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Recent  data-driven  soft  sensors  often  use  multiple  adaptive  mechanisms  to  cope  with  non-stationary
environments.  These  mechanisms  are  usually  deployed  in a prescribed  order  which  does  not  change.  In
this work  we  use  real world  data  from  the  process  industry  to  compare  deploying  adaptive  mechanisms
in  a fixed  manner  to deploying  them  in  a flexible  way,  which  results  in  varying  adaptation  sequences.
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We  demonstrate  that flexible  deployment  of  available  adaptive  methods  coupled  with  techniques  such
as  cross-validatory  selection  and retrospective  model  correction  can  benefit  the predictive  accuracy  over
time. As  a vehicle  for  this  study,  we  use  a soft-sensor  for batch  processes  based  on  an  adaptive  ensemble
method  which  employs  several  adaptive  mechanisms  to react  to the  changes  in data.
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nsemble methods

. Introduction

Modelling industrial processes typically involves estimating a
nite set of physical quantities. Certain necessary measurements in
he process industry are often excessively costly or time consum-
ng. Soft sensors have proven to be useful tools in these situations,
roviding information about the quantity to be estimated with-
ut directly performing the measurements. There are two main
amilies of soft sensors: physical model based and data-driven soft
ensors (Kadlec et al., 2009). Physical model-driven soft sensors
stimate the quantity using chemical and physical laws behind the
rocess. For many complex processes this is impossible as accurate
rst principle models are not known or evolution of the process is
ot taken into account.

In this work we focus on data-driven soft sensors. In particu-
ar we scrutinise and explore the multiple adaptive mechanisms
pplied to soft sensors in a streaming data scenario. The stream-
ng data scenario itself introduces some interesting questions. For
he batch processes where data arrives in large segments called
atches, which are common in the process industry, especially in
he chemical, microelectronics and pharmaceutical areas (Cinar
t al., 2003), the models are typically adapted when a new batch of
ata is observed. This can be done with or without historical data

which may  have been jettisoned, is not readily available or would
e computationally costly to include).

∗ Corresponding author.
E-mail addresses: rbakirov@bournemouth.ac.uk (R. Bakirov),

gabrys@bournemouth.ac.uk (B. Gabrys), dfay@bournemouth.ac.uk (D. Fay).
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098-1354/© 2016 Elsevier Ltd. All rights reserved.
The underlying assumptions of a soft-sensor model may  only
hold for a certain period of time (Gallagher et al., 1997). It has been
shown that many changes in the environment which are no longer
being reflected in the model contribute to the deterioration of pre-
dictive model’s accuracy over time (Schlimmer and Granger, 1986;
Kadlec et al., 2011). Factors such as sensor/measurement deteriora-
tion, addition of new sensors, changes in the process flow or input
materials, etc. can result in alternate models explaining the process
better. This requires constant manual retraining and readjustment
of the soft sensors which is often expensive, time consuming and
in some cases impossible – for example when the historical data is
not available any more.

To avoid outright retraining and development of soft-sensor
models for an evolving process, many soft sensors with adaptive
mechanisms (AMs) (Kadlec et al., 2011) have been proposed, start-
ing with the recursive Principal Component Analysis (PCA) and
Partial Least Squares (PLS) approaches presented in Dayal and
MacGregor (1997), Li et al. (2000) and developing as discussed
later (Section 2). Often adaptation operates by reducing the weight
applied to irrelevant parts of the historical data, which may be
implemented in a variety of ways. In addition, recent adaptive soft
sensors use, not one, but multiple AMs. Employing multiple AMs  is
more versatile than a single approach and can lead to superior pre-
diction performance (e.g. Kadlec and Gabrys, 2011; Jin et al., 2015a)
because given an evolution in the process some AMs  are more
appropriate than others at different times. However, in practice,
most research has concentrated on AM’s deployed in a prescribed

fixed order set at the model design time. The common choice is to
deploy all of the AMs  at the same time; however, this can lead to
undesirable results with some AMs  cancelling the effect of others
or by overcompensating for change in the process.

dx.doi.org/10.1016/j.compchemeng.2016.08.017
http://www.sciencedirect.com/science/journal/00981354
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In this paper we are providing a deeper analysis of a soft sen-
or with multiple AMs, concentrating on the choice and order of
Ms’ deployment. For this purpose we use the Simple Adaptive
atch Learning Ensemble (SABLE) (Bakirov et al., 2016), on which
he analysed soft sensor is based. SABLE is an ensemble method,

eaning that the final prediction is calculated by combining the
redictions of different models (experts). As such, it uses three dif-
erent popular AMs  to deal with changing data: (i) Recursive Partial
east Squares (RPLS) (Joe Qin, 1998) is used to discount older data,
ii) adapting the combination weights targets the ensemble mix,
nd (iii) addition/merge/removal of experts adapts the structure of
he model ensemble. This allows us to relate to many other soft-
ensors which use similar AMs  for their adaptation, making our
xploration relevant to a very broad class of similar approaches.

As a result of our analysis based on three real world pro-
ess industry datasets we provide strong empirical evidence that
eploying AM’s in a flexible order without a predetermined
equence leads to better prediction accuracy. Two  methods in par-
icular were effective for the choice of the AM – cross-validatory
election and retrospective model correction (see Section 3.2).
ross-validatory AM selection involves selecting the AM to deploy
ased on the performance on the current data. Once the subse-
uent data has been fully observed, the AM which would indeed
ave been the best for previous batch becomes known. Retrospec-
ive model correction is reverting the model to the state, which the
eployment of this best AM would have created.

The paper is structured as follows: Section 2 introduces the
elated work, concentrating on soft sensors with one or more adap-
ive mechanisms. Section 3 presents mathematical formulation of
he framework of a system with multiple adaptive elements in
atch streaming scenario. Section 4 introduces the algorithm for the
oft-sensor, which was used for the experimentation, including its
Ms and a description of RPLS. Experimental methodology, descrip-

ion of the datasets and results of our experiments are covered in
ection 5. We  conclude by giving our final remarks in Section 6.

