ELSEVIER

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

CrossMark

Review Novel method for looped pipeline network resolution

Rafael Raoni*, Argimiro R. Secchi, Evaristo C. Biscaia Jr

Chemical Engineering Program – COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, 21941-972, Rio de Janeiro, RJ, Brazil

ARTICLE INFO

Article history: Received 19 July 2016 Received in revised form 1 October 2016 Accepted 3 October 2016 Available online 5 October 2016

Keywords: Looped pipeline network Simultaneous-modular procedure Hardy-cross Kirchhoff's laws Nonlinear system of equations Process simulation

ABSTRACT

It is proposed a novel method to solve looped pipeline network problems that seeks to deal with limitations of the available methods The problem is modeled as a nonlinear system of equations formed by equations that cannot be solved sequentially, characterizing the resolution as a simultaneous-modular procedure. The equations of the system are the differences between the final pressure of the pipes that end at the same network nodes and the difference between the specified and calculated design variables. At the solution both Kirchhoff's laws are met, being the method main advantages the no need of independent loops selection and the formulation of a reduced system of equation. Case studs with a small and a big looped water pipeline network, and an industrial installation with looped pipeline configuration, are solved. The latter shows the method applicability for design process, highlighting its advantages in comparison with the traditional simulation procedures.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	
2.	Proposed method	
	2.1. Introductory example	
	2.2. Method procedure	
	2.3. Pressure difference equations analysis	
	2.4. Process modeling	
	2.5. Numerical resolution	
	2.6. Further comments of the proposals	
3.	Case studies	
	3.1. Small looped pipeline network	
	3.2. Big looped pipeline network	
	3.3. Industrial installation with lopped pipeline network	
4.	Conclusions	
	Acknowledgments	
	References	

1. Introduction

The pipeline network problem is formulated when the flowrate and pressure in all pipes and nodes of a network are needed. The problem formulation requires the physical characteristics of the pipes and the specification of some network pressure and flowrate variables. Many networks problems are easily solved by a sequential procedure. However, when different pipes flow to a same node, or the network presents loops, different procedures must be employed.

In order to solve the looped pipeline network problem, it is very common the employment of the two Kirchhoff's laws. The first and the second laws, originally developed to solve electrical circuits problems, are equivalent, respectively, to the continuity and the energy conservation equation (Martinez and Puigjaner, 1988), and can be written as follow:

^{*} Corresponding author.

E-mail addresses: rbritto@peq.coppe.ufrj.br (R. Raoni), arge@peq.coppe.ufrj.br (A.R. Secchi), evaristo@peq.coppe.ufrj.br (E.C. Biscaia Jr).

 $1^{\underline{\alpha}}$: The algebraic sum of currents at a node on a network of conductors is zero.

 $2^{\underline{a}}$: The directed sum of the electrical potential differences (voltage) around any closed circuit is zero.

Appling the laws on the looped pipeline network problem, the current at the first law is understood as the mass flow and the electrical potential at the second law is understood as the pressure drop. When solving the looped pipeline network problem employing the Kirchhoff's laws, one of the laws is satisfied in the problem modeling and the other one is satisfied solving a nonlinear system of equations (Cross, 1936). Based on the linearization of such system of equations, Cross (1936) proposed the most relevant methods to solve the problem, which are essentially a relaxation method suitable to solve the problem by hand (Gay and Middleton, 1970). Depending on which law is firstly satisfied in the modeling, different methods are obtained, named: *Method of Balanced Flow*, which firstly satisfies the first Kirchhoff's law; and *Method of Balanced Pressure*, which firstly satisfies the second Kirchhoff's law (Cross, 1936).

In order to improve the problem resolution, methods based on the partitioning of the problem representative matrix were developed (Sargent, 1978; Shacham, 1984), but the application on large problems was still not satisfactory (Martinez and Puigjaner, 1988). Furthermore, other linearization methods were developed (Krope et al., 2011) and, more recently, the Newton-Raphson method was applied to solve the looped pipeline network problem for both Hardy-Cross methods (Altman and Boulos, 1995; Brkic, 2011). As any Newton-Raphson application, the characteristics of the equations and the initial guesses of the dependent variables define the problem convergence property.

Analyzing the Hard-Cross procedures, the *Method of Balanced Flow* is appropriate to solve problems with known pressures at any point of the network. Firstly, the network model must be built satisfying the second Kirchhoff's law, assuming pressures at all network nodes and calculating the flowrates in all pipes. As the pressure nodes and, consequently, the calculated flowrates in pipes are not the problem solution, corrections at the node pressure must be made until the mass balance, first Kirchhoff's law, be satisfied. In principle, for the problem resolution, it is needed the employment of a pressure drop equation with explicit flowrate variable. Aiming the improvement of the problem resolution, for any pressure drop equation, new procedures were proposed for the iterative correction of the nodes pressure (Rao, 1987) or by using non-deterministic optimization techniques, such as *Simulated Annealing* (Yeh and Lin, 2008; Tospornsampam et al., 2007).

The Method of Balanced Pressure is suitable to solve problems when the inlet and outlet flowrates of the looped network are known. By satisfying, in the network modeling, the mass balance in the nodes, the nonlinear system of equation is formed by the energy conservation equations of the selected network pipeline loops. The main drawback of this method lies on the selection of such representative loops (Gay and Middleton, 1970; Rao, 1987), since the number of the network loops is commonly greater than the number of necessary equations to solve the problem, and not every loops group forms a solvable problem. In order to overcome this drawback, Gay and Middleton (1970) proposed a procedure to perform the initial choice of the representative network loops and to compute the pressure drop with the Darcy-Weisbach equation, and Martinez and Puigjaner (1988) proposed a procedure to choose the loops in large networks. Currently, this choice can be done by graph procedures and it is already known that the representative network loops must be verified for the independency among each other (Jha, 2007).

Aiming the use of the *Method of Balanced Pressure* on problems with specified pressure at the inlet or outlet network nodes, a procedure to obtain pseudo-loops equations, as found in Streeter and Wylie (1984) and Sârbu and Valea (2011), was developed. With this procedure, the method can be applied on networks with either pressure or flowrate as specified variables and, because of that, nowadays, the method is widely employed to solve any looped network problem.

Another method, called hybrid method, has no need to firstly satisfy any Kirchhoff's law, which leads to a looped pipeline network problem characterized by both node mass balance and energy conservation equations (Hamam and Brameller 1971; Todini and Pilati, 1987; Osiadacz, 1987; EPANET, 2015). The method has as main drawback the need of simultaneous resolution of large set of equations, making even more difficult the problem convergence.

Despite the greater attention on water pipeline network distribution, the introduced methods are applied on looped pipeline network flowing any kind of fluid, being applicable on wide industrial and urban pipeline installations. In industrial plants, the looped pipeline arrangements are found on by-pass of equipment, utilities distribution systems and firefight systems, for instance; and in urban installations, on heat gas, fuel gas and water distribution networks. The calculation of looped pipeline network of gas distribution systems has gained some attention given the higher difficulty on compute pressure drop (Krope et al., 2011; Woldeyohannes and Majid, 2011). Furthermore, the calculations of pumps, valves and pipe accidents pressure drops were incorporated into the looped pipeline problem, making possible the resolution of more realistic problems (Krope and Goricanec, 1991).

Currently, different methodologies can be employed to solve looped pipeline network problems. The identification and analysis of the pipes, devices and equipment's characteristics, the problem specifications and the flowing fluid must be done previously to make possible the choice of the best resolution method (Brkic, 2011).

In this work, a novel method for looped pipeline network resolution is proposed. The new method consists in attending the mass balance in the nodes (first Kirchhoff's law), group all equations that can be solved sequentially, identifying the ones that need simultaneous convergence. Such equations formulate the nonlinear system of equations of the problem being characterized by the differences between the final pressures of the pipes that ends on the same node, which replace the loop equations (second Kirchhoff's law), and the differences between specified and calculated design variables, which replace the pseudo-loop equations. With the proposed method, there is no need of identifying and selecting the independent loop equations, being more suitable to incorporate in a process simulator.

This paper is structured as follows: in Section 2, the proposed method is presented, highlighting the steps of modeling and the numerical resolution of the whole network problem. In Section 3, the developed methodology is demonstrated by the resolution of three looped pipeline network problems. The first and the second problems are a small and a big looped water pipeline network, respectively, with both of them introduced by Yeh and Lin (2008). The third one shows the method applied to an industrial looped pipeline, where pumps and pipe accidents compose the problem, showing that the method can be used in any process simulation problem. The conclusions of the work are presented in Section 4.

2. Proposed method

It is understood that the Hardy-Cross *Method of Balanced Pressure* is the most suitable procedure to solve the looped pipeline network problems, since it requires the simplest network modeling. The method allows the natural attendance of the mass balance in any network node, pipe or equipment; and the employment of pressure drop equations with explicit pressure drop.

Fig. 1. Simple looped pipeline network.

Connecting generic and independent models for the pipe, node and equipment, which hold their representative equations and satisfy the mass balance, it is possible to build the pipeline network simulation that resembles a real network. Aiming the resolution of the built model, the specifications of some independent variables, pressures or flowrates for instance, to seek a solvable system of equation with zero degrees of freedom are necessary.

For a non-looped pipeline network with X inlets and Y outlets, it is necessary the specification of X+Y independent variables to obtain a solvable problem. Whereas to solve a looped pipeline network with the same number of pipes, which has less inlets and/or outlets, the number of network inlet and outlet (X+Y) specifications is not enough to remove all degrees of freedom. Therefore, in order to obtain the number of degrees of freedom of a looped pipeline network problem, with no more inlet and outlet independent variables to be specified, the equation found at Martinez and Puigjaner (1988), Eq. (1), can be employed.

$$M = T - N + 1 \tag{1}$$

where *T* is the number of pipes, *M* is the number of degrees of freedom to be covered by the loop equations and *N* is the number of nodes.

Using Eq. (1), *M* loop equations must be identified, selected and joined to the problem to remove the remaining degrees of freedom. As mentioned, the main drawback of the *Method of Balanced Pressure* lies in defining the group of network loops to be joined to the problem, since the number of the network loops is commonly greater than the number of remaining degrees of freedom and not every group of loops forms a solvable problem.

In this work, we propose new equations, defined as the difference between the final pressures of pipes that flow to the same node, to handle this degree of freedom drawback. The inclusion of the pressure difference equations to solve the problem removes the difficulty of identifying and selecting the independent network loops, since the number of the pressure difference equations is always equal to the remaining degrees of freedom. As shown below, these new equations (pressure difference equations) are equivalent to the loop equations, which mean that the resolutions of the problem by both kinds of equations are equivalent.

2.1. Introductory example

The looped pipeline network presented by Streeter and Wylie (1984), shown in Fig. 1, was used to introduce the proposed method.

According to Eq. (1), the network has two degrees of freedom to be covered by the loop equations. In order to formulate the

Table 1	
Chosen flow directions in pipes of Fig.	1.

P1	P2	Р3	P4	Р5
↑	\rightarrow	↑	\rightarrow	\downarrow

pressure difference equations it is necessary to establish flow directions in the network pipes, which could be understood as the way that the pipe models were used to build the whole network problem, as illustrated in Table 1. It must be emphasized that wrong choice of flow directions are acceptable, because it is handled by the proposed procedure and the signal of the obtained flowrates will indicate the true direction of the flow. However, coherence with the built network helps the problem formulation and resolution due to its nonlinear nature and, consequently, the possible dependence on the initial guess by the chosen numerical algorithm.

