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a  b  s  t r  a  c  t

It is proposed  a novel  method  to  solve  looped  pipeline  network  problems  that  seeks  to  deal  with  limi-
tations  of the  available  methods  The  problem  is modeled  as  a  nonlinear  system  of equations  formed  by
equations  that  cannot  be  solved  sequentially,  characterizing  the  resolution  as a  simultaneous-modular
procedure.  The  equations  of  the  system  are  the  differences  between  the  final  pressure  of the pipes  that
end  at  the  same  network  nodes  and  the difference  between  the  specified  and  calculated  design  variables.
At  the  solution  both  Kirchhoff’s  laws  are met,  being  the  method  main  advantages  the  no  need  of inde-
eywords:
ooped pipeline network
imultaneous-modular procedure
ardy-cross
irchhoff’s laws
onlinear system of equations

pendent  loops  selection  and  the formulation  of  a reduced  system  of  equation.  Case  studs  with  a  small  and
a big looped  water  pipeline  network,  and an  industrial  installation  with  looped  pipeline  configuration,
are  solved.  The  latter  shows  the  method  applicability  for  design  process,  highlighting  its  advantages  in
comparison  with  the  traditional  simulation  procedures.

© 2016  Elsevier  Ltd. All  rights  reserved.
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. Introduction

The pipeline network problem is formulated when the flowrate
variables. Many networks problems are easily solved by a sequen-
tial procedure. However, when different pipes flow to a same
nd pressure in all pipes and nodes of a network are needed. The
roblem formulation requires the physical characteristics of the
ipes and the specification of some network pressure and flowrate

∗ Corresponding author.
E-mail addresses: rbritto@peq.coppe.ufrj.br (R. Raoni), arge@peq.coppe.ufrj.br

A.R. Secchi), evaristo@peq.coppe.ufrj.br (E.C. Biscaia Jr).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.10.001
098-1354/© 2016 Elsevier Ltd. All rights reserved.
node, or the network presents loops, different procedures must be
employed.

In order to solve the looped pipeline network problem, it is very
common the employment of the two  Kirchhoff’s laws. The first and
the second laws, originally developed to solve electrical circuits

problems, are equivalent, respectively, to the continuity and the
energy conservation equation (Martinez and Puigjaner, 1988), and
can be written as follow:
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1a: The algebraic sum of currents at a node on a network of
onductors is zero.

2a: The directed sum of the electrical potential differences (volt-
ge) around any closed circuit is zero.

Appling the laws on the looped pipeline network problem, the
urrent at the first law is understood as the mass flow and the elec-
rical potential at the second law is understood as the pressure drop.

hen solving the looped pipeline network problem employing the
irchhoff’s laws, one of the laws is satisfied in the problem mod-
ling and the other one is satisfied solving a nonlinear system of
quations (Cross, 1936). Based on the linearization of such system
f equations, Cross (1936) proposed the most relevant methods
o solve the problem, which are essentially a relaxation method
uitable to solve the problem by hand (Gay and Middleton, 1970).
epending on which law is firstly satisfied in the modeling, differ-
nt methods are obtained, named: Method of Balanced Flow, which
rstly satisfies the first Kirchhoff’s law; and Method of Balanced
ressure, which firstly satisfies the second Kirchhoff’s law (Cross,
936).

In order to improve the problem resolution, methods based on
he partitioning of the problem representative matrix were devel-
ped (Sargent, 1978; Shacham, 1984), but the application on large
roblems was still not satisfactory (Martinez and Puigjaner, 1988).
urthermore, other linearization methods were developed (Krope
t al., 2011) and, more recently, the Newton-Raphson method was
pplied to solve the looped pipeline network problem for both
ardy-Cross methods (Altman and Boulos, 1995; Brkic, 2011). As
ny Newton-Raphson application, the characteristics of the equa-
ions and the initial guesses of the dependent variables define the
roblem convergence property.

Analyzing the Hard-Cross procedures, the Method of Balanced
low is appropriate to solve problems with known pressures at any
oint of the network. Firstly, the network model must be built satis-
ying the second Kirchhoff’s law, assuming pressures at all network
odes and calculating the flowrates in all pipes. As the pressure
odes and, consequently, the calculated flowrates in pipes are not
he problem solution, corrections at the node pressure must be

ade until the mass balance, first Kirchhoff’s law, be satisfied. In
rinciple, for the problem resolution, it is needed the employment
f a pressure drop equation with explicit flowrate variable. Aiming
he improvement of the problem resolution, for any pressure drop
quation, new procedures were proposed for the iterative correc-
ion of the nodes pressure (Rao, 1987) or by using non-deterministic
ptimization techniques, such as Simulated Annealing (Yeh and Lin,
008; Tospornsampam et al., 2007).

The Method of Balanced Pressure is suitable to solve problems
hen the inlet and outlet flowrates of the looped network are

nown. By satisfying, in the network modeling, the mass balance
n the nodes, the nonlinear system of equation is formed by the
nergy conservation equations of the selected network pipeline
oops. The main drawback of this method lies on the selection of
uch representative loops (Gay and Middleton, 1970; Rao, 1987),
ince the number of the network loops is commonly greater than
he number of necessary equations to solve the problem, and not
very loops group forms a solvable problem. In order to overcome
his drawback, Gay and Middleton (1970) proposed a procedure to
erform the initial choice of the representative network loops and
o compute the pressure drop with the Darcy-Weisbach equation,
nd Martinez and Puigjaner (1988) proposed a procedure to choose
he loops in large networks. Currently, this choice can be done by
raph procedures and it is already known that the representative
etwork loops must be verified for the independency among each

ther (Jha, 2007).

Aiming the use of the Method of Balanced Pressure on problems
ith specified pressure at the inlet or outlet network nodes, a pro-

edure to obtain pseudo-loops equations, as found in Streeter and
l Engineering 96 (2017) 169–182

Wylie (1984) and Sârbu and Valea (2011), was  developed. With
this procedure, the method can be applied on networks with either
pressure or flowrate as specified variables and, because of that,
nowadays, the method is widely employed to solve any looped
network problem.