. Related work

Recently, many soft sensors and other regression methods for
ndustrial processes, which explicitly consider the adaptation of the

odel, such as Kadlec and Gabrys (2011), Grbić et al. (2013), Kaneko
nd Funatsu (2014, 2015), Gomes Soares and Araújo (2015a,b),
ouza and Araújo (2014), Shao et al. (2014), Ni et al. (2014), Jin
t al. (2014, 2015a,b), Shao and Tian (2015) and Shao et al. (2015a,b),
ave been proposed. Many of the algorithms are examples of incre-
ental learning, with the exception of Jin et al. (2015a,b) which

re specifically targeted at batch processes. Adaptivity is usually
chieved by building a predictive model using (a) the latest histor-
cal data; and/or (b) the historical data which is the most similar to
he current data. Adaptive methods often use multiple models to

ake the final prediction, either by the weighted combination of
heir outputs (Kadlec and Gabrys, 2011; Grbić et al., 2013; Kaneko
nd Funatsu, 2014, 2015; Gomes Soares and Araújo, 2015a,b; Souza
nd Araújo, 2014; Jin et al., 2015a,b; Shao and Tian, 2015; Shao et al.,
015b) – these are known as ensemble models, or, more rarely,
electing one of them (Jin et al., 2014, 2015b; Shao et al., 2015a).
ost of the models, or experts, are built on the subsets of historical

ata which represent different degrees of relation to the current
ata.

Ensemble methods date as far back as 1960s, when it was
hown that combining multiple predictive models may  give bet-

er results than using single models (Bates and Granger, 1969). One
f the advantages of ensemble methods is the ability to model local
ependencies in the data, a classical example being an adaptive
ixture of local experts presented in Jacobs et al. (1991). This is
cal Engineering 96 (2017) 42–54 43

achieved by weighting the models’ predictions on a data instance
by the location of this instance in the input space. Soft sensors
using local ensembles are described in Kadlec and Gabrys (2011,
2009b, 2010), Shao and Tian (2015), Shao et al. (2015b) and Jin
et al. (2015a). These methods first identify the disjoint segments
of the historical input space where the process produced outputs
described by a common model, sometimes also called receptive
fields. Then they build a model for each receptive field using Par-
tial Least Squares (PLS) (Wold, 1966) or Support Vector Regression
(Drucker et al., 1996). The models therefore describe different
regions of the process. The final prediction is a weighted average
of all of the experts. Here, for each new data instance, the weights
of experts depend on the location of the observed instance and
in some cases the prediction. The AM used in Kadlec and Gabrys
(2009b) is based on change of models’ local weights depending on
their error. This model was extended in Kadlec and Gabrys (2011)
to include adaptation of the base models using the RPLS forget-
ting. Kadlec and Gabrys (2010) further extends the model to include
creation of additional experts. Shao and Tian (2015) and Shao et al.
(2015b) use adaptation of base models and adaptive weighting with
Jin et al. (2015a) additionally introducing adaptive offset correction.
Another soft sensor based on local ensemble with a moving window
and weights change AMs  is described in Grbić et al. (2013).

Also popular in the literature are global regression ensem-
bles (Kaneko and Funatsu, 2014, 2015; Gomes Soares and Araújo,
2015a,b). These typically assign weights to experts based on their
general performance, not considering the local aspects of data.
Global ensemble methods use similar AMs. For instance, Kaneko
and Funatsu (2014) adapt to changes by creating new experts and
changing their weights. Gomes Soares and Araújo (2015b) includes
AMs  such as adaptation of base models via a moving window strat-
egy, changing experts weights and adding new experts. Gomes
Soares and Araújo (2015a) additionally employs a boosting like
instance weighting mechanism resampling the training data. Both
Gomes Soares and Araújo (2015a,b) may  remove experts as well.
A method which uses an ensemble of univariate regressors for
multivariate regression is described in Souza and Araújo (2014).
It includes weighting of models and forgetting factor AMs. Kaneko
et al. (2014) uses time difference ensemble based on the distance
between the current input and historical inputs. This method can
use either moving window or just-in-time (creation of a model
from most relevant instances) approaches for adaptation. Kaneko
et al. (2014) also use just-in-time model creation with global per-
formance based adaptive weighting.

From the analysis above we  can see that there are a host of adap-
tation mechanisms which can be applied with ensemble methods.
A review of these mechanisms for soft sensors is given in Kadlec
et al. (2011). The mechanisms target different characteristics of
the model: the error, the current location in the input space (or
output space), and the temporal distance. The SABLE framework
chosen here also includes such functionality. Most of the described
work above have a common characteristic that whatever the AMs,
they are applied at every time step in the same manner. In contrast
the approaches proposed in Gomes Soares and Araújo (2015a,b),
Jin et al. (2015b), Kadlec and Gabrys (2010), Kaneko et al. (2014)
and Kadlec and Gabrys (2009a) change the order of the adaptation.
This research is perhaps the most relevant to the current paper.
In particular, Kadlec and Gabrys (2010) creates new experts when
existing ones are not built on the relevant data, Gomes Soares and
Araújo (2015a,b) create new experts when the predictive error on
an instance is above a set threshold. In Kaneko et al. (2014) the
predictive accuracy is assessed to switch between two predictive

models. Again the, predictive accuracy is used to choose between
just-in-time model creation and offset update in Jin et al. (2015b).
Kadlec and Gabrys (2009a) present a plug and play architecture
for preprocessing, adaptation and prediction which foresees the
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ossibility of using different adaptation methods in a modular
ashion, but does not address the method of AM selection. The
esearch presented here differs from the existing studies as, to the
est of authors’ knowledge, it is the first work to examine how
hanging the order and the type of adaptation affects the system
haracteristics and performance.

. Formulation

We  assume that the data is generated by an unknown time
arying process which can be formulated as:

� =  (x�, �) + ��, (1)

here   is the unknown function, �� a noise term, x ∈ RM is an
nput data instance, and y� is the observed output at time �.1,2 Then

e consider the predictive method at a time � as a function:

ˆ� = f�(x�, �f ), (2)

here ŷ� is the prediction, f� is an approximation (i.e. the model)
f  (x, �), and �f is the associated parameter set. Our estimate,
� , evolves via adaptation as each batch of data arrives as is now
xplained.