The initial guess of the flow directions can be interpreted as how the pipes are connected among each other, with specified inlet and outlet connections, in order to form the whole pipeline network. This guess does influence the formulation of the pressure difference equations, since these equations are formed according to the identification of the pipes that needs its final pressure converged or to a specified value, just as: (i) when some pipe ends at an outlet network node that has a specified pressure (pressure difference equations for pseudo loop); (ii) or when different pipes end on a same node, needing to have the same final pressure (pressure difference equations for loop). Thus, if the same problem is modeled with different flow directions, different pipes need to converge to their final pressures. In this sense, a coherent pipe connection (e.g. node with at least one inlet and one outlet connection) helps the problem formulation and resolution.

However, independently of the initial guess of the flow direction, the problem resolution converges to its unique solution, where all node pressure and mass balance are coherent with the model equations. In this sense, the result for the pressure values at the nodes and the absolute value of the pipes flowrates does not change. But the signal of the flowrate in pipes does change in accordance with the chosen initial pipe flow direction: (i) if the flowrate is positive, then it is in accordance with the initial chosen flow direction, and (ii) if the flowrate is negative, then the correct flow direction is contrary to the initial chosen flow direction.

Knowing the flow direction and identifying which pipes flow to each node, it is possible to formulate two pressure difference equations, Eqs. (2) and (3), and realize that the number of formulated equations is equal to the problem degree of freedom.

$$P_{4f} - P_{5f} = 0 (2)$$

$$P_{2f} - P_{3f} = 0 (3)$$

where P_{if} is the outlet pressure of pipe *i*.

For comparison purpose, when solving the same problem with the traditional loop equations, it is necessary to identify the network loops. Analyzing the network, it is possible to identify three pipes arrangements that form loops (P1, P5 and P4; P2, P3 and P5; and P1, P2, P3 and P4), obtaining one surplus loop equation than the required equations to solve the problem.

2.2. Method procedure

Process simulators may roughly be classified into two groups: sequential modular and equation-oriented (Boston et al., 1993). The sequential modular procedure is the one that, given the inlet problem specification, the whole problem is solved sequentially from the first module (unit or equipment) until the last one; while the equation-oriented technique groups all problem equations to solve simultaneously as a system of equations. In the proposed method, a sequential modular procedure is applied to solve some of the equations of the looped pipeline network problem. Since the characteristics of the problem make its entire resolution not possible by the sequential modular procedure without to resort to iterative approaches with tear variables, a reduced set of nonlinear equations are solved simultaneously, just like the equation-oriented procedure, characterizing a simultaneous-modular approach (Chen and Stadtherr, 1985).

Explaining the approach, when the sequential modular procedure reaches a node with K outlets, to satisfy the mass balance, there are K – 1 flowrate variables that need to be guessed; and when Z different pipes flow to a single node, Z – 1 pressure difference equations need to be formulated to obtain a unique node pressure. These approaches are represented in Figs. 2 and 3, respectively, where K – 1 variables and Z – 1 equations are the ones that cannot be solved sequentially, and form the nonlinear system of equations that need simultaneous convergence.

Furthermore, following the modular procedure, the idea of guessing non-specified inlet model variables, which need to feed a model to solve its internal equations just as the guessing of flowrate F_{p2} to solve the Pipe₂ model illustrated in Fig. 2; and the formulation of difference equation to seek the convergence of outlet models variables, which are the outlet information of a model just as the final pressure P_{1f} of the Pipe₁ illustrated in Fig. 3, could be widespread applied for guessing and converging any variable of the network to be solved. These difference equations and outlet flowrate variables need to be incorporated into the nonlinear system of equations in order to solve the whole network problem.

An example of difference equation that can be formulated using the network of Fig. 1 is: if the pressure of the outlet O1 is specified, the difference equation shown in Eq. (4) can be formulated. This procedure also replaces the pseudo-loop equations of traditional approaches (Streeter and Wylie, 1984; Sârbu and Valea, 2011).

$$P_{1f} - P_{01} = 0 \tag{4}$$

As the flow paths in a looped pipeline network can be split in the nodes, a straightforward modular resolution cannot solve the entire network problem. Using the illustration showed in Fig. 2 as example, when the modular procedure reaches the node, the sequential resolution should continue solving one of the downstream pipes (Pipe₂ or Pipe₃). Assuming that the resolution is continued solving Pipe₂, when there is no further downstream model to be solved by the modular procedure, the problem resolution must return to the referred node in order to solve the pipeline path of the Pipe₃.

Generalizing the term "outlet flowrate variable" to any dependent variable that needs to be guessed during the problem resolution and the term "difference equation" to any equation that needs to be formulated to seek the convergence of an outlet model variable, it is possible to propose the pipeline network problem resolution. On the proposed methodology, the problem formulation has to identify dependent variables and the difference equations, for further mathematical resolution of the network models by the simultaneous-modular procedure. This procedure is presented in the flowchart of Fig. 4 for the problem formulation, and in the flowchart of Fig. 5 for the simultaneous-modular resolution.

Following the procedure, attention must be taken in order to formulate a system of equations with zero degree of freedom. If the problem is formulated with only node pressure difference equations and there is no independent variable to be specified, it is verified that the number of obtained dependent variables is always equal to the number of formulated difference equations. However, if an outlet model variable is specified, then a difference equation and a non- specified inlet model variable are necessary to formulate a problem with zero degree of freedom.

The obtained set of nonlinear equations can be solved by numerical procedures, such as the Newton-Raphson method, and its main

Table 2

Pressure difference equations of the looped pipeline network of Fig. 1.

 $\begin{array}{l} {\rm Eq.} \left({2'} \right) \\ \left({P_E - \Delta P_4 } \right) - \left({P_E - \Delta P_1 - \Delta P_5 } \right) \! = \! 0 \\ - \Delta P_4 + \Delta P_1 + \Delta P_5 \! = \! 0 \\ {\rm Eq.} \left({3'} \right) \\ \left({P_E - \Delta P_1 - \Delta P_2 } \right) - \left({P_E - \Delta P_4 - \Delta P_3 } \right) \! = \! 0 \\ - \Delta P_1 - \Delta P_2 + \Delta P_4 + \Delta P_3 \! = \! 0 \\ {\rm Eq.} \left({4'} \right) \\ P_E - \Delta P_1 - P_{02} \! = \! 0 \end{array}$

advantage is grouping some equations with a modular procedure to make possible the simultaneous resolution of a reduced system of equations.

2.3. Pressure difference equations analysis

The pressure difference equations (Eqs. (2)–(4)) of the looped pipeline network of Fig. 1, can be rewritten as shown in Table 2, where P_E is the pressure at the inlet point "E" and the ΔP_i is the pressure drop of pipe *i*.

It is possible to note that Eqs. (2') and (3') are network loop equations, and Eq. (4') is a network pseudo-loop equation. These results show that the pressure difference equations are actually equal to the traditional loop and pseudo-loop equations.

2.4. Process modeling

Aiming the resolution of a pipeline network, it is possible to combine independent models of pipes and nodes to build the whole network. Since the all network models must have their inlets and outlets specified or connected with each other, the formulation of an inconsistent network, where some model presents no inlet or outlet connection, is prevented. Such models characteristics make possible the construction of a network with consistent paths for the sequential modular resolution. Given such paths, the sequential models are searched until the identification of a not solvable path, which must form one equation of the nonlinear system of equations for further simultaneous resolution.

Since these connections represent the flow directions in the network and, during the problem formulation, these directions could not be in accordance with the problem results, the pipe and node models used to build the network also need to handle negative flowrates, which leads to negative pressure drop on pipes. As shown further, these negatives flowrates and pressure drops are not an issue for the proposed method.

2.5. Numerical resolution

In order to start the iterative procedure of the Newton-Raphson method, which is an effective method to solve looped pipeline network problem, good initial guess of the dependent variables are needed to guarantee the problem convergence (Martinez and Puigjaner, 1988; Yeh and Lin, 2008).

Taking this convergence difficulty into account to solve the looped pipeline network problem, it is proposed a procedure to manage its nonlinear system of equations to be solved as an optimization problem. The objective function is the sum of the square of all difference equations of the original nonlinear system of equations. This reformulation makes also possible the employment of non-deterministic optimization techniques, such as Simulated Annealing (Yeh and Lin, 2008; Tospornsampam et al., 2007), Genetic Algorithm, and Particle Swarm (Kennedy and Eberhart, 1995), which have no need of initial guess.

Fig. 2. Illustration of guessed outlet flowrate variables.

Pipe₂

Fig. 3. Illustration of pressure difference equation formulation.

The objective function of the network problem formed by Eqs. (2)-(4) is written in Eq. (5), where the dependent variables are the same variables from the original system of equations.

$$OF = (P_{4f} - P_{5f})^2 + (P_{2f} - P_{3f})^2 + (P_{1f} - P_{01})^2$$
(5)

Despite the attenuation of good initial guess, the optimization resolution has as drawback the high computational cost. Thus, its employment is recommended to obtain an approximate problem solution, finding better values for the dependent variables, to be used as initial guess for the Newton-Raphson procedure, but only if the straight Newton-Raphson employment does not converge.

2.6. Further comments of the proposals

One of the major advantages of the proposed procedure relays on the no need of loop identification in order to formulate the loop equations and solve the problem. Following the simultaneousmodular formulation problem procedure showed in Fig. 4, the pressure difference equations, which are, according to Section 2.3, equivalent to the loop equation, are automatically identified. Thus, differently of the existing methods, this proposal allows to formulate the whole problem with a systematic procedure that can be computationally implemented. This characteristic also makes possible the integration of the loop network problem with a process simulation problem, just as the third case study shown in Section 3.3 bellow.

After the problem formulation, the simultaneous-modular resolution procedure, showed in Fig. 5, groups all identified pressure difference equations and dependent variables to form the representative nonlinear system of equations to be solved. Differently of the existing methods that solve the problem as a unique system of equations, the proposed procedure solves, in each iteration, all sequential parts of the network problem, in order to compute the pressure difference equations values, and also the Jacobian matrix, in order to consider the influence of all dependent variables of the problem. Furthermore, the proposed procedure allows any network variable to be set as dependent variable, without changing the procedure characteristic. This feature enables pressure of network inlet nodes and other pipes flowrate to be set together as dependent variables, just as shown in the further big looped pipeline network case study.

3. Case studies

The proposed procedure was applied to solve three different problems. The first two problems, representing a small and a big looped water pipeline network, were obtained from Yeh and Lin (2008); and the third problem was built to show the methodology applyed to solve a looped pipeline network commonly found in industrial instalations with large pumps flowing oil.

3.1. Small looped pipeline network

The small looped pipeline network to be solved is shown in Fig. 6, where the pipes are identified by "Pi", the nodes by "Ni", the inlet by "E" and outlets by "Oi". The physical characteristics of the pipes, required for the problem resolution, are shown in Table 3 and the flow direction in pipes, required to obtain the pressure diference equations, are sketched in Table 4.