Another method, called hybrid method, has no need to firstly
satisfy any Kirchhoff’s law, which leads to a looped pipeline net-
work problem characterized by both node mass balance and energy
conservation equations (Hamam and Brameller 1971; Todini and
Pilati, 1987; Osiadacz, 1987; EPANET, 2015). The method has as
main drawback the need of simultaneous resolution of large set of
equations, making even more difficult the problem convergence.

Despite the greater attention on water pipeline network dis-
tribution, the introduced methods are applied on looped pipeline
network flowing any kind of fluid, being applicable on wide indus-
trial and urban pipeline installations. In industrial plants, the
looped pipeline arrangements are found on by-pass of equipment,
utilities distribution systems and firefight systems, for instance;
and in urban installations, on heat gas, fuel gas and water dis-
tribution networks. The calculation of looped pipeline network
of gas distribution systems has gained some attention given the
higher difficulty on compute pressure drop (Krope et al., 2011;
Woldeyohannes and Majid, 2011). Furthermore, the calculations of
pumps, valves and pipe accidents pressure drops were incorporated
into the looped pipeline problem, making possible the resolution
of more realistic problems (Krope and Goricanec, 1991).

Currently, different methodologies can be employed to solve
looped pipeline network problems. The identification and analysis
of the pipes, devices and equipment’s characteristics, the prob-
lem specifications and the flowing fluid must be done previously
to make possible the choice of the best resolution method (Brkic,
2011).

In this work, a novel method for looped pipeline network reso-
lution is proposed. The new method consists in attending the mass
balance in the nodes (first Kirchhoff’s law), group all equations that
can be solved sequentially, identifying the ones that need simulta-
neous convergence. Such equations formulate the nonlinear system
of equations of the problem being characterized by the differences
between the final pressures of the pipes that ends on the same
node, which replace the loop equations (second Kirchhoff’s law),
and the differences between specified and calculated design vari-
ables, which replace the pseudo-loop equations. With the proposed
method, there is no need of identifying and selecting the indepen-
dent loop equations, being more suitable to incorporate in a process
simulator.

This paper is structured as follows: in Section 2, the proposed
method is presented, highlighting the steps of modeling and the
numerical resolution of the whole network problem. In Section
3, the developed methodology is demonstrated by the resolution
of three looped pipeline network problems. The first and the sec-
ond problems are a small and a big looped water pipeline network,
respectively, with both of them introduced by Yeh and Lin (2008).
The third one shows the method applied to an industrial looped
pipeline, where pumps and pipe accidents compose the problem,
showing that the method can be used in any process simulation
problem. The conclusions of the work are presented in Section 4.

2. Proposed method

It is understood that the Hardy-Cross Method of Balanced Pres-
sure is the most suitable procedure to solve the looped pipeline

network problems, since it requires the simplest network model-
ing. The method allows the natural attendance of the mass balance
in any network node, pipe or equipment; and the employment of
pressure drop equations with explicit pressure drop.
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Table 1
Chosen flow directions in pipes of Fig. 1.
Fig. 1. Simple looped pipeline network.

Connecting generic and independent models for the pipe, node
nd equipment, which hold their representative equations and sat-
sfy the mass balance, it is possible to build the pipeline network
imulation that resembles a real network. Aiming the resolution of
he built model, the specifications of some independent variables,
ressures or flowrates for instance, to seek a solvable system of
quation with zero degrees of freedom are necessary.

For a non-looped pipeline network with X inlets and Y outlets,
t is necessary the specification of X + Y independent variables to
btain a solvable problem. Whereas to solve a looped pipeline net-
ork with the same number of pipes, which has less inlets and/or

utlets, the number of network inlet and outlet (X + Y) specifica-
ions is not enough to remove all degrees of freedom. Therefore,
n order to obtain the number of degrees of freedom of a looped
ipeline network problem, with no more inlet and outlet indepen-
ent variables to be specified, the equation found at Martinez and
uigjaner (1988), Eq. (1), can be employed.

 = T − N + 1 (1)

here T is the number of pipes, M is the number of degrees of
reedom to be covered by the loop equations and N is the number
f nodes.

Using Eq. (1), M loop equations must be identified, selected and
oined to the problem to remove the remaining degrees of free-
om. As mentioned, the main drawback of the Method of Balanced
ressure lies in defining the group of network loops to be joined to
he problem, since the number of the network loops is commonly
reater than the number of remaining degrees of freedom and not
very group of loops forms a solvable problem.

In this work, we propose new equations, defined as the differ-
nce between the final pressures of pipes that flow to the same
ode, to handle this degree of freedom drawback. The inclusion of
he pressure difference equations to solve the problem removes
he difficulty of identifying and selecting the independent network
oops, since the number of the pressure difference equations is
lways equal to the remaining degrees of freedom. As shown below,
hese new equations (pressure difference equations) are equiva-
ent to the loop equations, which mean that the resolutions of the
roblem by both kinds of equations are equivalent.

.1. Introductory example
The looped pipeline network presented by Streeter and Wylie
1984), shown in Fig. 1, was used to introduce the proposed method.

According to Eq. (1), the network has two degrees of freedom
o be covered by the loop equations. In order to formulate the
P1 P2 P3 P4 P5

↑ → ↑ → ↓

pressure difference equations it is necessary to establish flow direc-
tions in the network pipes, which could be understood as the way
that the pipe models were used to build the whole network prob-
lem, as illustrated in Table 1. It must be emphasized that wrong
choice of flow directions are acceptable, because it is handled by
the proposed procedure and the signal of the obtained flowrates
will indicate the true direction of the flow. However, coherence
with the built network helps the problem formulation and reso-
lution due to its nonlinear nature and, consequently, the possible
dependence on the initial guess by the chosen numerical algorithm.

The initial guess of the flow directions can be interpreted as how
the pipes are connected among each other, with specified inlet and
outlet connections, in order to form the whole pipeline network.
This guess does influence the formulation of the pressure differ-
ence equations, since these equations are formed according to the
identification of the pipes that needs its final pressure converged
or to a specified value, just as: (i) when some pipe ends at an out-
let network node that has a specified pressure (pressure difference
equations for pseudo loop); (ii) or when different pipes end on a
same node, needing to have the same final pressure (pressure dif-
ference equations for loop). Thus, if the same problem is modeled
with different flow directions, different pipes need to converge to
their final pressures. In this sense, a coherent pipe connection (e.g,
node with at least one inlet and one outlet connection) helps the
problem formulation and resolution.