.1. Adaptation

In the batch streaming scenario considered in this paper, data
rrives in batches with � ∈ {�k, . . .,  �k+1 − 1}, where �k is the start
ime of the kth batch. If nk is the size of the kth batch, �k+1 = �k + nk.
t then becomes more convenient to index the model by the batch
umber k, denoting the inputs as Xk = x�k , . . .,  x�k+1−1, the outputs
s yk = y�k , . . .,  y�k+1−1. We  examine the case where the prediction
unction fk is static within a kth batch.3

We  denote the a priori predictive function at batch k as f −
k

, and
he a posteriori predictive function, i.e. the adapted function given
he observed output, as f +

k
. An adaptive mechanism, g(·), may  thus

ormally be defined as an operator which generates an updated pre-
iction function based on the batch Vk = {Xk, yk} and other optional

nputs. This can be written as:

k(Xk, yk, �g, f −
k
, ŷk) : f −

k
→ f +

k
. (3)

r alternatively as f +
k

= f −
k

◦ gk for conciseness. Note f −
k

and ŷk are
ptional arguments and �g is the set of parameters of g. The func-
ion is propagated into the next batch as f −

k+1 = f +
k

and predictions
hemselves are always made using the a priori function f −

k
.

We examine a situation when a choice of multiple, different
Ms, { ∅, g1, . . .,  gH} = G, is available. Any AM ghk ⊂ G can be deployed
n each batch, where hk denotes the AM deployed at batch k. As
he history of all adaptations up to the current batch, k, have in
ssence created f −

k
, we call that sequence gh1

, . . .,  ghk an adapta-
ion sequence. Note that we also include the option of applying no
daptation denoted by ∅. In this formulation, only one element of
 is applied for each batch of data. Deploying multiple adaptation
echanisms on the same batch are accounted for with their own

ymbol in G. Fig. 1 illustrates our formulation of adaptation.

1 Please note that Eq. (1) has not intended to and do not explicitly take into account
he dynamics of the data generating process as is commonly done in the state-
pace model representation used in the control engineering. Here x represents all
easurable/observable variables (e.g. sensor readings, etc.) which are used as inputs

o  the prediction model as expressed in Eq. (2).
2 The notation used in this paper is listed in Table A.6.
3 A batch typically represents a real-world segmentation of the data which is
eaningful, for example a plant run and so our adaptation attempts to track run to

un  changes in the process. We also found in our experiments that adapting within
 batch can be detrimental as its leads to drift in the models.
Fig. 1. Adaptation with multiple AMs. Optional inputs are shown with dashed lines.

3.2. Adaptation strategies

In this section we present the different strategies we examined
to understand the issues surrounding flexible deployment of AMs
better and assist in the choice of adaptation sequence.

At every batch k, an AM ghk must be chosen to deploy on the
current batch of data. To obtain a benchmark performance, we  use
a greedy optimal adaptation strategy

f −
k+1 = f −

k
◦ ghk , hk = argmin

hk ∈ 1···H
〈(f −
k

◦ ghk )(Xk+1), yk+1〉 (4)

where 〈 〉 denotes the chosen error measure.4 Since Xk+1, yk+1 are not
yet obtained, this strategy is not applicable in the real life situations.
Also note that this may  not be the overall optimal strategy which
minimizes the error over the whole dataset. While discussing the
results in Section 5 we refer to this strategy as Optimal.

Given the inability to conduct the Optimal strategy, below we  list
the alternatives. The simplest adaptation strategy is applying the
same AM to every batch (these are denoted Sequence1,  Sequence2,
etc. in Section 5). A more common practice (see Section 2) is apply-
ing all adaptive mechanisms, denoted as Joint in Section 5.

As introduced in Bakirov et al. (2016), it is also possible to
use Vk for the choice of ghk . Given the observation, the a pos-
teriori prediction error Vk is 〈(f −

k
◦ ghk )(Xk), yk〉. However, this is

effectively an in-sample error as ghk is a function of {Xk, yk}.5

To obtain a generalised estimate of the prediction error we  apply
10-fold cross validation. The cross-validatory adaptation strategy
(denoted as XVSelect) uses a subset (fold), S, of {Xk, yk} to adapt; i.e.
f +
k

= f −
k

◦ ghk ({Xk, yk}∈ S) and the remainder, §, is used to evaluate,
i.e. find 〈f +

k
(Xk)∈§, yk∈§ 〉. This is repeated 10 times resulting in 10

different error values and the AM,  ghk ∈ G, with the lowest average
error measure is chosen. In summary:

f −
k+1 = f −

k
◦ ghk , hk = argmin

hk ∈ 1···H
〈(f −
k

◦ ghk )(Xk), yk〉× (5)

where 〈 〉× denotes the cross validated error.
The next strategy can be used in combination with any of the

above strategies as it focuses on the history of the adaptation
sequence and retrospectively adapts two  steps back. This is called
the retrospective model correction (Bakirov et al., in press). Specif-
ically, we estimate which adaptation at batch k − 1 would have
produced an optimal estimate in block k:

f −
k+1 = f −

k−1 ◦ ghk−1
◦ ghk , hk−1 = argmin

hk−1 ∈ 1···H
〈(f −
k−1 ◦ ghk−1

)(Xk), yk〉

(6)
Using cross-validated error measure in Eq. (6) is not necessary,
because ghk−1

is independent of yk. Also note the presence of

4 In this paper the Mean Absolute Error (MAE) is used.
5 As a solid example consider the case where f +

k
is f −

k
retrained using {Xk , yk}. In

this  case yk are part of the training set and so we risk overfitting the model if we
also  evaluate the goodness of fit on yk .
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Fig. 2. Block dia

hk
; retrospective correction does not in itself produce a fk+1

nd so cannot be used for prediction unless it is combined with
nother strategy (ghk ). This strategy can be extended to consider
he sequence of r AMs  while choosing the optimal state for the
urrent batch, which we call r-step retrospective correction:

−
k+1 = f −

k−r ◦ ghk−r ◦ · · · ◦ ghk−1
◦ ghk , {hk−r · · ·hk−1}

= argmin
hk−r ···hk−1 ∈ 1···H

〈(f −
k−r ◦ ghk−r ◦ · · · ◦ ghk−1

)(Xk), yk〉 (7)

We  next examine the prediction algorithm and the adaptive
echanisms (the set G) used in this research.