In order to solve the problem, it is necessary to specify X + Y independents variables, where X = 1 and Y = 7 are equal to the number of the network inlets and outlets, respectively, that could be both

Fig. 4. Flowchart of the simultaneous-modular problem formulation procedure.

Table 3	
Physical characteristics of the pipes in Fig	6 (small network)

Pipe	Length (m)	Diameter (m)
P1	1000	0.305
P2	1000	0.305
РЗ	1100	0.250
P4	1250	0.405
Р5	500	0.200
P6	400	0.400
P7	500	0.200
P8	400	0.355
Р9	600	0.355
P10	1100	0.305
P11	1250	0.305

Table 4

Flow directions in pipes of Fig. 6 (small network).

P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11
←	\downarrow	\rightarrow	\downarrow	\rightarrow	\uparrow	\rightarrow	\downarrow	↑	\rightarrow	\downarrow

pressure or flowrate values. At the present problem, as shown in Table 5, the inlets and outlets pressures obtained from Yeh and Lin (2008) were chosen, with P_{if} meaning the final pressure of pipe i.

 Table 5

 Specified variables for the small petwork of Fig. 6

Specifical variables for the small network of Fig. 6.			
P _{N1} = 980.7 kPa	P _{5f} = 871.2 kPa		
$P_{1f} = 897.6 \text{kPa}$	P _{7f} = 870.9 kPa		
P _{2f} = 850.8 kPa	P _{10f} = 843.0 kPa		
P _{4f} =890.4 kPa	P _{11f} =778.9 kPa		

Since the final pressure of the pipe is an outlet model result, each specified outlet pressure formulates one pseudo-loop pressure difference equation. The specification of all outlet pressure leads to a problem with the highest number of pressure difference equations.

Starting the problem resolution at the N1 node (network inlet), it is verified that the inlet flowrate ("E" flowrate), not specified, is split into two outlets. Following the modular procedure, to start the problem resolution, the inlet flowrate and one of its outlet flowrates must be guessed, being dependent variables of the problem (E and P1 flowrates), while the other outlet N1 node flowrate (P4 flowrate) needs to be obtained from the node mass balance to allow the pressure drop calculation of pipes P1 and P4. In order to emphasize that no restriction is imposed to the equations to be used in the problem formulation, differently from Yeh and Lin (2008) that used the Hazen-Williams, the pressure drop calculation was carried out

Fig. 5. Flowchart of the simultaneous-modular problem resolution procedure.

Fig. 6. Small looped pipeline network.

employing the Darcy-Weisbach Eq. (6), adapted to handle negative flowrate values.

$$\Delta P_i = \frac{f\rho L_i v_i |v_i|}{2D_i} \tag{6}$$

where ΔP_i is the pressure drop (Pa) of pipe *i*, *f* is the Darcy factor (dimensionless and calculated according to the Churchill (1977) equation), L_i is the pipe length (m), *D* is the pipe inner diameter (m), $v = 4F/(\pi D^2)$ is the fluid velocity (m/s), *F* is the flowrate (m³/s) and ρ is the fluid specific mass (kg/m³).

Knowing the entrance pressure (P_{N1}) and the P1 pressure drop, it is possible to obtain the P1 final pressure, which needs to be converged to the specified value (P_{1f} presented in Table 5) employing the respective pressure difference equation for the pipeline pseudo-loop. The P2 final pressure follows the same procedure already described, where one of the O1 or P2 flowrates must be guessed while the other is obtained by the N2 node mass balance. Following the procedure, when two or more pipes end on a single node, all final pressures must have the same value, which is guaranteed by the employment of the pressure difference equations for the pipeline loops.

Table 6 Difference equations and dependent variables of the small network

-	billerence equations and dependent variables of the small network.		
	Dependent variables	$F_{\rm E},F_{\rm P1},F_{\rm P3},F_{\rm P5},F_{\rm O1},F_{\rm O2},F_{\rm O3},F_{\rm O4},F_{\rm O5}$ and $F_{\rm O6}$	
	Eq. (1)	$P_{3f} - P_{4f} = 0$	
	Eq. (2)	$P_{5f} - P_{6f} = 0$	

Eq. (3)	$P_{8f} - P_{9f} = 0$
Eq. (4)	P_{1f} (calculated) – P_{1f} (given) = 0
Eq. (5)	P_{2f} (calculated) – P_{2f} (given) = 0
Eq. (6)	P_{11f} (calculated) – P_{11f} (given) = 0
Eq. (7)	P_{10f} (calculated) – P_{10f} (given) = 0
Eq. (8)	P_{4f} (calculated) – P_{4f} (given) = 0
Eq. (9)	P_{5f} (calculated) – P_{5f} (given) = 0
Eq. (10)	P_{7f} (calculated) – P_{7f} (given) = 0

Table 7

Sequential equations of the problem for the small network.

Mass Balance N1	$F_{E} = F_{P1} + F_{P4}$
Mass Balance N2	$F_{P1} = F_{O1} + F_{P2}$
Mass Balance N3	$F_{P2} = F_{O2} + F_{P3} + F_{P11}$
Mass Balance N4	$F_{P4} + F_{P3} = F_{O6} + F_{P5} + F_{P8}$
Mass Balance N5	$F_{P5} + F_{P6} = F_{O7}$
Mass Balance N6	$F_{P7} = F_{P5} + F_{O5}$
Mass Balance N7	$F_{P8} + F_{P9} = F_{P7}$
Mass Balance N8	$F_{P10} = F_{P9} + F_{O4}$
Mass Balance N9	$F_{P11} = F_{P10} + F_{O3}$
Final Pressure P1	$P_{1f} = P_{N1} - \Delta P_1$
Final Pressure P2	$P_{2f} = P_{1f} - \Delta P_2$
Final Pressure P3	$P_{3f} = P_{2f} - \Delta P_3$
Final Pressure P4	$P_{4f} = P_{N1} - \Delta P_4$
Final Pressure P5	$P_{4f} = P_{4f} - \Delta P_5$
Final Pressure P6	$P_{7f} = P_{7f} - \Delta P_6$
Final Pressure P7	$P_{7f} = P_{8f} - \Delta P_7$
Final Pressure P8	$P_{8f} = P_{4f} - \Delta P_8$
Final Pressure P9	$P_9 f = P_{10f} - \Delta P_9$
Final Pressure P10	$P_{10f} = P_{11f} - \Delta P_{10}$
Final Pressure P11	$P_{11f} = P_{2f} - \Delta P_{11}$

At the end of the described procedure, it was identified 10 dependent variables, three pressure difference equations for the pipeline loops and six pressure difference equations for the pipeline pseudo-loops. The identified equations and dependent variables, shown in Table 6, formulate the nonlinear system of equations that must be solved simultaneously.

It is important to note that the equations presented in Table 6 group all sequential equations, representing the whole problem. The sequential equations of the problem are shown in Table 7, where the pressure drops are evaluated by Eq. (6). Since it is a water pipeline problem, the fluid properties were considered constants (specific mass equal to 1000 kg/m^3 and viscosity of 0.89 cP).

The procedure was implemented in MATLAB software and the *fsolve* function was used to solve the nonlinear system of equations. A value of $1 \text{ m}^3/\text{h}$ was guessed for all dependent variables and the convergence criterion was set to 10^{-8} . In order to improve the convergence properties, the residuals of all pressure difference equations were squared. The results are shown in Table 8.

It is observed that some obtained flowrate variables have negative value, indicating that the flow direction at the problem solution is contrary to the initial choice (Table 4). As expected, the obtained results are in accordance with the ones presented by Yeh and Lin (2008), despite the use of the Darcy-Weisbach equation. The objective function value (OF) also indicates that the obtained results are the right problem solution, having also good accuracy.

3.2. Big looped pipeline network

The looped water pipeline network of this case study is shown in Fig. 7. The network was solved using the Hazen-Williams pressure drop Eq. (7), adapted to handle negative flowrates, where the pipes

Table 8

Variables	Results
P _{1f}	897.6 kPa
P _{2f}	850.8 kPa
P _{3f}	890.4 kPa
P _{4f}	890.4 kPa
P _{5f}	871.2 kPa
P _{6f}	871.1 kPa
P _{7f}	870.8 kPa
P _{8f}	871.1 kPa
P _{9f}	871.1 kPa
P _{10f}	843.1 kPa
P _{11f}	778.9 kPa
F _{P1}	0.1409 m ³ /s
F _{P2}	0.1042 m ³ /s
F _{P3}	$-0.0537 \mathrm{m}^3/\mathrm{s}$
F _{P4}	0.2758 m ³ /s
F _{P5}	0.0308 m ³ /s
F _{P6}	$-0.0223 \mathrm{m}^3/\mathrm{s}$
F _{P7}	0.0026 m ³ /s
F _{P8}	0.1580 m ³ /s
F _{P9}	$-0.1553 \mathrm{m}^3/\mathrm{s}$
F _{P10}	$-0.1171 \text{ m}^3/\text{s}$
F _{P11}	0.1163 m ³ /s
OF Value	$0.4121 imes10^{-6}$
Nº of iterations	27

physical characteristics are shown in Table 9, the guesses of the flow directions in pipes are shown in Table 10, and the specified independent variables are shown in Table 11.

$$\frac{h_{f,i}}{L_i} = \frac{10.67Q_i |Q_i|^{0.85}}{C_i^{1.85} d_i^{4.87}} \tag{7}$$

where $h_{f,i}$ is the head loss (meters of water), L_i the length of pipe (m), Q_i the volumetric flowrate (m³/s), C_i the pipe roughness coefficient (dimensionless), and d_i is the inner pipe diameter (m) of the pipe *i*.

The network degrees of freedom, to be covered by the pressure difference equations, are given by Eq. (1). The identification, by Fig. 7, that node N2 is a reservoir precludes the direct use of a node mass balance equation, as done on other network nodes. To model the reservoir, it is needed to consider the N2 node as three independent nodes, as it has three inlets or outlet connections, with pressure equal to the specified N2 pressure (897 kPa). Thus, it is assumed a network with 50 nodes and 75 pipes, obtaining a problem with 25 degrees of freedom.

Following the modular procedure and analyzing the specified variables and the flow directions in pipes, it is verified that three final pressures variables were specified (P_{3f} , P_{4f} and P_{10f} , which is equal to P_{N2}), leading to three pressure difference equations for the pseudo-loops. Just as in the previously examples, the identification of one pseudo-loop lead to one more pressure difference equation and one more dependent variable. It is also verified that two network inlet pressures (P_{N31} that is equal to the inlet pressure of P_{31i} and P_{N9} that is equal to the inlet pressure of P_{43i}) were not specified. In this case, following the steps to formulate the network problem, presented in Fig. 4, these inlet pressures must be set as dependent variables and, to formulate a solvable problem, two more difference pressure equations must be added to the problem.

Since the problem has 25 degrees of freedoms due to its loops, 3 variables that must be converged due to the pseudo-loops, and 2 variables that must be converged due to the problem specifications, it is expected 30 pressure difference equations and 30 dependent variables for the problem. Following the problem formulation of the proposed procedure, Fig. 4, it is obtained exactly the right number of pressure difference equations and dependent variables, as shown in Table 12.

Table 9

Physical characteristics of the pipes of Fig. 7 (big network).