However, independently of the initial guess of the flow direc-
tion, the problem resolution converges to its unique solution, where
all node pressure and mass balance are coherent with the model
equations. In this sense, the result for the pressure values at the
nodes and the absolute value of the pipes flowrates does not change.
But the signal of the flowrate in pipes does change in accordance
with the chosen initial pipe flow direction: (i) if the flowrate is pos-
itive, then it is in accordance with the initial chosen flow direction,
and (ii) if the flowrate is negative, then the correct flow direction
is contrary to the initial chosen flow direction.

Knowing the flow direction and identifying which pipes flow to
each node, it is possible to formulate two  pressure difference equa-
tions, Eqs. (2) and (3), and realize that the number of formulated
equations is equal to the problem degree of freedom.

P4f − P5f = 0 (2)

P2f − P3f
= 0 (3)

where Pif is the outlet pressure of pipe i.
For comparison purpose, when solving the same problem with

the traditional loop equations, it is necessary to identify the net-
work loops. Analyzing the network, it is possible to identify three
pipes arrangements that form loops (P1, P5 and P4; P2, P3 and P5;
and P1, P2, P3 and P4), obtaining one surplus loop equation than
the required equations to solve the problem.

2.2. Method procedure

Process simulators may  roughly be classified into two  groups:
sequential modular and equation-oriented (Boston et al., 1993). The
sequential modular procedure is the one that, given the inlet prob-

lem specification, the whole problem is solved sequentially from
the first module (unit or equipment) until the last one; while the
equation-oriented technique groups all problem equations to solve
simultaneously as a system of equations.
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Table 2
Pressure difference equations of the looped pipeline network of Fig. 1.

Eq. (2′)
(PE − �P4) − (PE − �P1 − �P5) = 0
−�P4 + �P1 + �P5 = 0
Eq. (3′)
(PE − �P1 − �P2) − (PE − �P4 − �P3) = 0
−�P1 − �P2 + �P4 + �P3 = 0

′
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In the proposed method, a sequential modular procedure is
pplied to solve some of the equations of the looped pipeline
etwork problem. Since the characteristics of the problem make

ts entire resolution not possible by the sequential modular
rocedure without to resort to iterative approaches with tear
ariables, a reduced set of nonlinear equations are solved simulta-
eously, just like the equation-oriented procedure, characterizing

 simultaneous-modular approach (Chen and Stadtherr, 1985).
Explaining the approach, when the sequential modular proce-

ure reaches a node with K outlets, to satisfy the mass balance, there
re K – 1 flowrate variables that need to be guessed; and when Z
ifferent pipes flow to a single node, Z – 1 pressure difference equa-
ions need to be formulated to obtain a unique node pressure. These
pproaches are represented in Figs. 2 and 3, respectively, where K

 1 variables and Z – 1 equations are the ones that cannot be solved
equentially, and form the nonlinear system of equations that need
imultaneous convergence.

Furthermore, following the modular procedure, the idea of
uessing non-specified inlet model variables, which need to feed

 model to solve its internal equations just as the guessing of
owrate Fp2 to solve the Pipe2 model illustrated in Fig. 2; and the

ormulation of difference equation to seek the convergence of out-
et models variables, which are the outlet information of a model
ust as the final pressure P1f of the Pipe1 illustrated in Fig. 3, could
e widespread applied for guessing and converging any variable
f the network to be solved. These difference equations and out-
et flowrate variables need to be incorporated into the nonlinear
ystem of equations in order to solve the whole network problem.

An example of difference equation that can be formulated using
he network of Fig. 1 is: if the pressure of the outlet O1 is specified,
he difference equation shown in Eq. (4) can be formulated. This
rocedure also replaces the pseudo-loop equations of traditional
pproaches (Streeter and Wylie, 1984; Sârbu and Valea, 2011).

1f − PO1 = 0 (4)

As the flow paths in a looped pipeline network can be split in the
odes, a straightforward modular resolution cannot solve the entire
etwork problem. Using the illustration showed in Fig. 2 as exam-
le, when the modular procedure reaches the node, the sequential
esolution should continue solving one of the downstream pipes
Pipe2 or Pipe3). Assuming that the resolution is continued solving
ipe2, when there is no further downstream model to be solved by
he modular procedure, the problem resolution must return to the
eferred node in order to solve the pipeline path of the Pipe3.

Generalizing the term “outlet flowrate variable” to any depen-
ent variable that needs to be guessed during the problem
esolution and the term “difference equation” to any equation that
eeds to be formulated to seek the convergence of an outlet model
ariable, it is possible to propose the pipeline network problem res-
lution. On the proposed methodology, the problem formulation
as to identify dependent variables and the difference equations,

or further mathematical resolution of the network models by the
imultaneous-modular procedure. This procedure is presented in
he flowchart of Fig. 4 for the problem formulation, and in the
owchart of Fig. 5 for the simultaneous-modular resolution.

Following the procedure, attention must be taken in order to for-
ulate a system of equations with zero degree of freedom. If the

roblem is formulated with only node pressure difference equa-
ions and there is no independent variable to be specified, it is
erified that the number of obtained dependent variables is always
qual to the number of formulated difference equations. However,
f an outlet model variable is specified, then a difference equation

nd a non- specified inlet model variable are necessary to formulate

 problem with zero degree of freedom.
The obtained set of nonlinear equations can be solved by numer-

cal procedures, such as the Newton-Raphson method, and its main
Eq. (4 )
PE − �P1 − PO2 = 0

advantage is grouping some equations with a modular procedure
to make possible the simultaneous resolution of a reduced system
of equations.

2.3. Pressure difference equations analysis

The pressure difference equations (Eqs. (2)–(4)) of the looped
pipeline network of Fig. 1, can be rewritten as shown in Table 2,
where PE is the pressure at the inlet point “E” and the �Pi is the
pressure drop of pipe i.

It is possible to note that Eqs. (2′) and (3′) are network loop
equations, and Eq. (4′) is a network pseudo-loop equation. These
results show that the pressure difference equations are actually
equal to the traditional loop and pseudo-loop equations.