. Algorithm

To perform experiments, we chose a modelling framework
hich has the ability to implement several different types of adap-

ation mechanisms. This is called the Simple Adaptive Batch Local
nsemble (SABLE),6 which is an extension of the ILLSA method
Kadlec and Gabrys, 2011). ILLSA uses an ensemble of models,
alled base learners, with each base learner implemented using

 linear model formed through RPLS. TO get the final prediction,
he predictions of base learners are combined using input/output
pace dependent weights (i.e. local learning). SABLE differs from
LLSA in that it is designed for batches of data whereas ILLSA

orks and adapts on the basis of individual data points. Further-
ore, SABLE supports the creation and merger of base learners.

LS was chosen because it is widely used for predictions in chem-
cal processes where high dimensional datasets tend to have
ow-dimensional embeddings. Fig. 2 shows the diagram of SABLE

odel.

.1. Building of experts’ descriptors

The relative (to each other) performance of experts varies in
ifferent parts of the input/output space. In order to quantify this

 descriptor is used. Descriptors of experts are distributions of
heir weights with the aim to describe the area of expertise of
he particular local expert. They describe the mappings from a
articular input, xm, and output, y, to a weight, denoted D (xm,
i,m
), where m is the mth input feature7 and i is the ith expert. The

6 SABLE was previously described in Bakirov et al. (2016), Sections 4, 5, 6. To
ake this work self contained, we repeat the description of the algorithm again in

his section.
7 For the base methods which transform the input space, such as PLS, the trans-

ormed input arguments are used instead of original ones.
of SABLE model.

descriptor is constructed using a two-dimensional Parzen window
method (Parzen, 1962) as:

Di,m = 1

||V tri ||

||V tr
i

||∑
j=1

w(xj)�(�mj , ˙) (8)

where V tri is the training data used for ith expert, ||V tri || is the
number of instances it includes, w(xj) is the weight of sample
point’s contribution which is defined below, xj is the jth sample of
V tri , �(�m

j
, ˙) is two-dimensional Gaussian kernel function with

mean value � = (xm
j
, yj) and variance matrix  ̇ ∈ R2×2 with the

kernel width, �, at the diagonal positions. �, is unknown and must
be estimated as a hyperparameter of the overall algorithm.8

The weights w(xj) for the construction of the descriptors (see
Eq. (8)) are proportional to the prediction error of the respective
local expert:

w(xj) = exp(−(ŷj − yj)
2) (9)

Finally, considering that there are M input variables and I mod-
els, the descriptors may  be represented by a matrix, D ∈ RM×I

called the descriptor matrix.

4.2. Combination of experts’ predictions

During the run-time phase, SABLE must make a prediction of
the target variable given a batch of new data samples. This is done
using a set of trained local experts F and descriptors V. Each expert
makes a prediction ŷi for a data instance x. The final prediction ŷ is
the weighted sum of the local experts’ predictions:

ŷ =
I∑
i=1

vi(x, ŷi)ŷi (10)

where vi(x, ŷi) is the weight of the i-th local expert’s prediction.
The weights are calculated using the descriptors, which estimate
the performance of the experts in the different regions of the input
space. This can be expressed as the posterior probability of the ith
expert given the test sample x and the local expert prediction ŷi:

vi(x, ŷi) = p(i|x, ŷi) = p(x, ŷi|i)p(i)
�I
j=1p(x, ŷj|j)p(j)

, (11)
where p(i) is the a priori probability of the ith expert,
�I
j=1p(x, ŷj)p(j) is a normalisation factor and p(x, ŷi|i) is the

8 In this research the inputs are first divided by their standard deviation so allow-
ing  us to assume an isotropic kernel for simplicity and also to reduce the number of
parameters to be estimated.

9 Equal for all local experts in our implementation, different values could be used
for experts’ prioritization.
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ikelihood of x given the expert, which can be calculated by reading
he descriptors at the positions defined by the sample x and
rediction ŷi:

(x, ŷi|i) =
M∏
m=1

p(xm, ŷi|i) =
M∏
m=1

Di,m(xm, ŷi). (12)

Eq. (12) shows that the descriptors Dm are sampled at the posi-
ion which are given on one hand by the scalar value xm of the mth
eature of the sample point x and on the other hand by the predicted
utput ŷi of the local expert corresponding to the ith receptive field.
ampling the descriptors at the positions of the predicted outputs
ay  result in different outcome than sampling at the positions of

orrect target values, because the predictions are not necessarily
imilar to the correct values. However, the correct target values are
ot available at the time of the prediction. The rationale for this
pproach is that the local expert is likely to be more accurate if it
enerates a prediction which conforms with an area occupied by a
arge number of true values during the training phase.

To reduce the number of redundant experts, after the processing
f batch k, those that deliver similar predictions on Vk can be
erged, making use of the linear base model. If the base model

s not linear and merging is not straightforward, then a pruning
trategy as in Kadlec and Gabrys (2009b) can be considered. There,
he weight vectors of all experts on a batch of data are pairwise
ompared and if their similarity is higher than the defined thresh-
ld, one of the experts is removed. Prediction vectors can also be
sed to measure the similarity between different experts.

.3. Adaptive mechanisms

The SABLE algorithm allows the use of different adaptive mech-
nisms. AMs  are deployed as soon as the true values for the batch
re available and before predicting on the next batch. It is also pos-
ible that none of them are deployed. The AMs  that are used in our
ork are described in the following sections.

.3.1. Batch learning
The simplest AM augments existing data with the data from the

ew batch and retrains the model. Given predictions of each expert
i ∈ F on V, {ŷ1, . . ., ŷI} and measurements of the actual values, y,

 is partitioned into subsets in the following fashion:

 = argmin
i ∈ 1···I

〈fi(xj), yj〉 → [xj, yj] ∈ V z (13)

or every instance [xj, yj] ∈ V. This creates subsets Vi, i = 1 . . . I such
hat ∪I

i=1V i = V . Then each expert is updated using the respective
ataset Vi. This process updates experts only with the instances
here they achieve the most accurate predictions, thus encour-

ging the specialisation of experts and ensuring that a single data
nstance is not used in the training data of multiple experts. This
M will be denoted as AM1  in the description of the experiments
elow.

