Computers and Chemical Engineering 96 (2017) 169-182

journal homepage: www.elsevier.com/locate/compchemeng

Contents lists available at ScienceDirect

Computers and Chemical Engineering

Computers
& Chemical
Engineering

Review

Novel method for looped pipeline network resolution

@ CrossMark

Rafael Raoni*, Argimiro R. Secchi, Evaristo C. Biscaia Jr

Chemical Engineering Program — COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitdria, Centro de Tecnologia, 21941-972, Rio de Janeiro, RJ,

Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 19 July 2016

Received in revised form 1 October 2016
Accepted 3 October 2016

Available online 5 October 2016

It is proposed a novel method to solve looped pipeline network problems that seeks to deal with limi-
tations of the available methods The problem is modeled as a nonlinear system of equations formed by
equations that cannot be solved sequentially, characterizing the resolution as a simultaneous-modular
procedure. The equations of the system are the differences between the final pressure of the pipes that

end at the same network nodes and the difference between the specified and calculated design variables.
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At the solution both Kirchhoff's laws are met, being the method main advantages the no need of inde-
pendent loops selection and the formulation of a reduced system of equation. Case studs with a small and
a big looped water pipeline network, and an industrial installation with looped pipeline configuration,
are solved. The latter shows the method applicability for design process, highlighting its advantages in
comparison with the traditional simulation procedures.
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1. Introduction

The pipeline network problem is formulated when the flowrate
and pressure in all pipes and nodes of a network are needed. The
problem formulation requires the physical characteristics of the
pipes and the specification of some network pressure and flowrate

* Corresponding author.
E-mail addresses: rbritto@peq.coppe.ufrj.br (R. Raoni), arge@peq.coppe.uftj.br
(A.R. Secchi), evaristo@peq.coppe.ufrj.br (E.C. Biscaia Jr).

http://dx.doi.org/10.1016/j.compchemeng.2016.10.001
0098-1354/© 2016 Elsevier Ltd. All rights reserved.

variables. Many networks problems are easily solved by a sequen-
tial procedure. However, when different pipes flow to a same
node, or the network presents loops, different procedures must be
employed.

In order to solve the looped pipeline network problem, it is very
common the employment of the two Kirchhoff’s laws. The first and
the second laws, originally developed to solve electrical circuits
problems, are equivalent, respectively, to the continuity and the
energy conservation equation (Martinez and Puigjaner, 1988), and
can be written as follow:
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14: The algebraic sum of currents at a node on a network of
conductors is zero.

24: The directed sum of the electrical potential differences (volt-
age) around any closed circuit is zero.

Appling the laws on the looped pipeline network problem, the
current at the first law is understood as the mass flow and the elec-
trical potential at the second law is understood as the pressure drop.
When solving the looped pipeline network problem employing the
Kirchhoff's laws, one of the laws is satisfied in the problem mod-
eling and the other one is satisfied solving a nonlinear system of
equations (Cross, 1936). Based on the linearization of such system
of equations, Cross (1936) proposed the most relevant methods
to solve the problem, which are essentially a relaxation method
suitable to solve the problem by hand (Gay and Middleton, 1970).
Depending on which law is firstly satisfied in the modeling, differ-
ent methods are obtained, named: Method of Balanced Flow, which
firstly satisfies the first Kirchhoff's law; and Method of Balanced
Pressure, which firstly satisfies the second Kirchhoff’s law (Cross,
1936).

In order to improve the problem resolution, methods based on
the partitioning of the problem representative matrix were devel-
oped (Sargent, 1978; Shacham, 1984), but the application on large
problems was still not satisfactory (Martinez and Puigjaner, 1988).
Furthermore, other linearization methods were developed (Krope
et al., 2011) and, more recently, the Newton-Raphson method was
applied to solve the looped pipeline network problem for both
Hardy-Cross methods (Altman and Boulos, 1995; Brkic, 2011). As
any Newton-Raphson application, the characteristics of the equa-
tions and the initial guesses of the dependent variables define the
problem convergence property.

Analyzing the Hard-Cross procedures, the Method of Balanced
Flow is appropriate to solve problems with known pressures at any
point of the network. Firstly, the network model must be built satis-
fying the second Kirchhoff’s law, assuming pressures at all network
nodes and calculating the flowrates in all pipes. As the pressure
nodes and, consequently, the calculated flowrates in pipes are not
the problem solution, corrections at the node pressure must be
made until the mass balance, first Kirchhoff's law, be satisfied. In
principle, for the problem resolution, it is needed the employment
of a pressure drop equation with explicit flowrate variable. Aiming
the improvement of the problem resolution, for any pressure drop
equation, new procedures were proposed for the iterative correc-
tion of the nodes pressure (Rao, 1987) or by using non-deterministic
optimization techniques, such as Simulated Annealing (Yeh and Lin,
2008; Tospornsampam et al., 2007).

The Method of Balanced Pressure is suitable to solve problems
when the inlet and outlet flowrates of the looped network are
known. By satisfying, in the network modeling, the mass balance
in the nodes, the nonlinear system of equation is formed by the
energy conservation equations of the selected network pipeline
loops. The main drawback of this method lies on the selection of
such representative loops (Gay and Middleton, 1970; Rao, 1987),
since the number of the network loops is commonly greater than
the number of necessary equations to solve the problem, and not
every loops group forms a solvable problem. In order to overcome
this drawback, Gay and Middleton (1970) proposed a procedure to
perform the initial choice of the representative network loops and
to compute the pressure drop with the Darcy-Weisbach equation,
and Martinez and Puigjaner (1988) proposed a procedure to choose
the loops in large networks. Currently, this choice can be done by
graph procedures and it is already known that the representative
network loops must be verified for the independency among each
other (Jha, 2007).

Aiming the use of the Method of Balanced Pressure on problems
with specified pressure at the inlet or outlet network nodes, a pro-
cedure to obtain pseudo-loops equations, as found in Streeter and

Wylie (1984) and Sarbu and Valea (2011), was developed. With
this procedure, the method can be applied on networks with either
pressure or flowrate as specified variables and, because of that,
nowadays, the method is widely employed to solve any looped
network problem.