2.4. Process modeling

Aiming the resolution of a pipeline network, it is possible to
combine independent models of pipes and nodes to build the whole
network. Since the all network models must have their inlets and
outlets specified or connected with each other, the formulation of
an inconsistent network, where some model presents no inlet or
outlet connection, is prevented. Such models characteristics make
possible the construction of a network with consistent paths for
the sequential modular resolution. Given such paths, the sequential
models are searched until the identification of a not solvable path,
which must form one equation of the nonlinear system of equations
for further simultaneous resolution.

Since these connections represent the flow directions in the net-
work and, during the problem formulation, these directions could
not be in accordance with the problem results, the pipe and node
models used to build the network also need to handle negative
flowrates, which leads to negative pressure drop on pipes. As shown
further, these negatives flowrates and pressure drops are not an
issue for the proposed method.

2.5. Numerical resolution

In order to start the iterative procedure of the Newton-Raphson
method, which is an effective method to solve looped pipeline
network problem, good initial guess of the dependent variables
are needed to guarantee the problem convergence (Martinez and
Puigjaner, 1988; Yeh and Lin, 2008).

Taking this convergence difficulty into account to solve the
looped pipeline network problem, it is proposed a procedure to
manage its nonlinear system of equations to be solved as an opti-
mization problem. The objective function is the sum of the square
of all difference equations of the original nonlinear system of equa-
tions. This reformulation makes also possible the employment
of non-deterministic optimization techniques, such as Simulated

Annealing (Yeh and Lin, 2008; Tospornsampam et al., 2007),
Genetic Algorithm, and Particle Swarm (Kennedy and Eberhart,
1995), which have no need of initial guess.
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Fig. 2. Illustration of guessed outlet flowrate variables.
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Fig. 3. Illustration of pressur

The objective function of the network problem formed by Eqs.
2)–(4) is written in Eq. (5), where the dependent variables are the
ame variables from the original system of equations.

F = (P4f − P5f )2 + (P2f − P3f )2 + (P1f − PO1)2 (5)

Despite the attenuation of good initial guess, the optimization
esolution has as drawback the high computational cost. Thus, its
mployment is recommended to obtain an approximate problem
olution, finding better values for the dependent variables, to be
sed as initial guess for the Newton-Raphson procedure, but only

f the straight Newton-Raphson employment does not converge.

.6. Further comments of the proposals

One of the major advantages of the proposed procedure relays
n the no need of loop identification in order to formulate the
oop equations and solve the problem. Following the simultaneous-

odular formulation problem procedure showed in Fig. 4, the
ressure difference equations, which are, according to Section 2.3,
quivalent to the loop equation, are automatically identified. Thus,
ifferently of the existing methods, this proposal allows to formu-

ate the whole problem with a systematic procedure that can be
omputationally implemented. This characteristic also makes pos-
ible the integration of the loop network problem with a process
imulation problem, just as the third case study shown in Section
.3 bellow.

After the problem formulation, the simultaneous-modular res-

lution procedure, showed in Fig. 5, groups all identified pressure
ifference equations and dependent variables to form the repre-
entative nonlinear system of equations to be solved. Differently
f the existing methods that solve the problem as a unique system
rence equation formulation.

of equations, the proposed procedure solves, in each iteration, all
sequential parts of the network problem, in order to compute the
pressure difference equations values, and also the Jacobian matrix,
in order to consider the influence of all dependent variables of the
problem. Furthermore, the proposed procedure allows any network
variable to be set as dependent variable, without changing the pro-
cedure characteristic. This feature enables pressure of network inlet
nodes and other pipes flowrate to be set together as dependent vari-
ables, just as shown in the further big looped pipeline network case
study.

3. Case studies

The proposed procedure was  applied to solve three different
problems. The first two problems, representing a small and a big
looped water pipeline network, were obtained from Yeh and Lin
(2008); and the third problem was built to show the methodology
applyed to solve a looped pipeline network commonly found in
industrial instalations with large pumps flowing oil.

3.1. Small looped pipeline network

The small looped pipeline network to be solved is shown in Fig. 6,
where the pipes are identified by “Pi”, the nodes by “Ni”, the inlet
by “E” and outlets by “Oi”. The physical characteristics of the pipes,
required for the problem resolution, are shown in Table 3 and the
flow direction in pipes, required to obtain the pressure diference

equations, are sketched in Table 4.

In order to solve the problem, it is necessary to specify X + Y inde-
pendents variables, where X = 1 and Y = 7 are equal to the number
of the network inlets and outlets, respectively, that could be both
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Fig. 4. Flowchart of the simultaneous-modular problem formulation procedure.

Table 3
Physical characteristics of the pipes in Fig. 6 (small network).

Pipe Length (m)  Diameter (m)

P1 1000 0.305
P2  1000 0.305
P3  1100 0.250
P4  1250 0.405
P5  500 0.200
P6  400 0.400
P7  500 0.200
P8  400 0.355
P9  600 0.355
P10  1100 0.305
P11  1250 0.305

Table 4
Flow directions in pipes of Fig. 6 (small network).

p
T
(

Table 5
Specified variables for the small network of Fig. 6.

PN1 = 980.7 kPa P5f = 871.2 kPa
P1f = 897.6 kPa P7f = 870.9 kPa
P2f = 850.8 kPa P10f = 843.0 kPa
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

←− ↓ → ↓ → ↑ → ↓ ↑ → ↓
ressure or flowrate values. At the present problem, as shown in
able 5, the inlets and outlets pressures obtained from Yeh and Lin
2008) were chosen, with Pif meaning the final pressure of pipe i.
P4f = 890.4 kPa P11f = 778.9 kPa

Since the final pressure of the pipe is an outlet model result, each
specified outlet pressure formulates one pseudo-loop pressure dif-
ference equation. The specification of all outlet pressure leads to a
problem with the highest number of pressure difference equations.

Starting the problem resolution at the N1 node (network inlet),
it is verified that the inlet flowrate (“E” flowrate), not specified, is
split into two  outlets. Following the modular procedure, to start the
problem resolution, the inlet flowrate and one of its outlet flowrates
must be guessed, being dependent variables of the problem (E and
P1 flowrates), while the other outlet N1 node flowrate (P4 flowrate)
needs to be obtained from the node mass balance to allow the pres-
sure drop calculation of pipes P1 and P4. In order to emphasize

that no restriction is imposed to the equations to be used in the
problem formulation, differently from Yeh and Lin (2008) that used
the Hazen-Williams, the pressure drop calculation was  carried out
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mploying the Darcy-Weisbach Eq. (6), adapted to handle negative
owrate values.