.3.2. Batch learning with forgetting
This AM is similar to one described in Section 4.3.1 but includes

 forgetting factor (see Section 4.4) which reduces the weight of the
xperts historical training data, making the most recent data more
mportant. This AM will be denoted as AM2.
.3.3. Recalculation of descriptors
This AM recalculates the local descriptors, D, using the new

atch as described in Section 4.1. The previous weights are dis-
arded. This AM will be denoted as AM3.
cal Engineering 96 (2017) 42–54

4.3.4. Creation of new experts
New expert fnew is created from Vk. Then it is checked if any

of the experts from Fk−1 ∪ fnew , where Fk−1 is the experts pool
after processing of batch k − 1, can be merged or pruned. Finally
the descriptors of all resulting experts are calculated (Section 4.1).
This AM will be denoted as AM4.

An example of the general principle of SABLE’s operation includ-
ing few selected adaptation mechanisms is illustrated in Fig. 3. It
shows how the model changes after deploying AM4, AM2  and AM3
in a sequence.

4.4. Recursive Partial Least Squares

SABLE is conceived as an algorithm which can function with any
base prediction model, assuming the feature independence. In our
experiments we use RPLS as a base algorithm. The advantages of
this algorithm are that it derives a set of independent latent vari-
ables (features) which can be fed into the SABLE instead the original
ones, acting as a pre-processing step. Furthermore, RPLS can be
updated without requiring the historical data and the merging of
two models can be easily realised. RPLS is an extension of the Partial
Least Squares, both being popular in chemical process modelling.
PLS projects the scaled and mean centered multidimensional input
data X ∈ RN×M and output data Y ∈ RN×C , where N is the number
of data instances, M is the number of input variables and C is the
number of output variables, to separate latent variables,

X = TST + E (14)

Y = UQ T + F. (15)

Here T ∈ RN×L (L ≤ M as the number of latent variables) and
U ∈ RN×L are the score matrices, S ∈ RM×L and Q ∈ RC×L are the
corresponding loading matrices, and E and F are the input and out-
put data residuals. Then the score matrices T and U consist of so
called latent vectors:

T = [t1, . . .,  tL], where tl ∈ Rn×1, l ∈ 1. . .L (16)

U = [u1, ..., uL], where ul ∈ Rn×1, l ∈ 1. . .L. (17)

where the column vectors s ∈ Rm×1 and q ∈ Rm×1 of the loading
matrices S and Q represent the contributions of the input and out-
put variables to the mutually orthonormal latent vectors t and u,
respectively. Eqs. (16 and 17) constitute the PLS outer model. After-
wards a regression model, which is also called the PLS inner model,
between the latent scores is constructed:

U = TB + R, (18)

where B ∈ Rl×l is a diagonal matrix of regression weights which
minimizes the regression residuals R. Then the estimates Ŷ of  Y
are:

Ŷ = TBQ T , (19)

There are different methods to calculate the required vectors t, s, u,
q and b (column vector of B). One of the most popular ones, NIPALS
Geladi and Kowalski (1986), updates latent vectors in an iterative
way. After each iteration, the explained covariance is removed from
the data:

X i+1 = X i − tis
T
i (20)

Y i+1 = Y i − uiq
T
i . (21)

The subsequent (i + 1)th vectors are calculated by the resulting new

input and output data Xi+1 and Yi+1. Recursive PLS, which uses
NIPALS, updates the matrices S, T, Q, U and B when the new data
becomes available, on either sample-by-sample (incremental) or
batch basis. In this work we are using batch adaptation. It works
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Table 2
Adaptive strategies.

Strategy Description

Sequence0 Apply AM0  on every batch. This means that only the first
batch of data is used to create an expert.

Sequence1 Apply AM1  on every batch.
Sequence2 Apply AM2  on every batch.
Sequence3 Apply AM3  on every batch.
Sequence4 Apply AM4  on every batch.
Retrain A new model is trained from the current batch and the old

one is discarded. No data partitioning is used.
Joint Apply AM2  and AM4  (in this order) on every batch. This

strategy deploys all of the available adaptive mechanisms
(batch learning, addition of new experts and change of
weights)

Optimal Select AM based on the next data batch as described in
Section 3.2. Used for benchmarking.
Fig. 3. An example of a model a

y applying PLS on the new batch and constructs new input and
utput matrices as follows:

new =
[
	ST0

ST1

]
(22)

new =
[
	B0Q T

0

B1Q T
1

]
, (23)

here the matrices S0, B0 and Q0 describe the old model and S1, B1
nd Q1 the new one created from the most recent batch. 0 ≤ 	 ≤ 1
s the forgetting factor which determines how much influence the
istoric data will have, with 	 = 0 meaning zero influence and 	 = 1
eaning that the historical data has the same influence as the new

atch. After constructing the new input and output data matrices,
LS is applied on them to get the updated matrices. The condition
or this update is that the number of latent variables must be equal

o the rank of X. This condition can be practically met  by finding

 number of latent variables a for which the error on the training
ata is less than the defined threshold close to 0.

able 1
ABLE parameters for different datasets.

Dataset Batch
size

Descriptor
mesh grid
size

Descriptor
update
weighing

RPLS
forgetting
factor

Expert
generation
kernel size

Catalyst 50 50 × 50 0, 1 0.5 1
Catalyst 100 100 × 100 0, 1 0.25 1
Catalyst 200 100 × 100 0, 1 0.5 1
Oxidizer 30 50 × 50 0.25, 0.75 0.5 1
Oxidizer 50 50 × 50 0, 1 0.25 0.01
Oxidizer 100 50 × 50 0, 1 0.25 0.01
Drier 50 50 × 50 0, 1 0.25 0.01
Drier 100 50 × 50 0, 1 0.5 0.1
Drier 200 50 × 50 0, 1 0.25 0.01
XVSelect Select AM based on the current data batch using the
cross-validatory approach described in Section 3.2.