Pipe	P1	P2	Р3	P4	P5	P6
Length	240 m	60 m	1830 m	3550 m	1220 m	640 m
Diameter	0.95 m	0.90 m	1.45 m	1.15 m	1.45 m	1.45 m
HW Coef.	120	110	130	135	130	130
Pipe	P7	P8	Р9	P10	P11	P12
Length	640 m	60 m	50 m	3660 m	60 m	60 m
Diameter	0.90 m	0.9 m	1 m	0.9 m	0.9 m	1 m
HW Coet.	110	110	110	115	110	110
Pipe	P13	P14	P15	P16	P17	P18
Length	800 m	3140 m	3140 m	3140 m	60 m	60 m
Diameter	0.9 m	1.45 m	1.15 m	1.65 m	0.9 m	1 m
niw coel.	115	150	150	155	110	110
Pipe	P19	P20	P21	P22	P23	P24
Length	2300 m	60 m	4040 m	60 m	4050 m	4050 m
Diameter	0.8 m	0.9 m	1.15 m	0.9 m	0.8 m	1.15 m
HW COEL	115	110	130	110	115	130
Pipe	P25	P26	P27	P28	P29	P30
Length	60 m	60 m	2150 m	180 m	2980 m	2980 m
Diameter	0.9 m	0.9 m	0.8 m	0.8 m	1.45 m	1.45 m
HW Coef.	110	110	110	110	135	135
Pipe	P31	P32	P33	P34	P35	P36
Length	12000 m	670 m	60 m	13400 m	80 m	4290 m
Diameter	1.65 m	0.95 m	1 m	1.65 m	0.90 m	0.95 m
HW Coef.	135	110	110	135	110	120
Pipe	P37	P38	P39	P40	P41	P42
Length	4290 m	60 m	2590 m	60 m	2960 m	2960 m
Diameter	0.9 m	0.05 m	0.95 m	0.05 m	0.9 m	1.15 m
HW COEL	115	110	120	110	115	135
Pipe	P43	P44	P45	P46	P47	P48
Length	2280 m	370 m	90 m	60 m	1610 m	60 m
Diameter HWCoof	1.15 m	0.95 m	1 m 120	0.05 m	0.9 m	0.05 m
niw coci.	150	120	150	110	115	110
Pipe	P49	P50	P51	P52	P53	P54
Length	1350 m	2960 m	6530 m	60 m	230 m	7200 m
Diameter	0.95 m	0.05 m	0.95 m	0.9 m	0.95 m	0.95 m
HW COEL	115	120	120	110	120	120
Pipe	P55	P56	P57	P58	P59	P60
Length	60 m	3200 m	4300 m	3200 m	80 m	90 m
Diameter HW Coof	1 m 110	1.15 m	1.45 m	1.15 m	0.8 m	0.75 m
niw coel.	110	155	155	155	115	150
Pipe	P61	P62	P63	P64	P65	P66
Length	2050 m	2380 m	3050 m	670 m	60 m	60 m
Diameter HW Coef	0.95 m 120	0.8 m 115	1.15 m 135	0.05 m 115	0.05 m 110	0.05 m 110
	120	115	155	115	110	110
Pipe	P67	P68	P69	P70	P71	P72
Length	1830 m	60 m	1950 m	3780 m	60 m	60 m
Diameter HW Coef	U.8 m 115	0.9 m 110	U.8 m 115	0.95 m 120	0.05 m 110	0.9 m 120
	.15	. 10	. 15	120	. 10	120
Pipe	P73	P74				
Length	4290 m	60 m				
Diameter HW/ Coef	1.15 m 135	0.05 m 110				
nvv coel.	100	110				

Fig. 7. Big looped pipeline network.

The procedure was implemented in MATLAB software and the *fsolve* function was used to solve the nonlinear system of equations. A value of 1 m^3 /h was guessed for all dependent variables and the convergence criterion was set to 10^{-8} . In order to improve the convergence properties, the residuals of all pressure difference equations were squared. The results are shown in Table 13.

The obtained results are in accordance with the ones presented by Yeh and Lin (2008), where the objective function value highlights the accuracy. The big network problem was also solved with the PSO non-deterministic optimization algorithm (Kennedy and Eberhart, 1995), where the results were used as initial guesses for the nonlinear system of equations resolution that converged with lower number of Newton-Raphson iterations to the same results presented in Table 13.

3.3. Industrial installation with lopped pipeline network

A looped pipeline network commonly found in industrial installation with high-capacity pumps (large flowrate and high discharge pressure) used for oil transfer through ducts is solved. The system, shown in Fig. 8, is composed by pipe arrangement for the oil recirculation done by two groups of pumps, connected in series, suctioning from an oil tank. The series connection of booster pumps on the suction of the main pumps is to attend the main pumps high-required NPSH (Net Positive Suction Head), and the pipes arrangement forms the loop configuration to connect the pumps discharges to their suctions allowing the oil recirculation.

For both groups of pumps, the recirculation procedure is needed on the pumps starts to minimize their required potency and avoid possible electric damages, which could cause fire and/or others fur-

Fig. 8. Industrial lopped pipeline network.

Table 10 (Continued)

Table 10Flow directions in pipes of Fig. 7 (big network)

Flow directions in pipes of Fig. 7 (big network).					
		Pipe	Direction		
Ріре	Direction	P38	↑		
P1	\downarrow	P39	Ļ		
P2	↑	P40	\leftarrow		
Р3	\leftarrow	P41	\downarrow		
P4	↑	P42	\downarrow		
P5	\leftarrow	P43	\downarrow		
P6	\leftarrow	P44	\leftarrow		
P7	\downarrow	P45	\downarrow		
P8	↑	P46	\downarrow		
Р9	\rightarrow	P47	\downarrow		
P10	\downarrow	P48	~		
P11	\rightarrow	P49	\downarrow		
P12	↑	P50	\downarrow		
P13		P51	Ļ		
P14	↑	P52	\rightarrow		
P15	↑	P53	\rightarrow		
P16	 ↑	P54	\downarrow		
P17	\downarrow	P55	\downarrow		
P18	<u>↑</u>	P56	~		
P19		P57	<u> </u>		
P20	Ļ	P58	<u> </u>		
P21	\rightarrow	P59	<u> </u>		
P22	\rightarrow	P60	\downarrow		
P23	↑	P61	~		
P24	 ↑	P62	\downarrow		
P25	 ↑	P63	1		
P26	~	P64	~		
P27	↑	P65	↑		
P28	\rightarrow	P66	1		
P29	↑.	P67	~		
P30	 ↑	P68	\downarrow		
P31	\downarrow	P69	\downarrow		
P32	↑	P70	~		
P33	Ļ	P71	↑		
P34	Ļ	P72	↓		
P35	↑	P73	Ļ		
P36	Ļ	P74	~		
P37	Ļ				

R. Raoni et al. / Computers and Chemical Engineering 96 (2017) 169–182

Table 13

Results of the big network problem.

 Table 11

 Specified variables for the big network.

	0
P _{N1}	1363 kPa
P _{N2}	897 kPa
F _{E1}	1.620370 m ³ /s
F _{E2}	1.620370 m ³ /s
F ₀₁	0.016203 m ³ /s
F _{O2}	0.023148 m ³ /s
F _{O3}	0.138888 m ³ /s
F _{O4}	0.254629 m ³ /s
F _{O5}	0.092592 m ³ /s
F ₀₆	0.012731 m ³ /s
F ₀₇	0.104166 m ³ /s
F _{O8}	0.017361 m ³ /s
F ₀₉	0.162037 m ³ /s
F ₀₁₀	0.104166 m ³ /s
F ₀₁₁	$0.074074 m^3/s$

Table 12

Difference equations and dependent variables of the big network.

Num.	Equations	Variables
1	$P_{51f} - P_{52f} = 0$	F _{P1}
2	$P_{50f} - P_{43f} = 0$	F _{P53}
3	$P_{50f} - P_{48f} = 0$	F _{P52}
4	$P_{46f} - P_{45f} = 0$	F _{P48}
5	$P3_{8f} - P_{42f} = 0$	F _{P46}
6	$P_{35f} - P_{42f} = 0$	F _{P44}
7	$P_{40f} - P_{39f} = 0$	F _{P38}
8	$P_{36f} - P_{72f} = 0$	F _{P40}
9	$P_{74f} - P_{36f} = 0$	F _{P35}
10	$P_{71f} - P_{73f} = 0$	F _{P71}
11	$P_{14f} - P_{8f} = 0$	F _{P69}
12	$P_{68f} - P_{66f} = 0$	FP65
13	$P_{63f} - P_{61f} = 0$	F _{P66}
14	$P_{60f} - P_{61f} = 0$	FP68
15	$P_{64f} - P_{62f} = 0$	F _{P56}
16	$P_{55f} - P_{58f} = 0$	F _{P60}
17	$P_{28f} - P_{2f} = 0$	F _{P59}
18	$P_{28f} - P_{25f} = 0$	F _{P26}
19	$P_{26f} - P_{29f} = 0$	F _{P25}
20	$P_{27f} - P_{21f} = 0$	F _{P2}
21	$P_{20f} - P_{21f} = 0$	F _{P17}
22	$P_{24f} - P_{22f} = 0$	F _{P19}
23	$P_{13f} - P_{12f} = 0$	F _{P20}
24	$P_{15f} - P_{9f} = 0$	F _{P18}
25	$P_{7f} - P_{9f} = 0$	F _{P9}
26	$P_{8f} - P_{11f} = 0$	F _{P7}
27	$P_{3f} - P_{4f} = 0$	F _{P10}
28	$P_{10f} - P_{3f} = 0$	F _{P8}
29	$P_{3f} - P_{N2} = 0$	P _{N9}
30	$P_{70f} - P_{65f} = 0$	P _{N31}

thers undesirable consequences. To stabilize the pumps discharge and suction pressure, a pipe accident (the restriction orifice) is used to obtain the required pressure drop. The restriction orifice equations are found in standards as EN ISO-5167. Both groups of pumps (main and booster pumps) have their own recirculation systems, designed to operate with only one pump at time, and using the orifice arrangement with two restriction orifices in series.

Analyzing the system, it is easy to identify two pipes that end at a same node, the pipes 13 and 1, and a pipe with final pressure equal to the oil column in the tank, the pipe 10. The difference equations and the dependent variables of this problem are shown in Table 14, and the problem specifications are shown in Table 15.

The procedure was implemented in MATLAB software and the *fsolve* function was used to solve the nonlinear system of equations. A value of $1 \text{ m}^3/\text{h}$ was guessed for all dependent variables and the convergence criterion was set to 10^{-8} . In order to improve the convergence properties, the residuals of all pressure difference equations were squared. The results are shown in Table 16.