Pi =
f�Livi|vi|

2Di
(6)

here �Pi is the pressure drop (Pa) of pipe i, f is the Darcy factor

dimensionless and calculated according to the Churchill (1977)
quation), Li is the pipe length (m), D is the pipe inner diameter
m), v = 4F/(� D2) is the fluid velocity (m/s), F is the flowrate (m3/s)
nd � is the fluid specific mass (kg/m3).
peline network.

Knowing the entrance pressure (PN1) and the P1 pressure drop,
it is possible to obtain the P1 final pressure, which needs to be
converged to the specified value (P1f presented in Table 5) employ-
ing the respective pressure difference equation for the pipeline
pseudo-loop. The P2 final pressure follows the same procedure
already described, where one of the O1 or P2 flowrates must be
guessed while the other is obtained by the N2 node mass balance.

Following the procedure, when two or more pipes end on a single
node, all final pressures must have the same value, which is guar-
anteed by the employment of the pressure difference equations for
the pipeline loops.
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Table  6
Difference equations and dependent variables of the small network.

Dependent variables FE, FP1, FP3, FP5, FO1, FO2, FO3, FO4, FO5 and FO6

Eq. (1) P3f − P4f = 0
Eq. (2) P5f − P6f = 0
Eq. (3) P8f − P9f = 0
Eq. (4) P1f (calculated) − P1f (given) = 0
Eq. (5) P2f (calculated) − P2f (given) = 0
Eq. (6) P11f (calculated) − P11f(given) = 0
Eq. (7) P10f (calculated) − P10f (given) = 0
Eq. (8) P4f (calculated) − P4f (given) = 0
Eq. (9) P5f (calculated) − P5f (given) = 0
Eq. (10) P7f (calculated) − P7f (given) = 0

Table 7
Sequential equations of the problem for the small network.

Mass Balance N1 FE = FP1 + FP4

Mass Balance N2 FP1 = FO1 + FP2

Mass Balance N3 FP2 = FO2 + FP3 + FP11

Mass Balance N4 FP4 + FP3 = FO6 + FP5 + FP8

Mass Balance N5 FP5 + FP6 = FO7

Mass Balance N6 FP7 = FP5 + FO5

Mass Balance N7 FP8 + FP9 = FP7

Mass Balance N8 FP10 = FP9 + FO4

Mass Balance N9 FP11 = FP10 + FO3

Final Pressure P1 P1f = PN1 − �P1

Final Pressure P2 P2f = P1f − �P2

Final Pressure P3 P3f = P2f − �P3

Final Pressure P4 P4f = PN1 − �P4

Final Pressure P5 P4f = P4f − �P5

Final Pressure P6 P7f = P7f − �P6

Final Pressure P7 P7f = P8f − �P7

Final Pressure P8 P8f = P4f − �P8

Final Pressure P9 P9f = P10f − �P9

Final Pressure P10 P10f = P11f − �P10
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Table 8
Results of the small network problem.

Variables Results

P1f 897.6 kPa
P2f 850.8 kPa
P3f 890.4 kPa
P4f 890.4 kPa
P5f 871.2 kPa
P6f 871.1 kPa
P7f 870.8 kPa
P8f 871.1 kPa
P9f 871.1 kPa
P10f 843.1 kPa
P11f 778.9 kPa
FP1 0.1409 m3/s
FP2 0.1042 m3/s
FP3 −0.0537 m3/s
FP4 0.2758 m3/s
FP5 0.0308 m3/s
FP6 −0.0223 m3/s
FP7 0.0026 m3/s
FP8 0.1580 m3/s
FP9 −0.1553 m3/s
FP10 −0.1171 m3/s
FP11 0.1163 m3/s
Final Pressure P11 P11f = P2f − �P11

At the end of the described procedure, it was identified 10
ependent variables, three pressure difference equations for the
ipeline loops and six pressure difference equations for the pipeline
seudo-loops. The identified equations and dependent variables,
hown in Table 6, formulate the nonlinear system of equations that
ust be solved simultaneously.
It is important to note that the equations presented in Table 6

roup all sequential equations, representing the whole problem.
he sequential equations of the problem are shown in Table 7,
here the pressure drops are evaluated by Eq. (6). Since it is a water
ipeline problem, the fluid properties were considered constants
specific mass equal to 1000 kg/m3 and viscosity of 0.89 cP).

The procedure was implemented in MATLAB software and the
solve function was used to solve the nonlinear system of equa-
ions. A value of 1 m3/h was guessed for all dependent variables
nd the convergence criterion was set to 10−8. In order to improve
he convergence properties, the residuals of all pressure difference
quations were squared. The results are shown in Table 8.

It is observed that some obtained flowrate variables have nega-
ive value, indicating that the flow direction at the problem solution
s contrary to the initial choice (Table 4). As expected, the obtained
esults are in accordance with the ones presented by Yeh and Lin
2008), despite the use of the Darcy-Weisbach equation. The objec-
ive function value (OF) also indicates that the obtained results are
he right problem solution, having also good accuracy.

.2. Big looped pipeline network
The looped water pipeline network of this case study is shown in
ig. 7. The network was solved using the Hazen-Williams pressure
rop Eq. (7), adapted to handle negative flowrates, where the pipes
OF Value 0.4121 × 10−6

No of iterations 27

physical characteristics are shown in Table 9, the guesses of the
flow directions in pipes are shown in Table 10, and the specified
independent variables are shown in Table 11.

hf,i

Li
= 10.67Qi|Qi|0.85

Ci
1.85di

4.87
(7)

where hf,i is the head loss (meters of water), Li the length of pipe
(m), Qi the volumetric flowrate (m3/s), Ci the pipe roughness coef-
ficient (dimensionless), and di is the inner pipe diameter (m)  of the
pipe i.

The network degrees of freedom, to be covered by the pres-
sure difference equations, are given by Eq. (1). The identification,
by Fig. 7, that node N2 is a reservoir precludes the direct use of
a node mass balance equation, as done on other network nodes.
To model the reservoir, it is needed to consider the N2 node as
three independent nodes, as it has three inlets or outlet connec-
tions, with pressure equal to the specified N2 pressure (897 kPa).
Thus, it is assumed a network with 50 nodes and 75 pipes, obtaining
a problem with 25 degrees of freedom.