Another method, called hybrid method, has no need to firstly
satisfy any Kirchhoff’s law, which leads to a looped pipeline net-
work problem characterized by both node mass balance and energy
conservation equations (Hamam and Brameller 1971; Todini and
Pilati, 1987; Osiadacz, 1987; EPANET, 2015). The method has as
main drawback the need of simultaneous resolution of large set of
equations, making even more difficult the problem convergence.

Despite the greater attention on water pipeline network dis-
tribution, the introduced methods are applied on looped pipeline
network flowing any kind of fluid, being applicable on wide indus-
trial and urban pipeline installations. In industrial plants, the
looped pipeline arrangements are found on by-pass of equipment,
utilities distribution systems and firefight systems, for instance;
and in urban installations, on heat gas, fuel gas and water dis-
tribution networks. The calculation of looped pipeline network
of gas distribution systems has gained some attention given the
higher difficulty on compute pressure drop (Krope et al., 2011;
Woldeyohannes and Majid, 2011). Furthermore, the calculations of
pumps, valves and pipe accidents pressure drops were incorporated
into the looped pipeline problem, making possible the resolution
of more realistic problems (Krope and Goricanec, 1991).

Currently, different methodologies can be employed to solve
looped pipeline network problems. The identification and analysis
of the pipes, devices and equipment’s characteristics, the prob-
lem specifications and the flowing fluid must be done previously
to make possible the choice of the best resolution method (Brkic,
2011).

In this work, a novel method for looped pipeline network reso-
lution is proposed. The new method consists in attending the mass
balance in the nodes (first Kirchhoff’s law), group all equations that
can be solved sequentially, identifying the ones that need simulta-
neous convergence. Such equations formulate the nonlinear system
of equations of the problem being characterized by the differences
between the final pressures of the pipes that ends on the same
node, which replace the loop equations (second Kirchhoff’s law),
and the differences between specified and calculated design vari-
ables, which replace the pseudo-loop equations. With the proposed
method, there is no need of identifying and selecting the indepen-
dent loop equations, being more suitable to incorporate in a process
simulator.

This paper is structured as follows: in Section 2, the proposed
method is presented, highlighting the steps of modeling and the
numerical resolution of the whole network problem. In Section
3, the developed methodology is demonstrated by the resolution
of three looped pipeline network problems. The first and the sec-
ond problems are a small and a big looped water pipeline network,
respectively, with both of them introduced by Yeh and Lin (2008).
The third one shows the method applied to an industrial looped
pipeline, where pumps and pipe accidents compose the problem,
showing that the method can be used in any process simulation
problem. The conclusions of the work are presented in Section 4.

2. Proposed method

It is understood that the Hardy-Cross Method of Balanced Pres-
sure is the most suitable procedure to solve the looped pipeline
network problems, since it requires the simplest network model-
ing. The method allows the natural attendance of the mass balance
in any network node, pipe or equipment; and the employment of
pressure drop equations with explicit pressure drop.
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Fig. 1. Simple looped pipeline network.

Connecting generic and independent models for the pipe, node
and equipment, which hold their representative equations and sat-
isfy the mass balance, it is possible to build the pipeline network
simulation that resembles a real network. Aiming the resolution of
the built model, the specifications of some independent variables,
pressures or flowrates for instance, to seek a solvable system of
equation with zero degrees of freedom are necessary.

For a non-looped pipeline network with X inlets and Y outlets,
it is necessary the specification of X+Y independent variables to
obtain a solvable problem. Whereas to solve a looped pipeline net-
work with the same number of pipes, which has less inlets and/or
outlets, the number of network inlet and outlet (X+Y) specifica-
tions is not enough to remove all degrees of freedom. Therefore,
in order to obtain the number of degrees of freedom of a looped
pipeline network problem, with no more inlet and outlet indepen-
dent variables to be specified, the equation found at Martinez and
Puigjaner (1988), Eq. (1), can be employed.

M=T-N+1 (1)

where T is the number of pipes, M is the number of degrees of
freedom to be covered by the loop equations and N is the number
of nodes.

Using Eq. (1), M loop equations must be identified, selected and
joined to the problem to remove the remaining degrees of free-
dom. As mentioned, the main drawback of the Method of Balanced
Pressure lies in defining the group of network loops to be joined to
the problem, since the number of the network loops is commonly
greater than the number of remaining degrees of freedom and not
every group of loops forms a solvable problem.

In this work, we propose new equations, defined as the differ-
ence between the final pressures of pipes that flow to the same
node, to handle this degree of freedom drawback. The inclusion of
the pressure difference equations to solve the problem removes
the difficulty of identifying and selecting the independent network
loops, since the number of the pressure difference equations is
always equal to the remaining degrees of freedom. As shown below,
these new equations (pressure difference equations) are equiva-
lent to the loop equations, which mean that the resolutions of the
problem by both kinds of equations are equivalent.

2.1. Introductory example

The looped pipeline network presented by Streeter and Wylie
(1984),showninFig. 1,was used to introduce the proposed method.
According to Eq. (1), the network has two degrees of freedom
to be covered by the loop equations. In order to formulate the

Table 1

Chosen flow directions in pipes of Fig. 1.
P1 P2 P3 P4 P5
i - t - '

pressure difference equations it is necessary to establish flow direc-
tions in the network pipes, which could be understood as the way
that the pipe models were used to build the whole network prob-
lem, as illustrated in Table 1. It must be emphasized that wrong
choice of flow directions are acceptable, because it is handled by
the proposed procedure and the signal of the obtained flowrates
will indicate the true direction of the flow. However, coherence
with the built network helps the problem formulation and reso-
lution due to its nonlinear nature and, consequently, the possible
dependence on the initial guess by the chosen numerical algorithm.