P(kPa) F(m ² /s) P1 1362.2588 0.250626 P2 955.6615 0.134666 P3 896.6340 0.820946 P5 904.6488 1.667346 P5 901.178 1.413296 P7 911.4383 0.0236781 P8 911.2166 0.336781 P10 896.6340 0.8230073 P11 911.2166 0.3360731 P12 911.4657 0.161393 P14 911.2166 0.381071 P15 911.4383 0.518678 P16 911.7924 1.159398 P17 917.4479 0.202430 P18 916.0696 1.159398 P17 917.4479 0.27893 P22 917.5234 0.44330 P24 917.5234 1.27590 P25 958.6155 0.16497 P26 958.5135 1.41382 P17 958.5135 1.41382 P14 1003.66560	Pipe	Results	
P1 1362.2588 0.250626 P2 958.4615 0.134666 P3 886.6340 0.216537 P4 896.6340 0.210537 P5 904.6488 1.667946 P6 902.1178 1.413296 P7 911.4383 0.023051 P8 911.2166 0.336781 P9 914.4383 0.615998 P10 896.6340 0.361295 P11 911.2166 0.350073 P12 911.4383 0.51878 P14 911.2166 0.350073 P15 911.4383 0.51878 P16 911.724 1.159398 P17 917.4479 0.196712 P13 916.0696 1.153938 P19 912.4507 0.191019 P21 917.5734 0.227309 P32 917.5314 0.474330 P34 917.5314 0.275790 P25 958.4615 0.164997 P24		P(kPa)	F (m ³ /s)
P2 958.4615 0.134665 P3 896.6340 1.216337 P4 896.6340 0.820946 P5 904.6488 1.667946 P6 902.1178 1.41329 P7 911.4383 0.023051 P8 911.2166 0.336781 P9 911.4657 0.543399 P10 896.6340 0.316781 P11 911.2166 0.38073 P13 911.4557 0.191019 P14 911.2166 0.981071 P15 911.4383 0.518678 P16 911.7924 1.159398 P17 917.4479 0.126512 P18 916.0696 1.159398 P19 912.4507 0.191019 P20 917.5234 0.04081 P23 917.5381 0.414630 P24 917.5381 0.414677 P25 958.4615 0.164997 P26 958.5135 1.41075 P27 958.5135 1.41382 P28 958.5413 0.00727	P1	1362.2588	0.250626
P3 8966340 1.216537 P4 8966340 0.820946 P5 904.6488 1.667346 P6 902.1178 1.413296 P7 911.4383 0.023057 P8 911.2166 0.336781 P9 911.4383 0.615998 P10 8966340 0.350073 P12 911.4657 0.15138 P14 911.2166 0.350073 P15 911.4383 0.518678 P16 911.7924 1.159398 P17 917.4479 0.22430 P18 916.0696 1.159398 P13 917.5234 0.04981 P24 917.5234 0.275789 P23 917.531 0.414330 P24 917.5234 0.257889 P25 958.5135 1.41075 P26 958.5135 1.411382 P27 958.5341 0.000816 P28 958.4615 0.16497 P29	P2	958.4615	0.134666
14 3506.540 0.620340 PS 906.6488 1.667346 PS 901.178 1.413296 PS 911.2166 0.336781 PS 911.4383 0.615998 P10 896.6340 0.361295 P11 911.2166 0.330737 P12 911.4657 0.13109 P14 911.2166 0.381071 P15 911.4383 0.518678 P16 911.7924 1.15998 P17 917.4479 0.196712 P18 916.0696 1.159398 P19 912.4507 0.19119 P20 917.4479 0.196712 P21 917.5234 0.040881 P22 917.5381 0.434300 P24 917.5381 0.43430 P25 958.4615 0.164997 P26 958.5135 1.41075 P27 958.533 1.41075 P30 958.5135 1.41382 P31	P3	896.6340	1.216537
P6 902.1178 1.41230 P7 911.4383 0.023051 P8 911.2166 0.336781 P9 911.4383 0.615988 P10 896.6340 0.361295 P11 911.2166 0.350073 P12 911.4657 0.191019 P14 911.2166 0.8981071 P15 911.4333 0.518678 P16 911.7924 1.159398 P17 917.4479 0.202430 P18 916.0696 1.159398 P19 912.4507 0.191019 P21 917.4479 0.196712 P23 917.5234 0.27590 P24 917.5234 0.27590 P25 958.4615 0.164997 P25 958.4615 0.164997 P29 958.5135 1.41382 P31 006.6060 1.620370 P32 967.555 0.257589 P33 1002.4810 0.80313 P34 <td>P4 P5</td> <td>904 6488</td> <td>0.820946</td>	P4 P5	904 6488	0.820946
P7 911.4383 0.023061 P8 911.21266 0.336781 P10 896.6340 0.361295 P11 911.2166 0.330073 P12 911.4657 0.543399 P13 911.4657 0.543399 P14 911.2166 0.981071 P15 911.4383 0.6518678 P16 911.7924 1.159398 P17 917.4479 0.202430 P18 916.6096 1.159398 P19 912.4507 0.191019 P20 917.4479 1.278934 P22 917.5331 0.444330 P24 917.5331 0.4443130 P24 917.5331 0.444931 P24 917.5331 0.448130 P27 958.615 0.140997 P28 958.5135 1.411382 P31 0.366.660 1.520370 P23 967.7565 0.25789 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1435.933	P6	902.1178	1.413296
P8 911.2166 0.336781 P9 911.4383 0.615998 P10 896.6340 0.361295 P11 911.2166 0.350073 P12 911.4657 0.910199 P14 911.2166 0.981071 P15 911.4383 0.518678 P16 911.7924 1.159398 P17 917.4479 0.202430 P18 916.06366 1.159398 P19 912.4507 0.191019 P20 917.4479 0.196712 P21 917.4479 0.134667 P22 917.5234 0.434330 P23 917.5234 0.227589 P24 917.5234 0.275789 P25 958.4615 0.164997 P29 958.5135 1.41175 P30 958.5135 1.41382 P31 1036.6060 1.62370 P32 967.7565 0.257889 P33 1002.4810 0.83819 P34 1035.6060 1.62370 P35 1195.3534	P7	911.4383	0.023051
P9 911.4383 0.615988 P10 856.540.0 0.361255 P11 911.2166 0.530073 P12 911.4657 0.191019 P14 911.2166 0.981071 P15 911.4383 0.518678 P16 911.7224 1.159398 P17 917.4479 0.196712 P17.4479 0.196712 P21 917.4479 0.196712 P22 917.5234 0.43930 P24 917.523 0.000281 P27 958.5135 0.410175 P36 958.5135 1.410175 P31 1036.6660 1.620370 P32 967.7565 0.25788 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 195.5334 0.005646	P8	911.2166	0.336781
P10 \$96,540 0.30073 P11 911,2166 0.30073 P12 911,4657 0.543399 P13 911,4657 0.518678 P16 911,7924 1.159398 P17 917,4479 0.202430 P18 916,0666 1.159398 P19 912,4507 0.191019 P20 917,4479 0.202430 P17 917,5341 0.434330 P22 917,5351 0.444330 P23 917,5351 0.444330 P24 917,5351 0.146497 P25 958,4615 0.146497 P26 958,5135 1.410175 P30 958,5135 1.410175 P31 103,66060 1.620370 P32 967,7565 0.227589 P33 1002,4810 0.80319 P34 103,1657 1.607639 P39 1195,3534 0.0574825 P37 1343,5913 0.217170 P38 1195,3534 0.05646 P41 1350,5813	P9	911.4383	0.615998
P12 911.4657 0.543399 P13 911.4657 0.191019 P14 911.2166 0.981071 P15 911.4383 0.518678 P16 911.7924 1.159398 P17 917.4479 0.202430 P18 916.6696 1.159398 P17 917.4479 0.196712 P21 917.4479 0.196712 P22 917.5234 0.048811 P23 917.5234 0.448430 P24 917.5234 0.448430 P25 958.4615 0.144677 P26 958.5135 1.410175 P26 958.5135 1.410175 P30 958.5135 1.410175 P31 1036.6660 1.620370 P32 967.7565 0.257889 P33 1002.4810 0.803819 P34 1035.6581 0.23170 P35 195.5334 0.05646 P36 1155.5034 0.055646 <	P10 P11	911 2166	0.361295
P13 911.4657 0.191019 P14 911.2166 0.981071 P15 911.4383 0.516678 P16 911.7924 1.53938 P16 917.7479 0.202430 P18 916.0696 1.159398 P19 912.4507 0.191019 P20 917.4479 0.13731 P21 917.5234 0.040881 P22 917.5234 0.134657 P24 917.5234 1.275790 P25 958.6155 0.134657 P26 958.5135 1.410175 P26 958.5135 1.410175 P30 958.5135 1.410175 P31 036.6060 1.620370 P28 958.5135 1.410175 P30 925.5135 1.410175 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.83819 P34 103.1657 1.607639 P35 1155.3534 0.005646 P39 1155.3534	P12	911.4657	0.543399
P14 911.2166 0.981071 P15 911.4383 0.518678 P16 911.7924 1.159398 P17 917.4479 0.020430 P18 916.06966 1.159398 P19 912.4507 0.191019 P20 917.4479 0.196712 P21 917.4479 1.278934 P22 917.5234 0.040881 P23 915.5315 0.134667 P24 917.5234 1.275790 P25 958.4615 0.164997 P26 958.5135 1.41382 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.005646 P39 1195.3534 0.005646 P41 1350.0581 0.223001 P32 135.354 0.23700 P44 1215.5453 1.620370 P44 1350.581 0.223001 P35 1.95.3534 <td>P13</td> <td>911.4657</td> <td>0.191019</td>	P13	911.4657	0.191019
P15 911.4333 0.518678 P16 911.7924 1.153388 P17 917.4479 0.202430 P18 916.0696 1.159388 P19 912.4507 0.191019 P20 917.4479 1.278934 P21 917.5234 0.040881 P23 917.5234 1.275780 P24 917.5234 1.275780 P25 958.4615 0.134667 P26 958.5135 1.40175 P26 958.5135 1.40175 P29 958.5135 1.410175 P30 958.5135 1.40175 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.80819 P34 1003.1657 1.607639 P35 1.195.3534 0.005646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P39 1357.8619 <td>P14</td> <td>911.2166</td> <td>0.981071</td>	P14	911.2166	0.981071
17 917.4479 1.2324 P17 917.4479 0.202430 P18 916.0696 1.15938 P19 912.4507 0.191019 P20 917.4479 0.27834 P21 917.4479 0.27834 P22 917.5234 0.040881 P23 917.5234 0.277590 P25 958.4615 0.134657 P26 958.5135 1.410175 P27 958.5135 1.410175 P30 958.5135 1.410175 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.077825 P37 1343.5913 0.211710 P38 1195.3534 0.05646 P40 1195.3534 0.05648 P41 1350.0581 0.223001 P42 1195.3534 0.05648 P43 1215.5453 0.003562 P44 1215.8453	P15	911.4383	0.518678
P18 916.0696 1.15938 P19 912.4507 0.196712 P20 917.4479 1.278934 P22 917.5234 0.040881 P23 917.5381 0.434330 P24 917.5234 1.275790 P25 958.4615 0.134667 P26 958.5135 0.000281 P27 958.7002 0.257589 P28 958.5135 1.41382 P31 10366060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 195.3534 0.006646 P38 195.3534 0.005646 P39 195.3534 0.005646 P33 1195.3534 0.005646 P34 1215.5453 1.0223001 P44 1212.5554 0.23706 P45 1214.3250 0.005362 P46 1214.3250 0.005362 P44 1212.55543 0.005337 P49 1359.7690 </td <td>P17</td> <td>917.4479</td> <td>0.202430</td>	P17	917.4479	0.202430
P19 912,4507 0.191019 P20 917,4479 0.136712 P21 917,5234 0.040881 P23 917,5234 0.040881 P24 917,5234 1.278934 P25 958,4615 0.134667 P26 958,5135 0.000281 P27 958,5035 0.164997 P28 958,615 0.164997 P29 958,5135 1.410175 P30 958,5135 1.410175 P31 1036,6060 1.620370 P32 967,7565 0.257889 P33 1002,4810 0.803819 P34 1003,1657 1.607639 P35 1195,3334 0.0577825 P37 1343,5913 0.211710 P38 1195,3334 0.05646 P41 1350,0581 0.223001 P32 195,334 0.05646 P41 1350,0581 0.233700 P44 1212,8554 0.007322 P37 1353,9621 0.233700 P44 1215,5453 </td <td>P18</td> <td>916.0696</td> <td>1.159398</td>	P18	916.0696	1.159398
P20 917.4479 0.196712 P21 917.4279 1.278934 P22 917.5234 0.040881 P23 917.5234 1.275790 P25 958.615 0.134667 P26 958.5135 0.000281 P27 958.5135 1.410175 P28 958.6165 0.164997 P29 958.5135 1.4110175 P30 958.5135 1.411382 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.005646 P34 1195.3534 0.005646 P41 13500581 0.223001 P42 1195.3534 0.005646 P41 1350.0581 0.223001 P42 1195.3534 0.005361 P44 1212.85543 0.005337 P44 1212.8543 0.005362 P45 1214.3250 0.0323700 P46 1214.	P19	912.4507	0.191019