5. Experimental results

5.1. Methodology

The experiments were performed on 3 datasets from the pro-
cess industry which will be described later.10 As explained in Kadlec
and Gabrys (2009a), there is a need for adaptation for the Oxidizer
and particularly for the Catalyst datasets, which is not apparent
with the Drier dataset. We have performed our experiments on
all of the three datasets with different batch sizes. Choosing these
datasets will allow us to test AM sequences on data which exhibit
different behaviours. Three different batch sizes for each dataset are
examined in the simulations together with a mix of typical param-

eter settings as tabulated in Table 1 (for brevity purposes we will
denote the batch size next to the dataset name in the future, to indi-
cate which batch size was used for the experiment – i.e. Catalyst50

10 This section is a partial repeat of the Section 7 from Bakirov et al. (2016).
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Table 3
Catalyst dataset results. Here, n is batch size.

n = 50 n = 100 n = 200

Strategy MAE  MSE MAE MSE MAE  MSE

Fixed order
Sequence0 0.310 0.342 0.279 0.313 0.361 0.397
Sequence1 0.138 0.260 0.147 0.260 0.161 0.288
Sequence2 0.023‡ 0.067 0.031 0.067 0.058 0.139
Sequence4 0.037 0.062 0.031 0.062 0.052 0.095
Joint  0.035 0.074 0.035 0.074 0.049‡  0.085
Retrain 0.024 0.081 0.028‡  0.058 0.052 0.108

Flexible order
Sequence0 RC 0.031 0.081 0.045 0.081 0.072 0.109
Sequence1 RC 0.026 0.081 0.042 0.081 0.073 0.125
Sequence2 RC 0.026 0.081 0.039 0.081 0.073 0.123
Sequence3 RC 0.026 0.082 0.046 0.082 0.067 0.094
Sequence4 RC 0.021 0.075 0.034 0.075 0.053 0.097
Joint  RC 0.020 0.082 0.035 0.082 0.052 0.095
XVSelect 0.020 0.055 0.029†  0.055 0.049†  0.096
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XVSelect RC 0.018†  0.075 

Optimal 0.015 0.031 

tands for Catalyst dataset with batch size of 50). These parame-
er combinations were empirically identified. We  use the adaptive
trategies presented in Table 2 for AM selection.

To calculate the significance of differences between the predic-
ions of different strategies, the significance test of difference of
wo estimators’ errors relying on the sample covariance (Mizrach,
996, Section 3.2) was used.

.2. Catalyst activation dataset

This data set was used for the NiSIS 2006 competition
Strackeljan, 2006). It includes 14 sensor measurements like flows,
oncentrations and temperatures from a real process. The target
ariable is the simulation of catalyst’s activity inside the reactor.
he description of the reaction speed is taken from the literature,
howing a strong non-linear dependency on temperature. Further
omplicated processes like cooling and catalyst decay contribute
o changes in the data. The data set covers one year of operation of
he plant. Many of the features exhibit high co-linearity and con-

ain high number of outliers. The data includes 5867 data samples.

e have removed two features with mostly missing and 0 values
uring the preprocessing. The number of latent vectors for PLS was
xperimentally set to 12.

Fig. 4. AMs  in Optimal strategy
32 0.075 0.051 0.097

24 0.049 0.040 0.069

In Table 3 we  present the results with batch sizes of 50, 100 and
200 (Catalyst50, Catalyst100 and Catalyst200). The best result in
terms of MAE  among the methods with flexible AM deployment
order is denoted with a †,  and among the methods with fixed order
with ‡.  We  check whether the error values of these two strategies
are significantly different with a significance level,  ̨ = 5%, and if so
mark the most accurate strategy with a bold font. RC at the end of
the strategy name denotes that the retrospective model correction
was used. Using the benchmark (Optimal) strategy AM,  which mini-
mizes MAE  for the incoming batch of data, always led to the lowest
MAE  for the whole dataset.

On the smallest batch size of 50, the best method among meth-
ods with flexible AM sequences is XVSelect with correction and
among the methods with fixed one is Sequence2.  On  the larger batch
sizes respectively XVSelect, Retrain and Joint perform better in the
respective groups. This can be a sign of the growing independence
of the current data from historical data for this particular dataset,
which is indeed known to be comparatively volatile. The distribu-
tion of the AMs  in Optimal strategy and to what extent XVSelect AMs

match with them is shown in Fig. 4. It is noticeable that AM4  is the
most common AM in the Optimal strategy, meaning that it often
delivers the most accurate results. This is also the reason why  it
is often selected by XVSelect. On Catalyst100 dataset, XVSelect and

 for the Catalyst dataset.
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Fig. 5. Predictions

ptimal have the least common AMs  (Fig. 4). This is also reflected
n Table 3, where for that case Retrain has the least MAE.

Fig. 5 compares the true target values and predicted values of
VSelect with correction and Sequence2 on Catalyst50 dataset. The
Ms deployed by Optimal and XVSelect are also shown, marked red
hen they differ. We  can see that in the beginning of the dataset,
here the target value changes quite fast, algorithms with flexi-

le AMs  perform noticeably better. In the more stable parts of the
ata, such as batches 50–65 or 85–94, the differences are much less
rastic. Optimal and XVSelect with correction can suffer from fluc-
uations (e.g. batches 107–108) which is an artefact of the SABLE
lgorithm, depending on its settings.
The importance of the proper selection of AMs  is illustrated in
ig. 6 which presents MAE  values after exhaustively deploying all
ossible combinations of AMs  for four steps ahead at every batch
n the Catalyst50 dataset. As we can see in this figure, the choice

ig. 6. 4 step ahead exhaustive deployment of all AMs  on Catalyst50 dataset. Bold/red l
olor  in this figure legend, the reader is referred to the web  version of the article.)
atalyst50 dataset.

of the wrong AM can result in a drastic increase in the prediction
error.

We have additionally experimented with 2 and 3 steps retro-
spective correction as described in Eq. (7) for XVSelect. Fig. 7(a)
shows the results. It can be seen that using more than one step
retrospective correction does not generally bring improvement to
the predictive accuracy, and in fact often decreases it. We  relate this
to the fact that using more retrospective correction steps increases
the overfitting of the model to the current batch.