The initial guess of the flow directions can be interpreted as how
the pipes are connected among each other, with specified inlet and
outlet connections, in order to form the whole pipeline network.
This guess does influence the formulation of the pressure differ-
ence equations, since these equations are formed according to the
identification of the pipes that needs its final pressure converged
or to a specified value, just as: (i) when some pipe ends at an out-
let network node that has a specified pressure (pressure difference
equations for pseudo loop); (ii) or when different pipes end on a
same node, needing to have the same final pressure (pressure dif-
ference equations for loop). Thus, if the same problem is modeled
with different flow directions, different pipes need to converge to
their final pressures. In this sense, a coherent pipe connection (e.g,
node with at least one inlet and one outlet connection) helps the
problem formulation and resolution.

However, independently of the initial guess of the flow direc-
tion, the problemresolution converges to its unique solution, where
all node pressure and mass balance are coherent with the model
equations. In this sense, the result for the pressure values at the
nodes and the absolute value of the pipes flowrates does not change.
But the signal of the flowrate in pipes does change in accordance
with the chosen initial pipe flow direction: (i) if the flowrate is pos-
itive, then it is in accordance with the initial chosen flow direction,
and (ii) if the flowrate is negative, then the correct flow direction
is contrary to the initial chosen flow direction.

Knowing the flow direction and identifying which pipes flow to
each node, it is possible to formulate two pressure difference equa-
tions, Egs. (2) and (3), and realize that the number of formulated
equations is equal to the problem degree of freedom.

P4f_P5f:0 (2)
P2f_P3f=O (3)

where P is the outlet pressure of pipe i.

For comparison purpose, when solving the same problem with
the traditional loop equations, it is necessary to identify the net-
work loops. Analyzing the network, it is possible to identify three
pipes arrangements that form loops (P1, P5 and P4; P2, P3 and P5;
and P1, P2, P3 and P4), obtaining one surplus loop equation than
the required equations to solve the problem.

2.2. Method procedure

Process simulators may roughly be classified into two groups:
sequential modular and equation-oriented (Boston et al., 1993).The
sequential modular procedure is the one that, given the inlet prob-
lem specification, the whole problem is solved sequentially from
the first module (unit or equipment) until the last one; while the
equation-oriented technique groups all problem equations to solve
simultaneously as a system of equations.
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In the proposed method, a sequential modular procedure is
applied to solve some of the equations of the looped pipeline
network problem. Since the characteristics of the problem make
its entire resolution not possible by the sequential modular
procedure without to resort to iterative approaches with tear
variables, a reduced set of nonlinear equations are solved simulta-
neously, just like the equation-oriented procedure, characterizing
a simultaneous-modular approach (Chen and Stadtherr, 1985).

Explaining the approach, when the sequential modular proce-
durereaches anode with Koutlets, to satisfy the mass balance, there
are K - 1 flowrate variables that need to be guessed; and when Z
different pipes flow to a single node, Z - 1 pressure difference equa-
tions need to be formulated to obtain a unique node pressure. These
approaches are represented in Figs. 2 and 3, respectively, where K
- 1variables and Z - 1 equations are the ones that cannot be solved
sequentially, and form the nonlinear system of equations that need
simultaneous convergence.

Furthermore, following the modular procedure, the idea of
guessing non-specified inlet model variables, which need to feed
a model to solve its internal equations just as the guessing of
flowrate Fp; to solve the Pipe, model illustrated in Fig. 2; and the
formulation of difference equation to seek the convergence of out-
let models variables, which are the outlet information of a model
just as the final pressure Py of the Pipe; illustrated in Fig. 3, could
be widespread applied for guessing and converging any variable
of the network to be solved. These difference equations and out-
let flowrate variables need to be incorporated into the nonlinear
system of equations in order to solve the whole network problem.

An example of difference equation that can be formulated using
the network of Fig. 1 is: if the pressure of the outlet O1 is specified,
the difference equation shown in Eq. (4) can be formulated. This
procedure also replaces the pseudo-loop equations of traditional
approaches (Streeter and Wylie, 1984; Sarbu and Valea, 2011).

Py —Po1 =0 (4)

As the flow paths in a looped pipeline network can be split in the
nodes, a straightforward modular resolution cannot solve the entire
network problem. Using the illustration showed in Fig. 2 as exam-
ple, when the modular procedure reaches the node, the sequential
resolution should continue solving one of the downstream pipes
(Pipe; or Pipes). Assuming that the resolution is continued solving
Pipe,, when there is no further downstream model to be solved by
the modular procedure, the problem resolution must return to the
referred node in order to solve the pipeline path of the Pipes.

Generalizing the term “outlet flowrate variable” to any depen-
dent variable that needs to be guessed during the problem
resolution and the term “difference equation” to any equation that
needs to be formulated to seek the convergence of an outlet model
variable, it is possible to propose the pipeline network problem res-
olution. On the proposed methodology, the problem formulation
has to identify dependent variables and the difference equations,
for further mathematical resolution of the network models by the
simultaneous-modular procedure. This procedure is presented in
the flowchart of Fig. 4 for the problem formulation, and in the
flowchart of Fig. 5 for the simultaneous-modular resolution.

Following the procedure, attention must be taken in order to for-
mulate a system of equations with zero degree of freedom. If the
problem is formulated with only node pressure difference equa-
tions and there is no independent variable to be specified, it is
verified that the number of obtained dependent variables is always
equal to the number of formulated difference equations. However,
if an outlet model variable is specified, then a difference equation
and a non- specified inlet model variable are necessary to formulate
a problem with zero degree of freedom.

The obtained set of nonlinear equations can be solved by numer-
ical procedures, such as the Newton-Raphson method, and its main

Table 2
Pressure difference equations of the looped pipeline network of Fig. 1.

Eq.(2)

(P — AP4)— (P; — APy — AP5)=0
—AP4+ AP+ AP5s=0

Eq.(3)

(P — APy — APy) — (P — APy — AP3)=0
—AP; — AP, + AP4+ AP3=0

Eq. (4)

Ps— APy —Poy =0

advantage is grouping some equations with a modular procedure
to make possible the simultaneous resolution of a reduced system
of equations.

2.3. Pressure difference equations analysis

The pressure difference equations (Eqs. (2)-(4)) of the looped
pipeline network of Fig. 1, can be rewritten as shown in Table 2,
where Pg is the pressure at the inlet point “E” and the AP; is the
pressure drop of pipe i.