P21 917.4479 1.278934 P22 917.5234 0.040881 P23 917.5234 0.434330 P24 917.5234 1.275790 P25 958.4615 0.134667 P26 958.5135 0.000281 P27 958.7902 0.257589 P28 958.4615 0.164997 P29 958.5135 1.4110175 P30 958.5135 1.41382 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.006846 P36 1195.3534 0.005646 P39 1195.3534 0.05646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P30 135.5453 0.005362 P40 135.5453 0.005362 P41 121.55453	P20	917.4479	0.196712
122 917.5381 0.040851 P23 917.5381 0.434330 P24 917.5381 0.134667 P25 958.4615 0.134667 P26 958.5135 0.00281 P27 958.7902 0.257589 P28 958.615 0.164997 P29 958.5135 1.410175 P30 958.5135 1.413882 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.005646 P36 1195.3534 0.005646 P41 1350.0211710 1395.648 P33 1215.5453 1.620370 P44 1212.8554 0.005646 P41 1350.05811 0.223010 P42 1195.3534 0.005646 P43 1215.5453 0.005337 P44 1212.8543 0.053362 P45 1214.3250 0.033362 P44 121	P21	917.4479	1.278934
P24 917.5234 1.275790 P25 958.4615 0.134667 P26 958.5135 0.000281 P27 958.7902 0.257589 P28 958.4615 0.164997 P29 958.5135 1.41175 P30 958.5135 1.413882 P31 1036.6060 1.620370 P32 957.555 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.00816 P36 1195.3534 0.005646 P39 1195.3534 0.005646 P39 1195.3534 0.005646 P41 1350.0581 0.22301 P42 1195.3534 0.005646 P41 1350.0581 0.233700 P42 1215.5453 0.000332 P44 1212.55453 0.000322 P47 135.9621 0.233700 P50 980.6367 0.83820	P23	917.5381	0.434330
P25 958.4615 0.134667 P26 958.5195 0.000281 P27 958.502 0.257589 P28 958.615 1.410175 P30 958.5135 1.413882 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.000816 P36 1195.3534 0.005646 P39 1195.3534 0.05646 P39 1195.3534 0.05646 P40 1195.3534 0.05646 P41 135.0581 0.223001 P42 1195.3534 0.005362 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P44 1215.5453 0.000722 P51 1359.7376 0.113370 P52 989.6367 0.803819 P54 1359.7376 0.113383 P55 989.6367 0.803819 P56 989.6367<	P24	917.5234	1.275790
P26 958.5135 0.000281 P27 958.7902 0.257589 P28 958.615 0.164997 P29 958.5135 1.410175 P30 958.5135 1.413882 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.000816 P36 1155.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.005646 P39 1195.3534 0.056466 P41 1350.0581 0.223001 P42 1195.3534 0.05646 P41 1350.0581 0.233700 P44 1214.3250 0.005337 P45 1214.3250 0.005337 P44 1215.5453 0.000722 P51 1359.7376 0.119317 P52 980.6367 0.803819 P54 1359.7376 0.114383 P55 980.	P25	958.4615	0.134667
P2/ 958.4015 0.257589 P28 958.4015 0.164997 P29 958.5135 1.411872 P30 958.5135 1.41382 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1.195.3534 0.000816 P36 1.165.9008 0.577825 P37 1343.5913 0.211710 P38 1.195.3534 0.005646 P39 1.195.3534 0.005646 P39 1.195.3534 0.005646 P40 1.195.3534 0.005646 P41 1.350.0581 0.223001 P42 1.195.3534 0.005642 P41 1.212.8554 0.596144 P45 1.214.3250 0.005362 P44 1.212.8554 0.596144 P45 1.214.3250 0.005337 P46 1.215.5453 0.005337 P47 1.359.7376 0.11317 P55 <td>P26</td> <td>958.5135</td> <td>0.000281</td>	P26	958.5135	0.000281
F28 536.4013 0.104997 P29 958.5135 1.410175 P30 958.5135 1.410175 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.008816 P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.005646 P39 1195.3534 0.056466 P40 1195.3534 0.05646 P41 1350.0581 0.223001 P42 1195.3534 1.032664 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P46 1214.3250 0.005362 P47 1359.7376 0.114383 P53 1362.1509 0.13520 P54 1359.7376 0.114383 P55 989.6367 0.803820 P57 96	P27	958.7902	0.257589
P30 958.5135 1.413882 P31 1036.6060 1.620370 P32 967.7565 0.257589 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.00816 P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.006646 P39 1195.3534 0.05646 P40 1195.3534 0.023001 P42 1195.3534 0.05646 P41 1350.0581 0.223001 P42 1195.3534 0.005362 P44 1218.5543 0.005362 P47 1354.9621 0.233700 P44 1215.5453 0.005337 P49 1357.8619 0.233700 P50 1215.5453 0.005337 P49 1359.736 0.119317 P52 989.6367 0.803820 P54 1359.7690 0.115105 P55 989.6367 0.803819 P59 966	P29	958.5135	1.410175
P31 1036.6060 1.620370 P32 967.7565 0.25789 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.000816 P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.005646 P39 1195.3534 0.005646 P40 1195.3534 0.025648 P41 1350.0581 0.223001 P42 1195.3534 0.005646 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 1.03286 P44 1214.3250 0.005337 P45 1214.3250 0.005337 P46 1214.3250 0.005337 P49 1357.8619 0.233700 P50 1215.5453 0.000722 P51 1359.7376 0.11383 P52 980.6367 0.803820 P55 980.6367 0.803820 P55 9	P30	958.5135	1.413882
P32 967.7565 0.25789 P33 1002.4810 0.803819 P34 1003.1657 1.607639 P35 1195.3534 0.005816 P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.05646 P39 1195.3534 0.05646 P40 1195.3534 0.023001 P42 1195.3534 0.023648 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P46 1214.3250 0.023370 P48 1215.5453 0.000722 P41 1359.7376 0.119317 P52 1359.7376 0.119317 P52 1359.7376 0.119317 P54 1359.7376 0.119317 P55 980.6367 0.803820 P57 969.5037 1.607639 P54 1359.7376 0.115105 P55 980.6367 0.803819 P56 98	P31	1036.6060	1.620370
P33 1002.4810 0.8819 P34 1003.1657 1.607639 P35 1195.3534 0.000816 P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.005646 P39 1195.3534 0.05646 P40 1195.3534 0.0223001 P42 1195.3534 0.023700 P44 1218.5543 0.203700 P44 1214.3250 1.030286 P45 1214.3250 0.005332 P46 1214.3250 0.005337 P49 1357.8619 0.233700 P48 1215.5453 0.000732 P50 1215.5453 0.000732 P51 1359.7376 0.119317 P52 1359.7376 0.119317 P54 1359.7376 0.135520 P54 1359.7376 0.135520 P55 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58	P32	967.7565	0.257589
194 1005/1057 1050/1057 1955 1195/3534 0.000816 P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195/3534 0.005646 P39 1195/3534 0.005646 P40 1195/3534 0.005646 P41 1350/0581 0.223001 P42 1195/3534 1.035648 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P46 1214.3250 0.005362 P47 1354.9621 0.233700 P48 1215.5453 0.000722 P51 1359/7376 0.11317 P52 1359/7376 0.114383 P53 1362/1509 0.35520 P54 1359/7690 0.115105 P55 989.6367 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819	P33	1002.4810	0.803819
P36 1165.9008 0.577825 P37 1343.5913 0.211710 P38 1195.3534 0.005646 P39 1195.3534 0.005646 P40 1195.3534 0.023001 P42 1195.3534 1.023070 P44 1215.5453 1.603648 P43 1215.5453 1.60370 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P46 1214.3250 0.005362 P47 1354.9621 0.233700 P48 1215.5453 0.000722 P51 1359.7376 0.119317 P52 1359.7376 0.119317 P52 1359.7376 0.114383 P53 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803820 P59 968.9661 0.329089 P60 969.4595 0.678943 P62 968.1244 0.002574 P65 986	P35	1195.3534	0.000816
P37 1343.5913 0.211710 P38 1195.3534 0.005646 P39 1195.3534 0.005646 P40 1195.3534 0.023001 P42 1195.3534 0.223001 P42 1195.3534 0.205646 P41 125.5453 1.620370 P44 1218.554 0.506144 P45 1214.3250 1.030286 P46 1215.5453 0.005337 P47 1354.9621 0.233700 P48 1215.5453 0.000722 P50 1215.5453 0.000722 P51 1359.7376 0.119317 P52 1359.7376 0.119317 P53 1362.1509 0.135520 P54 1359.7376 0.114383 P53 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P60 963.4595 0.678943 P62 968.1244 0.02574 P63 969.	P36	1165.9008	0.577825
P38 1195.3534 0.005646 P39 1195.3534 0.005646 P41 1350.0581 0.223001 P42 1195.3534 1.035648 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P46 1214.3250 0.005362 P47 1354.9621 0.233700 P48 1215.5453 0.005337 P49 1357.8619 0.233700 P48 1215.5453 0.000722 P51 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.7690 0.115105 P55 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.678943 P62 968.1244 0.002574 P63 986.7987 0.961919 P64 968	P37	1343.5913	0.211710
P39 1195.3534 0.572996 P40 1195.3534 0.005646 P41 1350.0581 0.223001 P42 1195.3534 1.035648 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 1.030286 P46 1214.3250 0.005337 P48 1215.5453 0.000722 P50 1215.5453 0.000722 P51 1359.7376 0.119317 P52 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.7376 0.114383 P53 989.6367 0.803820 P56 980.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.678943 P62 968.1244 0.071500 P63 969.4595 0.970730 P64 968.7987 0.008811 P67 1339	P38	1195.3534	0.005646
1101155.054 0.00374 P411350.0581 0.223001 P421195.3534 1.035648 P431215.5453 1.620370 P441212.8554 0.596144 P451214.3250 0.005362 P461214.3250 0.005362 P471354.9621 0.233700 P481215.5453 0.000722 P501215.5453 0.000722 P511359.7376 0.119317 P521359.7376 0.114383 P531362.1509 0.135520 P541359.7690 0.115105 P55989.6367 0.803820 P56990.3313 0.803820 P57969.5037 1.607639 P58989.6367 0.803819 P59968.2661 0.329089 P60969.4595 0.678943 P62968.1244 0.071500 P63969.4595 0.970730 P64968.1244 0.008789 P65988.4164 0.008789 P66986.7987 0.961919 P671339.5938 0.20174 P68986.7987 0.961919 P691339.6467 0.182211 P70988.4164 0.008789 P61986.7987 0.961919 P691339.6467 0.182211 P70988.4164 0.006154 P721165.9008 1.048163 P731167.5254 0.006154 P741165.8999 0.006084 OF value	P39 P40	1195.3534	0.572996
P42 1195.3534 1.035648 P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 0.005362 P46 1214.3250 0.005362 P47 1354.9621 0.233700 P48 1215.5453 0.000722 P50 1215.5453 0.000722 P51 1359.7376 0.119317 P52 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.7690 0.115105 P55 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.67843 P61 969.4595 0.67843 P62 968.1244 0.002574 P63 969.4595 0.970730 P64 968.7987 0.961919 P65 986.7987 0.9061919 P66 986.798	P41	1350.0581	0.223001
