each other, therefore
the disturbance could not have been identified by the algorithm
properly using distance calculation.

5.5. Discussion

The experiences obtained with the TEP case study highlighted
some of the advantages and also the limitations of the proposed
diagnostic method that can be summarized as follows.

1 Our diagnostic method is data-driven, that is, black box type in
nature. It compares the observed traces with “patterns” of tran-
sient behaviors of the system in different faulty modes. Therefore,
the diagnostic results cannot be easily explained by the physics
and chemistry of the process: for this a first principles dynamic
model would be necessary. On the other hand, the diagnostic
accuracy and resolution can be adaptively improved, when new
characteristic patterns are found, associated to faulty modes, and
added to the training set.

2 An important feature of the proposed method is that it can handle
traces that correspond to strongly transient operation of the plant
to be diagnosed. Any fault or disturbance that has a noticeable
effect on the transient that was  chosen as a normal operation can
possibly be diagnosed. This means, that diagnosability is strongly

related to the sensitivity of the normal operation transient to the
fault. In addition, the type of the transient can be selected taking
into account which faults are to be diagnosed using operating
experience.
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Table  4
FDR values in % for the different case studies. The “Dist. ID” is the identifier from Table 2.

Dist. ID Mode 1 #1 Mode 1 #2 Mode 1 #3 Mode 1 #4 Mode 1 #5 Mode 1 #6 Open Loop #1 Open Loop #2 Open Loop #3

IDV(1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 83.333% 84.0% 100.0%
IDV(2) 98.37% 100.0% 100.0% 100.0% 100.0% 100.0% 9.333% 8.0% 19.333%
IDV(3) 27.174% 34.783% 34.239% 21.196% 15.761% 26.630% 7.333% 12.0% 40.0%
IDV(4) 100.0% 100.0% 100.0% 38.043% 73.370% 86.957% 100.0% 99.333% 100.0%
IDV(5) 100.0% 100.0% 100.0% 58.696% 100.0% 95.652% 100.0% 100.0% 100.0%
IDV(6) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
IDV(7) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
IDV(8) 21.196% 32.065% 14.674% 47.283% 71.739% 55.435% 1.333% 5.333% 5.333%
IDV(9) 14.674% 21.196% 16.848% 16.848% 23.370% 23.370% 6.0% 3.333% 8.0%
IDV(10) 8.696% 28.804% 24.457% 34.783% 30.435% 53.804% 8.0% 4.667% 10.0%
IDV(11) 5.978% 46.196% 29.891% 72.283% 48.370% 88.587% 6.667% 8.667% 21.333%
IDV(12) 9.783% 42.935% 35.87% 22.283% 38.587% 65.217% 14.667% 9.333% 37.333%
IDV(13) 2.717% 5.435% 45.109% 18.478% 20.652% 19.022% 4.667% 8.0% 10.0%
IDV(14) 92.391% 94.565% 97.826% 88.043% 67.935% 97.826% 5.333% 6.667% 6.0%
IDV(15) 13.587% 23.913% 18.478% 17.935% 16.848% 17.391% 6.0% 4.667% 8.0%

Fig. 8. Distribution of a single output over all scenarios and case studies. TEP disturbance IDV(7) with bold black line, while the rest of the disturbances are shown with
o maliz
[ as re
d

3

rdinary red lines. SR = Sampling Rate, TRIM = Trace trim (according to Table 3). Nor
0,1]  for every disturbance per scenario right after the simulation. This operation w
uring  diagnosis.

 It is often the case that complex dynamic systems (includ-
ing process plants) are more sensitive for any disturbance or
fault if they perform an open-loop transient as compared to
the controlled steady-state operation. Step change disturbances

add a good excitation to even a controlled system to provoke
characteristic-enough transient behavior, this explains the better
diagnosability of step change disturbances or faults compared to
random variation, drift or sticking.
ation was  performed by transforming the values of “A and C feed” to the interval of
quired to be able to use the same qualitative mapping function for all the outputs

6. Conclusion

A data-driven diagnostic approach was described in this paper
based on clustering qualitative event sequences. The method

was based on a sufficiently high number of training traces
recorded from different nominal and faulty scenarios. After train-
ing, input traces were categorized (diagnosed) by the most likely
scenario based on the training traces. The method had two
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ain phases, the off-line training and the on-line diagnostics
hase.

After preprocessing, the event sequences were converted to an
-dimensional vector space with a distance metric defined. K-
eans clustering was used for every faulty and nominal scenario

o find a single centroid. After every centroid was found the on-line
iagnostic is executed.

In the on-line diagnosis phase, arbitrary measured traces were
onverted to coordinate vector form. Using this form, the closest
entroid was determined which is the result of the diagnosis for
he trace.

The aim of the simple process example was to examine the
iagnostic accuracy of the proposed method on the same com-
osite process system driven by an operational procedure, under
he presence of multiple faults and different output mapping func-
ions. Three types of mapping functions (coarse and finer linear,
onlinear) were used and their positive or negative effects on
he accuracy were compared. We  also provided a discussion on
ow the diagnostic algorithm can be used for simultaneous fault
etection.

A complex diagnostic case study using the benchmark of Ten-
essee Eastman process (TEP) was also presented to illustrate the
fficiency of the proposed method and to compare its performance
ith some of the statistical methods. It was found that not only

onstant step-type faults (disturbances) could be detected with a
igh fault detection rate but also during a transient operation of the
rocess.

As a future improvement, provided the diagnosable process
ystem can be decomposed into smaller sub-process systems,
he algorithm can be modified to perform diagnosis on separate
ower-level components and combining the failures found in them.
his would have a better performance compared to the compos-
te approach, albeit the complexity would be higher (due to the
act that different faults can be in causal relationship with each
ther).

Currently the algorithm works only on historical data. As an
mprovement, the diagnostic approach can also be extended with

ore real-time operational capabilities, working on partial traces
nd comparing them to (relevant parts) of the already calculated
entroids as individual events arrive for the traces. In that way
n operational procedure under execution can be also diagnosed

 before its execution is complete.
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