It is possible to note that Eqgs. (2’) and (3’) are network loop
equations, and Eq. (4’) is a network pseudo-loop equation. These
results show that the pressure difference equations are actually
equal to the traditional loop and pseudo-loop equations.

2.4. Process modeling

Aiming the resolution of a pipeline network, it is possible to
combine independent models of pipes and nodes to build the whole
network. Since the all network models must have their inlets and
outlets specified or connected with each other, the formulation of
an inconsistent network, where some model presents no inlet or
outlet connection, is prevented. Such models characteristics make
possible the construction of a network with consistent paths for
the sequential modular resolution. Given such paths, the sequential
models are searched until the identification of a not solvable path,
which must form one equation of the nonlinear system of equations
for further simultaneous resolution.

Since these connections represent the flow directions in the net-
work and, during the problem formulation, these directions could
not be in accordance with the problem results, the pipe and node
models used to build the network also need to handle negative
flowrates, which leads to negative pressure drop on pipes. As shown
further, these negatives flowrates and pressure drops are not an
issue for the proposed method.

2.5. Numerical resolution

In order to start the iterative procedure of the Newton-Raphson
method, which is an effective method to solve looped pipeline
network problem, good initial guess of the dependent variables
are needed to guarantee the problem convergence (Martinez and
Puigjaner, 1988; Yeh and Lin, 2008).

Taking this convergence difficulty into account to solve the
looped pipeline network problem, it is proposed a procedure to
manage its nonlinear system of equations to be solved as an opti-
mization problem. The objective function is the sum of the square
of all difference equations of the original nonlinear system of equa-
tions. This reformulation makes also possible the employment
of non-deterministic optimization techniques, such as Simulated
Annealing (Yeh and Lin, 2008; Tospornsampam et al., 2007),
Genetic Algorithm, and Particle Swarm (Kennedy and Eberhart,
1995), which have no need of initial guess.
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Fig. 2. Illustration of guessed outlet flowrate variables.
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Number of equations =7 -1=1
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To calculate the node pressure, the
following equation must be
attended:

Final pressure = P,

Pis-Py=0

v Pipe;

Node . >

Final pressure = P,

4 Final pressure = P3p=
Node pressure - AP,

Pipe,

Fig. 3. Illustration of pressure difference equation formulation.

The objective function of the network problem formed by Egs.
(2)-(4) is written in Eq. (5), where the dependent variables are the
same variables from the original system of equations.

OF = (Pys — Ps;)? + (Pys — P3;)* + (Pys — Po1)? (5)

Despite the attenuation of good initial guess, the optimization
resolution has as drawback the high computational cost. Thus, its
employment is recommended to obtain an approximate problem
solution, finding better values for the dependent variables, to be
used as initial guess for the Newton-Raphson procedure, but only
if the straight Newton-Raphson employment does not converge.

2.6. Further comments of the proposals

One of the major advantages of the proposed procedure relays
on the no need of loop identification in order to formulate the
loop equations and solve the problem. Following the simultaneous-
modular formulation problem procedure showed in Fig. 4, the
pressure difference equations, which are, according to Section 2.3,
equivalent to the loop equation, are automatically identified. Thus,
differently of the existing methods, this proposal allows to formu-
late the whole problem with a systematic procedure that can be
computationally implemented. This characteristic also makes pos-
sible the integration of the loop network problem with a process
simulation problem, just as the third case study shown in Section
3.3 bellow.

After the problem formulation, the simultaneous-modular res-
olution procedure, showed in Fig. 5, groups all identified pressure
difference equations and dependent variables to form the repre-
sentative nonlinear system of equations to be solved. Differently
of the existing methods that solve the problem as a unique system

of equations, the proposed procedure solves, in each iteration, all
sequential parts of the network problem, in order to compute the
pressure difference equations values, and also the Jacobian matrix,
in order to consider the influence of all dependent variables of the
problem. Furthermore, the proposed procedure allows any network
variable to be set as dependent variable, without changing the pro-
cedure characteristic. This feature enables pressure of network inlet
nodes and other pipes flowrate to be set together as dependent vari-
ables, just as shown in the further big looped pipeline network case
study.

3. Case studies

The proposed procedure was applied to solve three different
problems. The first two problems, representing a small and a big
looped water pipeline network, were obtained from Yeh and Lin
(2008); and the third problem was built to show the methodology
applyed to solve a looped pipeline network commonly found in
industrial instalations with large pumps flowing oil.

3.1. Small looped pipeline network

The small looped pipeline network to be solved is shown in Fig. 6,
where the pipes are identified by “Pi”, the nodes by “Ni”, the inlet
by “E” and outlets by “Oi”. The physical characteristics of the pipes,
required for the problem resolution, are shown in Table 3 and the
flow direction in pipes, required to obtain the pressure diference
equations, are sketched in Table 4.

In order to solve the problem, it is necessary to specify X + Y inde-
pendents variables, where X=1 and Y =7 are equal to the number
of the network inlets and outlets, respectively, that could be both
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Formulation of the difference equations:
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- Difference equation for a specified outlet
model variable:
e.g.: h(x) = fy(x) - Constant = 0
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evaluated?
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YES _ [Identify the inlet model

of the modular path.

(End of the problem formulation.)

Fig. 4. Flowchart of the simultaneous-modular problem formulation procedure.

Table 3
Physical characteristics of the pipes in Fig. 6 (small network).

Table 5
Specified variables for the small network of Fig. 6.

Pipe Length (m) Diameter (m)
P1 1000 0.305
P2 1000 0.305
P3 1100 0.250
P4 1250 0.405
P5 500 0.200
P6 400 0.400
P7 500 0.200
P8 400 0.355
P9 600 0.355
P10 1100 0.305
P11 1250 0.305
Table 4

Flow directions in pipes of Fig. 6 (small network).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

pressure or flowrate values. At the present problem, as shown in
Table 5, the inlets and outlets pressures obtained from Yeh and Lin
(2008) were chosen, with P;; meaning the final pressure of pipe i.