P43 1215.5453 1.620370 P44 1212.8554 0.596144 P45 1214.3250 0.005362 P46 1214.3250 0.005362 P47 1354.9621 0.233700 P48 1215.5453 0.00723 P50 1215.5453 0.00722 P51 1359.7376 0.119317 P52 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.7690 0.115105 P55 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.87981 P61 969.4595 0.97030 P63 969.4595 0.97030 P64 968.1244 0.002574 P65 988.4164 0.008789 P66 986.7987 0.961919 P67 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 0.008789 P69 986.7987 0.9619	P42	1195.3534	1.035648
P44 1212,8554 0.596144 P45 1214,3250 0.005362 P46 1214,3250 0.005362 P47 1354,9621 0.233700 P48 1215,5453 0.000737 P49 1357,8619 0.233700 P50 1215,5453 0.000722 P51 1359,7376 0.119317 P52 1359,7376 0.119317 P53 1362,1509 0.115155 P54 1359,7376 0.803820 P55 989,6367 0.803820 P56 990,3313 0.803820 P57 969,5037 1.607639 P58 989,6367 0.803819 P59 968,9661 0.329089 P60 969,4595 0.678943 P61 969,4595 0.678943 P62 968,1244 0.002574 P63 968,7987 0.008811 P64 968,1244 0.002574 P65 988,4164 0.008789 P66 986,7987 0.961919 P69 1339,5938 0.020174 P68 986,7987 0.961919 P69 1339,6467 0.182211 P70 988,4164 0	P43	1215.5453	1.620370
P45 $1214,3250$ 1.030286 P46 $1214,3250$ 0.005362 P47 $1354,9621$ 0.233700 P48 $1215,5453$ 0.005337 P49 $1357,8619$ 0.233700 P50 $1215,5453$ 0.000722 P51 $1359,7376$ 0.119317 P52 $1359,7376$ 0.119317 P53 $1362,1509$ 0.135520 P54 $1359,7376$ 0.803820 P55 $989,6367$ 0.803820 P56 $990,3313$ 0.803820 P57 $968,9661$ 0.329089 P58 $986,6367$ 0.803819 P59 $968,9661$ 0.329089 P60 $969,4595$ 0.678943 P61 $969,4595$ 0.970730 P64 $968,1244$ 0.002574 P65 $988,4164$ 0.008789 P66 $986,7987$ 0.961919 P67 $1339,5938$ 0.20174 P68 $986,7987$ 0.961919 P69 $1339,6467$ 0.182211 P70 $988,4164$ 1.632073 P71 $1167,5254$ 0.006154 P72 $1165,9008$ 1.048163 P73 $1167,5254$ 0.006154 P74 $1165,8999$ 0.006084 OF value 2.3641×10^{-13} N° of Iterations 46	P44	1212.8554	0.596144
1611314.96210.233700P471354.96210.233700P481215.54530.005337P491357.86190.233700P501215.54530.000722P511359.73760.119317P521359.73760.119317P531362.15090.135520P541359.76900.115105P55989.63670.803820P56990.33130.803820P57969.50371.607639P58989.63670.803819P59968.96610.329089P60969.45950.678943P62968.12440.002574P63968.45950.970730P64968.12440.002574P65988.41640.008789P66986.79870.961919P671339.59380.020174P68986.79870.961919P691339.64670.182211P70988.41641.632073P711167.52540.06154P721165.90081.048163P731167.52540.060154P741165.89990.006084OF value2.3641 $\times 10^{-13}$ N° of Iterations46	P45 P46	1214.3250	0.005362
P48 1215.5453 0.005337 P49 1357.8619 0.233700 P50 1215.5453 0.000722 P51 1359.7376 0.119317 P52 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.760 0.803820 P55 980.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 980.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.678943 P61 969.4595 0.970730 P63 969.4595 0.970730 P64 968.1244 0.002574 P65 986.7987 0.961919 P66 986.7987 0.961919 P68 986.7987 0.961919 P69 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 1.042109 P74 125.999 0.00	P47	1354.9621	0.233700
P49 1357.8619 0.233700 P50 1215.5453 0.000722 P51 1359.7376 0.119317 P52 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.7690 0.115105 P55 989.6367 0.803820 P56 90.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.678943 P62 968.1244 0.002574 P64 968.1244 0.002574 P65 986.7987 0.96119 P66 986.7987 0.96119 P67 1339.6467 0.820174 P68 986.7987 0.961519 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 1.042109 P74 105.9999 0.006084 OF value 2.3641×10^{-13} N° of Iterations 46	P48	1215.5453	0.005337
P50 1215.5433 0.000722 P51 1359.7376 0.114317 P52 1359.7376 0.114383 P53 1362.1509 0.135520 P54 1359.7690 0.115105 P55 989.6367 0.803820 P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.678943 P62 968.1244 0.071500 P63 969.4595 0.970730 P64 968.1244 0.002734 P65 988.4164 0.00274 P65 986.7987 0.008811 P67 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006154 P74 1165.8999	P49	1357.8619	0.233700
P311359,7376 $0.11931/$ P521359,7376 0.114383 P531362,1509 0.135520 P541359,7690 0.115105 P55989,6367 0.803820 P56990,3313 0.803820 P57969,5037 1.607639 P58989,6367 0.803819 P59968,9661 0.329089 P60969,4595 0.678943 P62968,1244 0.071500 P63969,4595 0.970730 P64968,1244 0.002574 P65988,4164 0.008811 P671339,5938 0.20174 P68986,7987 0.961919 P691339,6467 0.182211 P70988,4164 1.632073 P711167,5254 0.006154 P721165,9008 1.048163 P731167,5254 0.006084 OF value 2.3641×10^{-13} N° of Iterations46	P50	1215.5453	0.000722
P531362.15090.135520P541359.76900.115105P55989.63670.803820P56990.33130.803820P57969.50371.607639P58989.63670.803819P59968.96610.329089P60969.45950.678943P62968.12440.071500P63969.45950.970730P64968.12440.002574P65988.41640.002574P66986.79870.008811P671339.59380.20174P68986.79870.961919P691339.64670.182211P70988.41641.632073P711167.52540.006154P721165.90081.048163P731167.52540.006154P741165.89990.006084OF value2.3641 × 10^{-13}N° of Iterations46	P51 P52	1359.7376	0.119317
P541359.76900.115105P55989.63670.803820P56990.33130.803820P57969.50371.607639P58989.63670.803819P59968.96610.329089P60969.45950.089591P61969.45950.678943P62968.12440.071500P63969.45950.970730P64968.12440.002574P65988.41640.008789P66986.79870.008811P671339.59380.20174P68986.79870.961919P691339.64670.182211P70988.41640.654P711167.52540.006154P721165.90081.048163P731167.52540.006084OF value2.3641 × 10^{-13}N° of Iterations46	P53	1362.1509	0.135520
P55 989.6367 0.803820 P56 990.313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.678943 P62 968.1244 0.071500 P63 969.4595 0.970730 P64 968.1244 0.002574 P65 988.4164 0.008789 P66 986.7987 0.008811 P67 1339.5938 0.20174 P68 986.7987 0.961919 P69 1339.6467 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 OF value 2.3641×10^{-13} N° of Iterations 46	P54	1359.7690	0.115105
P56 990.3313 0.803820 P57 969.5037 1.607639 P58 989.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.089591 P61 969.4595 0.678943 P62 968.1244 0.071500 P63 969.4595 0.970730 P64 968.1244 0.002574 P65 988.4164 0.002574 P65 986.7987 0.008811 P67 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations 46	P55	989.6367	0.803820
137 303.307 1.00703 P58 980.6367 0.803819 P59 968.9661 0.329089 P60 969.4595 0.089591 P61 969.4595 0.678943 P62 968.1244 0.071500 P63 969.4595 0.970730 P64 968.1244 0.002574 P65 988.4164 0.0028789 P66 986.7987 0.008811 P67 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations	P56 P57	990.3313	0.803820
P59968.96610.329089P60969.45950.089591P61969.45950.678943P62968.12440.071500P63969.45950.970730P64968.12440.002574P65988.41640.008789P66986.79870.008811P671339.59380.020174P68986.79870.961919P691339.64670.182211P70988.41641.632073P711167.52540.006154P721165.90081.048163P731167.52541.042109P741165.89990.006084OF value 2.3641×10^{-13} N° of Iterations46	P58	989.6367	0.803819
P60 969,4595 0.089591 P61 969,4595 0.678943 P62 968,1244 0.071500 P63 969,4595 0.970730 P64 968,1244 0.002574 P65 988,4164 0.008789 P66 986,7987 0.008811 P67 1339,5938 0.020174 P68 986,7987 0.961919 P69 1339,6467 0.182211 P70 988,4164 1.632073 P71 1167,5254 0.006154 P72 1165,9008 1.048163 P73 1167,5254 0.006054 P74 1165,8999 0.006084 OF value 2.3641 × 10 ⁻¹³ V N° of Iterations 46	P59	968.9661	0.329089
P61969.45950.678943P62968.12440.071500P63969.45950.970730P64968.12440.002574P65988.41640.008789P66986.79870.008811P671339.59380.020174P68986.79870.961919P691339.64670.182211P70988.41641.632073P711167.52540.006154P721165.90081.048163P731167.52540.006084OF value2.3641 × 10^{-13}N° of Iterations46	P60	969.4595	0.089591
P62 968.1244 0.07/1500 P63 969.4595 0.970730 P64 968.1244 0.002574 P65 988.4164 0.008789 P66 986.7987 0.008811 P67 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 1.042109 P74 1158.999 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations	P61	969.4595	0.678943
105 505,45,55 0,576,755 P64 968,1244 0,002574 P65 988,4164 0,008789 P66 986,7987 0,008811 P67 1339,5938 0,020174 P68 986,7987 0,961919 P69 1339,6467 0.182211 P70 988,4164 1.632073 P71 1167,5254 0,006154 P72 1165,9008 1,048163 P73 1167,5254 1,042109 P74 1165,8999 0,006084 OF value 2,3641 × 10 ⁻¹³ N° of Iterations	P62 P63	968.1244	0.071500
P65 988.4164 0.008789 P66 986.7987 0.008811 P67 1339.5938 0.020174 P68 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 OF value 2.3641 × 10^{-13} N° of Iterations	P64	968.1244	0.002574
P66 986.7987 0.008811 P67 1339,5938 0.020174 P68 986.7987 0.961919 P69 1339,6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 OF value 2.3641 × 10^{-13} N° of Iterations 46	P65	988.4164	0.008789
P67 1339,5938 0.020174 P68 986.7987 0.961919 P69 1339,6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations 46	P66	986.7987	0.008811
ros 986.7987 0.961919 P69 1339.6467 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 0.006084 P74 1165.8999 0.006084 OF value 2.3641 × 10^{-13} V N° of Iterations 46	P67	1339.5938	0.020174
NS 155500 0.182211 P70 988.4164 1.632073 P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 1.042109 P74 1165.8999 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations	P69	900./98/ 1339.6467	0.901919
P71 1167.5254 0.006154 P72 1165.9008 1.048163 P73 1167.5254 1.042109 P74 1165.8999 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations	P70	988.4164	1.632073
P72 1165.9008 1.048163 P73 1167.5254 1.042109 P74 1165.8999 0.006084 OF value 2.3641 × 10^{-13} V N° of Iterations 46 V	P71	1167.5254	0.006154
P73 1167,5254 1.042109 P74 1165,8999 0.006084 OF value 2.3641 × 10^{-13} 0.006084 N° of Iterations 46 0.006084	P72	1165.9008	1.048163
r/4 1105.8999 0.006084 OF value 2.3641 × 10 ⁻¹³ N° of Iterations V° of Iterations 46 1000000000000000000000000000000000000	P73	1167.5254	1.042109
N° of Iterations 46	CF value	2 3641 × 10 ⁻¹³	0.006084
	N° of Iterations	46	