Following the modular procedure and analyzing the specified
variables and the flow directions in pipes, it is verified that three
final pressures variables were specified (P3f, P4f and P10f, which is
equal to PN2), leading to three pressure difference equations for the
pseudo-loops. Just as in the previously examples, the identification
of one pseudo-loop lead to one more pressure difference equation
and one more dependent variable. It is also verified that two net-
work inlet pressures (PN31 that is equal to the inlet pressure of P31i
and PN9 that is equal to the inlet pressure of P43i) were not specified.
In this case, following the steps to formulate the network problem,
presented in Fig. 4, these inlet pressures must be set as dependent
variables and, to formulate a solvable problem, two more difference
pressure equations must be added to the problem.

Since the problem has 25 degrees of freedoms due to its loops,
3 variables that must be converged due to the pseudo-loops, and 2
variables that must be converged due to the problem specifications,
it is expected 30 pressure difference equations and 30 dependent

variables for the problem. Following the problem formulation of the
proposed procedure, Fig. 4, it is obtained exactly the right number
of pressure difference equations and dependent variables, as shown
in Table 12.
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Table  9
Physical characteristics of the pipes of Fig. 7 (big network).

Pipe P1 P2 P3 P4 P5 P6

Length 240 m 60 m 1830 m 3550 m 1220 m 640 m
Diameter 0.95 m 0.90 m 1.45 m 1.15 m 1.45 m 1.45 m
HW  Coef. 120 110 130 135 130 130

Pipe  P7 P8 P9 P10 P11 P12

Length 640 m 60 m 50 m 3660 m 60 m 60 m
Diameter 0.90 m 0.9 m 1 m 0.9 m 0.9 m 1 m
HW  Coef. 110 110 110 115 110 110

Pipe  P13 P14 P15 P16 P17 P18

Length 800 m 3140 m 3140 m 3140 m 60 m 60 m
Diameter 0.9 m 1.45 m 1.15 m 1.65 m 0.9 m 1 m
HW  Coef. 115 130 130 135 110 110

Pipe  P19 P20 P21 P22 P23 P24

Length 2300 m 60 m 4040 m 60 m 4050 m 4050 m
Diameter 0.8 m 0.9 m 1.15 m 0.9 m 0.8 m 1.15 m
HW  Coef. 115 110 130 110 115 130

Pipe  P25 P26 P27 P28 P29 P30

Length 60 m 60 m 2150 m 180 m 2980 m 2980 m
Diameter 0.9 m 0.9 m 0.8 m 0.8 m 1.45 m 1.45 m
HW  Coef. 110 110 110 110 135 135

Pipe  P31 P32 P33 P34 P35 P36

Length 12000 m 670 m 60 m 13400 m 80 m 4290 m
Diameter 1.65 m 0.95 m 1 m 1.65 m 0.90 m 0.95 m
HW  Coef. 135 110 110 135 110 120

Pipe  P37 P38 P39 P40 P41 P42

Length 4290 m 60 m 2590 m 60 m 2960 m 2960 m
Diameter 0.9 m 0.05 m 0.95 m 0.05 m 0.9 m 1.15 m
HW  Coef. 115 110 120 110 115 135

Pipe  P43 P44 P45 P46 P47 P48

Length 2280 m 370 m 90 m 60 m 1610 m 60 m
Diameter 1.15 m 0.95 m 1 m 0.05 m 0.9 m 0.05 m
HW  Coef. 130 120 130 110 115 110

Pipe  P49 P50 P51 P52 P53 P54

Length 1350 m 2960 m 6530 m 60 m 230 m 7200 m
Diameter 0.95 m 0.05 m 0.95 m 0.9 m 0.95 m 0.95 m
HW  Coef. 115 120 120 110 120 120

Pipe  P55 P56 P57 P58 P59 P60

Length 60 m 3200 m 4300 m 3200 m 80 m 90 m
Diameter 1 m 1.15 m 1.45 m 1.15 m 0.8 m 0.75 m
HW  Coef. 110 135 135 135 115 130

Pipe  P61 P62 P63 P64 P65 P66

Length 2050 m 2380 m 3050 m 670 m 60 m 60 m
Diameter 0.95 m 0.8 m 1.15 m 0.05 m 0.05 m 0.05 m
HW  Coef. 120 115 135 115 110 110

Pipe  P67 P68 P69 P70 P71 P72

Length 1830 m 60 m 1950 m 3780 m 60 m 60 m
Diameter 0.8 m 0.9 m 0.8 m 0.95 m 0.05 m 0.9 m
HW  Coef. 115 110 115 120 110 120

Pipe  P73 P74

Length 4290 m 60 m
Diameter 1.15 m 0.05 m
HW Coef. 135 110
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Fig. 7. Big loop

The procedure was implemented in MATLAB software and
he fsolve function was used to solve the nonlinear system of
quations. A value of 1 m3/h was guessed for all dependent vari-
bles and the convergence criterion was set to 10−8. In order
o improve the convergence properties, the residuals of all pres-
ure difference equations were squared. The results are shown in
able 13.

The obtained results are in accordance with the ones presented
y Yeh and Lin (2008), where the objective function value high-

ights the accuracy. The big network problem was also solved with
he PSO non-deterministic optimization algorithm (Kennedy and

berhart, 1995), where the results were used as initial guesses for
he nonlinear system of equations resolution that converged with
ower number of Newton-Raphson iterations to the same results
resented in Table 13.
eline network.

3.3. Industrial installation with lopped pipeline network

A looped pipeline network commonly found in industrial instal-
lation with high-capacity pumps (large flowrate and high discharge
pressure) used for oil transfer through ducts is solved. The system,
shown in Fig. 8, is composed by pipe arrangement for the oil recircu-
lation done by two groups of pumps, connected in series, suctioning
from an oil tank. The series connection of booster pumps on the suc-
tion of the main pumps is to attend the main pumps high-required
NPSH (Net Positive Suction Head), and the pipes arrangement forms
the loop configuration to connect the pumps discharges to their

suctions allowing the oil recirculation.