Pni =980.7 kPa
P.=897.6kPa
P, =850.8 kPa
P4r=890.4 kPa

Ps;=871.2 kPa
P;;=870.9 kPa
P1or=843.0 kPa
Py1=778.9 kPa

Since the final pressure of the pipe is an outlet model result, each
specified outlet pressure formulates one pseudo-loop pressure dif-
ference equation. The specification of all outlet pressure leads to a
problem with the highest number of pressure difference equations.

Starting the problem resolution at the N1 node (network inlet),
it is verified that the inlet flowrate (“E” flowrate), not specified, is
split into two outlets. Following the modular procedure, to start the
problemresolution, the inlet flowrate and one of its outlet flowrates
must be guessed, being dependent variables of the problem (E and
P1 flowrates), while the other outlet N1 node flowrate (P4 flowrate)
needs to be obtained from the node mass balance to allow the pres-
sure drop calculation of pipes P1 and P4. In order to emphasize
that no restriction is imposed to the equations to be used in the
problem formulation, differently from Yeh and Lin (2008) that used
the Hazen-Williams, the pressure drop calculation was carried out
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Fig. 5. Flowchart of the simultaneous-modular problem resolution procedure.
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Fig. 6. Small looped pipeline network.

employing the Darcy-Weisbach Eq. (6), adapted to handle negative
flowrate values.

FoLilvil

Ap =50

(6)

where AP; is the pressure drop (Pa) of pipe i, f is the Darcy factor
(dimensionless and calculated according to the Churchill (1977)
equation), L; is the pipe length (m), D is the pipe inner diameter
(m), v=4F/(;r D?) is the fluid velocity (m/s), Fis the flowrate (m3/s)
and p is the fluid specific mass (kg/m?3).

Knowing the entrance pressure (Py;) and the P1 pressure drop,
it is possible to obtain the P1 final pressure, which needs to be
converged to the specified value (P{¢ presented in Table 5) employ-
ing the respective pressure difference equation for the pipeline
pseudo-loop. The P2 final pressure follows the same procedure
already described, where one of the O1 or P2 flowrates must be
guessed while the other is obtained by the N2 node mass balance.
Following the procedure, when two or more pipes end on a single
node, all final pressures must have the same value, which is guar-
anteed by the employment of the pressure difference equations for
the pipeline loops.
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Table 6 Table 8
Difference equations and dependent variables of the small network. Results of the small network problem.
Dependent variables Fe, Fp1, Fps, Fps, Fo1, Fo2, Fos, Fos, Fos and Fog Variables Results
Eq. (1) P3—Pgs=0 Pi¢ 897.6 kPa
Eq.(2) Ps¢— Pgr=0 Py¢ 850.8 kPa
Eq.(3) Pgf— Pgr=0 P3¢ 890.4 kPa
Eq. (4) Pif (calculated) — Py¢ (given)=0 Pys 890.4 kPa
Eq. (5) Py (calculated) — Py (given)=0 Ps¢ 871.2kPa
Eq.(6) P11f (calculated) — Pyy¢(given)=0 Per 871.1kPa
Eq.(7) P1of (calculated) — Pyor (given)=0 Py¢ 870.8 kPa
Eq. (8) P4 (calculated) — Pys (given)=0 Pg¢ 871.1kPa
Eq.(9) Ps¢ (calculated) — Ps¢ (given)=0 Po¢ 871.1kPa
Eq. (10) P¢ (calculated) — Py (given)=0 Piof 843.1 kPa
Piir 778.9KkPa
Fpi 0.1409 m?3/s
Table 7 Fp2 0.1042m3/s
Sequential equations of the problem for the small network. Fp3 —0.0537m?/s
Fpg 0.2758 m3/s
Mass Balance N1 Fg=Fpy +Fps Fps 0.0308 m3/s
Mass Balance N2 Fp1 =Fo1 +Fp2 Fr -0.0223 m3/s
Mass Balance N3 Fpy =Fo2 +Fp3 +Fp11 Fp7 0.0026 m3/s
Mass Balance N4 Fpy +Fp3 =Fog + Fps + Fpg Fpg 0.1580m3/s
Mass Balance N5 Fps +Fpg =Fo7 Fpo ~0.1553 m3/s
Mass Balance N6 Fp7 =Fps +Fos Frio —0.1171m3/s
Mass Balance N7 Fpg + Fpg = Fp7 Fpi1 0.1163m3/s
Mass Balance N8 Fp1o = Fpg + Fo4 OF Value 0.4121x 1076
Mass Balance N9 Fp11 =Fp10 +Fo3 Ne of iterations 27

Final Pressure P1 Pir=Pn1 — APy
Final Pressure P2 Pyr =Py — AP,
Final Pressure P3 P3¢=Par— AP;
Final Pressure P4 Par=Pn1 — APy
Final Pressure P5 Py =Py — APs
Final Pressure P6 P7¢=P7¢— APg
Final Pressure P7 P¢=Pgr— AP;
Final Pressure P8 Pgr=Par— APg
Final Pressure P9 Pof=Pyor — APg
Final Pressure P10 Pior=Pi1r— AP1o
Final Pressure P11 Pi1p=Par — APpy

At the end of the described procedure, it was identified 10
dependent variables, three pressure difference equations for the
pipeline loops and six pressure difference equations for the pipeline
pseudo-loops. The identified equations and dependent variables,
shown in Table 6, formulate the nonlinear system of equations that
must be solved simultaneously.

It is important to note that the equations presented in Table 6
group all sequential equations, representing the whole problem.
The sequential equations of the problem are shown in Table 7,
where the pressure drops are evaluated by Eq. (6). Since itis a water
pipeline problem, the fluid properties were considered constants
(specific mass equal to 1000 kg/m3 and viscosity of 0.89 cP).

The procedure was implemented in MATLAB software and the
fsolve function was used to solve the nonlinear system of equa-
tions. A value of 1 m3/h was guessed for all dependent variables
and the convergence criterion was set to 10~8. In order to improve
the convergence properties, the residuals of all pressure difference
equations were squared. The results are shown in Table 8.