Table 14

Difference equations and dependent variables of the industrial network.

Dependent variables	F _{P1} e F _{P11}
Eq. (1)	$P_{10f} - P_{tank} = 0$
Eq. (2)	$P_{13f} - P_{1f} = 0$

Table 15

Specification of the simulation for the industrial network.

Po (netroleum column)	110.2 kPa
Pressure drop equation	Darcy-Weisbach (Fo
	(6))
Pipe roughness	$4752 \times 10^{-5} \text{ m}$
Pipe length (for the 13 pipes)	[20 30 10 10 70 16.5 6
	15.9 80 10 10 20 10] m
Pipe inner diameter (for the 13 pipes)	[1.40 1.40 0.74 0.58
	1.04 0.58 0.48 0.23 0.58
	0.23 0.18 0.38 0.18] m
Oil specific mass	937 kg/m ³
Oil viscosity	206.14 cP
Main pumps ΔP equation (F[=] m ³ /h)	(-1.8×10^{-8})
	F^3 + 1.8 \times 10 ⁻⁴ F^2 – 0.28
	F+8456.53) kPa
Booster pumps ΔP equation (F[=] m ³ /h)	(2.8×10^{-8})
	$F^3 - 8.3 imes 10^{-5}$
	F ² + 0.051
	F+1303.1)kPa
Diameters of the main pumps restriction orifices	0.0660 m
Diameters of the booster pumps restriction orifices	0.0381 m

Table 16

Problem results of the industrial network.

Variables	Value	Variables	Value
P _{1f}	110.2 kPa	F _{P1}	0.210 m ³ /s
P _{2f}	110.2 kPa	F _{P2}	0.237 m ³ /s
P _{3f}	110.0 kPa	F _{P3}	0.237 m ³ /s
P _{4f}	1408.6 kPa	F _{P4}	0.237 m ³ /s
P _{5f}	1408.2 kPa	F _{P5}	0.210 m ³ /s
P _{6f}	1407.5 kPa	F _{P6}	0.210 m ³ /s
P _{7f}	9664.6 kPa	F _{P7}	0.210 m ³ /s
P _{8f}	9597.7 kPa	F _{P8}	0.210 m ³ /s
P _{9f}	9594.2 kPa	F _{P9}	0.210 m ³ /s
P _{10f}	110.3 kPa	F _{P10}	0.210 m ³ /s
P _{11f}	1403.7 kPa	F _{P11}	0.027 m ³ /s
P _{12f}	1403.1 kPa	F _{P12}	0.027 m ³ /s
P _{13f}	110.2 kPa	F _{P13}	0.027 m ³ /s
$\Delta P_{Booster.orifice}$	1308.7 kPa	$\Delta P_{Booster,Pump}$	1299.2 kPa
$\Delta P_{Main.orifice}$	9441.9 kPa	$\Delta P_{MainPump}$	8257.9 kPa
OF Value	1.6367×10^{-12}	N° of iterations	24

The low objective function value shows that the proposed method is also applied to looped pipeline network problem with more devices than just pipes and nodes.

Furthermore, the proposed method was applied to the same system, but on the system design perspective. The design calculation aims to obtain the diameters of the restriction orifices. Thus, the problem was remodeled specifying, according to the results in Table 16, all flowrate variables and leaving the diameters of the main and booster pumps restriction orifices as dependent variables. The obtained diameters results were, as expected, the same values showed in Table 15, showing that the proposed method can be employed for any kind of process simulation problem.

4. Conclusions

On the looped pipeline network problem, a simultaneous resolution is needed to solve some of its equations, making not possible the direct employment of a modular procedure. The impossibility on use the sequential resolution lies on the required attendance of both Kirchhoff's laws since, initially satisfying the node mass balance (first Kirchhoff's law), it is needed a simultaneous convergence of the loop equations obtained from the second Kirchhoff's law.

The proposed method uses modular procedure to identify the problem pressure difference equations, grouping the equations that can be solved sequentially. The identified pressure difference equations replace the traditional loop and pseudo-loop equations and form the nonlinear system to be solved simultaneously. Since the proposed method uses features from both modular and equation-oriented procedures, it was characterized as simultaneous-modular. Furthermore, was proposed the employment of the Newton-Raphson method to solve the problem nonlinear system of equations and, to obtain better initial guesses for the dependent variables, it was proposed a procedure to formulate an objective function for the initial employment of non-deterministic optimization methods.

The presented case studies showed that the pressure difference equations are easily identified and, different of the loop equations, are always applicable to the problem. It was also shown that the pressure difference equations are equal to the loop equations formulated by the traditional employment of the second Kirchhoff's Law, making no difference between problems solved by both procedures.

The particularity of the lopped pipeline network problem leaded to the development of simulators to solve this specific problem, as the EPANET (2015) software. However, the development of simulators capable to solve problems composed by both looped pipeline and others process equipment's are not a simple task. Using the proposed method to identify the pressure difference equations, there is no more need to identifying and choosing the independent loop equations, and was also verified that the equations can be used on problems that aims the obtainment of any design variable, as showed at the case study *Industrial installation with lopped pipeline network* (item 3.3).

It is understood the described simultaneous-modular procedure makes possible the development of a process simulator capable to solve any process problem, with or without looped pipeline. The main advantage of the procedure is groups all sequential equation to formulate the smallest possible problem system of equations, turn easier and less computationally costly a simultaneous convergence by numerical procedures. The big looped pipeline problem resolution (item 3.2) exemplifies the conclusion, where the whole problem was represented by a system of equation composed by only 30 equations.

Acknowledgments

The present work was accomplished with the support of CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil and CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil.

References

- Altman, T., Boulos, P.F., 1995. Convergence of Newton method in nonlinear network analysis. Math. Comput. Model. 21 (4), 35–41.
- Boston, F., Britt, H.I., Tayyabkhan, M.T., 1993. Tackling tougher tasks. Chem. Eng.
- Prog. 89 (11), 38–49.Brkic, D., 2011. Iterative methods for looped network pipeline calculation. Water Resour. Manage. 25, 2915–2987.
- Chen, H.S., Stadtherr, M.A., 1985. A simultaneous-modular approach to process flowsheeting and optimization. AIChE J. 31 (11), 1834–1856.
- Churchill, S.W., 1977. Friction factor equations spans all fluid-flow ranges. Chem. Eng. 84 (24), 91–92.
- Cross, H., 1936. Analysis of Flow in Networks of Conduits or Conductors. University of Illinois Engineering Experiment Station.
- EN ISO-5167, 2003, Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full, European Standard.
- EPANET, 2015. Available at http://www.epa.gov/water-research/epanet. (access on 21.04.16).

Gay, B., Middleton, P., 1970. The solution of pipe network problems. Chem. Eng. Sci. 26, 109–123.

Hamam, Y.M., Brameller, A., 1971. Hybrid method for the solution of piping networks. Proc. IEE 113 (11), 1607–1612.

Jha, K., 2007. Automatic minimal loop extraction and initialization for water pipe network analysis. Int. J. Simul. 8 (2), 8–19.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization proceedings of ICNN'95. Int. Conf. Neural Netw. 4, 1942–1948.

Krope, J., Goricanec, D., 1991. Analysis of pipe network including pumps. Energy Build. 17, 141–145.

Krope, J., Trop, P., Goricanec, D., 2011. Flow pressure analysis of loop gas network, international journal of systems applications. Eng. Dev. 5 (4).

Martinez, J.M., Puigjaner, L., 1988. A powerful improvement on the methodology for solving large-scale pipeline networks. Comput. Chem. Eng. 12 (2–3), 261–265.

Osiadacz, A.J., 1987. Simulation and Analysis of Gas Networks, first ed. Gulf Publishing Company, Houston, TX 77252, USA.

Rao, B.V., 1987. Finite element analysis. Eng. Anal. 4 (1), 35–39.

Sârbu, I., Valea, E.S., 2011. Analysis of looped water distribution networks using variational formulations. Metarlugia Int. XVI (1), 48–53.

Sargent, R.W.H., 1978. In: Watson, G.A. (Ed.), The Decomposition of Systems of Procedures and Algebraic Equations in Numerical Analysis – Proceedings. Springer-Verlag, Berlin.

Shacham, M., 1984. Decomposition of systems of nonlinear algebraic equations. AIChE J. 30 (1), 92–99.

Streeter, V.L., Wylie, E.B., 1984. Fluid Mechanics. Mc Graw Hill (ISE Edition).

Todini, E., Pilati, S., 1987. A gradient method for the analysis of pipe networks. In: International Conference on Computer Applications for Water Supply and Distribution, Leicester Polytechnic, UK, September 8–10, pp. 8–10.

Tospornsampam, J., Kita, I., Ishii, M., Kitamura, Y., 2007. Split-pipe design of water distribution network using simulated annealing, world academy of science. Eng. Technol., 28.

Woldeyohannes, A.D., Majid, M.A.A., 2011. Simulation model for natural gas transmission pipeline network system. Simul. Model. Pract. Theory 19, 196–202.

Yeh, H.D., Lin, Y.C., 2008. Pipe network system analysis using simulated annealing. J. Water Supply: Res. Technol.—AQUA 57 (5).