For both groups of pumps, the recirculation procedure is needed
on the pumps starts to minimize their required potency and avoid
possible electric damages, which could cause fire and/or others fur-
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Fig. 8. Industrial lopped pipeline network.

Table 10
Flow directions in pipes of Fig. 7 (big network).

Pipe Direction

P1 ↓
P2 ↑
P3 ←−
P4 ↑
P5 ←−
P6 ←−
P7 ↓
P8 ↑
P9 →
P10 ↓
P11 →
P12 ↑
P13 ↑
P14 ↑
P15 ↑
P16 ↑
P17 ↓
P18 ↑
P19 ↑
P20 ↓
P21 →
P22 →
P23 ↑
P24 ↑
P25 ↑
P26 ←−
P27 ↑
P28 →
P29 ↑
P30 ↑
P31 ↓
P32 ↑
P33 ↓
P34 ↓
P35 ↑
P36 ↓
P37 ↓

Table 10 (Continued)

Pipe Direction

P38 ↑
P39 ↓
P40 ←−
P41 ↓
P42 ↓
P43 ↓
P44 ←−
P45 ↓
P46 ↓
P47 ↓
P48 ←−
P49 ↓
P50 ↓
P51 ↓
P52 →
P53 →
P54 ↓
P55 ↓
P56 ←−
P57 ←−
P58 ←−
P59 ←−
P60 ↓
P61 ←−
P62 ↓
P63 ↑
P64 ←−
P65 ↑
P66 ↑
P67 ←−
P68 ↓
P69 ↓
P70 ←−
P71 ↑
P72 ↓
P73 ↓
P74 ←−
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Table  11
Specified variables for the big network.

PN1 1363 kPa
PN2 897 kPa
FE1 1.620370 m3/s
FE2 1.620370 m3/s
FO1 0.016203 m3/s
FO2 0.023148 m3/s
FO3 0.138888 m3/s
FO4 0.254629 m3/s
FO5 0.092592 m3/s
FO6 0.012731 m3/s
FO7 0.104166 m3/s
FO8 0.017361 m3/s
FO9 0.162037 m3/s
FO10 0.104166 m3/s
FO11 0.074074 m3/s

Table 12
Difference equations and dependent variables of the big network.

Num. Equations Variables

1 P51f − P52f = 0 FP1

2 P50f − P43f = 0 FP53

3 P50f − P48f = 0 FP52

4 P46f − P45f = 0 FP48

5 P38f − P42f = 0 FP46

6 P35f − P42f = 0 FP44

7 P40f − P39f = 0 FP38

8 P36f − P72f = 0 FP40

9 P74f − P36f = 0 FP35

10 P71f − P73f = 0 FP71

11 P14f − P8f = 0 FP69

12 P68f − P66f = 0 FP65

13 P63f − P61f = 0 FP66

14 P60f − P61f = 0 FP68

15 P64f − P62f = 0 FP56

16 P55f − P58f = 0 FP60

17 P28f − P2f = 0 FP59

18 P28f − P25f = 0 FP26

19 P26f − P29f = 0 FP25

20 P27f − P21f = 0 FP2

21 P20f − P21f = 0 FP17

22 P24f − P22f = 0 FP19

23 P13f − P12f = 0 FP20

24 P15f − P9f = 0 FP18

25 P7f − P9f = 0 FP9

26 P8f − P11f = 0 FP7

27 P3f − P4f = 0 FP10

28 P10f − P3f = 0 FP8

29 P3f − PN2 = 0 PN9
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Table 13
Results of the big network problem.

Pipe Results

P (kPa) F (m3/s)

P1 1362.2588 0.250626
P2  958.4615 0.134666
P3  896.6340 1.216537
P4  896.6340 0.820946
P5  904.6488 1.667946
P6  902.1178 1.413296
P7  911.4383 0.023051
P8  911.2166 0.336781
P9  911.4383 0.615998
P10  896.6340 0.361295
P11  911.2166 0.350073
P12  911.4657 0.543399
P13  911.4657 0.191019
P14  911.2166 0.981071
P15  911.4383 0.518678
P16  911.7924 1.159398
P17  917.4479 0.202430
P18  916.0696 1.159398
P19  912.4507 0.191019
P20  917.4479 0.196712
P21  917.4479 1.278934
P22  917.5234 0.040881
P23  917.5381 0.434330
P24  917.5234 1.275790
P25  958.4615 0.134667
P26  958.5135 0.000281
P27  958.7902 0.257589
P28  958.4615 0.164997
P29  958.5135 1.410175
P30  958.5135 1.413882
P31  1036.6060 1.620370
P32  967.7565 0.257589
P33  1002.4810 0.803819
P34  1003.1657 1.607639
P35  1195.3534 0.000816
P36  1165.9008 0.577825
P37  1343.5913 0.211710
P38  1195.3534 0.005646
P39  1195.3534 0.572996
P40  1195.3534 0.005646
P41  1350.0581 0.223001
P42  1195.3534 1.035648
P43  1215.5453 1.620370
P44  1212.8554 0.596144
P45  1214.3250 1.030286
P46  1214.3250 0.005362
P47  1354.9621 0.233700
P48  1215.5453 0.005337
P49  1357.8619 0.233700
P50  1215.5453 0.000722
P51  1359.7376 0.119317
P52  1359.7376 0.114383
P53  1362.1509 0.135520
P54  1359.7690 0.115105
P55  989.6367 0.803820
P56  990.3313 0.803820
P57  969.5037 1.607639
P58  989.6367 0.803819
P59  968.9661 0.329089
P60  969.4595 0.089591
P61  969.4595 0.678943
P62  968.1244 0.071500
P63  969.4595 0.970730
P64  968.1244 0.002574
P65  988.4164 0.008789
P66  986.7987 0.008811
P67  1339.5938 0.020174
P68  986.7987 0.961919
P69  1339.6467 0.182211
P70  988.4164 1.632073
P71  1167.5254 0.006154
P72  1165.9008 1.048163
P73  1167.5254 1.042109
P74  1165.8999 0.006084
OF  value 2.3641 × 10−13

No of Iterations 46
30 P70f − P65f = 0 PN31

hers undesirable consequences. To stabilize the pumps discharge
nd suction pressure, a pipe accident (the restriction orifice) is used
o obtain the required pressure drop. The restriction orifice equa-
ions are found in standards as EN ISO-5167. Both groups of pumps
main and booster pumps) have their own recirculation systems,
esigned to operate with only one pump at time, and using the
rifice arrangement with two restriction orifices in series.