5.3. Thermal oxidizer dataset
This dataset deals with the prediction of the concentration of
exhaust gas during an industrial process where the task is to predict
the concentrations of NOx in the exhaust gases. The data set consists
of 36 input features which are hard sensor measurements. They

ine shows MAE  values of Optimal strategy. (For interpretation of the references to
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ig. 7. Normalized XVSelect results’ comparison with different batch sizes. White is
rier  dataset.

re physical values like concentrations, flows, pressures and tem-
eratures measured during the operation of the plant. The dataset
onsists of 2820 samples. In addition, outliers and missing values
re present in the data. The number of latent vectors for PLS was
xperimentally set to 3. In Table 4 we present the results with
atch sizes of 30, 50 and 100 (Oxidizer30, Oxidizer50 and Oxi-
izer100).

The best results in this dataset are achieved with SABLE strate-
ies with flexible AM deployment order – XVSelect with correction
nd Sequence4 with correction. The most accurate strategies with
xed order are Joint and Sequence4.  We  see that for the Oxi-
izer dataset, the strategies which rely more on historical data
rovide better results, as compared to the Catalyst dataset. This
ould seem to indicate the relatively lower volatility of the cur-

ent dataset. Here, as shown in Fig. 8, AM4  is most often the
est AM. It is however less dominant than in the Catalyst dataset.

or this dataset, the probability of AMs  being the best one is
ore evenly distributed than for the Catalyst data. This may  be

he reason for less common AMs  between Optimal and XVSelect

able 4
xidizer dataset results. Here, n is batch size.

n = 30 n =

Strategy MAE  MSE M

Fixed order
Sequence0 0.675 1.070 0.7
Sequence1 0.602 1.010 0.6
Sequence2 0.464 0.824 0.4
Sequence4 0.459 0.836 0.5
Joint  0.441‡  0.808 0.4
Retrain 0.459 0.819 0.4

Flexible order
Sequence0 RC 0.503 0.950 0.5
Sequence1 RC 0.496 0.879 0.4
Sequence2 RC 0.484 0.862 0.4
Sequence3 RC 0.473 0.816 0.5
Sequence4 RC 0.431 0.809 0.4
Joint  RC 0.423 0.808 0.4
XVSelect 0.471 0.866 0.4
XVSelect RC 0.415†  0.763 0.4

Opt  0.373 0.721 0.3
inimal and black is the maximal error. (a) Catalyst dataset. (b) Oxidizer dataset. (c)

than in the Catalyst dataset. Among three batch size settings, this
percentage is the lowest on the Oxidizer50. This is reflected in
comparatively low predictive accuracy of the XVSelect for that
case.

Fig. 9 compares the true target values and predicted values of
XVSelect with correction and Joint on Oxidizer30 dataset. The AMs
deployed by Optimal and XVSelect are also shown and marked red
when they differ. We  can see that the Oxidizer dataset has a cyclic
characteristic, with extreme values roughly every 5 batches. Often
after these extreme values, Joint prediction values show higher
errors (e.g. batches #8, #13, #17, #30, etc.). We  relate this to the
strong adaptation of this strategy, which overfits the model to the
extreme values XVSelect in contrast behaves more stable with less
obvious jumps (e.g. batches #57, #76, #80) to extreme values.
As seen in Fig. 10 the order of AMs  makes a large difference for
predicting on the Oxidizer dataset as well. Fig. 7(b) shows that also

for this dataset using more than one step retrospective correction
in most cases does not improve the predictive accuracy, and often
causes its deterioration.

 50 n = 100

AE  MSE  MAE  MSE

60 1.181 0.779 1.218
40 0.998 0.662 1.043
90 0.838 0.564 0.966
04 0.851 0.543‡  0.929
74‡  0.826 0.568 0.949
99 0.854 0.565 0.944

30 0.902 0.644 1.104
91 0.870 0.663 1.032
89 0.841 0.666 1.057
33 0.908 0.595 1.053
70 0.818 0.528†  0.904
73 0.888 0.619 1.056
84 0.903 0.570 0.931
64†  0.817 0.553 1.019

96 0.737 0.480 0.829
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Fig. 8. AMs in Optimal strategy for the Oxidizer dataset.
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confirms that the order of AMs  makes less difference on the pre-
dictive accuracy for this dataset, except around the batches #6–#7.
Fig. 7(c) shows that as opposed to the previous datasets, predictive
Fig. 9. Predictions

.4. Industrial drier dataset

The target value of this dataset describes the laboratory mea-
urements of the residual humidity of the process product. The
ataset has 19 input features, most of them being temperatures,
ressures and humidities measured in the processing plant. The
riginal dataset consists of 1219 data samples covering almost
even months of the operation of the process. It consists of raw
nprocessed data as recorded by the process information and mea-
urement system. Many of the input variables show problems
ommon in industrial data like measurement noise, missing values
r data outliers. We  have removed 3 input features which mostly
onsisted of missing data. The number of latent variables for PLS
as experimentally set to 16. In Table 5 we present the results

ith batch sizes of 50, 100 and 200, denoted respectively Drier50,
rier100 and Drier200.

From the results, it is obvious that the Drier dataset is the most
table out of the ones we have experimented with. The plot of the
xidizer30 dataset.

Drier50 dataset target values is shown in Fig. 11.11 For lower batch
sizes, simple RPLS on-line update Sequence1 performs as good,
or better than strategies with stronger adaptation or flexible AM
deployment order. For the largest batch size of 200 however, XVS-
elect shows the most accurate predictions. In fact in this case it
deploys exactly the same AMs  as Optimal. It is worth noting that
for this dataset there are only 5 batches of the test data for the
batch size of 200. As seen from Fig. 12, AM0  is prevalent AM for
this dataset. We relate this to the lack of changes in the data. This
is why the number of times when XVSelect and Optimal deploy the
same AMs  is greater than in the two  other datasets. Fig. 13 also
11 We do not show predictions for this dataset, as their errors are much smaller
than the axis scale, making them impossible to distinguish from the target values.
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Fig. 10. 4 step ahead exhaustive deployment of all AMs  on Oxidizer30 dataset. Bold/red line shows MAE values of Optimal strategy. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Table 5
Drier dataset results. Here, n is batch size.