It is observed that some obtained flowrate variables have nega-
tive value, indicating that the flow direction at the problem solution
is contrary to the initial choice (Table 4). As expected, the obtained
results are in accordance with the ones presented by Yeh and Lin
(2008), despite the use of the Darcy-Weisbach equation. The objec-
tive function value (OF) also indicates that the obtained results are
the right problem solution, having also good accuracy.

3.2. Big looped pipeline network

The looped water pipeline network of this case study is shown in
Fig. 7. The network was solved using the Hazen-Williams pressure
drop Eq. (7), adapted to handle negative flowrates, where the pipes

physical characteristics are shown in Table 9, the guesses of the
flow directions in pipes are shown in Table 10, and the specified
independent variables are shown in Table 11.

hei — 10.67Q;1Q;1*% 7
Li - Cil.ssdi4.87

where hy; is the head loss (meters of water), L; the length of pipe
(m), Q; the volumetric flowrate (m3/s), C; the pipe roughness coef-
ficient (dimensionless), and d; is the inner pipe diameter (m) of the
pipe i.

The network degrees of freedom, to be covered by the pres-
sure difference equations, are given by Eq. (1). The identification,
by Fig. 7, that node N2 is a reservoir precludes the direct use of
a node mass balance equation, as done on other network nodes.
To model the reservoir, it is needed to consider the N2 node as
three independent nodes, as it has three inlets or outlet connec-
tions, with pressure equal to the specified N2 pressure (897 kPa).
Thus, itis assumed a network with 50 nodes and 75 pipes, obtaining
a problem with 25 degrees of freedom.

Following the modular procedure and analyzing the specified
variables and the flow directions in pipes, it is verified that three
final pressures variables were specified (P3f, P4 and P;of, Which is
equal to Pyy), leading to three pressure difference equations for the
pseudo-loops. Just as in the previously examples, the identification
of one pseudo-loop lead to one more pressure difference equation
and one more dependent variable. It is also verified that two net-
work inlet pressures (Py31 that is equal to the inlet pressure of P3y;
and Pyg thatis equal to the inlet pressure of P43;) were not specified.
In this case, following the steps to formulate the network problem,
presented in Fig. 4, these inlet pressures must be set as dependent
variables and, to formulate a solvable problem, two more difference
pressure equations must be added to the problem.

Since the problem has 25 degrees of freedoms due to its loops,
3 variables that must be converged due to the pseudo-loops, and 2
variables that must be converged due to the problem specifications,
it is expected 30 pressure difference equations and 30 dependent
variables for the problem. Following the problem formulation of the
proposed procedure, Fig. 4, it is obtained exactly the right number
of pressure difference equations and dependent variables, as shown
in Table 12.
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Table 9

Physical characteristics of the pipes of Fig. 7 (big network).
Pipe P1 P2 P3 P4 P5 P6
Length 240m 60 m 1830 m 3550 m 1220m 640m
Diameter 0.95m 0.90m 1.45m 1.15m 1.45m 1.45m
HW Coef. 120 110 130 135 130 130
Pipe P7 P8 P9 P10 P11 P12
Length 640 m 60m 50m 3660 m 60m 60m
Diameter 0.90m 09m 1m 09m 0.9m 1m
HW Coef. 110 110 110 115 110 110
Pipe P13 P14 P15 P16 P17 P18
Length 800m 3140m 3140m 3140m 60 m 60 m
Diameter 09m 145m 1.15m 1.65m 0.9m 1m
HW Coef. 115 130 130 135 110 110
Pipe P19 P20 P21 P22 P23 P24
Length 2300m 60m 4040m 60m 4050 m 4050 m
Diameter 0.8m 09m 1.15m 09m 0.8m 1.15m
HW Coef. 115 110 130 110 115 130
Pipe P25 P26 P27 P28 P29 P30
Length 60 m 60 m 2150m 180m 2980m 2980m
Diameter 09m 0.9m 0.8 m 0.8 m 145m 1.45m
HW Coef. 110 110 110 110 135 135
Pipe P31 P32 P33 P34 P35 P36
Length 12000 m 670m 60m 13400 m 80m 4290 m
Diameter 1.65m 0.95m 1m 1.65m 0.90m 0.95m
HW Coef. 135 110 110 135 110 120
Pipe P37 P38 P39 P40 P41 P42
Length 4290 m 60m 2590 m 60m 2960 m 2960 m
Diameter 0.9m 0.05m 0.95m 0.05m 0.9m 1.15m
HW Coef. 115 110 120 110 115 135
Pipe P43 P44 P45 P46 P47 P48
Length 2280m 370m 90 m 60 m 1610m 60 m
Diameter 1.15m 0.95m 1m 0.05m 0.9m 0.05m
HW Coef. 130 120 130 110 115 110
Pipe P49 P50 P51 P52 P53 P54
Length 1350m 2960 m 6530m 60m 230m 7200 m
Diameter 0.95m 0.05m 0.95m 09m 0.95m 0.95m
HW Coef. 115 120 120 110 120 120
Pipe P55 P56 P57 P58 P59 P60
Length 60 m 3200 m 4300 m 3200m 80m 90 m
Diameter m 1.15m 1.45m 1.15m 0.8 m 0.75m
HW Coef. 110 135 135 135 115 130
Pipe P61 P62 P63 P64 P65 P66
Length 2050m 2380m 3050m 670m 60 m 60 m
Diameter 0.95m 0.8 m 1.15m 0.05m 0.05m 0.05m
HW Coef. 120 115 135 115 110 110
Pipe P67 P68 P69 P70 P71 P72
Length 1830m 60m 1950m 3780 m 60m 60m
Diameter 0.8m 0.9m 0.8 m 0.95m 0.05m 0.9m
HW Coef. 115 110 115 120 110 120
Pipe P73 P74
Length 4290 m 60m
Diameter 1.15m 0.05m
HW Coef. 135 110
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Fig. 7. Big looped pipeline network.