Analyzing the system, it is easy to identify two pipes that end at
 same node, the pipes 13 and 1, and a pipe with final pressure equal
o the oil column in the tank, the pipe 10. The difference equations
nd the dependent variables of this problem are shown in Table 14,
nd the problem specifications are shown in Table 15.

The procedure was implemented in MATLAB software and the
solve function was used to solve the nonlinear system of equa-
ions. A value of 1 m3/h was guessed for all dependent variables
nd the convergence criterion was set to 10−8. In order to improve

he convergence properties, the residuals of all pressure difference
quations were squared. The results are shown in Table 16.
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Table  14
Difference equations and dependent variables of the industrial network.

Dependent variables FP1 e FP11

Eq. (1) P10f − Ptank = 0
Eq. (2) P13f − P1f = 0

Table 15
Specification of the simulation for the industrial network.

P0 (petroleum column) 110,2 kPa
Pressure drop equation Darcy-Weisbach (Eq.

(6))
Pipe roughness 4752 × 10−5 m
Pipe length (for the 13 pipes) [20 30 10 10 70 16.5 6

15.9 80 10 10 20 10] m
Pipe  inner diameter (for the 13 pipes) [1.40 1.40 0.74 0.58

1.04 0.58 0.48 0.23 0.58
0.23 0.18 0.38 0.18] m

Oil  specific mass 937 kg/m3

Oil viscosity 206.14 cP
Main pumps �P equation (F[=] m3/h) (−1.8 × 10−8

F3 + 1.8 × 10−4 F2 − 0.28
F + 8456.53) kPa

Booster pumps �P  equation (F[=] m3/h) (2.8 × 10−8

F3 − 8.3 × 10−5

F2 + 0.051
F + 1303.1) kPa

Diameters of the main pumps restriction orifices 0.0660 m
Diameters of the booster pumps restriction orifices 0.0381 m

Table 16
Problem results of the industrial network.

Variables Value Variables Value

P1f 110.2 kPa FP1 0.210 m3/s
P2f 110.2 kPa FP2 0.237 m3/s
P3f 110.0 kPa FP3 0.237 m3/s
P4f 1408.6 kPa FP4 0.237 m3/s
P5f 1408.2 kPa FP5 0.210 m3/s
P6f 1407.5 kPa FP6 0.210 m3/s
P7f 9664.6 kPa FP7 0.210 m3/s
P8f 9597.7 kPa FP8 0.210 m3/s
P9f 9594.2 kPa FP9 0.210 m3/s
P10f 110.3 kPa FP10 0.210 m3/s
P11f 1403.7 kPa FP11 0.027 m3/s
P12f 1403.1 kPa FP12 0.027 m3/s
P13f 110.2 kPa FP13 0.027 m3/s
�PBooster.orifice 1308.7 kPa �PBooster.Pump 1299.2 kPa

m
m

s
l
t
i
m
T
u
e

4

l
t
o
b

EN ISO-5167, 2003, Measurement of fluid flow by means of pressure differential
�PMain.orifice 9441.9 kPa �PMainPump 8257.9 kPa
OF  Value 1.6367 × 10−12 No of iterations 24

The low objective function value shows that the proposed
ethod is also applied to looped pipeline network problem with
ore devices than just pipes and nodes.
Furthermore, the proposed method was applied to the same

ystem, but on the system design perspective. The design calcu-
ation aims to obtain the diameters of the restriction orifices. Thus,
he problem was remodeled specifying, according to the results
n Table 16, all flowrate variables and leaving the diameters of the

ain and booster pumps restriction orifices as dependent variables.
he obtained diameters results were, as expected, the same val-
es showed in Table 15, showing that the proposed method can be
mployed for any kind of process simulation problem.

. Conclusions

On the looped pipeline network problem, a simultaneous reso-
ution is needed to solve some of its equations, making not possible

he direct employment of a modular procedure. The impossibility
n use the sequential resolution lies on the required attendance of
oth Kirchhoff’s laws since, initially satisfying the node mass bal-
l Engineering 96 (2017) 169–182 181

ance (first Kirchhoff’s law), it is needed a simultaneous convergence
of the loop equations obtained from the second Kirchhoff’s law.

The proposed method uses modular procedure to identify
the problem pressure difference equations, grouping the equa-
tions that can be solved sequentially. The identified pressure
difference equations replace the traditional loop and pseudo-loop
equations and form the nonlinear system to be solved simul-
taneously. Since the proposed method uses features from both
modular and equation-oriented procedures, it was character-
ized as simultaneous-modular. Furthermore, was proposed the
employment of the Newton-Raphson method to solve the prob-
lem nonlinear system of equations and, to obtain better initial
guesses for the dependent variables, it was  proposed a procedure
to formulate an objective function for the initial employment of
non-deterministic optimization methods.

The presented case studies showed that the pressure difference
equations are easily identified and, different of the loop equations,
are always applicable to the problem. It was also shown that the
pressure difference equations are equal to the loop equations for-
mulated by the traditional employment of the second Kirchhoff’s
Law, making no difference between problems solved by both pro-
cedures.

The particularity of the lopped pipeline network problem leaded
to the development of simulators to solve this specific problem, as
the EPANET (2015) software. However, the development of simu-
lators capable to solve problems composed by both looped pipeline
and others process equipment’s are not a simple task. Using the pro-
posed method to identify the pressure difference equations, there
is no more need to identifying and choosing the independent loop
equations, and was also verified that the equations can be used
on problems that aims the obtainment of any design variable, as
showed at the case study Industrial installation with lopped pipeline
network (item 3.3).

It is understood the described simultaneous-modular procedure
makes possible the development of a process simulator capable to
solve any process problem, with or without looped pipeline. The
main advantage of the procedure is groups all sequential equation
to formulate the smallest possible problem system of equations,
turn easier and less computationally costly a simultaneous conver-
gence by numerical procedures. The big looped pipeline problem
resolution (item 3.2) exemplifies the conclusion, where the whole
problem was represented by a system of equation composed by
only 30 equations.
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