n = 50 n = 100 n = 200

Strategy MAE  MSE  MAE  MSE  MAE  MSE

Fixed order
Sequence0 7.68E−04 8.67E−04 5.41E−04 5.97E−04 3.87E−04 4.07E−04
Sequence1 8.98E−06‡  2.57E−05 8.09E−06‡  2.04E−05 5.06E−05 1.43E−04
Sequence2 3.04E−05 2.04E−04 1.75E−05 1.15E−04 5.28E−05 1.44E−04
Sequence4 9.86E−05 3.41E−04 1.43E−05 8.30E−05 8.77E−05 1.92E−04
Joint  4.06E−05 2.40E−04 1.34E−05 8.28E−05 5.01E−05‡  1.43E−04
Retrain  5.86E−05 3.14E−04 2.59E−05 1.54E−04 5.38E−05 1.44E−04

Flexible  order
Sequence0 RC 9.78E−06 7.02E−05 1.43E−05 5.39E−05 1.34E−04 2.42E−04
Sequence1 RC 1.02E−05 4.56E−05 8.96E−06†  2.09E−05 5.41E−05 1.43E−04
Sequence2 RC 3.02E−05 1.41E−04 1.79E−05 1.15E−04 5.09E−05 1.43E−04
Sequence3 RC 9.78E−06 7.02E−05 1.44E−05 5.39E−05 1.34E−04 2.42E−04
Sequence4 RC 4.06E−05 2.40E−04 1.34E−05 8.28E−05 6.41E−05 1.64E−04
Joint  RC 4.16E−05 2.40E−04 1.37E−05 8.28E−05 5.01E−05 1.43E−04
XVSelect  9.27E−06 4.02E−05 1.20E−05 3.08E−05 4.67E−05†  1.43E−04
XVSelect  RC 6.95E−06†  3.99E−05 1.12E−05 3.06E−05 4.67E−05†  1.43E−04

Optimal  3.40E−06 3.47E−05 3.15E−06 1.15E−05 4.67E−05 1.43E−04

Fig. 11. Drier50 dataset target values.
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Fig. 12. AMs  in Optimal strategy for the Drier dataset.

F  line 

i

a
s
t
c

6

o
W
c
c

b
d
h
b
s
w
l

ig. 13. 4 step ahead exhaustive deployment of all AMs  on Drier50 dataset. Bold/red
n  this figure legend, the reader is referred to the web  version of the article.)

ccuracy on Drier data usually improves when increasing retro-
pective correction steps. This can be also related to the stability of
he dataset, where stronger optimization of the model towards the
urrent batch does not cause overfitting issues.

. Discussion and conclusions

The core aim of this paper was to investigate the behaviour
f a data-driven soft sensor with multiple adaptive mechanisms.
e have conducted experiments on 3 real datasets from the pro-

ess industry, exhibiting different properties and different rates of
hange.

We  observe that in most of the cases, using multiple AMs  is
etter than using only one, even the most suitable AM for the
ataset. This is true for Catalyst and Oxidizer datasets. Here,
aving the possibility to deploy AMs  which are rarely the best,

rings an improvement to the predictive accuracy of the soft
ensor. For the Drier dataset, using just AM1  (batch learning
ith no forgetting) provides good results. This is related to the

ack of change in dataset – hence the AMs  which apply stronger
shows MAE  values of Optimal strategy. (For interpretation of the references to color

adaptation to the models are not needed and overcomplicate the
model.

Similarly, using SABLE with flexible AM deployment strategies
provided better results for most of the cases. Here the comparison
is mostly between Joint (deploying all of the available AMs  on the
same batch) and flexible configurations. We  have seen that choos-
ing the AM which minimizes the error for the next batch (Optimal
configuration) provides better results than Joint.

As shown in Bakirov et al. (2016), XVSelect (using cross-
validatory selection based on the last available batch) achieves
quite high predictive accuracy levels. This can be further improved
by retrospective AM correction mechanism. Generally XVSelect
strategy with correction provides the best predictive accuracy in
most of the cases.

Considering all of the above, we  can conclude that in a batch
learning scenario, using multiple adaptive mechanisms with flex-
ible deployment order which is identified using cross-validatory

selection together with the application of retrospective model cor-
rection provides significantly better results than simple retraining,
deployment of separate AMs  and their joint deployment on every
batch.
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ppendix A. Notation

See Table A.6.

able A.6
otation

Symbol  Meaning

Formulation

y Actual  output
ŷ Predicted  output
x  Input  instance
�  Time
k  Batch  number
Vk Data  batch  at  time  k,  Vk =  {Xk, yk}
nk Size  of  k-th  batch
  Function  of  the  real  process  which  generates  the  data
f  Prediction  function/expert  (indexed  1  · · ·  I)
f− A  priori  prediction  function  (before  the  adaptation)
f+ A  posteriori  prediction  function  (after  the  adaptation)
g  Adaptive  mechanism  (AM)  (indexed  1  · ·  · H)
ghk AM  chosen  at  batch  k
G  Set  of  available  AMs
S Cross-validation  training  subset
§  Cross-validation  test  subset
〈  〉  Error  measure
〈 〉× Cross-validated  error  measure
� Noise
�f Set  of  parameters  of  f
�g Set  of  parameters  of  g
r  Retrospective  correction  step

SABLE

m  Feature  number
Di,m Descriptor  of  mth  feature  of  ith  expert
D  Descriptors  matrix
Vtr Training  data
w(xj)  Weight  for  jth  instance
�(�m

j
,  ˙) Two-dimensional  Gaussian  kernel  function

�  =  (xm
j
,  yj) Mean  value  of  Gaussian  kernel  function

˙  Variance  matrix  of  kernel  function  with  �  at  the  diagonal
positions

�  Kernel  width
vi Weight  of  ith  expert’s  prediction
p()̇  Probability
F Set  of  experts

RPLS

N  Number  of  data  instances
M  Number  of  input  variables
C Number  of  output  variables
L  Number  of  latent  variables
T  Score  matrix
t Latent  vector
S Corresponding  loading  matrix
s  Column  vector  of  S
U  Score  matrix
u Latent  vector
Q Corresponding  loading  matrix
q  Column  vector  of  Q
E  Input  data  residual
F  Output  data  residual
B  Regression  weights  matrix
b  Column  vector  of  B
Ŷ  Estimates  of  Y
	  Forgetting  factor

Results  ˛  Significance  level
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