The procedure was implemented in MATLAB software and
the fsolve function was used to solve the nonlinear system of
equations. A value of 1m3/h was guessed for all dependent vari-
ables and the convergence criterion was set to 10~%. In order
to improve the convergence properties, the residuals of all pres-
sure difference equations were squared. The results are shown in
Table 13.

The obtained results are in accordance with the ones presented
by Yeh and Lin (2008), where the objective function value high-
lights the accuracy. The big network problem was also solved with
the PSO non-deterministic optimization algorithm (Kennedy and
Eberhart, 1995), where the results were used as initial guesses for
the nonlinear system of equations resolution that converged with
lower number of Newton-Raphson iterations to the same results
presented in Table 13.

3.3. Industrial installation with lopped pipeline network

Alooped pipeline network commonly found in industrial instal-
lation with high-capacity pumps (large flowrate and high discharge
pressure) used for oil transfer through ducts is solved. The system,
showninFig. 8,is composed by pipe arrangement for the oil recircu-
lation done by two groups of pumps, connected in series, suctioning
from an oil tank. The series connection of booster pumps on the suc-
tion of the main pumps is to attend the main pumps high-required
NPSH (Net Positive Suction Head), and the pipes arrangement forms
the loop configuration to connect the pumps discharges to their
suctions allowing the oil recirculation.

For both groups of pumps, the recirculation procedure is needed
on the pumps starts to minimize their required potency and avoid
possible electric damages, which could cause fire and/or others fur-
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Flow directions in pipes of Fig. 7 (big network).

Fig. 8. Industrial lopped pipeline network.
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Table 11

Specified variables for the big network.
Pni 1363 kPa
Pn2 897 kPa
Fr1 1.620370m?3/s
Fr 1.620370m3/s
Foi 0.016203 m3/s
Foa 0.023148 m3/s
Fos 0.138888 m3/s
Foa 0.254629 m3/s
Fos 0.092592 m?/s
Fos 0.012731m3/s
Fo7 0.104166 m3/s
Fog 0.017361 1'1'13/5
Fog 0.162037 m3/s
Foio 0.104166 m3/s
Fon 0.074074 m3/s

Table 12

Difference equations and dependent variables of the big network.
Num. Equations Variables
1 Psir —Psp=0 Fpy
2 Psof — P43 =0 Fps3
3 Psor — Pagr=0 Fpso
4 Pyer —Pasg=0 Fpag
5 P3gf —Papr=0 Fpas
6 P3sr —Pgp=0 Fpas
7 Pgor — P39 =0 Fp3g
8 P3gr — P72¢=0 Fpao
9 P74r —P36=0 Fp3s
10 P71 —P73¢=0 Fp71
11 Piar —Pgr=0 Frgg
12 Pegr — Pgsr =0 Fpes
13 Pe3r — Pe1r=0 Fpes
14 Peor — Pe1r=0 Fpes
15 Pgar — Pgar=0 Fpse
16 Pssf— Psgr=0 Fpeo
17 Pagr —Por=0 Fpsg
18 Pygr — Pasg=0 Fpag
19 Paer — P2gr=0 Fpas
20 Py7¢ —Py1r=0 Fp2
21 Pyof — P21£=0 Fp17
22 Pyar —Pyr=0 Fpig
23 Pi3r—Pir=0 Fp2o
24 Pisf—Por=0 Fpig
25 P7¢—Pgos=0 Fpg
26 Pgr—P117=0 Fp7
27 P3r—Pys=0 Frio
28 Pior —P3r=0 Fpg
29 P3f—Pn2=0 Pno
30 P7or — Pgsg=0 Pn31

thers undesirable consequences. To stabilize the pumps discharge
and suction pressure, a pipe accident (the restriction orifice) is used
to obtain the required pressure drop. The restriction orifice equa-
tions are found in standards as EN ISO-5167. Both groups of pumps
(main and booster pumps) have their own recirculation systems,
designed to operate with only one pump at time, and using the
orifice arrangement with two restriction orifices in series.

Analyzing the system, it is easy to identify two pipes that end at
asame node, the pipes 13 and 1, and a pipe with final pressure equal
to the oil column in the tank, the pipe 10. The difference equations
and the dependent variables of this problem are shown in Table 14,
and the problem specifications are shown in Table 15.

The procedure was implemented in MATLAB software and the
fsolve function was used to solve the nonlinear system of equa-
tions. A value of 1 m3/h was guessed for all dependent variables
and the convergence criterion was set to 10~8. In order to improve
the convergence properties, the residuals of all pressure difference
equations were squared. The results are shown in Table 16.

Table 13

Results of the big network problem.
Pipe Results

P (kPa) F(m3/s)

P1 1362.2588 0.250626
P2 958.4615 0.134666
P3 896.6340 1.216537
P4 896.6340 0.820946
P5 904.6488 1.667946
P6 902.1178 1.413296
P7 911.4383 0.023051
P8 911.2166 0.336781
P9 911.4383 0.615998
P10 896.6340 0.361295
P11 911.2166 0.350073
P12 911.4657 0.543399
P13 911.4657 0.191019
P14 911.2166 0.981071
P15 911.4383 0.518678
P16 911.7924 1.159398
P17 917.4479 0.202430
P18 916.0696 1.159398
P19 912.4507 0.191019
P20 917.4479 0.196712
P21 917.4479 1.278934
P22 917.5234 0.040881
P23 917.5381 0.434330
P24 917.5234 1.275790
P25 958.4615 0.134667
P26 958.5135 0.000281
P27 958.7902 0.257589
P28 958.4615 0.164997
P29 958.5135 1.410175
P30 958.5135 1.413882
P31 1036.6060 1.620370
P32 967.7565 0.257589
P33 1002.4810 0.803819
P34 1003.1657 1.607639
P35 1195.3534 0.000816
P36 1165.9008 0.577825
P37 1343.5913 0.211710
P38 1195.3534 0.005646
P39 1195.3534 0.572996
P40 1195.3534 0.005646
P41 1350.0581 0.223001
P42 1195.3534 1.035648
P43 1215.5453 1.620370
P44 1212.8554 0.596144
P45 1214.3250 1.030286
P46 1214.3250 0.005362
P47 1354.9621 0.233700
P48 1215.5453 0.005337
P49 1357.8619 0.233700
P50 1215.5453 0.000722
P51 1359.7376 0.119317
P52 1359.7376 0.114383
P53 1362.1509 0.135520
P54 1359.7690 0.115105
P55 989.6367 0.803820
P56 990.3313 0.803820
P57 969.5037 1.607639
P58 989.6367 0.803819
P59 968.9661 0.329089
P60 969.4595 0.089591
P61 969.4595 0.678943
P62 968.1244 0.071500
P63 969.4595 0.970730
P64 968.1244 0.002574
P65 988.4164 0.008789
P66 986.7987 0.008811
P67 1339.5938 0.020174
P68 986.7987 0.961919
P69 1339.6467 0.182211
P70 988.4164 1.632073
P71 1167.5254 0.006154
P72 1165.9008 1.048163
P73 1167.5254 1.042109
P74 1165.8999 0.006084
OF value 2.3641 x 10713
Ne° of Iterations 46
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Table 14

Difference equations and dependent variables of the industrial network.
Dependent variables Fp1 e Fp1q
Eq. (1) Piof — Prank =0
Eq.(2) Pi3r—Pyr=0

Table 15

Specification of the simulation for the industrial network.

110,2 kPa
Darcy-Weisbach (Eq.
(6))

4752 x 107> m
[203010107016.56
15980101020 10] m
[1.40 1.40 0.74 0.58
1.04 0.58 0.48 0.23 0.58
0.230.180.380.18] m

Py (petroleum column)
Pressure drop equation

Pipe roughness
Pipe length (for the 13 pipes)

Pipe inner diameter (for the 13 pipes)

0il specific mass 937 kg/m?
Qil viscosity 206.14 cP
Main pumps AP equation (F[=] m3/h) (-1.8x10°8

F3+1.8x 104 F2-0.28
F+8456.53)kPa

Booster pumps AP equation (F[=] m3/h) (2.8x10°8
F>-83x107°
F2+0.051
F+1303.1) kPa
Diameters of the main pumps restriction orifices 0.0660 m
Diameters of the booster pumps restriction orifices 0.0381m
Table 16
Problem results of the industrial network.
Variables Value Variables Value
Pi¢ 110.2kPa Fp1 0.210m3/s
Pys 110.2kPa Fpy 0.237m3/s
Psr 110.0kPa Fps 0.237m3/s
Pys 1408.6 kPa Fp4 0.237m3/s
Ps; 1408.2 kPa Fps 0.210m3/s
Per 1407.5 kPa Frs 0.210m3/s
P 9664.6 kPa Fp7 0.210m3/s
Pgs 9597.7 kPa Fpsg 0210m3/s
Por 9594.2 kPa Fro 0.210m3/s
Piof 110.3 kPa Fpio 0.210m3/s
Py 1403.7 kPa Fp11 0.027 m3/s
Pias 1403.1 kPa Fe12 0.027m3/s
Pisr 110.2 kPa Fpi3 0.027m3/s
APgoosterorifice 1308.7 kPa APBDDSter.Punu_) 1299.2 kPa
APpain orifice 9441.9kPa APyzinpump 8257.9kPa
OF Value 1.6367 x 1012 Ne of iterations 24

The low objective function value shows that the proposed
method is also applied to looped pipeline network problem with
more devices than just pipes and nodes.

Furthermore, the proposed method was applied to the same
system, but on the system design perspective. The design calcu-
lation aims to obtain the diameters of the restriction orifices. Thus,
the problem was remodeled specifying, according to the results
in Table 16, all flowrate variables and leaving the diameters of the
main and booster pumps restriction orifices as dependent variables.
The obtained diameters results were, as expected, the same val-
ues showed in Table 15, showing that the proposed method can be
employed for any kind of process simulation problem.

4. Conclusions

On the looped pipeline network problem, a simultaneous reso-
lution is needed to solve some of its equations, making not possible
the direct employment of a modular procedure. The impossibility
on use the sequential resolution lies on the required attendance of
both Kirchhoff’s laws since, initially satisfying the node mass bal-

ance (first Kirchhoff's law), it is needed a simultaneous convergence
of the loop equations obtained from the second Kirchhoff’s law.

The proposed method uses modular procedure to identify
the problem pressure difference equations, grouping the equa-
tions that can be solved sequentially. The identified pressure
difference equations replace the traditional loop and pseudo-loop
equations and form the nonlinear system to be solved simul-
taneously. Since the proposed method uses features from both
modular and equation-oriented procedures, it was character-
ized as simultaneous-modular. Furthermore, was proposed the
employment of the Newton-Raphson method to solve the prob-
lem nonlinear system of equations and, to obtain better initial
guesses for the dependent variables, it was proposed a procedure
to formulate an objective function for the initial employment of
non-deterministic optimization methods.

The presented case studies showed that the pressure difference
equations are easily identified and, different of the loop equations,
are always applicable to the problem. It was also shown that the
pressure difference equations are equal to the loop equations for-
mulated by the traditional employment of the second Kirchhoff's
Law, making no difference between problems solved by both pro-
cedures.

The particularity of the lopped pipeline network problem leaded
to the development of simulators to solve this specific problem, as
the EPANET (2015) software. However, the development of simu-
lators capable to solve problems composed by both looped pipeline
and others process equipment’s are not a simple task. Using the pro-
posed method to identify the pressure difference equations, there
is no more need to identifying and choosing the independent loop
equations, and was also verified that the equations can be used
on problems that aims the obtainment of any design variable, as
showed at the case study Industrial installation with lopped pipeline
network (item 3.3).

Itis understood the described simultaneous-modular procedure
makes possible the development of a process simulator capable to
solve any process problem, with or without looped pipeline. The
main advantage of the procedure is groups all sequential equation
to formulate the smallest possible problem system of equations,
turn easier and less computationally costly a simultaneous conver-
gence by numerical procedures. The big looped pipeline problem
resolution (item 3.2) exemplifies the conclusion, where the whole
problem was represented by a system of equation composed by
only 30 equations.
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